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1 | INTRODUCTION

Numerical optimal transport is currently a significant and exciting area of research. The ability to quickly approximate discrete
and semi-discrete transport problems has important real-world applications. Even when the original problem is continuous,
existing solution methods solve by considering a discrete or semi-discrete approximation.

At first glance, auction algorithms appear to be a good approach to solving such discrete and semi-discrete transport problems.
Unlike many other network methods, they offer controlled approximation and bounded error results.

Furthermore, auction methods work best when applied to problems characterized by one or both of two properties: homogene-
ity and asymmetry [3, p. 58-59]. Homogeneity means the sinks and sources have a small range of weights, while asymmetric
problems have far more sinks than sources (or sources than sinks). This appears promising, as many semi-discrete transport

problems are characterized by strong asymmetry.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE—-1148903.



2 | Real-valued auction algorithm for optimal transport

However, real-valued transport problems are not necessarily homogeneous, and the transport costs they use are unlikely to
be rationally-relatedﬂ In particular, costs are often derived by computing the value of a p-norm for some p # 1. This lack of
rational-relatedness is crucial, since existing auction methods put integer-based restrictions on the cost and weight data inherent
to the problems they can solve.

The complexity arguments used by existing auction methods require that the cost of each matching is an integer. If rational
(or rationally-related) costs are required, all costs must be transformed into integers using a common denominator. This can
impact the worst-case time complexity of the algorithm. If non-rationally-related costs are required, as in the p-norm instance
described above, these auction methods offer no guarantee of termination or convergence.

When existing auction methods are used to solve real-valued network flow or optimal transport problems, then another, more
significant, data restriction arises. Existing auction methods work by converting the problem into an assignment problem, where
all weights are equal. Hence, as with the costs, if rationally-related weights are required, the entire set of weights must be
transformed using a common denominator. Here, though, all weights must be unit-valued, and the common denominator directly
impacts both the storage requirements and the worst-case time complexity of the resulting problem. Furthermore, because the
final weights must be unitary, if non-rationally-related weights are required, then these methods cannot be applied at all.

We propose a more general auction method, one developed specifically for the transport problem (rather than one based
on the assignment problem) and capable of handling real-valued costs and weights. To support this extension, we also prove
convergence and provide a priori error bounds for transport problems with real-valued data. Finally, we compare auction methods
using a series of standard problems and show results indicating complexity roughly comparable to that of the original auction

method, in cases where the latter can be applied.

2 | BACKGROUND

The term “optimal transport” is generally used to refer to a continuous form known as the Monge-Kantorovich problem. One

way to define the problem, derived from [[19, p. 2], follows:

Definition 1 (Monge-Kantorovich problem). Let X and Y be Polish spaces, let 4 and v be probability densities defined on X

and Y, and let c(x, y) : X XY — R be a lower semi-continuous ground cost function. Define the set of transport plans

n[AX Y] = ulA], x[X X B] = v[B],
Iy, v) :=3r€P(X XY) , @)

Vmeas. AC X, BCY

TAsetS cRis rationally-related if there exists t € R such that, for all s € S, st € Z.



Real-valued auction algorithm for optimal transport | 3

where P(X xY) is the set of probability measures on the product space, and define the primal cost function P : I1(u, v) — R as

P(x) = / c(x, y)dn(x,y). @
XxXY

The Monge-Kantorovich problem is to find the optimal primal cost

P*:= inf P 3
L (), 3)
and an associated optimal transport plan
7% = arginf P(x). 4)
rell(u,v)

Definition [I]is easily generalized. For larger measure spaces, assume the measures y and v on X and Y are both multiplied
by some constant L. To find an optimal maximum cost, simply negate c. The definition can also be applied to semi-continuous
or discrete problems, discretizing one or both measure spaces and replacing the corresponding integral(s) with a finite sum.

Monge’s original formulation assumed masses could not be split. The relaxed form above, developed by Kanorovich, allows
splitting masses, and is typically preferred because it guarantees the existence of a solution if the requirements above are satisfied.

Kantorovich also identified the optimal transport problem’s dual formulation.
Definition 2 (Dual formulation). Define the set of functions

. : px) +y(y) <cx,y),
O (u, v) := (9, y) € L' (du) X L' (dv) : ®)

duae.xe X,dvae.yeyY

Let the dual cost function, D : @ (i, v) — R, be defined as

D(g, v) :=/(pd,u+/u/dv. (6)
X Y
Then, the optimal dual cost is
D* :=  sup D(gp, v), @)

(@, y)ED (1, V)

and an optimal dual pair is given by

(@, w") := argsup D(p, y). 3
(P, w)ED (1, V)

The continuous and semi-continuous Monge-Kantorovich problems were primarily of interest to analysts until the Polar
Factorization theorem of [7] revealed deep connections between optimal transportation and partial differential equations.
This discovery paved the way for major improvements in computational optimal transport, such as the BFO finite-difference
solver described in [1] and the iterative Bregman projection method proposed in [10]. For a more detailed overview of these

developments, see [18]].
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These new approaches come with new limitations, needed to satisfy the well-posedness requirements of partial differential
equation methods. These limitations are formally expressed by the Ma-Trudinger-Wang conditions described in [[15]]. In practice
the MTW conditions are satisfied by the use of strictly convex ground cost functions, almost exclusively limited to the squared
Euclidean distance.

For this reason, there remains a great deal of interest in discrete optimal transportation methods. All optimal transport solvers
require some form of discretization, so the trade-off can generally be seen as exchanging some generality of measure for cer-
tain assumptions of continuity. For one approach to this trade-off, which combines discrete methods with limited continuity
assumptions to solve semi-discrete transport problems with p-norm ground costs, see [12].

The study of computational discrete optimal transportation has its origins in linear programming, particularly the simplex
method developed by George Dantzig in the 1940s; for example, see [11]. Prior to the publication of the auction method, most
discrete transportation algorithms had their origins in linear programming.

The auction method, first proposed by Dimitri Bertsekas in the late 1970s [2]], uses a relaxation approach derived from tech-
niques for solving partial differential equations. Bertsekas developed the method for the assignment problem, as an alternative
to the Hungarian method [[14]. In 1989 Bertsekas and Castafién extended the original auction method to solve minimal cost flow
and optimal transport problems by taking into account what they call “similar persons and objects” [3]]. Their extended auction
method decomposes the transport problem into an equivalent assignment problem by splitting each supply and demand vertex
into multiple identical vertices of unitary weight. The number of copies is equal to the supply or demand “weight.” The extended
auction method then solves the assignment problem and combines the resulting assignments to provide the desired transport solu-
tion. When all costs and weights are integers, these two auction methods offer worst-case error and complexity bounds, as well
as conditions under which an optimal solution is guaranteed. The auction method’s potential application to generalized optimal
transport problems is already known to the wider computational optimal transport community; e.g., the discussion in [[16].

With these factors in mind, now consider the discrete real-valued optimal transport problem itself. We will use this common
frameworks to unify notation and interrelate key concepts as we briefly describe the various auction methods. When algorithmic

restrictions limit us to a special-case of the transport problem, we describe the required conditions.

2.1 | Transport problem
Consider the transport problem 7, which we define using linear programming:

Definition 3 (Discrete Optimal Transport). Suppose we are given a demand vector {d,; }f‘i , and a supply vector {s;} ,Ii |» Whose

demand coefficients d; and supply coefficients s; are positive scalars such that

L :=

1

N
d, = Z s; > 0. )
j=1

Mz
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We refer to L as the fotal weight of the transport problem. In the underlying transport graph, the vertex i associated with demand
coefficient d; is a sink, and the vertex j associated with supply coefficient s; is a source. We denote the set of sinks by I, and
the set of sources by J.

Furthermore, suppose for each sink i we are given the nonempty set A(i) of sources to which the sink i is adjacent. The set of

all possible transport pairs is equal to
A={GNIjeAl,iell, ..., M} }. (10)

Thus, A is the set of arcs of the underlying transport graph, a bipartite graph with M + N vertices and |.A| < M N arcs.

For each (i, j) € A, let ¢;; < 0 be the given cost coefficient (or simply cost). Our goal is to

maximize Z ciifis (11a)
(i, ) )eA

subject to Z fy=d; Yie{l, .., M}, (11b)
{jljeAl)}

fij=s;, VYje€{l,...,N}, and (11¢)
{i|lj€eA()}

0 < f;; <min{d,, s;}V(i, j) € A. (11d)

We refer to f;; as the flow along (i, j), because it gives the amount transported (i.e. “flowing”) from source j to sink i.

We have assumed negative costs and formulated the transport problem as a maximization problem, in accordance with the
standard implementation of the auction method. Because ¢;; < 0, the maximization equation Equation provides a minimum
overall cost (obtained by reversing the sign on each ¢;;). We refer to

Y ety (12)
@i, ))eA
as the primal cost. The solution to Equation (ITa) is called the optimal primal cost, or optimal cost, of the transport problem,
and is denoted by P*. If at least one set of flows {f;;} exists such that Equations to are satisfied, the optimal cost
P* exists and is unique.

In contrast, a set of flows { fl.";.} that achieves P* is almost never unique. See [9]] for a condition that is sufficient to ensure the
uniqueness of the set of ﬂowsﬂ However, a set of flows { ff;} that achieves P* is also bijective, in the following sense: suppose
the direction of flow is reversed, which is equivalent to a transport problem 7’ with demand vector {s; }i’i , and supply vector
{d;} j"i ;- Foralli € Ny and j € N, define the flow fi’j = fjf"l.. Then { fi;} achieves the optimal transport cost for 7/, and that

optimal transport cost equals P*.

2The condition guarantees uniqueness a.e., but for discrete measures uniqueness a.e. is equivalent to actual uniqueness
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2.2 | Transport plan

A transport plan (or transport map) T is a multiset of triples (i, j; g;;) such that (i, j) € A and the transported quantity, g;;,
is non-negative. Note that T may be empty. While the elements of T are not necessarily unique, for each (i, j) € A we can

compute the unique flow f;; given by T" as

fy= > G- (13)
{ (k. q)ET | (k,1)=(,j) }

In order to apply the plan to our transport problem, we require that 7" satisfies f;; < min{d,, s;} for all (i, j) € A. By a minor
abuse of notation, we may say (i, j) € T to signify that (i, j; g;;) € T for some g;; > 0. We may also say T € T to refer to
some transport plan T associated with the transport problem 7.

Given any transport plan 7', we say that sink i is satisfied if

q, = d.. (14)
{q; | G.Jj,q;)€T}

Otherwise, we say that i is unsatisfied. (Alternatively, we may say i has unsatisfied demand D;, where 0 < D; < d,.)

Similarly, when

4ij =S (15)
{a; | G.j.q,)€T }

we say the source j is unavailable. Otherwise, we say that j is available, or that j has available supply .S;, where 0 < S; <'s;.
A transport plan is said to be feasible or complete when all sinks are satisfied; otherwise the plan is called partiaﬂ
If T is such that the pair (i, j) appears at most once, and (i, j; ¢;;) € T implies g;; > 0, we refer to T as a simplified transport
plan. In this case ¢;; = f};, and we may refer to flow and quantity interchangeably. Simplified transport plans, while not strictly

necessary, greatly improve clarity of notation. We will generally assume T is simplified when stating definitions and proofs.

2.3 | Dual problem

We can write the dual transport problem as

M N
min du,+ ) s;p; ¢, (16)
by { i=1 Jzzl " }

with the restriction that u; + p; < ¢;; for all (i, j) € A. We call the dual variable p; a price of j, and the vector p = {p; jV: . a
price vector of 7. Assume p ; = 0 forall j.

Given some price vector p, the expense associated with the arc (i, j) € A is

X, 1=y =p, a7

3Linear programming terminology used to indicate the status of Equations 1| to || for more background, see “Network Flow Problems,” Part III of [§].
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and the expense for the sink i is

X; = max Xx,; = max{c;; 1. 18
P jean Y /eAm{ —p) (18)

Because ¢;; < 0, the maximization of the expense x; actually generates the least overall expense (obtained by reversing the signs
of the x;s).
Suppose we have a simplified complete transport plan T' and a price vector p. From linear programming theory, we know

(T, p) is simultaneously primal and dual optimal if and only if
u,-:krg%){cik_Pk}zc,-j_Pj V@, j; fi))ET. (19)

In other words, the expense for each sink is minimized by transport to the least expensive source(s). This is known as the
complementary slackness condition, or complementary slackness.
Among other things, complementary slackness implies that the dual problem can only be minimized when u; = x; for all i.

Thus, we can view the prices p; as the only variables in our dual problem, which we can rewrite as

min {Zd}rgi(x{c,j pJ}+Z jpj} (20)

p=lp; ),
Because ¢;; < 0, the minimization given in Equation (20) provides a maximum overall profit (obtained by reversing the sign of

each ¢;;). We refer to

M
Zd max {c;; — pj}+2s P, 2n
i=1

JEA()
as the dual profit. The solution to Equation (20) is called the optimal dual profit, or optimal profit, of the transport problem, and

is denoted by D*.

2.4 | Auction fundamentals

The auction method solves the dual problem described above, using a relaxation technique inspired by the open ascending price
process commonly used for real-world auctions. Each sink i is a bidder in the auction, seeking to satisfy its demand d;. Each

source is a [or containing the supply s;. Each unsatisfied bidder i offers a bid amount, b;;, for some lot j. Naturally, the bid b;;

lj’

must exceed the current price, given by p;. The bidders each want to minimize their loss: the quantity
¢, —b.., (22)

representing the cost-price total for bidder i to obtain lot j. The best possible loss for bidder i is the amount closest to zero, as
given by the negative scalar

SRS 23
Jrggg){cu i} (23)
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Each bid can be “outbid”; that is, superseded by another bidder offering a higher price. So long as b;; is greater than the
highest previous price for lot j, designated p;, we know that some bidder (either i or a competitor) will claim lot j. Once prices
are sufficiently high, lot costs becomes irrelevant, so every lot eventually receives a bid. At that point, the auction ends.

Knowing that we require b;; > p;, the natural question to ask is: how much larger than p; should we make b;;? As Bertsekas so
eloquently explains in [4, p. 29-30], we need to set a minimum bidding increment, or step size: some £ > 0, such thatb;; > p;+e.
Otherwise, the auction risks stalling if two options are equally optimal.

The assignment problem, as formulated for the original auction method, assumes that we have N sources and N sinks, each
of which has weight 1, and that all costs are integer-valued. Thus, we can assume that the auction method for the assignment
problem operates on a special case of our transport problem: one with integer costs and unit weights, where M = N. Applying

the terminology used by Bertsekas, we call a sink of weight 1 a person and a source of weight 1 an object.

2.5 | e-complementary slackness

We can relax the complementary slackness condition, allowing flow from sources to sinks whenever the loss comes within &
of attaining the maximum. This is called e-complementary slackness, or e-CS, and it can be considered for any transport plan,
complete or not.

Formally: Given some € > 0, a simplified transport plan T and price vector p satisfy e-complementary slackness if

X; — &= mMax \¢;, — —e<c¢.—0p;
i keA(i){ ik pk} = Yij pj

VG js f) ET. (24)
As Bertsekas proved in [4} p. 255-257], the auction method maintains £-CS, and the resulting transport plan is guaranteed to be

optimal if e < 1/N.

2.5.1 | e-scaling
Bertsekas found that the number of iterations of the auction algorithm depends on € and the number of possible values, or range,
that the cost can take. When we restrict costs to the negative (or positive) integers, as Bertsekas does, we can safely assume that

the cost range C is equal to the maximum absolute cost,

C = max |¢;;] = max {—c;.}. 25
(i’j)eAI il (i,j)eA{ i) (25)

(It is possible for the cost range to be smaller; for example, when ged{c;;} > 1.) As Bertsekas concluded, for many assignment

problems the number of iterations required for termination is proportional to C /e [4} p. 34].
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Of course, the number of iterations is also dependent on the initial price vector; when the initial prices are close to “e-optimal,”
the number of iterations required is relatively small. This suggests that it may be advantageous to use a scaling technique, similar
to that used in penalty and barrier methods. For the auction algorithm, Bertsekas calls this technique e-scaling.

To perform e-scaling, we apply the auction algorithm multiple times. Each iteration of the algorithm is called a scaling phase.
In the first iteration, we use a simple set of initial prices, along with an initial . For each successive iteration, we use the resulting
price vector from the previous phase, along with an altered e-value. The e-scaling technique terminates when € reaches some
critical value. When e-scaling is used, the auction method has worst-case time complexity O(N A log(NC)), where A = |A|,

the number of arcs in the underlying transport graph [4, p. 265].

2.6 | Extended auction

The extended auction for the integer-valued transport problem was initially described by Bertsekas and Castafién in 1989 [5]].
They wanted to extend the assignment auction method to one that could handle transport problems. Their idea was to transform
the integer-valued transport problem into an assignment problem by creating multiple copies: construct an assignment problem
with a number of identical persons (or objects) equal to the weight at each sink (or source, respectively), preserving the adja-
cencies and costs of the original vertices. After solving the assignment problem, redundant arcs with positive flow could be
combined to generate a simplified optimal transport plan.

When a sink or source is split into multiple copies, each with a weight of 1, the resulting persons and objects retain an
identical underlying structure: the adjacencies and cost coefficients of the originals. Such persons and objects are called similar.
A similarity class is the equivalence class of persons or objects with the same adjacencies and costs. Persons and objects in the
same similarity class can engage in protracted “bidding wars” unless their similarity is taken into account.

Bertsekas and Castafién address the similarity relationships in multiple ways. Thus, their extended auction method is best

understood as three distinct algorithms:

e The auction algorithm for the assignment problem, or simply AUCTION, expands the sinks and sources of the transport

problem, creating an assignment problem that it solves without considering the underlying structure.

e The auction algorithm for similar objects, also called the AUCTION-SO, considers the impact of similar objects when

increasing prices.

o The auction algorithm for similar objects and persons, or AUCTION-SOP, treats similar persons as a unit during each
bidding phase. At every iteration, each unsatisfied similarity class of persons bids collectively for a number of objects
equal to its total demand d,. Each similarity class of persons shares a single price increase, determined similarly to the

technique of the AUCTION-SO.
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For all three algorithms, the costs and weights must be integers. If ¢ < 1/ min{ M, N}, the solution resulting from any of these

is guaranteed to be optimal [} p. 85].

2.7 | Factors motivating the general auction

The motivations behind proposing the general auction method are best understood by contrasting it with the assignment auction
method and its extensions.

All of the auction methods described here are capable of handling real-valued cost functions without any modification. In
practice, use of real-valued costs (such as the Euclidean distance) does not generally have a noticeable impact on performance.
However, when one or more costs is real-valued, the complexity bounds described in [4] and [6] no longer apply. Hence, none
of the auction methods offer a guaranteed upper bound on complexity for transport problems with real-valued costs.

The primary issues arise when one or more weights in {d;} or {s;} are not integer-valued. The auction methods developed
by Bertsekas and Castafidn require that the transport problem be transformed into an assignment problem. That requires the
existence of some common value V' € R such that Vd;, and Vs ; are integers for all i and j. Even if such a V exists, the
transformation generates an assignment problem with LV sources and sinks, which must then be solved. This transformation

step can easily result in problems so large as to be unsolvable, as the following (admittedly degenerate) example illustrates.

Let {a, a+ 2} and {b, b + 2} be two sets of twin primes. Choose M = N =2, and
d =a, d,=b+2, s;=b, s, =a+2. (26)

Choose any negative-valued cost coefficients ¢;; for i = 1, 2 and j = 1, 2. The transport problem is feasible, and
its underlying transport graph has four vertices and four arcs.

Now convert the transport problem to an assignment problem, as required by all of the Bertsekas and Castaiién
methods. Because the demand and supply quantities are relatively prime, it is impossible to “downsize” the resulting
problem. This means the underlying assignment graph has 2(a + b + 2) vertices and (a + b + 2)? arcs. Even if the
twin prime conjecture turns out to be false, the largest known twin primes have more than 200 000 digits (in base-
10 notation). Using these twin primes, a transport problem simple enough to solve by hand becomes an assignment
problem requiring more vertices than the number of electrons in the universe. By comparison, an auction algorithm
that did not require this transformation would require far less storage space. For example, the general auction would
require no more than fourteen weight Variablesﬂ Given an effective method for storing large integers, they would

take up just over one megabyte of computer memory.

4Two demand values d;, two unsatisfied demand values D;, two supply values s ;» two available supply values .S, and up to six quantities g;; (two for bidding and up
to four for claim lists); see SectionE]for details.
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If no such V' exists, then the weights in {d;} and {s;} are not rationally-related, and the auction methods of Bertsekas and
Castafién cannot be applied at alﬂ

In contrast to this bleak picture, the general auction method is designed from the ground up to handle any set of real-valued
weights without special treatment. Rather than transform the transport problem into an assignment problem, it operates directly
on the original transport problem, so the number of source and sinks, and the corresponding difficulty, remain unchanged. In
the following sections, we consider how this is done, and experimentally evaluate the impact on computational time, storage,

and complexity.

3 | GENERAL AUCTION FOR THE TRANSPORT PROBLEM

Our general auction method uses the real-valued transport problem as its basis, rather than the integer-valued assignment
problem. (Thus, the method’s name: it is designed around a more general problem than other auction methods.) To avoid

redundancy, we define and explain only those terms and ideas which differ from other auction methods.

3.1 | Description and terminology

The general auction uses a variant form of lot bidding, similar to “times the money” bidding. Bidder i has unsatisfied demand
D;, so bidder i makes a bid of bid amount b,; on lot j. The quantity desired from lot j is set to g;; = min{ D;, s;}. We can write
the bid as the pair (b;;, ¢;;). The actual bid is understood to be price b;; per g;; items, for a total bid value of b;;q;;.

Suppose that lot j has available supply S;. If g;; < .S, the desired quantity is immediately available, so bidder i is awarded a
claim on lot j of quantity g;; at bid price b;;. This claim, represented by the triple (i; b;;, g;;), is added to the claim list for lot j,
which we denote by C;.

Such claims can still be outbid. If g; ;> S ;» We compare bidder i’s offer to those already on the claim list. The difference
between g;; and .S; is made up by taking the required amount from the lowest priced claim(s) with bid price less than b;;. Only
if insufficient low-priced claims exist will bidder i claim less than g;;.

Even so, as long as we ensure that b;; is greater than the lowest bid price on lot j’s current claim list, we know that bidder i

will be able to claim some quantity in lot j. To guarantee the occurrence of such a claim, for each lot j we must first determine

a lot price p;, defined as

p; = min_ {b;}. @7

(i:bi,-.qi,)ECj

SIn theory, it may be possible to successfully approximate the optimal transport solution by starting from a set of approximated weights. However, to the best of our
knowledge, no one has proposed this approach, or offered any mathematical support for its validity.
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. . e . 0 . . . . . .
(If C; is empty, let p; be equal to some initial price p; .) When bidding, we require that bid prices satisfy b;; > p; + € for some

fixed € > 0.

N

e corresponds to the price vector used in the dual profit equation. Thus, like the assignment

The lot price vector, p = {p;}
auction, the general auction attempts to solve the dual problem. The general auction also uses e-complementary slackness, which

is defined identically to the assignment auction.

3.2 | Iteration

Assume without loss of generality that M > N; that is, there are at least as many sinks as sources. To initialize the general
auction method, one must have a bidding step size € > 0 and an initial lot price vector. Once initialized, the auction is performed

in iterations. Each iteration consists of two phases: a bidding phase (Section[3.2.T) and a claims phase (Section [3.2.2).

3.2.1 | Bidding phase of the general auction

Let I be a nonempty subset of sinks i that are unsatisfied under the current transport plan 7. For each sink i € I':
1. Find:

(a) The lot j; offering best expense, given by

J; 1=argmax{c; — p;}. (28)
JEA()

(b) The second-best expense, chosen by considering lots other than j,,

w;, = max f{c.,—p,)}. 29
! jeA(i)#j[{ y =Pl 29

If j; is the only source in A(i), define w; to be —oo. (For computational purposes, this can be any value satisfying
w; K¢ —p;.)

2. Compute the bid (b;; , g;; ), where the bid price b;; is given by

b.. :=C“(_wi+5 (30)

Ui L

and the quantity claimed g;; is equal to

q;;, :=min{D,, sj’}. 31
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3.2.2 | Claims phase of the general auction

For each source j, let I; be the set of sinks from which j received a bid in the bidding phase of the iteration. If I; is nonempty,

for each i; € I, with bid (bijj, ql-jj):

1. While S; < g, ;and p; < b, ;:

(a) Find the lowest-priced claim ¢ = (k; b, i 4k j) given by

¢ = argmin {b;}.

(i3 b,/, qij)eC/
(b) If k=i, add g, tog, ;.
[Hungry Cannibal rule; see Section [3.4]|

(c) Find the quantity in ¢ to be claimed by bidder i;,

q .= min{qij,», qkj}~

(d) Make the quantity g available:
i. AddgtoS;.
ii. Subtract g from g,;.
iii. If g; = 0, remove ¢ from C; and update p;.

iv. Add g to D,.
2. Let a4, = min{qijj, S; 1, and if a,; > 0:

(a) Insert (i; b,-j_j, q,-jj) into C;.
(b) Subtract a4, from D,-j and §;.

(c) Update p It

3.3 | Resulting transport plan and cost

If all sinks have been satisfied, the general auction terminates. The resulting complete transport plan is equal to

n
T =
j=1
and the primal cost of T is equal to

2 Cijqij-

J=1 (i1 b;j, q;,)€C;

{G, s a;) | G by, q;) €C; )

(32)

(33)

(34)

(35)



14 | Real-valued auction algorithm for optimal transport

If we want to represent T" as a simplified transport plan, there is still one more step to perform. Using the claim lists, we can

determine the simplified flow for each (7, j) as

fij = Z 4ij- (36)

(i3 b5, 9;;)€C;

(If C; does not contain a claim by bidder i, we assume f;; = 0.) Using these flow values, the simplified complete transport plan
T equals

T:={GjfplGDEA f;>0} (37

The primal cost of the simplified transport plan equals
2 <l (38)
(i, ))EA

which is exactly the form used in the transport problem.

3.4 | Hungry cannibals

The Hungry Cannibal (or HC) rule is a modification to the process of handling claim lists, motivated by a potential slow-down
during the iterative process. In the bidding phase, each sink attempts to maximize the quantity it acquires. However, it is possible
for a sink i to bid on a lot j where it already has a claim, and for the new claim to supersede some or all of the old one. When
this happens, the old claim is “cannibalized” by the new one, and the quantity acquired by i is not maximal. (It may even be
zero.) We call any claim that supersedes an earlier claim by the same bidder a cannibal claim.

It is possible to speed up the bidding process, guaranteeing the maximum possible quantity is acquired by each bid, even
when confronted by cannibal claims. We can deal with cannibals by implementing the following HC rule: if a new claim by i
cannibalizes a quantity g, then during the claims phase g is added to the quantity desired by the new claim. Thus, i can cannibalize
itself during the claims phase, and the “hunger” of i remains maximal. As a side effect, the HC rule can unify adjacent bids by
the same bidder.

It is worth pointing out that the HC rule is an optimization of the general auction. The rule is not necessary to guarantee
termination or bound error, but it can significantly speed computation. The speedup occurs because the HC rule requires little
overhead to implement, while reducing the number of iterations required for convergence. Numerical tests suggest that the
transport plan resulting from the general auction will be nearly identical, whether or not the HC rule is used, but that time
improves measurably when the rule is in place. The HC rule is labeled as Step [I-(b)|of the claims phase of the general auction.

For the proofs given below, we assume that the HC rule is in place, ensuring that the quantity acquired by every new claim is

maximal. This assumption helps simplify our arguments.
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4 | MATHEMATICAL RESULTS

The proofs given in [ 4] for the assignment auction and its extensions rely heavily on the integral nature of the data. Our

generalization to transport problems with real-valued data requires a different approach.

4.1 | Termination of the general auction

Assuming real-valued data invalidates many of the standard assumptions for auction algorithms. For example, unlike Bertsekas
and Castafién in [S]], we cannot assume that any quantities claimed are bounded away from zero. Thus, we must consider the
possibility that claimed quantities tend to zero as the number of bids goes to infinity. We also cannot assume that lot price
increases are bounded away from zero, so we must consider the possibility that price increases tend to zero as the number of
bids goes to infinity. Finally, given the definition of lot prices as a minimum, we cannot assume that lot prices change at all.
We must consider the possibility that lot prices remain fixed over infinitely many bids. However, our key result, Theorem [3]
conclusively shows that none of these possibilities can occur; the general auction behaves well when applied to real-valued data,
and terminates after a finite number of iterations. Because of the above considerations, our approach to proving termination

bears little resemblance to that used by Bertsekas and Castafién in [5]].

4.1.1 | General auction prices are nondecreasing

Theorem 1. When applying the general auction method with step size € > 0, lot prices are nondecreasing and each bid price

exceeds the current lot price by at least €.

Proof. Assume £ > 0 is given. Fix the lot j* and let its lot price before and lot price after iteration be given by p;. and p;
respectively. If no sink bids on j*, then the lot price of j* does not change, and we know that p;.* = p;-. Suppose instead that

some sink i bids on j*, with bid price b;;.. From Equations @) and (12;8[), we know that the expense of sink i’s bid is given by
X, = ,-I.Igl,il(),-(){cif =P} = ¢ — P
Thus, the bid price b;;. is given by

bijs=cjp—w+e=pp+x,—w; +e.

By Equation (29), x;, — w; > 0, so

b =pp+x;—W;+E2pj+€>p.

Since the new bid b;;. is at least as high as the current lot price p;., by Equation ,

p; > min{p;., b} > p;..
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Since this is true for all i that bid on j*, we know p; 2 pjs- Therefore, lot prices are nondecreasing. O

4.1.2 | Steady price implies satisfaction

Theorem 2. If a bid by sink i on lot j does not increase the lot price p;, then i becomes satisfied. Furthermore, if bidder k was
satisfied by lot j after the last increase of p;, then k remains satisfied after i’s bid is resolved. If i should become unsatisfied and

p; has not increased, then i will bid on a lot of price p; again.

Proof. Fixlot j*. Let p;. be the price of j* prior to the bid by i, and assume the second-highest bid price on the claim list C;. is

Dj > pjs.

If |C;| < 2, it is sufficient to assume p;. = +oo.
Suppose p;.* is the lot price of j* at some later time, and that p; =Pje-
Assume first that there are no satisfied sinks on the claim list of j*, and let i; be the sink currently bidding (b; ;., g; ;») on j*.

Let g, be equal to

@ = 2z E
{ (ks byjes @) | byje=pj= }

Because of the HC rule, we can assume without loss of generality that k # i, for all claims of price p;..
As shown in Theoremm we have b; ;o 2 pj +e. Thus, if ¢; < 4; je> all claims of price p;. have been overbid and the price
after i,’s claim satisfies

p; > min{b; ;.. pj.} > pj-.

This contradicts our supposition that p; = p;-, and so we must have g, > q; j+- By definition, 4+ = min{ D;,s;.}. If i jo = Sjes
then we have ¢, > s;., which contradicts the definition of g, as a quantity claimed on C;.. Hence, we know ¢; ;. = D, . Because

i} claimed the quantity D; and the HC rule is in place, it must be the case that sink 7, is satisfied and
N . A
p.= min{b; ., pj} > pje.

Next, suppose instead that j* has one satisfied sink, and that the sink was satisfied by bidding on j* without increasing the

price p;.. Without loss of generality, assume the sink is i;. Suppose some sink i, bids (b .)onlot j*. Because i, is satisfied,

inj* i
we know i, # i;. The remaining quantity available at price p;. equals
9= Z Gj-
{ (ks byejes G ) | byjr=pjx }

Because of the HC rule, we can assume k # i, for all claims of price p - (From the steps above, we also know k # i, for all

such claims.)
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Once again, we have b; ;. > p;. +&. Note that the bid price associated with the quantity claimed by i, exceeds p;., so i, cannot
claim any quantity from i, unless ¢, < ¢; ;.. However, in that case all claims of price p;. have been overbid and the price after
i’s claim satisfies

/ . A
p;. 2 min{b; ;.. p;.} > p;..

This contradicts our supposition that p; = p;+, and so we must have g, > i o> and i, remains satisfied.
By definition, g; ;. = min{D, , s;.}.Ifg; ;. = s;., once again we have a contradiction because the total quantity in C;. exceeds
s ;.. Hence, we know ¢, ;. = D, . Because i, claimed the quantity D; and the HC rule is in place, it must be the case that sink
i, is also satisfied and
Al

Continuing inductively, we find that up to M — 1 distinct bidders can be satisfied while maintaining p; = p;+, and that
N

for each of them. Because the quantity with price p;. must be owned by at least one bidder, it is not possible for more than M — 1
distinct bidders to satisfy our initial assumption that p; = pj.

Suppose now that i, becomes unsatisfied forsome k =1, ..., M —1, and p; =pjs Because expenses are nonincreasing and
p;* = pj», X; j» must still equal the best expense for bidder i,. Therefore, during its next bidding phase, i, will bid on a lot with

expense equal to X; .. O

4.1.3 | General auction terminates

Theorem 3. Given € > 0, if at least one feasible transport plan exists, then the general auction method terminates after finitely

many iterations.

Proof. Let I be the set of bidders (sinks) and J be the set of lots (sources) for a feasible transport problem 7. As a consequence

of Theorem|[I] we can partition J into four subsets:

JF . the set of lots which receive finitely many bids,

JM  the set of lots whose prices achieve maximum values, while receiving infinitely many bids,

J4, the set of lots whose prices asymptotically approach finite limits, without ever achieving those limits, and

J*, the set of lots whose prices increase without bound.
Now consider four subsets of I:

— I¥ = {i bids finitely many times},
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— I™ = {i bids on some j € JM infinitely many times},
— I = {i bids on some j € J* infinitely many times}, and
— I = {i bids on some j € J infinitely many times}.

We will show that these four sets partition 7.
Suppose i € I such that A(i) \ J is nonempty. Then there exists j* € A(i) \ J®, and by definition p;. is bounded above.

Thus, after a finite number of iterations, V j® € J*

x; = }2%{% =P} 2 ¢ = Pje > Chjo — Do

Therefore, if A(i) \ J is nonempty, we must have i ¢ 1. By the contrapositive,
A() CJ™, Viel®. (39)

This implies that I* is pairwise disjoint with I, I4, and I'M.
Suppose there exists i € I \ 1T such that J4 N A(i) # @ and JM N A(i) # @. By definition, i bids infinitely many times on

lots from J4 and/or JM . Let P’} be the lot price of j at the end of the n-th iteration. For all j € J A define

I; 1= lim p'".

J n—oo

After a finite number of iterations k, all lots in J ¥ no longer receive bids and all lots in J M have reached their fixed prices. Thus,

forall j € JM U JF, and all iterations n > k,

n_ k
Define
JM 1= argmax {c;; —pj,‘}
JEAGHNIM
and
A .
J© 1=argmax{c; —1;}.
JEA(HNJA

One of two possibilities must exist:

L Ife;m — pj?M < ¢;ja — 1;a, then for any n > k we have ¢;;» — pij < Cja— p;‘A. Thus, after the k-th iteration, i will not bid

onlotsin JM andsoi ¢ I'M.

k . . . [ k i .
2. If ¢ — Pl > Cija = 1,4, then there exists iteration k > k such that ¢;;u — Piu > Cija = Pla Because lot prices are

nondecreasing, after the k-th iteration i will not bid on lots in J4. Therefore, i ¢ I4.
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Therefore, IM and I are pairwise disjoint. By definition, ¥ must be pairwise disjoint with both I™ and I*, because a sink
cannot bid both finitely many and infinitely many times. Thus, all four sets are pairwise disjoint, and since their union is I they
constitute a partition.

We will now consider possible elements in the three sets 1 M 1A and I, to show that these sets are in fact empty.

1. Suppose I'M is nonempty. After a finite number of iterations all prices in J™ are fixed and all bidders in I no longer bid
on lots outside of J™ . From that iteration on, by Theorem each bidder i € I'M must be satisfied after its bid. Thus, some
other bidder(s) must cause each i € I'™ to become unsatisfied infinitely many times. By Theorem [2| and the definition
of IM, each time i becomes unsatisfied it will rebid on a lot in J™ with the exact same price as the one it chose on its
previous bid. Therefore, after a finite number of additional iterations, all i € I'™ will only have claims in J¥ and J™, and
sinks in '™ only become unsatisfied as a result of bids from other members of I M for lots in JM . As a result, after a finite

number of additional iterations the quantity claimed from j € J™ at lot price p ; will only be claimed by bidders in 1 M,

Assume without loss of generality that all of these things have occurred by the start of the k-th iteration. Let D* be the
total unsatisfied demand at the start of the k-th iteration,
D=3 D,
ielM
and let O be the total supply available at the fixed prices:
Qk = Z 2 qij'

jeIM (isb,-,-,qi,-)EC,-
buzp’?

J
Assume without loss of generality that Q¥ = u*D* for some u*. Because the prices for lots in J™ remain unchanged,
we know u* > 1. During the round, each unsatisfied bidder in I must bid on some lot in J™. Because the prices of
those lots do not increase, we know that all those bidders must be satisfied. Thus, the total quantity acquired by bidders
in I'™ during the k-th round must equal D*. Since the prices of the lots do not increase, the claimed quantities must have
been taken from O, and so Q¥ must have been reduced by D¥. Because the new amounts claimed could come only from
previous claims by bidders in I™, at the start of the (k + 1)-st round the unsatisfied demand, D**!, must equal D¥, and
the ratio of the available quantity, given by #**!, must satisfy u**! < u* — 1. Therefore, [1*] rounds after the k-th, the

available quantity at the current prices must have been exhausted, and the price of some lot in J™ must have increased.

This contradicts the definition of J™, and therefore 1™ must be empty.

2. Suppose 14 is nonempty. By the definition of J4, for each j, € J4, there exists an associated iteration k, such that the
price at the start of that iteration, pf’, satisfies

k
l,—pjr’ <Ee.
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Let k = max, k,.

Assume without loss of generality that by the start of iteration k all lots in JF have also received their final bids. This
implies that all bidders in I are now bidding exclusively on lots in J4. Recall from Theoremthat each new bid exceeds
the current lot price by at least €. Thus, after the k-th iteration, for all i € T Aand all j € J4, the new bid price b; ; must

exceed / I

Let D be the total unsatisfied demand at the start of the k-th iteration,
Dt= YD,
ielA
and let Q¥ be the total supply available at prices not exceeding the asymptotic limits:
Qk = Z Z qij'

JEJA (i3 by, 9;,)EC;

Assume without loss of generality that Q% = u* D* for some u* > 0.

Let i be some unsatisfied bidder in I4, bidding on j € J4. The bid price offered by i, by exceeding / ;» exceeds the price
of all quantities claimed in Q. We know from the definition of J* that the price of lot j does not exceed / ;- Thus, all
bidders in 74 must be satisfied at the end of their bids. This implies that the claimed quantities must have been taken from
O, and that

Qk+1 - (uk _ I)Dk

Because no bidders outside 14 will bid again on lots in J*, the bidders who become unsatisfied due to the new claims
on O must be members of I4. Thus, at the start of the (k + 1)-st round the unsatisfied demand, D**!, must equal D¥
and the ratio of the available quantity u**!, must satisfy u**! < u* — 1. Therefore, [u*] rounds after the k-th, the quantity
claimed at prices below asymptotic bounds must have been exhausted, and the price of some lot j € J# exceeds [ ;- This

contradicts the definition of J4, and therefore 14 must be empty.
. Suppose I* is nonempty. From Items and we know I = I U I®. Leti € I*. Equation implies

min p; > min p;
jeAl ! T jer="0’

and since p ;> +00 for all j € J, it must be the case that

min p; — +oo.
jeA(i)pf

Therefore,

x; = max{c;; — p;} - —o0.
Lojeawy YT
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Thus, after a finite number of iterations, each lot in J* will be satisfied exclusively by the bidders in /*°. Otherwise, some
bidder in I would become unsatisfied infinitely many times, causing them to bid infinitely often. This would contradict

the definition of IF.

Furthermore, because I* is nonempty, we know the algorithm must not terminate. Thus, after a finite number of iterations
there exists at least one bidder in I® that is not satisfied, while all bidders in IF have been satisfied by the lots in J F o1t
follows that the total demand of the bidders in I must be strictly larger than the total supply of the lots in J*. However,
by Equation (39), the demand in 7* can only be satisfied by supply in J*. This contradicts the assumption that a feasible

transport plan exists. Therefore, I*° must be empty.

Because IM, I4, and I are all empty, we know I = IF. Therefore, the general auction algorithm must terminate after finitely

many bids. u

4.2 | Optimality of the general auction

When a real-valued transport problem is solved by computer, some error is inevitable, if only from the limits of machine preci-
sion. We show below that the error associated with the general auction method can be bounded a priori with respect to €. As a

consequence, the method is convergent with respect to e-scaling.

4.2.1 | Minimum price increase for general auction

Corollary 1. Given a feasible transport problem 7, there exists a finite k € N and § > 0 such that every k bids the price of a

lot is guaranteed to change, and each time a lot price changes it increases by at least 6.

Proof. This follows from Theorem [3] specifically that JM U J4 = . O

4.2.2 | General auction preserves e-CS

Theorem 4. If a transport plan and lot price vector satisfy e-CS for the general auction method at the start of an iteration, the

same is true of the transport plan and lot price vector obtained at the end of that iteration.

Proof. Suppose -CS holds at the start of the iteration. Fix lot j* and let its price before and price after iteration be given by p;.
and p;.*, respectively.

Suppose that sink i bids on lot j* during the iteration, and the lot price of j* changes as a result. By Equations (28)) and (30)

b...= Cijo —w; te,

ij i
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which implies, by applying Equation (29), that

¢;»—b . =w,—e= max {¢;,—p;}—e.
v ! jeA(iméj*{ y =Pyl
Equation li guarantees that p;* < by, 80
/ - — _
Cij» = P 2 Cije — bij* = jelgg)e’u;#*{cij pj} €.

By Theorem P, > p; for all j. Thus,

/ /
. . > max {c.,—p.}—e¢€.
e =P jeAmm*{ y =P

/
Because Cije = P} 2 ¢ — P — &,

it
/ /
C;w —p., > maxi{c.;—p.} —¢&,
y TP 2 maxic; — p;}
and e-CS is satisfied.

Suppose that i has a claim on j*, but the lot price p;. has not changed during the iteration. Because £-CS held prior to the

iteration and p; < p; for all j,

/
¢ =D’

i = Cije = Pjr 2 max {c;; —p;} —¢€

JEA()
> max {c;, — p’} — €.
_jeA(i){ i~ P}

Thus, e-CS holds for all claims in every claim list.

Therefore, £-CS holds for all (i, j; g;;) in the transport plan T'. O]

4.2.3 | General auction error bound

Theorem S. Let € > 0 be the step size of the general auction method. If a feasible transport plan exists, then when the general
auction method terminates, the resulting feasible transport plan is within Le of optimal, where
M N
L=Yd=Ys, (40)
i=1 j=1
Proof. Assume the transport problem is feasible. Let P* be the optimal primal solution to the transport problem,

o—
P = max Z ¢iifijs

TeT |T 1
{TeT | T complete } i hea

and D* be the optimal dual solution

M N
D* = min d: max{c,; —p;} + S:p; P
p={p,},”l{l§‘ jean ; I
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Let T* be the simplified transport plan when the auction terminates, and let p* = (pj, ..., p},) be the resulting price vector. Let

i be any sink. Suppose (i, j,; fij,) eT*, withr € {1, ..., t;}. Because (T'*, p*) satisfies e-CS,

L —pfl_eg<e.. —pf
jEgles —r) me s =

Therefore, by rearranging and summing terms for all j,,

Sk sk
- < .
j;élg()lg){clj pj} +p, ety

o (mstes =117 ) < e ves)

* *
L7 <J@%{CU —p 1’») < D Uyetie,

3k *
d; maxic; =P} + 2 fup, Sdie+ Y fc

where each summation takes place on all (i, j,; fij,) eT*overallr e {1, ..., t;}.

Summing over all sinks i, this gives us

JEA(D)

M
Zd[ max{cij_l’;}"' Z fijp;
i=1

(i, js f,)ET*
N @1)
< Z de+ 2 1 Cij-
i=1 (i, J; f,))ET*

Given any sink j, we have (i, j; fiuj) eT*forallu € {1, 2, ..., vj}. Thus, summing first over the i, for j, and then over all

j, we have

Y Sk =

(iuaj;fiuj)ET*

uef{l,...,v;}
N
k %
Z fijpj_zsjpj-
i, j; fi))ET* j=1

Substituting this into Equation (1), we have
M N
d. max{c,; —pi}+ ) s.pt
IZ{ Yjeaay YT ; ST

M
< 2d,-6+ Z i Cij-
i=1

. Ji fi)ET*
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Therefore,

T
I
>

Il
—_

IA
.Mg

N
d; max {c;; —p;f} + Zsjpjf
j=1

JEA()
2 futy

(i, j; f)ET™

IA
M=
S
™
+

IA
~
&
+
~
%

< Le + D*.

4.3 | Essential characteristics of the general auction

In Network Optimization: Continuous and Discrete Models, Dimitri Bertsekas describes what he considers the “important ingre-
dients” of auction methods [4]. Here, in the same form used by Bertsekas, are what we consider the essential elements of the

general auction method:

Given € > 0:

(a) &-CS is maintained.

(b-1) During each iteration, at least one bidder with unsatisfied demand claims supply in one lot.

(b-2) The bid price of any claimed supply is increased by at least fle, where f is some fixed positive constant.

(b-3) Any previously-claimed supply that is needed to satisfy a higher priced claim (if any) becomes unclaimed.

(c-1) No bid price is decreased.

(c-2) Any supply that was claimed at the start of an iteration remains claimed at the end of that iteration (although

the bidder claiming it may change).

With the exception of (a), all of these characteristics are essential to our argument that the general auction algorithm terminates
after a finite number of iterations. Characteristic (a) allows us to relate the the resulting price vector to the optimal price vector

we seek, in order to establish a worst-case bound on the distance from optimality.
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4.4 | AUCTION-SO is a special case of the general auction

Given an integer-valued transport problem, we can relate the general auction method to the extended auction method. This rela-
tionship bypasses the AUCTION-SOP algorithms, and establishes the AUCTION-SO as a special case of the general auction.
In [5], Bertsekas and Castafién showed that the original assignment auction method is a special case of the AUCTION-SO.

Thus, it follows that the assignment auction developed by Bertsekas in [2]] is a special case of the general auction.

Theorem 6. Suppose 7 is a feasible integer-valued transport problem and d; = 1 for all sinks i in 7. Then the general auction

algorithm is equivalent to the auction algorithm for similar objects.

Proof. Let T be any feasible integer-valued transport problem such that for all sinks i, d; = 1. Thus, for purposes of the
AUCTION-SO we have the similarity class S(i) = {i} for all sinks i. The lot represented by S(i) is unsatisfied if and only if
there exists exactly one person for the AUCTION-SO that is unsatisfied. Consider the bidding phase for such a person i.

If the object j; offers best expense for the AUCTION-SO, then the lot represented by .S(j;) also offers best expense, so the
object j; chosen by the AUCTION-SO corresponds to the choice of lots in the general auction. Let j’ be the object such that for

the AUCTION-SO

w,= max f{c.,—p.}=c.—p.. 42
i jeA([)\SUJ{ i~ P} = ¢y — D (42)

As a consequence, it must be that
py = min p (43)

J jesgn’I’
and so the second-best expense computed by the general auction method must equal that computed by the AUCTION-SO.
Therefore, the bid prices for the SO and general auction must be equal. Because 7 is an integer-valued transport problem, (i)

is unsatisfied, and d; = 1, the quantity desired by the general auction must be
g, =min{D;, s; } = 1. 44)

Therefore, the two bidding phases are equivalent.

Let j be some object who receives one or more bids during the claims phase, and let i; be the person that made the highest
bid on j.

Suppose the object j has already been claimed by some person k. Because j is the lowest-priced object in S(j), and each bid
increases the price of an object by at least &, this implies that the lot S(j) is unavailable. The AUCTION-SO “claim” on object

Jj corresponds to making a claim on the lot S(j), and

bijj:cl./j—w,-/+62pj+x,-/—wi/+62pj+e. 45)

Thus, in the general auction the lowest priced claim on the current claim list corresponding to .S(j) will be removed.
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Assume without loss of generality that the order of the claims in the claim list of the general auction matches the sorted order
of the expenses determined in the AUCTION-SO algorithm. Then the lowest priced claim corresponds to the object claimed
by person k. As shown in the bidding phase, the quantity claimed by i is 1, so both methods add 1 to D,. Removing the claim
(k; by, 1) from the claim list corresponding to S(j) is equivalent to removing (k, j; 1) from 7.

Appending (i;, j; 1) to T' is equivalent to inserting the bid (i;; b; ;, 1) into the claim list corresponding to S(j), and both

i

methods subtract 1 from D, . The price update for the general auction is the same as determining the lowest-priced object in
J

S(j) after the price increase on object j. Thus, the two claims phases are equivalent, and so the two auction algorithms are

equivalent. O

S | NUMERICAL RESULTS

We created two different versions of the general auction. The first is integer-based and stores all arc costs; we used it for com-
parison with existing auction methods. The second uses floating-point numbers and computes arc costs as needed; we used it to
approximate time and memory scaling for the general auction.

We implemented four additional methods for testing our numerical results: extended method’s AUCTION, AUCTION-SO,
and AUCTION-SOP algorithms, and the network simplex method. The assignment and extended auction methods were used
for benchmarking and comparison, while the network simplex method was used to test real-valued solutions for optimalityﬂ

All implementations were written in C++, and rely heavily on the C++11 Standard Library. We wrote, compiled, and tested all
the programs ourselves, in order to minimize possible confounds in our results. As shown below, the AUCTION-SOP algorithm
generated the most favorable results in our tests on non-assignment problems, so we focused on comparisons involving that
algorithm.

All of these methods were implemented to solve the general transport problem as described in Section[2.T} applying only those
restrictions necessary to satisfy the minimal requirements of the algorithm. One could improve on our results for any particular
method, simply by customizing the code to handle specific purposes or environments. However, our goal was to evaluate the
average-case effectiveness of the underlying methods themselves, aside from any potential time savings due to specialized design.

The transport problems we used for comparison testing were initialized by creating assignment problems with NETGEN [[17]].
The only modifications to the NETGEN code were increased array sizes (to generate the large problems desired) and alterations
to the input/output routines. The network generation code was not altered. When different weights or costs were desired, the

existing nodes and arcs were modified using the random uniform distribution functions from the C++11 Standard Library.

5The network simplex method is not generally useful for benchmarking. The algorithm must be initialized by choosing an initial feasible solution, and the resulting
time and storage are extremely dependent on that choice of initialization. See [13] for details on the range of network simplex performance benchmarks using various
libraries and scenarios.
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In order to obtain accurate comparisons, we used identical conditions for the creation and implementation of all programs,
and ran all tests in large blocks. To minimize variation due to underlying problem structure, we solved at least 10 distinct
transport problems for each result. Solution times are averages. When comparing algorithms, our programs loaded the data and
ran multiple algorithms in sequence, minimizing changes in conditions over time. We also ran multiple iterations of each test to
ensure that results were typical.

Computation times under one second were obtained by forcing multiple runs to bring the total time over one second, and
dividing the total by the number of runs to obtain an average. For example, if a time of 0.9 seconds is given, that indicates the
algorithm was run ten times, and the total resulting time divided by ten. In order to obtain accurate results over multiple runs,
we wrote our programs to recreate all data structures and computations from scratch. We also compared our multi-run results

to single-run times, to ensure that our multi-run averages closely approximated the times given by single runs, which they did.

5.1 | Comparison of auction methods for assignment

When Bertsekas and Castafion compared their implementation of the extended auction to the performance of the assignment
auction on standard assignment problems [, p. 92], they found that the additional overhead required by the extended auction
measurably slowed computation time. For this reason, we wished to see how the performance of the general auction compared to
that of the assignment and extended auction methods when applied to assignment problems of increasing size. The comparison
done by Bertsekas and Castafién in 1989 used problems with 150 to 500 pairs of sources and sinks. Given the improvements in
computation power since that time, our comparison starts at 3000 sinks and ends at 10000 (with an equal number of sources at
each size). As in [5]], the number of arcs in each problem is 12.5% of the maximum possible. The cost range is also relevant, as
it influences complexity scaling [4} p. 34]. We used the fixed cost range C = 100. The resulting times are given in Table[T] The
SOP auction results are shown in two columns: one displays times for the original algorithm described in [3], while the other is
for an optimized version developed by Dr. Walsh and publicly available via [20]. Approximating the time complexity of each
algorithm with the power regression aN°®, we find that the original AUCTION-SOP has b = 2.9, but each of the other three
algorithms has a nearly identical power: b = 2.4.

Over all tested problem sizes, the computed times for the assignment and general auction methods are nearly identical, differ-
ing by less than 2%. The largest difference in the times required by these two methods was less than two-tenths of one second.
This result suggests that the overhead required for the implementation of claim lists scales acceptably for relatively simple
problems such as assignments.

Storage requirements were dominated by the need to store an explicit cost value for each arc, and so were nearly identical for

all three algorithms. Storage scaled quadratically with respect to the number of sinks.
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TABLE 1 Time in seconds for assignment scaling
N sinks and N sources, N2/8 arcs

Assignment General  SOP SOP

N auction auction (Walsh) (original)
3000 1.23 1.21 1.71 9.06
4000 2.65 2.68 3.52 18.63
5000 473 4.82 6.23 35.33
6000 6.96 7.06 8.82 60.55
7000 8.90 8.97 10.85 90.82

8000 12.60 12.64 15.98 132.93
9000 17.00 16.83 20.73 193.30
10000 18.88 19.05 23.04 249.03

As these nearly-identical assignment auction and general auction results indicate, the additional computational overhead
required to maintain claim lists is negligible. For assignment problems, the performance of the general auction method is

effectively identical to the classical assignment auction.

5.2 | Comparison of extended and general auction

The experiments described in [2} 5] rely on homogeneity and asymmetry for their numerical examples. We replicated variations
of these conditions for our own tests, and considered what happened when those assumptions were violated. Due to the significant
time delays associated with the original version of the SOP auction, all SOP tests were performed using the optimized Walsh
SOP auction published in [20].

For the assignment auction, we used NETGEN to construct systems with 400 sinks and N sources. Each of the N sources
has unit weight. The 400 sinks have a 90%/10% weight distribution: 50% of the weight is uniformly distributed over 90% of the
sinks, while the other 50% is uniformly distributed over the other 10%. The density of the arcs is 14%. Computation times for all
four auction algorithms, with various values of N, are given in Table[2] Approximating the time complexity of each algorithm
with the power regression aN°? gives us the results shown in Table

The assignment problem results given in Table [I] illustrate what happens when we apply the AUCTION-SOP to a homo-
geneous problem without asymmetry. To evaluate what happens with an asymmetric problem that is not homogeneous, we
implemented the same 400 X N problem as above, but gave the N sources weights in the integer range [1, 19]. We used a uni-
form integer distribution, giving us an average source weight of 10. The sinks kept the 90%/10% weight distribution. Even this
slight increase in weight resulted in a significant change in the relationship between the general auction and AUCTION-SOP,

as shown in Table 4]
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TABLE 2 Time in seconds for asymmetric problem
with unit weights
400 sinks with 90%/10% weights,
N sources with unit weight, 14% arc density

General SOP SO Assignment

N auction auction auction auction
3000 0.16 0.13 1.45 1.38
6000 0.56 0.32 6.41 6.29
9000 1.06 0.67 15.51 13.30
12000 1.72 0.67 28.37 27.89
15000 2.37 0.99 40.13 39.82
18000 3.17 1.18 61.41 55.42
21000 3.80 1.45 80.09 86.85
24000 5.34 1.80 118.66 114.38

TABLE 3 Power regression aN® for asymmetric problem with unit weights

aN® General  SOP SO  Assignment
coefficients | auction auction auction  auction
a 0.029 0.036 0.15 0.14
b 1.63 1.22 2.07 2.10

TABLE 4 Time in seconds for asymmetric problem
with increased weights
400 sinks with 90%/10% weights,
N sources with [1, 19] weights, 14% arc density

General SOP
N auction auction

3000 1.15 1.88
6000 2.64 4.89
9000 5.40 8.06
12000 6.82 12.18
15000 8.93 19.12
18000 12.08 25.13
21000 14.44 35.58
24000 17.73 43.81
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Approximating the time complexity of each algorithm with the power regression aN? gives us:

a=0.27, b=1.31 for the general auction, and

a=0.32, b=1.51 for the AUCTION-SOP.

Generally speaking, the transport-to-assignment transformation used by the algorithms of the extended auction method
degrades performance on transport problems with arbitrarily large total weights. To assess the overall impact, we generated
a small transport problem and scaled only the total weight, comparing the time required by the extended and general auction
methods.

In every case, the structure of the transport problem was identical. It had 500 sources, 500 sinks, and the same 225000 arcs
(90% of maximum). The cost range was C = 100. Using a uniform integer distribution, the weight was spread among the sources
and sinks. Each was given a minimum weight of one, but no maximum was assumed. The total weights and computation times

for the two algorithms are given in Table[5]

TABLE 5 Results for weight-only scaling
500 sinks and 500 sources, 225000 arcs

Time (sec) Storage (MB)
Weight | General Extended | General Extended
L auction auction | auction auction
500 0.09 0.11 10.78 10.72
600 0.15 6.35 10.79 11.78

700 0.16 17.72 10.80 12.81
800 0.13 23.16 10.81 13.84
900 0.15 24.85 10.81 14.88
1000 0.15 29.65 10.82 15.91
2000 0.25 51.44 10.88 26.28
3000 0.31 65.29 10.97 36.70
4000 0.40 82.20 11.00 47.02
5000 0.47 102.07 11.08 57.54

The data collected suggests that, as weight increases, time for the AUCTION-SOP algorithm scales on the order of O(L?),
where b = 1.73 and L is the total transport weight. Time increases for the general auction algorithm as well, but it appears
to be scaling with b = 0.63. The storage requirements for the AUCTION—-SOP scale almost linearly: O(L"), where b = 0.74.
This is not surprising, given that the AUCTION-SOP algorithm explicitly transforms the set of sinks into L persons. Storage
requirements for the general auction are approximately constant.

The time increases given by both algorithms suggest that the weight range, or number of possible weight values, may be

relevant to complexity calculations. The impact of increasing weight was not mentioned in [5]], and weight changes do not occur
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in the assignment problem. However, it seems natural to consider such changes in the context of the transport problems. The
larger the weight range, the more likely it becomes that each sink will have positive flows over multiple arcs, increasing the
complexity of the optimal transport plan, and thus the time required to calculate it.

Given the degree to which range increases adversely affect the performance of the extended auction method, we also compared
the scaling behaviors of the AUCTION-SOP and general auction methods in problems where the relative total weight was fixed.
We randomly generated transport problems with N sources and N sinks, where the total weight of each problem was L = 2N.
The number of arcs for each problem was fixed at 90% of maximum, and the cost range was C = 100. The results are shown in

Table

TABLE 6 Results for fixed weight-ratio scaling
N sinks and N sources, 0.9 N2 arcs, total weight 2N

Time (sec) Storage (MB)

General Extended | General Extended

N auction auction | auction auction
500 0.13 8.32 10.82 1591

600 0.19 37.28 | 20.15 27.53
700 0.31 63.27 | 25.23 35.26
800 042 17786 | 30.77 43.86
900 0.61 23396 | 3648 53.05
1000 0.81 291.29 | 42.89 63.36
1100 1.08  920.57 | 70.52 95.38

The time required by the general auction method scales like O(N?) with b = 2.69, whereas the extended auction scales
with b = 5.40. Because of the need to store an explicit cost value for each arc, both methods scale quadratically with respect
to storage. At any given size, the extended auction uses approximately 150% of the amount of storage needed for the general

auction method. The algorithm uses the additional storage to explicitly transform sources into objects.

5.3 | General auction performance on real-valued transport

When evaluating the scaling properties of the real-valued general auction method, we wanted to focus on its behavior as problem
size increased, with all other variables held constant. To do so, we needed to fix the ranges of both costs and weights. We

constructed transport problems using the following method:

e We generate N sinks and an equal number of sources. Sources and sinks are points in the plane, restricted to the integer

coordinates on the cube [0, N] X [0, N]. Points are placed randomly using the uniform distribution.
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e The graph underlying our transport problem is given by the complete bipartite graph KK -, so the problem is maximally
dense with N? arcs. The cost function is a modification of the Euclidean distance. Given sink i = (x;, y;) and source

J = (x;, y;), the cost of the arc connecting them is

¢;j=4/1+m;,  where
m; = [(x; —x,)* +(y;,—y)’| (mod 20). (46)
e Fori e {1, ..., N}, the weight of sink i is given by the formula
d;=+/14+m; wherem; =[i—1] (mod 20). “7)
and for j € {1, ..., N}, the weight of source j is given by the formula
s;=4/1+m; wherem; =[j—1] (mod 20). 48)

We chose this method because it populates the weights and costs with irrational values, while restricting the range of those
values. Because the total weight of the sinks equals the total weight of the sources, and the transport graph is complete, the
problem is guaranteed to be feasible.

The integers are closed under addition and subtraction, so for an integral transport problem the smallest deviation from the
optimal cost cannot be less than one. Furthermore, the range of possible flow values cannot be greater than the largest absolute
weight. Neither of these is true for real-valued problems. To get a sense of how real-valued data affects these characteristics,
consider the cost and weight values chosen for our sample problems. Even without weight splitting, it is possible to make a flow

adjustment on the smallest possible cycle, four arcs, that changes the cost by

1-(\/1_9—\/%+ \/E—\/E> ~ 0.00302.

From this, one can extrapolate the size of the range. Increasing the number of arcs in the cycle would further increase the range
and reduce the minimum possible cost.

As the flow adjustment above indicates, cost and weight ranges are determined, not by the 20 distinct irrational values given,
but by the number of possible differences that those values can generate. Theoretically, there could be as many as O(V'N)
differences, where V' is the number of distinct cost/weight values in the problem. The smallest possible cost adjustment could
be significantly less than machine precision.

In fact, the cost and weight ranges seemed to have far less negative impact on computation than the description above would
suggest. We able to generate optimal solutions in a single iteration of the general auction using € = 0.75. The results of our tests

are given in Table
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TABLE 7 Real-valued general auction results
N sinks and N sources, N2 arcs

Time Storage

N (sec) (MB)
1000 1.11 3.27
2000 6.37 5.81
3000 12.74 7.93
4000 25.87 14.00
5000 42.49 14.69
6000 61.14 15.24
7000 94.12 16.27
8000 143.51 18.38
9000 179.20 25.82
10000 218.59 29.16

As described above, it can be difficult to determine a priori minimum & values that guarantee optimal solutions. For these
tests, we confirmed the optimality of our solutions a posteriori, by comparing the results of the general auction to exact solutions
which were already knownﬂ

Given our computer and the type of calculations performed, we have machine precision equal to
\eps :=1.490116 x 1078, (49)

The optimal cost values calculated by our general auction matched the exact solution values up to the limit of machine precision.
Because the optimal costs all exceeded 10%, this gave us at least 11 identical digits.

The time complexity with respect to the number of sinks (or sources) resembles:
aN"’seconds, with a=1.62x10"andb=2.28.

When the network simplex method was applied to the same set of dense, real-valued problems, a time scaling exponent of
b = 2.42 was obtaine(ﬂ Because our real-valued implementation of the general auction algorithm computed cost values as

needed, storage complexity is roughly linear.

6 | CONCLUSIONS

We introduced our general auction method for real-valued transport because we wished to take advantage of the properties of

auction algorithms while overcoming some of the data restrictions imposed by their existing forms. Our goal was to create an

7That is, the optimal costs, which were known and unique, could be compared to the cost values we obtained using the general auction. Associated transport plans,
while known, are not necessarily unique, and so could not be meaningfully compared to those obtained by our method.

8Because exact network simplex computation times are highly dependent on the choice of initialization, we can make a meaningful comparison between scaling
exponents b, but not multipliers a.
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auction technique suitable for computing real-valued optimal transport solutions, particularly on asymmetric problems such as
those found in semi-discrete optimal transport.

As we have shown, the general auction allows us to take the same rationale as the original auction method and apply it directly
to real-valued optimal transport problems. The method is guaranteed to terminate after a finite number of iterations, and it offers
a priori error bounding.

Furthermore, as a discrete transport solver, the general auction method offers many practical advantages. Extending it to
parallel computing is relatively straightforward. By applying Theorem 3] it is possible to fine-tune the amount of computation
to a predefined level of acceptable error. This is a significant departure from most linear programming methods, which halt
only when the exact solution is reached, and can be arbitrarily far from optimal when interrupted. The results of the general
auction include the information necessary to compute both transport solutions: the claim lists contain the flows needed for the
primal solution, and the price vector allows approximation of the dual solution. Together, these two solutions give improved a
posteriori error bounds, which can be used in “on-the-fly” e-scaling schemes.

In the process of developing the general auction for real-valued transport, we found that very few numerical resources existed
for applying auction algorithms to transport problems of any sort. In an effort to alleviate this need, we created an open-source
software project that directly implements each of the auction algorithms described in this paper, allowing them to be compared
head-to-head. (A variation of this software was used to generate our numerical results.) Our software is publicly available for
download at [20]].

The general auction should also be easy to extend. In this regard, the efforts of Bertsekas and Castafién provide a road map for
the type of extensions that may be possible. In particular, a reverse general auction algorithm seems feasible, as does a method for
solving partial transport problems. Given the current interest in fast, accurate techniques for solving optimal transport problems,

we invite further exploration of the general auction method.
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