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Summary

Optimal transportation theory is an area of mathematics with real-world applica-
tions in fields ranging from economics to optimal control to machine learning. We
propose a new algorithm for solving discrete transport (network flow) problems,
based on classical auction methods. Auction methods were originally developed as
an alternative to the Hungarian method for the assignment problem, so the clas-
sic auction-based algorithms solve integer-valued optimal transport by converting
such problems into assignment problems. The general transport auction method we
propose works directly on real-valued transport problems. Our results prove termi-
nation, bound the transport error, and relate our algorithm to the classic algorithms
of Bertsekas and Castañón.
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1 INTRODUCTION

Numerical optimal transport is currently a significant and exciting area of research. The ability to quickly approximate discrete

and semi-discrete transport problems has important real-world applications. Even when the original problem is continuous,

existing solution methods solve by considering a discrete or semi-discrete approximation.

At first glance, auction algorithms appear to be a good approach to solving such discrete and semi-discrete transport problems.

Unlike many other network methods, they offer controlled approximation and bounded error results.

Furthermore, auction methods work best when applied to problems characterized by one or both of two properties: homogene-

ity and asymmetry [3, p. 58–59]. Homogeneity means the sinks and sources have a small range of weights, while asymmetric

problems have far more sinks than sources (or sources than sinks). This appears promising, as many semi-discrete transport

problems are characterized by strong asymmetry.

†This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE–1148903.
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However, real-valued transport problems are not necessarily homogeneous, and the transport costs they use are unlikely to

be rationally-related.1 In particular, costs are often derived by computing the value of a p-norm for some p ≠ 1. This lack of

rational-relatedness is crucial, since existing auction methods put integer-based restrictions on the cost and weight data inherent

to the problems they can solve.

The complexity arguments used by existing auction methods require that the cost of each matching is an integer. If rational

(or rationally-related) costs are required, all costs must be transformed into integers using a common denominator. This can

impact the worst-case time complexity of the algorithm. If non-rationally-related costs are required, as in the p-norm instance

described above, these auction methods offer no guarantee of termination or convergence.

When existing auction methods are used to solve real-valued network flow or optimal transport problems, then another, more

significant, data restriction arises. Existing auction methods work by converting the problem into an assignment problem, where

all weights are equal. Hence, as with the costs, if rationally-related weights are required, the entire set of weights must be

transformed using a common denominator. Here, though, all weights must be unit-valued, and the common denominator directly

impacts both the storage requirements and the worst-case time complexity of the resulting problem. Furthermore, because the

final weights must be unitary, if non-rationally-related weights are required, then these methods cannot be applied at all.

We propose a more general auction method, one developed specifically for the transport problem (rather than one based

on the assignment problem) and capable of handling real-valued costs and weights. To support this extension, we also prove

convergence and provide a priori error bounds for transport problemswith real-valued data. Finally, we compare auctionmethods

using a series of standard problems and show results indicating complexity roughly comparable to that of the original auction

method, in cases where the latter can be applied.

2 BACKGROUND

The term “optimal transport” is generally used to refer to a continuous form known as the Monge-Kantorovich problem. One

way to define the problem, derived from [19, p. 2], follows:

Definition 1 (Monge-Kantorovich problem). Let X and Y be Polish spaces, let � and � be probability densities defined on X

and Y , and let c(x, y) ∶ X × Y → ℝ be a lower semi-continuous ground cost function. Define the set of transport plans

Π(�, �) ∶=

⎧

⎪

⎨

⎪

⎩

� ∈ (X × Y )

|

|

|

|

|

|

|

|

�[A × Y ] = �[A], �[X × B] = �[B] ,

∀ meas. A ⊆ X, B ⊆ Y

⎫

⎪

⎬

⎪

⎭

, (1)

1A set S ⊂ ℝ is rationally-related if there exists t ∈ ℝ such that, for all s ∈ S, st ∈ ℤ.
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where(X×Y ) is the set of probability measures on the product space, and define the primal cost function P ∶ Π(�, �)→ ℝ as

P (�) ∶= ∫
X×Y

c(x, y) d�(x, y). (2)

The Monge-Kantorovich problem is to find the optimal primal cost

P ∗ ∶= inf
�∈Π(�, �)

P (�), (3)

and an associated optimal transport plan

�∗ ∶= arg inf
�∈Π(�, �)

P (�). (4)

Definition 1 is easily generalized. For larger measure spaces, assume the measures � and � on X and Y are both multiplied

by some constant L. To find an optimal maximum cost, simply negate c. The definition can also be applied to semi-continuous

or discrete problems, discretizing one or both measure spaces and replacing the corresponding integral(s) with a finite sum.

Monge’s original formulation assumed masses could not be split. The relaxed form above, developed by Kanorovich, allows

splittingmasses, and is typically preferred because it guarantees the existence of a solution if the requirements above are satisfied.

Kantorovich also identified the optimal transport problem’s dual formulation.

Definition 2 (Dual formulation). Define the set of functions

Φc(�, �) ∶=

⎧

⎪

⎨

⎪

⎩

(',  ) ∈ L1(d�) × L1(d�)

|

|

|

|

|

|

|

|

'(x) +  (y) ≤ c(x, y) ,

d� a.e. x ∈ X, d� a.e. y ∈ Y

⎫

⎪

⎬

⎪

⎭

. (5)

Let the dual cost function, D ∶ Φc(�, �)→ ℝ, be defined as

D(',  ) ∶= ∫
X

'd� + ∫
Y

 d�. (6)

Then, the optimal dual cost is

D∗ ∶= sup
(', )∈Φc (�, �)

D(',  ), (7)

and an optimal dual pair is given by

('∗,  ∗) ∶= arg sup
(', )∈Φc (�, �)

D(',  ). (8)

The continuous and semi-continuous Monge-Kantorovich problems were primarily of interest to analysts until the Polar

Factorization theorem of [7] revealed deep connections between optimal transportation and partial differential equations.

This discovery paved the way for major improvements in computational optimal transport, such as the BFO finite-difference

solver described in [1] and the iterative Bregman projection method proposed in [10]. For a more detailed overview of these

developments, see [18].
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These new approaches come with new limitations, needed to satisfy the well-posedness requirements of partial differential

equation methods. These limitations are formally expressed by the Ma-Trudinger-Wang conditions described in [15]. In practice

the MTW conditions are satisfied by the use of strictly convex ground cost functions, almost exclusively limited to the squared

Euclidean distance.

For this reason, there remains a great deal of interest in discrete optimal transportation methods. All optimal transport solvers

require some form of discretization, so the trade-off can generally be seen as exchanging some generality of measure for cer-

tain assumptions of continuity. For one approach to this trade-off, which combines discrete methods with limited continuity

assumptions to solve semi-discrete transport problems with p-norm ground costs, see [12].

The study of computational discrete optimal transportation has its origins in linear programming, particularly the simplex

method developed by George Dantzig in the 1940s; for example, see [11]. Prior to the publication of the auction method, most

discrete transportation algorithms had their origins in linear programming.

The auction method, first proposed by Dimitri Bertsekas in the late 1970s [2], uses a relaxation approach derived from tech-

niques for solving partial differential equations. Bertsekas developed the method for the assignment problem, as an alternative

to the Hungarian method [14]. In 1989 Bertsekas and Castañón extended the original auction method to solve minimal cost flow

and optimal transport problems by taking into account what they call “similar persons and objects” [5]. Their extended auction

method decomposes the transport problem into an equivalent assignment problem by splitting each supply and demand vertex

into multiple identical vertices of unitary weight. The number of copies is equal to the supply or demand “weight.” The extended

auctionmethod then solves the assignment problem and combines the resulting assignments to provide the desired transport solu-

tion. When all costs and weights are integers, these two auction methods offer worst-case error and complexity bounds, as well

as conditions under which an optimal solution is guaranteed. The auction method’s potential application to generalized optimal

transport problems is already known to the wider computational optimal transport community; e.g., the discussion in [16].

With these factors in mind, now consider the discrete real-valued optimal transport problem itself. We will use this common

frameworks to unify notation and interrelate key concepts as we briefly describe the various auction methods. When algorithmic

restrictions limit us to a special-case of the transport problem, we describe the required conditions.

2.1 Transport problem

Consider the transport problem  , which we define using linear programming:

Definition 3 (Discrete Optimal Transport). Suppose we are given a demand vector {di}Mi=1 and a supply vector {sj}Nj=1, whose

demand coefficients di and supply coefficients sj are positive scalars such that

L ∶=
M
∑

i=1
di =

N
∑

j=1
sj > 0. (9)
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We refer toL as the total weight of the transport problem. In the underlying transport graph, the vertex i associated with demand

coefficient di is a sink, and the vertex j associated with supply coefficient sj is a source. We denote the set of sinks by I , and

the set of sources by J .

Furthermore, suppose for each sink i we are given the nonempty set A(i) of sources to which the sink i is adjacent. The set of

all possible transport pairs is equal to

 ∶= { (i, j) | j ∈ A(i), i ∈ {1, … , M} }. (10)

Thus, is the set of arcs of the underlying transport graph, a bipartite graph withM +N vertices and || ≤MN arcs.

For each (i, j) ∈ , let cij < 0 be the given cost coefficient (or simply cost). Our goal is to

maximize
∑

(i, j)∈
cijfij (11a)

subject to
∑

{ j | j∈A(i) }
fij = di ∀ i ∈ {1, … , M}, (11b)

∑

{ i | j∈A(i) }
fij = sj ∀ j ∈ {1, … , N}, and (11c)

0 ≤ fij ≤ min{di, sj}∀ (i, j) ∈ . (11d)

We refer to fij as the flow along (i, j), because it gives the amount transported (i.e. “flowing”) from source j to sink i.

We have assumed negative costs and formulated the transport problem as a maximization problem, in accordance with the

standard implementation of the auctionmethod. Because cij < 0, the maximization equation Equation (11a) provides aminimum

overall cost (obtained by reversing the sign on each cij). We refer to

∑

(i, j)∈
cijfij (12)

as the primal cost. The solution to Equation (11a) is called the optimal primal cost, or optimal cost, of the transport problem,

and is denoted by P ∗. If at least one set of flows {fij} exists such that Equations (11b) to (11d) are satisfied, the optimal cost

P ∗ exists and is unique.

In contrast, a set of flows {f ∗ij} that achieves P
∗ is almost never unique. See [9] for a condition that is sufficient to ensure the

uniqueness of the set of flows2. However, a set of flows {f ∗ij} that achieves P
∗ is also bijective, in the following sense: suppose

the direction of flow is reversed, which is equivalent to a transport problem  ′ with demand vector {si}Ni=1 and supply vector

{dj}Mj=1. For all i ∈ ℕN and j ∈ ℕM , define the flow f ′ij = f
∗
ji. Then {f

′
ij} achieves the optimal transport cost for  ′, and that

optimal transport cost equals P ∗.

2The condition guarantees uniqueness a.e., but for discrete measures uniqueness a.e. is equivalent to actual uniqueness
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2.2 Transport plan

A transport plan (or transport map) T is a multiset of triples (i, j; qij) such that (i, j) ∈  and the transported quantity, qij ,

is non-negative. Note that T may be empty. While the elements of T are not necessarily unique, for each (i, j) ∈  we can

compute the unique flow fij given by T as

fij =
∑

{ (k, l; qkl)∈T | (k, l)=(i, j) }
qkl. (13)

In order to apply the plan to our transport problem, we require that T satisfies fij ≤ min{di, sj} for all (i, j) ∈ . By a minor

abuse of notation, we may say (i, j) ∈ T to signify that (i, j; qij) ∈ T for some qij > 0. We may also say T ∈  to refer to

some transport plan T associated with the transport problem  .

Given any transport plan T , we say that sink i is satisfied if

∑

{ qij | (i, j, qij )∈T }
qij = di. (14)

Otherwise, we say that i is unsatisfied. (Alternatively, we may say i has unsatisfied demand Di, where 0 ≤ Di ≤ di.)

Similarly, when
∑

{ qij | (i, j, qij )∈T }
qij = sj , (15)

we say the source j is unavailable. Otherwise, we say that j is available, or that j has available supply Sj , where 0 ≤ Sj ≤ sj .

A transport plan is said to be feasible or complete when all sinks are satisfied; otherwise the plan is called partial3.

If T is such that the pair (i, j) appears at most once, and (i, j; qij) ∈ T implies qij > 0, we refer to T as a simplified transport

plan. In this case qij = fij , and we may refer to flow and quantity interchangeably. Simplified transport plans, while not strictly

necessary, greatly improve clarity of notation. We will generally assume T is simplified when stating definitions and proofs.

2.3 Dual problem

We can write the dual transport problem as

min
ui, pj

{ M
∑

i=1
diui +

N
∑

j=1
sjpj

}

, (16)

with the restriction that ui + pj ≤ cij for all (i, j) ∈ . We call the dual variable pj a price of j, and the vector p = {pj}Nj=1 a

price vector of  . Assume pj ≥ 0 for all j.

Given some price vector p, the expense associated with the arc (i, j) ∈  is

xij ∶= cij − pj (17)

3Linear programming terminology used to indicate the status of Equations (11b) to (11d); for more background, see “Network Flow Problems,” Part III of [8].
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and the expense for the sink i is

xi ∶= max
j∈A(i)

xij = max
j∈A(i)

{cij − pj}. (18)

Because cij < 0, the maximization of the expense xi actually generates the least overall expense (obtained by reversing the signs

of the xis).

Suppose we have a simplified complete transport plan T and a price vector p. From linear programming theory, we know

(T , p) is simultaneously primal and dual optimal if and only if

ui = max
k∈A(i)

{cik − pk} = cij − pj ∀ (i, j; fij) ∈ T . (19)

In other words, the expense for each sink is minimized by transport to the least expensive source(s). This is known as the

complementary slackness condition, or complementary slackness.

Among other things, complementary slackness implies that the dual problem can only be minimized when ui = xi for all i.

Thus, we can view the prices pj as the only variables in our dual problem, which we can rewrite as

min
p={pj}Nj=1

{ M
∑

i=1
di maxj∈A(i)

{cij − pj} +
N
∑

j=1
sjpj

}

. (20)

Because cij < 0, the minimization given in Equation (20) provides a maximum overall profit (obtained by reversing the sign of

each cij). We refer to
M
∑

i=1
di maxj∈A(i)

{cij − pj} +
N
∑

j=1
sjpj (21)

as the dual profit. The solution to Equation (20) is called the optimal dual profit, or optimal profit, of the transport problem, and

is denoted by D∗.

2.4 Auction fundamentals

The auction method solves the dual problem described above, using a relaxation technique inspired by the open ascending price

process commonly used for real-world auctions. Each sink i is a bidder in the auction, seeking to satisfy its demand di. Each

source is a lot containing the supply sj . Each unsatisfied bidder i offers a bid amount, bij , for some lot j. Naturally, the bid bij

must exceed the current price, given by pj . The bidders each want to minimize their loss: the quantity

cij − bij , (22)

representing the cost-price total for bidder i to obtain lot j. The best possible loss for bidder i is the amount closest to zero, as

given by the negative scalar

max
j∈A(i)

{cij − bij}. (23)
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Each bid can be “outbid”; that is, superseded by another bidder offering a higher price. So long as bij is greater than the

highest previous price for lot j, designated pj , we know that some bidder (either i or a competitor) will claim lot j. Once prices

are sufficiently high, lot costs becomes irrelevant, so every lot eventually receives a bid. At that point, the auction ends.

Knowing that we require bij > pj , the natural question to ask is: howmuch larger than pj should we make bij? As Bertsekas so

eloquently explains in [4, p. 29–30], we need to set a minimum bidding increment, or step size: some " > 0, such that bij ≥ pj+".

Otherwise, the auction risks stalling if two options are equally optimal.

The assignment problem, as formulated for the original auction method, assumes that we haveN sources andN sinks, each

of which has weight 1, and that all costs are integer-valued. Thus, we can assume that the auction method for the assignment

problem operates on a special case of our transport problem: one with integer costs and unit weights, whereM = N . Applying

the terminology used by Bertsekas, we call a sink of weight 1 a person and a source of weight 1 an object.

2.5 "-complementary slackness

We can relax the complementary slackness condition, allowing flow from sources to sinks whenever the loss comes within "

of attaining the maximum. This is called "-complementary slackness, or "-CS, and it can be considered for any transport plan,

complete or not.

Formally: Given some " > 0, a simplified transport plan T and price vector p satisfy "-complementary slackness if

xi − " = max
k∈A(i)

{cik − pk} − " ≤ cij − pj ∀ (i, j; fij) ∈ T . (24)

As Bertsekas proved in [4, p. 255–257], the auction method maintains "-CS, and the resulting transport plan is guaranteed to be

optimal if " < 1∕N .

2.5.1 "-scaling

Bertsekas found that the number of iterations of the auction algorithm depends on " and the number of possible values, or range,

that the cost can take. When we restrict costs to the negative (or positive) integers, as Bertsekas does, we can safely assume that

the cost range C is equal to the maximum absolute cost,

C = max
(i, j)∈

|cij| = max
(i, j)∈

{−cij}. (25)

(It is possible for the cost range to be smaller; for example, when gcd{cij} > 1.) As Bertsekas concluded, for many assignment

problems the number of iterations required for termination is proportional to C∕" [4, p. 34].
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Of course, the number of iterations is also dependent on the initial price vector; when the initial prices are close to “"-optimal,”

the number of iterations required is relatively small. This suggests that it may be advantageous to use a scaling technique, similar

to that used in penalty and barrier methods. For the auction algorithm, Bertsekas calls this technique "-scaling.

To perform "-scaling, we apply the auction algorithmmultiple times. Each iteration of the algorithm is called a scaling phase.

In the first iteration, we use a simple set of initial prices, along with an initial ". For each successive iteration, we use the resulting

price vector from the previous phase, along with an altered "-value. The "-scaling technique terminates when " reaches some

critical value. When "-scaling is used, the auction method has worst-case time complexity (NA log(NC)), where A = ||,

the number of arcs in the underlying transport graph [4, p. 265].

2.6 Extended auction

The extended auction for the integer-valued transport problem was initially described by Bertsekas and Castañón in 1989 [5].

They wanted to extend the assignment auction method to one that could handle transport problems. Their idea was to transform

the integer-valued transport problem into an assignment problem by creating multiple copies: construct an assignment problem

with a number of identical persons (or objects) equal to the weight at each sink (or source, respectively), preserving the adja-

cencies and costs of the original vertices. After solving the assignment problem, redundant arcs with positive flow could be

combined to generate a simplified optimal transport plan.

When a sink or source is split into multiple copies, each with a weight of 1, the resulting persons and objects retain an

identical underlying structure: the adjacencies and cost coefficients of the originals. Such persons and objects are called similar.

A similarity class is the equivalence class of persons or objects with the same adjacencies and costs. Persons and objects in the

same similarity class can engage in protracted “bidding wars” unless their similarity is taken into account.

Bertsekas and Castañón address the similarity relationships in multiple ways. Thus, their extended auction method is best

understood as three distinct algorithms:

• The auction algorithm for the assignment problem, or simply AUCTION, expands the sinks and sources of the transport

problem, creating an assignment problem that it solves without considering the underlying structure.

• The auction algorithm for similar objects, also called the AUCTION–SO, considers the impact of similar objects when

increasing prices.

• The auction algorithm for similar objects and persons, or AUCTION–SOP, treats similar persons as a unit during each

bidding phase. At every iteration, each unsatisfied similarity class of persons bids collectively for a number of objects

equal to its total demand di. Each similarity class of persons shares a single price increase, determined similarly to the

technique of the AUCTION–SO.
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For all three algorithms, the costs and weights must be integers. If " < 1∕min{M, N}, the solution resulting from any of these

is guaranteed to be optimal [5, p. 85].

2.7 Factors motivating the general auction

The motivations behind proposing the general auction method are best understood by contrasting it with the assignment auction

method and its extensions.

All of the auction methods described here are capable of handling real-valued cost functions without any modification. In

practice, use of real-valued costs (such as the Euclidean distance) does not generally have a noticeable impact on performance.

However, when one or more costs is real-valued, the complexity bounds described in [4] and [6] no longer apply. Hence, none

of the auction methods offer a guaranteed upper bound on complexity for transport problems with real-valued costs.

The primary issues arise when one or more weights in {di} or {sj} are not integer-valued. The auction methods developed

by Bertsekas and Castañón require that the transport problem be transformed into an assignment problem. That requires the

existence of some common value V ∈ ℝ such that V di and V sj are integers for all i and j. Even if such a V exists, the

transformation generates an assignment problem with LV sources and sinks, which must then be solved. This transformation

step can easily result in problems so large as to be unsolvable, as the following (admittedly degenerate) example illustrates.

Let {a, a + 2} and {b, b + 2} be two sets of twin primes. ChooseM = N = 2, and

d1 = a, d2 = b + 2, s1 = b, s2 = a + 2. (26)

Choose any negative-valued cost coefficients cij for i = 1, 2 and j = 1, 2. The transport problem is feasible, and

its underlying transport graph has four vertices and four arcs.

Now convert the transport problem to an assignment problem, as required by all of the Bertsekas and Castañón

methods. Because the demand and supply quantities are relatively prime, it is impossible to “downsize” the resulting

problem. This means the underlying assignment graph has 2(a + b + 2) vertices and (a + b + 2)2 arcs. Even if the

twin prime conjecture turns out to be false, the largest known twin primes have more than 200 000 digits (in base-

10 notation). Using these twin primes, a transport problem simple enough to solve by hand becomes an assignment

problem requiring more vertices than the number of electrons in the universe. By comparison, an auction algorithm

that did not require this transformation would require far less storage space. For example, the general auction would

require no more than fourteen weight variables4. Given an effective method for storing large integers, they would

take up just over one megabyte of computer memory.

4Two demand values di, two unsatisfied demand values Di, two supply values sj , two available supply values Sj , and up to six quantities qij (two for bidding and up
to four for claim lists); see Section 3 for details.
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If no such V exists, then the weights in {di} and {sj} are not rationally-related, and the auction methods of Bertsekas and

Castañón cannot be applied at all5.

In contrast to this bleak picture, the general auction method is designed from the ground up to handle any set of real-valued

weights without special treatment. Rather than transform the transport problem into an assignment problem, it operates directly

on the original transport problem, so the number of source and sinks, and the corresponding difficulty, remain unchanged. In

the following sections, we consider how this is done, and experimentally evaluate the impact on computational time, storage,

and complexity.

3 GENERAL AUCTION FOR THE TRANSPORT PROBLEM

Our general auction method uses the real-valued transport problem as its basis, rather than the integer-valued assignment

problem. (Thus, the method’s name: it is designed around a more general problem than other auction methods.) To avoid

redundancy, we define and explain only those terms and ideas which differ from other auction methods.

3.1 Description and terminology

The general auction uses a variant form of lot bidding, similar to “times the money” bidding. Bidder i has unsatisfied demand

Di, so bidder i makes a bid of bid amount bij on lot j. The quantity desired from lot j is set to qij = min{Di, sj}. We can write

the bid as the pair (bij , qij). The actual bid is understood to be price bij per qij items, for a total bid value of bijqij .

Suppose that lot j has available supply Sj . If qij ≤ Sj , the desired quantity is immediately available, so bidder i is awarded a

claim on lot j of quantity qij at bid price bij . This claim, represented by the triple (i; bij , qij), is added to the claim list for lot j,

which we denote by Cj .

Such claims can still be outbid. If qij > Sj , we compare bidder i’s offer to those already on the claim list. The difference

between qij and Sj is made up by taking the required amount from the lowest priced claim(s) with bid price less than bij . Only

if insufficient low-priced claims exist will bidder i claim less than qij .

Even so, as long as we ensure that bij is greater than the lowest bid price on lot j’s current claim list, we know that bidder i

will be able to claim some quantity in lot j. To guarantee the occurrence of such a claim, for each lot j we must first determine

a lot price pj , defined as

pj ∶= min
(i; bij , qij )∈Cj

{bij}. (27)

5In theory, it may be possible to successfully approximate the optimal transport solution by starting from a set of approximated weights. However, to the best of our
knowledge, no one has proposed this approach, or offered any mathematical support for its validity.
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(If Cj is empty, let pj be equal to some initial price p0j .) When bidding, we require that bid prices satisfy bij ≥ pj + " for some

fixed " > 0.

The lot price vector, p = {pj}Nj=1, corresponds to the price vector used in the dual profit equation. Thus, like the assignment

auction, the general auction attempts to solve the dual problem. The general auction also uses "-complementary slackness, which

is defined identically to the assignment auction.

3.2 Iteration

Assume without loss of generality that M ≥ N ; that is, there are at least as many sinks as sources. To initialize the general

auction method, one must have a bidding step size " > 0 and an initial lot price vector. Once initialized, the auction is performed

in iterations. Each iteration consists of two phases: a bidding phase (Section 3.2.1) and a claims phase (Section 3.2.2).

3.2.1 Bidding phase of the general auction

Let Ĩ be a nonempty subset of sinks i that are unsatisfied under the current transport plan T . For each sink i ∈ Ĩ :

1. Find:

(a) The lot ji offering best expense, given by

ji ∶= argmax
j∈A(i)

{cij − pj}. (28)

(b) The second-best expense, chosen by considering lots other than ji,

wi ∶= max
j∈A(i), j≠ji

{cij − pj}. (29)

If ji is the only source in A(i), define wi to be −∞. (For computational purposes, this can be any value satisfying

wi ≪ ciji − pji .)

2. Compute the bid (biji , qiji), where the bid price biji is given by

biji ∶= ciji −wi + " (30)

and the quantity claimed qiji is equal to

qiji ∶= min{Di, sji}. (31)
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3.2.2 Claims phase of the general auction

For each source j, let Ij be the set of sinks from which j received a bid in the bidding phase of the iteration. If Ij is nonempty,

for each ij ∈ Ij with bid (bijj , qijj):

1. While Sj < qijj and pj ≤ bijj :

(a) Find the lowest-priced claim c = (k; bkj , qkj) given by

c ∶= argmin
(i; bij , qij )∈Cj

{bij}. (32)

(b) If k = ij , add qkj to qijj .

[Hungry Cannibal rule; see Section 3.4]

(c) Find the quantity in c to be claimed by bidder ij ,

q ∶= min{qijj , qkj}. (33)

(d) Make the quantity q available:

i. Add q to Sj .

ii. Subtract q from qkj .

iii. If qkj = 0, remove c from Cj and update pj .

iv. Add q to Dk.

2. Let qijj = min{qijj , Sj}, and if qijj > 0:

(a) Insert (ij ; bijj , qijj) into Cj .

(b) Subtract qijj from Dij and Sj .

(c) Update pj .

3.3 Resulting transport plan and cost

If all sinks have been satisfied, the general auction terminates. The resulting complete transport plan is equal to

T =
n
⋃

j=1
{ (i, j; qij) | (i; bij , qij) ∈ Cj } (34)

and the primal cost of T is equal to
n
∑

j=1

∑

(i; bij , qij )∈Cj

cijqij . (35)
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If we want to represent T as a simplified transport plan, there is still one more step to perform. Using the claim lists, we can

determine the simplified flow for each (i, j) as

fij ∶=
∑

(i; bij , qij )∈Cj

qij . (36)

(If Cj does not contain a claim by bidder i, we assume fij = 0.) Using these flow values, the simplified complete transport plan

T̃ equals

T̃ ∶= { (i, j; fij) | (i, j) ∈ , fij > 0 }. (37)

The primal cost of the simplified transport plan equals

∑

(i, j)∈
cijfij , (38)

which is exactly the form used in the transport problem.

3.4 Hungry cannibals

The Hungry Cannibal (or HC) rule is a modification to the process of handling claim lists, motivated by a potential slow-down

during the iterative process. In the bidding phase, each sink attempts to maximize the quantity it acquires. However, it is possible

for a sink i to bid on a lot j where it already has a claim, and for the new claim to supersede some or all of the old one. When

this happens, the old claim is “cannibalized” by the new one, and the quantity acquired by i is not maximal. (It may even be

zero.) We call any claim that supersedes an earlier claim by the same bidder a cannibal claim.

It is possible to speed up the bidding process, guaranteeing the maximum possible quantity is acquired by each bid, even

when confronted by cannibal claims. We can deal with cannibals by implementing the following HC rule: if a new claim by i

cannibalizes a quantity q, then during the claims phase q is added to the quantity desired by the new claim. Thus, i can cannibalize

itself during the claims phase, and the “hunger” of i remains maximal. As a side effect, the HC rule can unify adjacent bids by

the same bidder.

It is worth pointing out that the HC rule is an optimization of the general auction. The rule is not necessary to guarantee

termination or bound error, but it can significantly speed computation. The speedup occurs because the HC rule requires little

overhead to implement, while reducing the number of iterations required for convergence. Numerical tests suggest that the

transport plan resulting from the general auction will be nearly identical, whether or not the HC rule is used, but that time

improves measurably when the rule is in place. The HC rule is labeled as Step 1-(b) of the claims phase of the general auction.

For the proofs given below, we assume that the HC rule is in place, ensuring that the quantity acquired by every new claim is

maximal. This assumption helps simplify our arguments.
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4 MATHEMATICAL RESULTS

The proofs given in [5, 4] for the assignment auction and its extensions rely heavily on the integral nature of the data. Our

generalization to transport problems with real-valued data requires a different approach.

4.1 Termination of the general auction

Assuming real-valued data invalidates many of the standard assumptions for auction algorithms. For example, unlike Bertsekas

and Castañón in [5], we cannot assume that any quantities claimed are bounded away from zero. Thus, we must consider the

possibility that claimed quantities tend to zero as the number of bids goes to infinity. We also cannot assume that lot price

increases are bounded away from zero, so we must consider the possibility that price increases tend to zero as the number of

bids goes to infinity. Finally, given the definition of lot prices as a minimum, we cannot assume that lot prices change at all.

We must consider the possibility that lot prices remain fixed over infinitely many bids. However, our key result, Theorem 3,

conclusively shows that none of these possibilities can occur; the general auction behaves well when applied to real-valued data,

and terminates after a finite number of iterations. Because of the above considerations, our approach to proving termination

bears little resemblance to that used by Bertsekas and Castañón in [5].

4.1.1 General auction prices are nondecreasing

Theorem 1. When applying the general auction method with step size " > 0, lot prices are nondecreasing and each bid price

exceeds the current lot price by at least ".

Proof. Assume " > 0 is given. Fix the lot j∗ and let its lot price before and lot price after iteration be given by pj∗ and p′j∗ ,

respectively. If no sink bids on j∗, then the lot price of j∗ does not change, and we know that p′j∗ = pj∗ . Suppose instead that

some sink i bids on j∗, with bid price bij∗ . From Equations (18) and (28), we know that the expense of sink i’s bid is given by

xi = max
j∈A(i)

{cij − pj} = cij∗ − pj∗ .

Thus, the bid price bij∗ is given by

bij∗ = cij∗ −wi + " = pj∗ + xi −wi + ".

By Equation (29), xi −wi ≥ 0, so

bij∗ = pj∗ + xi −wi + " ≥ pj∗ + " > pj∗ .

Since the new bid bij∗ is at least as high as the current lot price pj∗ , by Equation (27),

p′j∗ ≥ min{pj∗ , bij∗} ≥ pj∗ .
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Since this is true for all i that bid on j∗, we know p′j∗ ≥ pj∗ . Therefore, lot prices are nondecreasing.

4.1.2 Steady price implies satisfaction

Theorem 2. If a bid by sink i on lot j does not increase the lot price pj , then i becomes satisfied. Furthermore, if bidder k was

satisfied by lot j after the last increase of pj , then k remains satisfied after i’s bid is resolved. If i should become unsatisfied and

pj has not increased, then i will bid on a lot of price pj again.

Proof. Fix lot j∗. Let pj∗ be the price of j∗ prior to the bid by i, and assume the second-highest bid price on the claim list Cj∗ is

p̂j∗ > pj∗ .

If |Cj| < 2, it is sufficient to assume p̂j∗ = +∞.

Suppose p′j∗ is the lot price of j
∗ at some later time, and that p′j∗ = pj∗ .

Assume first that there are no satisfied sinks on the claim list of j∗, and let i1 be the sink currently bidding (bi1j∗ , qi1j∗) on j
∗.

Let q1 be equal to

q1 =
∑

{ (k; bkj∗ , qkj∗ ) | bkj∗=pj∗ }
qkj∗ .

Because of the HC rule, we can assume without loss of generality that k ≠ i1 for all claims of price pj∗ .

As shown in Theorem 1, we have bi1j∗ ≥ pj∗ + ". Thus, if q1 ≤ qi1j∗ , all claims of price pj∗ have been overbid and the price

after i1’s claim satisfies

p′j∗ ≥ min{bi1j∗ , p̂j∗} > pj∗ .

This contradicts our supposition that p′j∗ = pj∗ , and so wemust have q1 > qi1j∗ . By definition, qi1j∗ = min{Di1 , sj∗}. If qi1j∗ = sj∗ ,

then we have q1 > sj∗ , which contradicts the definition of q1 as a quantity claimed on Cj∗ . Hence, we know qi1j∗ = Di1 . Because

i1 claimed the quantity Di1 and the HC rule is in place, it must be the case that sink i1 is satisfied and

p̂′j∗ = min{bi1j∗ , p̂j∗} > pj∗ .

Next, suppose instead that j∗ has one satisfied sink, and that the sink was satisfied by bidding on j∗ without increasing the

price pj∗ . Without loss of generality, assume the sink is i1. Suppose some sink i2 bids (bi2j∗ , qi2j∗) on lot j
∗. Because i1 is satisfied,

we know i2 ≠ i1. The remaining quantity available at price pj∗ equals

q2 =
∑

{ (k; bkj∗ , qkj∗ ) | bkj∗=pj∗ }
qkj∗ .

Because of the HC rule, we can assume k ≠ i2 for all claims of price pj∗ . (From the steps above, we also know k ≠ i1 for all

such claims.)
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Once again, we have bi2j∗ ≥ pj∗ +". Note that the bid price associated with the quantity claimed by i1 exceeds pj∗ , so i2 cannot

claim any quantity from i1 unless q2 ≤ qi2j∗ . However, in that case all claims of price pj∗ have been overbid and the price after

i2’s claim satisfies

p′j∗ ≥ min{bi2j∗ , p̂j∗} > pj∗ .

This contradicts our supposition that p′j∗ = pj∗ , and so we must have q2 > qi2j∗ , and i1 remains satisfied.

By definition, qi2j∗ = min{Di2 , sj∗}. If qi2j∗ = sj∗ , once again we have a contradiction because the total quantity inCj∗ exceeds

sj∗ . Hence, we know qi2j∗ = Di2 . Because i2 claimed the quantity Di2 and the HC rule is in place, it must be the case that sink

i2 is also satisfied and

p̂′j∗ > pj∗ .

Continuing inductively, we find that up toM − 1 distinct bidders can be satisfied while maintaining p′j∗ = pj∗ , and that

p̂′j∗ > pj∗

for each of them. Because the quantity with price pj∗ must be owned by at least one bidder, it is not possible for more thanM−1

distinct bidders to satisfy our initial assumption that p′j∗ = pj∗ .

Suppose now that ik becomes unsatisfied for some k = 1, … , M −1, and p′j∗ = pj∗ . Because expenses are nonincreasing and

p′j∗ = pj∗ , xikj∗ must still equal the best expense for bidder ik. Therefore, during its next bidding phase, ik will bid on a lot with

expense equal to xikj∗ .

4.1.3 General auction terminates

Theorem 3. Given " > 0, if at least one feasible transport plan exists, then the general auction method terminates after finitely

many iterations.

Proof. Let I be the set of bidders (sinks) and J be the set of lots (sources) for a feasible transport problem  . As a consequence

of Theorem 1, we can partition J into four subsets:

– JF , the set of lots which receive finitely many bids,

– JM , the set of lots whose prices achieve maximum values, while receiving infinitely many bids,

– JA, the set of lots whose prices asymptotically approach finite limits, without ever achieving those limits, and

– J∞, the set of lots whose prices increase without bound.

Now consider four subsets of I :

– IF = {i bids finitely many times},
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– IM = {i bids on some j ∈ JM infinitely many times},

– IA = {i bids on some j ∈ JA infinitely many times}, and

– I∞ = {i bids on some j ∈ J∞ infinitely many times}.

We will show that these four sets partition I .

Suppose i ∈ I such that A(i) ⧵ J∞ is nonempty. Then there exists j∗ ∈ A(i) ⧵ J∞, and by definition pj∗ is bounded above.

Thus, after a finite number of iterations, ∀ j∞ ∈ J∞

xi = max
j∈A(i)

{cij − pj} ≥ cij∗ − pj∗ > cij∞ − pj∞ .

Therefore, if A(i) ⧵ J∞ is nonempty, we must have i ∉ I∞. By the contrapositive,

A(i) ⊆ J∞, ∀ i ∈ I∞. (39)

This implies that I∞ is pairwise disjoint with IF , IA, and IM .

Suppose there exists i ∈ I ⧵ IF such that JA ∩ A(i) ≠ ∅ and JM ∩ A(i) ≠ ∅. By definition, i bids infinitely many times on

lots from JA and/or JM . Let pnj be the lot price of j at the end of the n-th iteration. For all j ∈ J
A, define

lj ∶= lim
n→∞

pnj .

After a finite number of iterations k, all lots in JF no longer receive bids and all lots in JM have reached their fixed prices. Thus,

for all j ∈ JM ∪ JF , and all iterations n ≥ k,

pnj = p
k
j .

Define

jM ∶= argmax
j∈A(i)∩JM

{cij − pkj }

and

jA ∶= argmax
j∈A(i)∩JA

{cij − lj}.

One of two possibilities must exist:

1. If cijM − pkjM ≤ cijA − ljA , then for any n ≥ k we have cijM − pk̂jM < cijA − pnjA . Thus, after the k-th iteration, i will not bid

on lots in JM , and so i ∉ IM .

2. If cijM − pkjM > cijA − ljA , then there exists iteration k̂ ≥ k such that cijM − pkjM > cijA − pk̂jA . Because lot prices are

nondecreasing, after the k̂-th iteration i will not bid on lots in JA. Therefore, i ∉ IA.
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Therefore, IM and IA are pairwise disjoint. By definition, IF must be pairwise disjoint with both IM and IA, because a sink

cannot bid both finitely many and infinitely many times. Thus, all four sets are pairwise disjoint, and since their union is I they

constitute a partition.

We will now consider possible elements in the three sets IM , IA, and I∞, to show that these sets are in fact empty.

1. Suppose IM is nonempty. After a finite number of iterations all prices in JM are fixed and all bidders in IM no longer bid

on lots outside of JM . From that iteration on, by Theorem 2, each bidder i ∈ IM must be satisfied after its bid. Thus, some

other bidder(s) must cause each i ∈ IM to become unsatisfied infinitely many times. By Theorem 2 and the definition

of IM , each time i becomes unsatisfied it will rebid on a lot in JM with the exact same price as the one it chose on its

previous bid. Therefore, after a finite number of additional iterations, all i ∈ IM will only have claims in JF and JM , and

sinks in IM only become unsatisfied as a result of bids from other members of IM for lots in JM . As a result, after a finite

number of additional iterations the quantity claimed from j ∈ JM at lot price pj will only be claimed by bidders in IM .

Assume without loss of generality that all of these things have occurred by the start of the k-th iteration. Let Dk be the

total unsatisfied demand at the start of the k-th iteration,

Dk =
∑

i∈IM
Di,

and let Qk be the total supply available at the fixed prices:

Qk =
∑

j∈JM

∑

(i; bij , qij )∈Cj
bij=pkj

qij .

Assume without loss of generality that Qk = ukDk for some uk. Because the prices for lots in JM remain unchanged,

we know uk > 1. During the round, each unsatisfied bidder in IM must bid on some lot in JM . Because the prices of

those lots do not increase, we know that all those bidders must be satisfied. Thus, the total quantity acquired by bidders

in IM during the k-th round must equal Dk. Since the prices of the lots do not increase, the claimed quantities must have

been taken from Qk, and so Qk must have been reduced byDk. Because the new amounts claimed could come only from

previous claims by bidders in IM , at the start of the (k + 1)-st round the unsatisfied demand, Dk+1, must equal Dk, and

the ratio of the available quantity, given by uk+1, must satisfy uk+1 ≤ uk − 1. Therefore, ⌈uk⌉ rounds after the k-th, the

available quantity at the current prices must have been exhausted, and the price of some lot in JM must have increased.

This contradicts the definition of JM , and therefore IM must be empty.

2. Suppose IA is nonempty. By the definition of JA, for each jr ∈ JA, there exists an associated iteration kr such that the

price at the start of that iteration, pkrjr , satisfies

lr − p
kr
jr
< ".
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Let k = maxr kr.

Assume without loss of generality that by the start of iteration k all lots in JF have also received their final bids. This

implies that all bidders in IA are now bidding exclusively on lots in JA. Recall from Theorem 1 that each new bid exceeds

the current lot price by at least ". Thus, after the k-th iteration, for all i ∈ IA and all j ∈ JA, the new bid price bij must

exceed lj .

Let Dk be the total unsatisfied demand at the start of the k-th iteration,

Dk =
∑

i∈IA
Di,

and let Qk be the total supply available at prices not exceeding the asymptotic limits:

Qk =
∑

j∈JA

∑

(i; bij , qij )∈Cj
bij≤lj

qij .

Assume without loss of generality that Qk = ukDk for some uk > 0.

Let i be some unsatisfied bidder in IA, bidding on j ∈ JA. The bid price offered by i, by exceeding lj , exceeds the price

of all quantities claimed in Qk. We know from the definition of JA that the price of lot j does not exceed lj . Thus, all

bidders in IA must be satisfied at the end of their bids. This implies that the claimed quantities must have been taken from

Qk, and that

Qk+1 = (uk − 1)Dk.

Because no bidders outside IA will bid again on lots in JA, the bidders who become unsatisfied due to the new claims

on Qk must be members of IA. Thus, at the start of the (k + 1)-st round the unsatisfied demand, Dk+1, must equal Dk

and the ratio of the available quantity uk+1, must satisfy uk+1 ≤ uk − 1. Therefore, ⌈uk⌉ rounds after the k-th, the quantity

claimed at prices below asymptotic bounds must have been exhausted, and the price of some lot j ∈ JA exceeds lj . This

contradicts the definition of JA, and therefore IA must be empty.

3. Suppose I∞ is nonempty. From Items 1 and 2, we know I = IF ∪ I∞. Let i ∈ I∞. Equation (39) implies

min
j∈A(i)

pj ≥ min
j∈J∞

pj ,

and since pj → +∞ for all j ∈ J∞, it must be the case that

min
j∈A(i)

pj → +∞.

Therefore,

xi = max
j∈A(i)

{cij − pj}→ −∞.
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Thus, after a finite number of iterations, each lot in J∞ will be satisfied exclusively by the bidders in I∞. Otherwise, some

bidder in IF would become unsatisfied infinitely many times, causing them to bid infinitely often. This would contradict

the definition of IF .

Furthermore, because I∞ is nonempty, we know the algorithmmust not terminate. Thus, after a finite number of iterations

there exists at least one bidder in I∞ that is not satisfied, while all bidders in IF have been satisfied by the lots in JF . It

follows that the total demand of the bidders in I∞ must be strictly larger than the total supply of the lots in J∞. However,

by Equation (39), the demand in I∞ can only be satisfied by supply in J∞. This contradicts the assumption that a feasible

transport plan exists. Therefore, I∞ must be empty.

Because IM , IA, and I∞ are all empty, we know I = IF . Therefore, the general auction algorithm must terminate after finitely

many bids.

4.2 Optimality of the general auction

When a real-valued transport problem is solved by computer, some error is inevitable, if only from the limits of machine preci-

sion. We show below that the error associated with the general auction method can be bounded a priori with respect to ". As a

consequence, the method is convergent with respect to "-scaling.

4.2.1 Minimum price increase for general auction

Corollary 1. Given a feasible transport problem  , there exists a finite k ∈ ℕ and � > 0 such that every k bids the price of a

lot is guaranteed to change, and each time a lot price changes it increases by at least �.

Proof. This follows from Theorem 3, specifically that JM ∪ JA = ∅.

4.2.2 General auction preserves "-CS

Theorem 4. If a transport plan and lot price vector satisfy "-CS for the general auction method at the start of an iteration, the

same is true of the transport plan and lot price vector obtained at the end of that iteration.

Proof. Suppose "-CS holds at the start of the iteration. Fix lot j∗ and let its price before and price after iteration be given by pj∗

and p′j∗ , respectively.

Suppose that sink i bids on lot j∗ during the iteration, and the lot price of j∗ changes as a result. By Equations (28) and (30)

bij∗ = cij∗ −wi + ",
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which implies, by applying Equation (29), that

cij∗ − bij∗ = wi − " = max
j∈A(i), j≠j∗

{cij − pj} − ".

Equation (27) guarantees that p′j∗ ≤ bij∗ , so

cij∗ − p′j∗ ≥ cij∗ − bij∗ = max
j∈A(i), j≠j∗

{cij − pj} − ".

By Theorem 1, p′j ≥ pj for all j. Thus,

cij∗ − p′j∗ ≥ max
j∈A(i),j≠j∗

{cij − p′j} − ".

Because cij∗ − p′j∗ ≥ cij∗ − p′j∗ − ",

cij∗ − p′j∗ ≥ max
j∈A(i)

{cij − p′j} − ",

and "-CS is satisfied.

Suppose that i has a claim on j∗, but the lot price pj∗ has not changed during the iteration. Because "-CS held prior to the

iteration and pj ≤ p′j for all j,

cij∗ − p′j∗ = cij∗ − pj∗ ≥ max
j∈A(i)

{cij − pj} − "

≥ max
j∈A(i)

{cij − p′j} − ".

Thus, "-CS holds for all claims in every claim list.

Therefore, "-CS holds for all (i, j; qij) in the transport plan T .

4.2.3 General auction error bound

Theorem 5. Let " > 0 be the step size of the general auction method. If a feasible transport plan exists, then when the general

auction method terminates, the resulting feasible transport plan is within L" of optimal, where

L =
M
∑

i=1
di =

N
∑

j=1
sj . (40)

Proof. Assume the transport problem is feasible. Let P ∗ be the optimal primal solution to the transport problem,

P ∗ = max
{ T∈ | T complete }

∑

(i, j)∈
cijfij ,

and D∗ be the optimal dual solution

D∗ = min
p={pj}Nj=1

{ M
∑

i=1
di maxj∈A(i)

{cij − pj} +
N
∑

j=1
sjpj

}

.
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Let T ∗ be the simplified transport plan when the auction terminates, and let p∗ = (p∗1, … , p∗N ) be the resulting price vector. Let

i be any sink. Suppose (i, jr; fijr) ∈ T
∗, with r ∈ {1, … , ti}. Because (T ∗, p∗) satisfies "-CS,

max
j∈A(i)

{cij − p∗j} − " ≤ cijr − p
∗
jr
.

Therefore, by rearranging and summing terms for all jr,

max
j∈A(i)

{cij − p∗j} + p
∗
jr
≤ " + cijr

fijr

(

max
j∈A(i)

{cij − p∗j} + p
∗
jr

)

≤ fijr(" + cijr)

∑

fijr

(

max
j∈A(i)

{cij − p∗j} + p
∗
jr

)

≤
∑

(fijr" + fijrcijr)

di maxj∈A(i)
{cij − p∗j} +

∑

fijrp
∗
jr
≤ di" +

∑

fijrcijr ,

where each summation takes place on all (i, jr; fijr) ∈ T
∗ over all r ∈ {1, … , ti}.

Summing over all sinks i, this gives us

M
∑

i=1
di maxj∈A(i)

{cij − p∗j} +
∑

(i, j; fij )∈T ∗
fijp

∗
j

≤
M
∑

i=1
di" +

∑

(i, j; fij )∈T ∗
fijcij .

(41)

Given any sink j, we have (iu, j; fiuj) ∈ T ∗ for all u ∈ {1, 2, … , vj}. Thus, summing first over the iu for j, and then over all

j, we have

∑

(iu, j; fiuj )∈T
∗

u∈{1,…, vj}

fiujp
∗
j = sjp

∗
j

∑

(i, j; fij )∈T ∗
fijp

∗
j =

N
∑

j=1
sjp

∗
j .

Substituting this into Equation (41), we have

M
∑

i=1
di maxj∈A(i)

{cij − p∗j} +
N
∑

j=1
sjp

∗
j

≤
M
∑

i=1
di" +

∑

(i, j; fij )∈T ∗
fijcij .
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Therefore,

P ∗ = D∗

≤
M
∑

i=1
di maxj∈A(i)

{cij − p∗j} +
N
∑

j=1
sjp

∗
j

≤
M
∑

i=1
di" +

∑

(i, j; fij )∈T ∗
fijcij

≤ L" + P ∗

≤ L" +D∗.

4.3 Essential characteristics of the general auction

InNetwork Optimization: Continuous and Discrete Models, Dimitri Bertsekas describes what he considers the “important ingre-

dients” of auction methods [4]. Here, in the same form used by Bertsekas, are what we consider the essential elements of the

general auction method:

Given " > 0:

(a) "-CS is maintained.

(b-1) During each iteration, at least one bidder with unsatisfied demand claims supply in one lot.

(b-2) The bid price of any claimed supply is increased by at least �", where � is some fixed positive constant.

(b-3) Any previously-claimed supply that is needed to satisfy a higher priced claim (if any) becomes unclaimed.

(c-1) No bid price is decreased.

(c-2) Any supply that was claimed at the start of an iteration remains claimed at the end of that iteration (although

the bidder claiming it may change).

With the exception of (a), all of these characteristics are essential to our argument that the general auction algorithm terminates

after a finite number of iterations. Characteristic (a) allows us to relate the the resulting price vector to the optimal price vector

we seek, in order to establish a worst-case bound on the distance from optimality.



Real-valued auction algorithm for optimal transport 25

4.4 AUCTION–SO is a special case of the general auction

Given an integer-valued transport problem, we can relate the general auction method to the extended auction method. This rela-

tionship bypasses the AUCTION–SOP algorithms, and establishes the AUCTION–SO as a special case of the general auction.

In [5], Bertsekas and Castañón showed that the original assignment auction method is a special case of the AUCTION–SO.

Thus, it follows that the assignment auction developed by Bertsekas in [2] is a special case of the general auction.

Theorem 6. Suppose  is a feasible integer-valued transport problem and di = 1 for all sinks i in  . Then the general auction

algorithm is equivalent to the auction algorithm for similar objects.

Proof. Let  be any feasible integer-valued transport problem such that for all sinks i, di = 1. Thus, for purposes of the

AUCTION–SO we have the similarity class S(i) = {i} for all sinks i. The lot represented by S(i) is unsatisfied if and only if

there exists exactly one person for the AUCTION–SO that is unsatisfied. Consider the bidding phase for such a person i.

If the object ji offers best expense for the AUCTION–SO, then the lot represented by S(ji) also offers best expense, so the

object ji chosen by the AUCTION–SO corresponds to the choice of lots in the general auction. Let j′ be the object such that for

the AUCTION–SO

wi = max
j∈A(i)⧵S(ji)

{cij − pj} = cij′ − pj′ . (42)

As a consequence, it must be that

pj′ = min
j∈S(j′)

pj , (43)

and so the second-best expense computed by the general auction method must equal that computed by the AUCTION–SO.

Therefore, the bid prices for the SO and general auction must be equal. Because  is an integer-valued transport problem, S(i)

is unsatisfied, and di = 1, the quantity desired by the general auction must be

qiji = min{Di, sji} = 1. (44)

Therefore, the two bidding phases are equivalent.

Let j be some object who receives one or more bids during the claims phase, and let ij be the person that made the highest

bid on j.

Suppose the object j has already been claimed by some person k. Because j is the lowest-priced object in S(j), and each bid

increases the price of an object by at least ", this implies that the lot S(j) is unavailable. The AUCTION–SO “claim” on object

j corresponds to making a claim on the lot S(j), and

bijj = cijj −wij + " ≥ pj + xij −wij + " ≥ pj + ". (45)

Thus, in the general auction the lowest priced claim on the current claim list corresponding to S(j) will be removed.
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Assume without loss of generality that the order of the claims in the claim list of the general auction matches the sorted order

of the expenses determined in the AUCTION–SO algorithm. Then the lowest priced claim corresponds to the object claimed

by person k. As shown in the bidding phase, the quantity claimed by i is 1, so both methods add 1 to Dk. Removing the claim

(k; bkj , 1) from the claim list corresponding to S(j) is equivalent to removing (k, j; 1) from T .

Appending (ij , j; 1) to T is equivalent to inserting the bid (ij ; bijj , 1) into the claim list corresponding to S(j), and both

methods subtract 1 from Dij . The price update for the general auction is the same as determining the lowest-priced object in

S(j) after the price increase on object j. Thus, the two claims phases are equivalent, and so the two auction algorithms are

equivalent.

5 NUMERICAL RESULTS

We created two different versions of the general auction. The first is integer-based and stores all arc costs; we used it for com-

parison with existing auction methods. The second uses floating-point numbers and computes arc costs as needed; we used it to

approximate time and memory scaling for the general auction.

We implemented four additional methods for testing our numerical results: extended method’s AUCTION, AUCTION–SO,

and AUCTION–SOP algorithms, and the network simplex method. The assignment and extended auction methods were used

for benchmarking and comparison, while the network simplex method was used to test real-valued solutions for optimality.6.

All implementations were written in C++, and rely heavily on the C++11 Standard Library. We wrote, compiled, and tested all

the programs ourselves, in order to minimize possible confounds in our results. As shown below, the AUCTION–SOP algorithm

generated the most favorable results in our tests on non-assignment problems, so we focused on comparisons involving that

algorithm.

All of these methods were implemented to solve the general transport problem as described in Section 2.1, applying only those

restrictions necessary to satisfy the minimal requirements of the algorithm. One could improve on our results for any particular

method, simply by customizing the code to handle specific purposes or environments. However, our goal was to evaluate the

average-case effectiveness of the underlyingmethods themselves, aside from any potential time savings due to specialized design.

The transport problems we used for comparison testing were initialized by creating assignment problems with NETGEN [17].

The only modifications to the NETGEN code were increased array sizes (to generate the large problems desired) and alterations

to the input/output routines. The network generation code was not altered. When different weights or costs were desired, the

existing nodes and arcs were modified using the random uniform distribution functions from the C++11 Standard Library.

6The network simplex method is not generally useful for benchmarking. The algorithm must be initialized by choosing an initial feasible solution, and the resulting
time and storage are extremely dependent on that choice of initialization. See [13] for details on the range of network simplex performance benchmarks using various
libraries and scenarios.
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In order to obtain accurate comparisons, we used identical conditions for the creation and implementation of all programs,

and ran all tests in large blocks. To minimize variation due to underlying problem structure, we solved at least 10 distinct

transport problems for each result. Solution times are averages. When comparing algorithms, our programs loaded the data and

ran multiple algorithms in sequence, minimizing changes in conditions over time. We also ran multiple iterations of each test to

ensure that results were typical.

Computation times under one second were obtained by forcing multiple runs to bring the total time over one second, and

dividing the total by the number of runs to obtain an average. For example, if a time of 0.9 seconds is given, that indicates the

algorithm was run ten times, and the total resulting time divided by ten. In order to obtain accurate results over multiple runs,

we wrote our programs to recreate all data structures and computations from scratch. We also compared our multi-run results

to single-run times, to ensure that our multi-run averages closely approximated the times given by single runs, which they did.

5.1 Comparison of auction methods for assignment

When Bertsekas and Castañón compared their implementation of the extended auction to the performance of the assignment

auction on standard assignment problems [5, p. 92], they found that the additional overhead required by the extended auction

measurably slowed computation time. For this reason, we wished to see how the performance of the general auction compared to

that of the assignment and extended auction methods when applied to assignment problems of increasing size. The comparison

done by Bertsekas and Castañón in 1989 used problems with 150 to 500 pairs of sources and sinks. Given the improvements in

computation power since that time, our comparison starts at 3000 sinks and ends at 10000 (with an equal number of sources at

each size). As in [5], the number of arcs in each problem is 12.5% of the maximum possible. The cost range is also relevant, as

it influences complexity scaling [4, p. 34]. We used the fixed cost range C = 100. The resulting times are given in Table 1. The

SOP auction results are shown in two columns: one displays times for the original algorithm described in [5], while the other is

for an optimized version developed by Dr. Walsh and publicly available via [20]. Approximating the time complexity of each

algorithm with the power regression aNb, we find that the original AUCTION–SOP has b = 2.9, but each of the other three

algorithms has a nearly identical power: b = 2.4.

Over all tested problem sizes, the computed times for the assignment and general auction methods are nearly identical, differ-

ing by less than 2%. The largest difference in the times required by these two methods was less than two-tenths of one second.

This result suggests that the overhead required for the implementation of claim lists scales acceptably for relatively simple

problems such as assignments.

Storage requirements were dominated by the need to store an explicit cost value for each arc, and so were nearly identical for

all three algorithms. Storage scaled quadratically with respect to the number of sinks.
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TABLE 1 Time in seconds for assignment scaling
N sinks andN sources,N2∕8 arcs

Assignment General SOP SOP
N auction auction (Walsh) (original)

3000 1.23 1.21 1.71 9.06
4000 2.65 2.68 3.52 18.63
5000 4.73 4.82 6.23 35.33
6000 6.96 7.06 8.82 60.55
7000 8.90 8.97 10.85 90.82
8000 12.60 12.64 15.98 132.93
9000 17.00 16.83 20.73 193.30
10000 18.88 19.05 23.04 249.03

As these nearly-identical assignment auction and general auction results indicate, the additional computational overhead

required to maintain claim lists is negligible. For assignment problems, the performance of the general auction method is

effectively identical to the classical assignment auction.

5.2 Comparison of extended and general auction

The experiments described in [2, 5] rely on homogeneity and asymmetry for their numerical examples. We replicated variations

of these conditions for our own tests, and consideredwhat happenedwhen those assumptions were violated. Due to the significant

time delays associated with the original version of the SOP auction, all SOP tests were performed using the optimized Walsh

SOP auction published in [20].

For the assignment auction, we used NETGEN to construct systems with 400 sinks and N sources. Each of the N sources

has unit weight. The 400 sinks have a 90%/10% weight distribution: 50% of the weight is uniformly distributed over 90% of the

sinks, while the other 50% is uniformly distributed over the other 10%. The density of the arcs is 14%. Computation times for all

four auction algorithms, with various values ofN , are given in Table 2. Approximating the time complexity of each algorithm

with the power regression aNb gives us the results shown in Table 3.

The assignment problem results given in Table 1 illustrate what happens when we apply the AUCTION–SOP to a homo-

geneous problem without asymmetry. To evaluate what happens with an asymmetric problem that is not homogeneous, we

implemented the same 400 ×N problem as above, but gave theN sources weights in the integer range [1, 19]. We used a uni-

form integer distribution, giving us an average source weight of 10. The sinks kept the 90%/10% weight distribution. Even this

slight increase in weight resulted in a significant change in the relationship between the general auction and AUCTION–SOP,

as shown in Table 4.
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TABLE 2 Time in seconds for asymmetric problem
with unit weights

400 sinks with 90%/10% weights,
N sources with unit weight, 14% arc density

General SOP SO Assignment
N auction auction auction auction

3000 0.16 0.13 1.45 1.38
6000 0.56 0.32 6.41 6.29
9000 1.06 0.67 15.51 13.30
12000 1.72 0.67 28.37 27.89
15000 2.37 0.99 40.13 39.82
18000 3.17 1.18 61.41 55.42
21000 3.80 1.45 80.09 86.85
24000 5.34 1.80 118.66 114.38

TABLE 3 Power regression aNb for asymmetric problem with unit weights

aNb General SOP SO Assignment
coefficients auction auction auction auction

a 0.029 0.036 0.15 0.14
b 1.63 1.22 2.07 2.10

TABLE 4 Time in seconds for asymmetric problem
with increased weights

400 sinks with 90%/10% weights,
N sources with [1, 19] weights, 14% arc density

General SOP
N auction auction

3000 1.15 1.88
6000 2.64 4.89
9000 5.40 8.06
12000 6.82 12.18
15000 8.93 19.12
18000 12.08 25.13
21000 14.44 35.58
24000 17.73 43.81
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Approximating the time complexity of each algorithm with the power regression aNb gives us:

a = 0.27, b = 1.31 for the general auction, and

a = 0.32, b = 1.51 for the AUCTION–SOP.

Generally speaking, the transport-to-assignment transformation used by the algorithms of the extended auction method

degrades performance on transport problems with arbitrarily large total weights. To assess the overall impact, we generated

a small transport problem and scaled only the total weight, comparing the time required by the extended and general auction

methods.

In every case, the structure of the transport problem was identical. It had 500 sources, 500 sinks, and the same 225000 arcs

(90% of maximum). The cost range wasC = 100. Using a uniform integer distribution, the weight was spread among the sources

and sinks. Each was given a minimum weight of one, but no maximum was assumed. The total weights and computation times

for the two algorithms are given in Table 5.

TABLE 5 Results for weight-only scaling
500 sinks and 500 sources, 225000 arcs

Time (sec) Storage (MB)

Weight General Extended General Extended
L auction auction auction auction

500 0.09 0.11 10.78 10.72
600 0.15 6.35 10.79 11.78
700 0.16 17.72 10.80 12.81
800 0.13 23.16 10.81 13.84
900 0.15 24.85 10.81 14.88
1000 0.15 29.65 10.82 15.91
2000 0.25 51.44 10.88 26.28
3000 0.31 65.29 10.97 36.70
4000 0.40 82.20 11.00 47.02
5000 0.47 102.07 11.08 57.54

The data collected suggests that, as weight increases, time for the AUCTION–SOP algorithm scales on the order of (Lb),

where b = 1.73 and L is the total transport weight. Time increases for the general auction algorithm as well, but it appears

to be scaling with b = 0.63. The storage requirements for the AUCTION–SOP scale almost linearly: (Lb), where b = 0.74.

This is not surprising, given that the AUCTION–SOP algorithm explicitly transforms the set of sinks into L persons. Storage

requirements for the general auction are approximately constant.

The time increases given by both algorithms suggest that the weight range, or number of possible weight values, may be

relevant to complexity calculations. The impact of increasing weight was not mentioned in [5], and weight changes do not occur



Real-valued auction algorithm for optimal transport 31

in the assignment problem. However, it seems natural to consider such changes in the context of the transport problems. The

larger the weight range, the more likely it becomes that each sink will have positive flows over multiple arcs, increasing the

complexity of the optimal transport plan, and thus the time required to calculate it.

Given the degree to which range increases adversely affect the performance of the extended auctionmethod, we also compared

the scaling behaviors of the AUCTION–SOP and general auction methods in problems where the relative total weight was fixed.

We randomly generated transport problems withN sources andN sinks, where the total weight of each problem was L = 2N .

The number of arcs for each problem was fixed at 90% of maximum, and the cost range was C = 100. The results are shown in

Table 6.

TABLE 6 Results for fixed weight-ratio scaling
N sinks andN sources, 0.9N2 arcs, total weight 2N

Time (sec) Storage (MB)

General Extended General Extended
N auction auction auction auction

500 0.13 8.32 10.82 15.91
600 0.19 37.28 20.15 27.53
700 0.31 63.27 25.23 35.26
800 0.42 177.86 30.77 43.86
900 0.61 233.96 36.48 53.05
1000 0.81 291.29 42.89 63.36
1100 1.08 920.57 70.52 95.38

The time required by the general auction method scales like (Nb) with b = 2.69, whereas the extended auction scales

with b = 5.40. Because of the need to store an explicit cost value for each arc, both methods scale quadratically with respect

to storage. At any given size, the extended auction uses approximately 150% of the amount of storage needed for the general

auction method. The algorithm uses the additional storage to explicitly transform sources into objects.

5.3 General auction performance on real-valued transport

When evaluating the scaling properties of the real-valued general auction method, we wanted to focus on its behavior as problem

size increased, with all other variables held constant. To do so, we needed to fix the ranges of both costs and weights. We

constructed transport problems using the following method:

• We generate N sinks and an equal number of sources. Sources and sinks are points in the plane, restricted to the integer

coordinates on the cube [0, N] × [0, N]. Points are placed randomly using the uniform distribution.
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• The graph underlying our transport problem is given by the complete bipartite graph KN,N , so the problem is maximally

dense with N2 arcs. The cost function is a modification of the Euclidean distance. Given sink i = (xi, yi) and source

j = (xj , yj), the cost of the arc connecting them is

cij =
√

1 + mij , where

mij =
[

(xi − xj)2 + (yi − yj)2
]

(mod 20). (46)

• For i ∈ {1, … , N}, the weight of sink i is given by the formula

di =
√

1 + mi where mi = [i − 1] (mod 20). (47)

and for j ∈ {1, … , N}, the weight of source j is given by the formula

sj =
√

1 + mj where mj = [j − 1] (mod 20). (48)

We chose this method because it populates the weights and costs with irrational values, while restricting the range of those

values. Because the total weight of the sinks equals the total weight of the sources, and the transport graph is complete, the

problem is guaranteed to be feasible.

The integers are closed under addition and subtraction, so for an integral transport problem the smallest deviation from the

optimal cost cannot be less than one. Furthermore, the range of possible flow values cannot be greater than the largest absolute

weight. Neither of these is true for real-valued problems. To get a sense of how real-valued data affects these characteristics,

consider the cost and weight values chosen for our sample problems. Even without weight splitting, it is possible to make a flow

adjustment on the smallest possible cycle, four arcs, that changes the cost by

1 ⋅
(
√

19 −
√

20 +
√

19 −
√

18
)

≈ 0.00302.

From this, one can extrapolate the size of the range. Increasing the number of arcs in the cycle would further increase the range

and reduce the minimum possible cost.

As the flow adjustment above indicates, cost and weight ranges are determined, not by the 20 distinct irrational values given,

but by the number of possible differences that those values can generate. Theoretically, there could be as many as (V N )

differences, where V is the number of distinct cost/weight values in the problem. The smallest possible cost adjustment could

be significantly less than machine precision.

In fact, the cost and weight ranges seemed to have far less negative impact on computation than the description above would

suggest. We able to generate optimal solutions in a single iteration of the general auction using " = 0.75. The results of our tests

are given in Table 7.
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TABLE 7 Real-valued general auction results
N sinks andN sources,N2 arcs

Time Storage
N (sec) (MB)

1000 1.11 3.27
2000 6.37 5.81
3000 12.74 7.93
4000 25.87 14.00
5000 42.49 14.69
6000 61.14 15.24
7000 94.12 16.27
8000 143.51 18.38
9000 179.20 25.82
10000 218.59 29.16

As described above, it can be difficult to determine a priori minimum " values that guarantee optimal solutions. For these

tests, we confirmed the optimality of our solutions a posteriori, by comparing the results of the general auction to exact solutions

which were already known.7

Given our computer and the type of calculations performed, we have machine precision equal to

√

eps ∶= 1.490116 × 10−8. (49)

The optimal cost values calculated by our general auction matched the exact solution values up to the limit of machine precision.

Because the optimal costs all exceeded 104, this gave us at least 11 identical digits.

The time complexity with respect to the number of sinks (or sources) resembles:

aNb seconds, with a = 1.62 × 10−7 and b = 2.28.

When the network simplex method was applied to the same set of dense, real-valued problems, a time scaling exponent of

b = 2.42 was obtained8. Because our real-valued implementation of the general auction algorithm computed cost values as

needed, storage complexity is roughly linear.

6 CONCLUSIONS

We introduced our general auction method for real-valued transport because we wished to take advantage of the properties of

auction algorithms while overcoming some of the data restrictions imposed by their existing forms. Our goal was to create an

7That is, the optimal costs, which were known and unique, could be compared to the cost values we obtained using the general auction. Associated transport plans,
while known, are not necessarily unique, and so could not be meaningfully compared to those obtained by our method.

8Because exact network simplex computation times are highly dependent on the choice of initialization, we can make a meaningful comparison between scaling
exponents b, but not multipliers a.
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auction technique suitable for computing real-valued optimal transport solutions, particularly on asymmetric problems such as

those found in semi-discrete optimal transport.

As we have shown, the general auction allows us to take the same rationale as the original auction method and apply it directly

to real-valued optimal transport problems. The method is guaranteed to terminate after a finite number of iterations, and it offers

a priori error bounding.

Furthermore, as a discrete transport solver, the general auction method offers many practical advantages. Extending it to

parallel computing is relatively straightforward. By applying Theorem 5, it is possible to fine-tune the amount of computation

to a predefined level of acceptable error. This is a significant departure from most linear programming methods, which halt

only when the exact solution is reached, and can be arbitrarily far from optimal when interrupted. The results of the general

auction include the information necessary to compute both transport solutions: the claim lists contain the flows needed for the

primal solution, and the price vector allows approximation of the dual solution. Together, these two solutions give improved a

posteriori error bounds, which can be used in “on-the-fly” "-scaling schemes.

In the process of developing the general auction for real-valued transport, we found that very few numerical resources existed

for applying auction algorithms to transport problems of any sort. In an effort to alleviate this need, we created an open-source

software project that directly implements each of the auction algorithms described in this paper, allowing them to be compared

head-to-head. (A variation of this software was used to generate our numerical results.) Our software is publicly available for

download at [20].

The general auction should also be easy to extend. In this regard, the efforts of Bertsekas and Castañón provide a road map for

the type of extensions that may be possible. In particular, a reverse general auction algorithm seems feasible, as does a method for

solving partial transport problems. Given the current interest in fast, accurate techniques for solving optimal transport problems,

we invite further exploration of the general auction method.
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