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Abstract

We consider a numerical method based on the so-called “orthogonality condition” for the approximation and continuation of
invariant tori under flows. The basic method was originally introduced by Moore [Computation and parameterization of invariant
curves and tori, STAM J. Numer. Anal. 15 (1991) 245-263], but that work contained no stability or consistency results. We show
that the method is unconditionally stable and consistent in the special case of a periodic orbit. However, we also show that the
method is unstable for two-dimensional tori in three-dimensional space when the discretization includes even numbers of points in
both angular coordinates, and we point out potential difficulties when approximating invariant tori possessing additional invariant
sub-manifolds (e.g., periodic orbits). We propose some remedies to these difficulties and give numerical results to highlight that the
end method performs well for invariant tori of practical interest.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The goal of this paper is to analyze a method for the numerical approximation of flow-invariant tori in real spaces.
Typically, the practical use of such method is in a continuation context. Consider the autonomous system of ordinary
differential equations with a (gk, k=2, vector field

x=®dkx, 1), xeR' 1eR. (1)

The goal is to approximate a torus that is invariant under the flow generated by the differential system for a particular
value of /, and then to continue the torus in 4. The role of /4 is immaterial in all that follows, except that during
continuation there is an initial approximation for the current invariant torus from another torus that is invariant at a
previous 4 value; for this reason, we will henceforth just write ®(x) for the vector field.

In the last 15 years, there has been considerable interest in approximation of invariant tori of dynamical sys-
tems, a topic which continues to attract the attention of several researchers also at the theoretical level, as witnessed
by the recent works [4,5] which are relevant for quasi-periodic invariant tori of maps. For numerical techniques,

* This work was supported in part under NSF Grant DMS 0139895.
* Corresponding author. Tel.: +1 505 6673148; fax: +1 505 6677665.
E-mail addresses: bryanras@lanl.gov (B. Rasmussen), dieci @math.gatech.edu (L. Dieci).

0377-0427/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2007.05.025



B. Rasmussen, L. Dieci / Journal of Computational and Applied Mathematics 216 (2008) 388412 389

see [3,6,7,10,12,13,23,22,24-26,29,30] for methods concerned with approximation of invariant tori in general and
[17,28] for techniques specifically concerned with quasi-periodic invariant tori. We refer to the recent work [28] for a
well-written and comprehensive review of the existing techniques. Quasi-periodic invariant tori are of course of great
interest, especially in the context of Hamiltonian dynamics (e.g., see [18,21]). However, it is well known that invariant
tori may persist while quasi-periodic motion does not, so here we are interested in techniques which are not restricted
to quasi-periodic tori.

Unfortunately, several of the numerical methods which have been proposed in the above works lack a rigorous stability
analysis. Therefore, methods that seem to work well in practice may instead be subject to instabilities as they are applied
to more problems. For example, the original discretization proposed in [10] was later realized to be unstable in general,
a fact which prompted consideration of a different, provably stable, discretization in [7]. Also the discretization schemes
proposed in [12,22,23,13,29,28] lack a complete theoretical justification, i.e., a stability analysis, although the authors’
computational sensibility has probably led to trustworthy numerical results. Nevertheless, approximation of invariant
tori is a delicate computational task, and it is important to have rigorous stability analyses of the numerical methods.
Likewise, conditional stability results, or stability results for realistic model problems, as well as instability results, are
all important, because they help us to understand how to use a certain scheme properly. Our chief goal in this work
is to rectify at least in part the lack of rigorous analysis, relative to a specific technique, the so-called “orthogonality
technique” originally introduced by Moore in [22,23].

Most general numerical methods for approximation of invariant tori essentially require the solution of a PDE either
directly [6,7,10,12,13,28,29] or indirectly through the Hadamard graph transform [8,24,30]. In general, direct solution
methods for invariant tori require significant a priori preparation, namely the appropriate choice and update of a
coordinate system in which to represent the sought-after torus. For quasi-periodic tori, in [28] the authors propose a
method where the vector of the frequencies is treated as unknown, and updated during continuation as well; although
one can try this approach also for general tori, the method is designed for quasi-periodic tori. On the other hand, graph
transform techniques remain generally applicable; their primary shortcomings are that they require an integration of the
vector field, and the graph transform technique is only linearly convergent. (Osinga uses Newton’s method in [24], and
this clearly speeds up the iteration, the trade-off being an increase in storage and in the linear algebra expense.) In [22,23],
Moore explores a completely different avenue that avoids integration of the vector field. Thanks to clever geometrical
insight, he proposes a new condition to characterize the invariant torus; we call it the orthogonality condition.

To set the stage, let TP = (R /27)? denote the standard p-torus, and let ¢ := n — p. We assume that the invariant torus
has a %2-smooth embedding, x* : T? — R”, and also that the derivative of x* with respect to ¢, Dyx*(¢) € R"P,
is full-rank at all ¢p. As a consequence, there is a ' moving system of normal vectors, stored as columns of a matrix,
Q : TP — R" 9. The orthogonality condition simply states that x* is invariant under the flow of (1) for a particular A
if and only if it satisfies

() d(x*(¢)) = 0. 2)

To develop a method based on the orthogonality condition, one requires that (2) be satisfied relative to some points of a
grid. The outstanding difficulty is how to define the normal vectors in Q in such a way that computing Q is inexpensive
and Q perturbs smoothly with small changes in the torus. In [22], Moore proposes a numerical method based on
a discretization of (2). The method proposed in [22] is a box scheme (second-order accurate discretization), but no
stability analysis for the method is given in [22]. Our goal in this paper is to analyze the basic numerical technique for
(2), and a main result of ours will be to show that, in general, the technique is unstable. Although limited to a particular
scheme for the orthogonality condition, we believe that our analysis should prove useful to infer potential instabilities
also for other existing discretization methods (especially second and higher order of consistency) for invariant tori; see
also Remark 2.1 later on.

Remark 1.1. The algorithms developed by Moore in [22] are somewhat different from the basic algorithm that we are
able to analyze here. The main difference is that Moore implements a sophisticated, quasi-conformal grid redistribution
strategy for 2-tori, while we rely on simpler strategies as they become necessary. There are also two other minor
differences: (i) in [22], the computation of the instantaneous normal directions is done differently in general than how
we will do it, although for 2-tori embedded in R3 it is the same as we do; (ii) in [22], the author uses a quasi-Newton
update instead of a full Newton iteration, as we do. We believe that these two algorithmic differences are not strong
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enough to impact our conclusions. Instead, it may be interesting, but apparently quite hard, to understand to what extent
the mesh redistribution prevents or hides the instabilities of the basic scheme.

A plan of this paper is as follows. In Section 2 we clarify the equivalence between the orthogonality condition and the
PDE formulation. In Section 3 we consider computation of Q and the resulting discretization scheme. In Section 4 we
prove that the scheme is stable for periodic orbits (1-tori), whereas in Section 5 we show that, in certain circumstances,
the method is unconditionally unstable even if one has a canonical choice for the normal vectors (and in such cases, our
technique is essentially that of [22]). Specifically, the method can encounter difficulty if the discretization includes too
many even numbers of points in the different angular directions, or if the invariant torus admits invariant sub-manifolds.
Practical remedies are proposed in the context of Section 6, where we present results of numerical experiments on
problems from the literature. Conclusions are in Section 7.

Notation
This paper uses a convention for labeling variables:

(i) Asterisks (x*) denote actual invariant tori and smooth approximations.
(i) Overbars (X) denote initial guesses and reference states.
(iii) Karats @ denote updates and modifications of initial guesses.
(iv) Tildes (Q) denote averages taken at the centers of boxes in the discretization scheme.

2. Equivalence of orthogonality and PDE conditions

Ata general level, the approximation process comprises two steps: (1) choose a suitable condition that the sought-after
invariant torus satisfies, and (2) discretize that condition to obtain an approximation of the torus. Two such conditions
are the PDE and orthogonality conditions, both of which rely on a local representation of the torus with respect to some
initial guess (often, a torus computed at a previous parameter value in the continuation process).

Definition 1. Let 77 be a p-torus with coordinate ¢. Letx : T? — R" be a (62—_smooth embedding, andlet Q : TP —
R"<(=P) pe a €' -smooth function such that at each ¢_ € TP, the columns of Q(¢) form an orthonormal basis of the
normal space to the graph of X at ¢. Then the pair [X, Q] is called a reference torus.

For convenience, the term “reference torus” may also apply to the embedding X or its graph rather than the pair
[X, Q]. In a sufficiently small tubular neighborhood around a reference torus, every point has a unique representation

in a local (¢, p) coordinate system: x(¢, p) = X(¢) + O(d)p.
We assume that the actual invariant torus, x*, is sufficiently close to the reference torus in the sense that there exists

a unique representation in terms of a ¢! function, r : 7?7 — RY,

X“(¢) =X($) + Q()r (). 3)

The PDE condition relies explicitly on the local representation (3) of the invariant torus. In principle, in a tubular
neighborhood of the reference torus, the vector field splits into tangential-normal coordinates,

® = (, p), 4)

though ¢ and p may be difficult to derive in a closed form. With r(¢) defining the actual invariant torus as in (3), then
a necessary and sufficient invariance condition for x* is that the time derivative of r be the normal component of the
vector field [10]. That is, r has to satisfy the PDE condition

[Dyr(9)1d(9. r($)) = p(, (). 5)

The solution of this first-order PDE, subject to periodic boundary conditions, characterizes the invariant torus. As
mentioned in the “Introduction”, directly solving this PDE (e.g., as done in [6,10,12,13,29]) can be tricky. Regardless,
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transforming the vector field into local coordinates to obtain the PDE in the first place is not always straightforward.
Thus, techniques based on the PDE condition have been devised so not solve (5) directly but rather use the Hadamard
graph transform, which can be thought of as a solution technique using the method of characteristics [8].

The orthogonality condition, in contrast, does not require the solution of a PDE, but instead relies on an instantaneous
description of normal spaces. We consider tori in the form of (3) and equip them with a smoothly varying system of
orthonormal vectors, Q (¢), which are orthogonal to the tangent vectors of the graph of x* at ¢. The formal requirement
on Q(¢) is as follows.

0O must satisfy three properties:

(i) The mapping Q : (¢, Dpx*(p)) € TP x R"*P — Q(, Dypx*(¢)) € R"*7 is at least %'
(i1) QO has orthonormal columns.
(iii) The columns of Q lie in the normal space, so Q(¢, D¢X*(¢))TD¢X* (¢)=0.

For fixed x*, we refer to Q as a function from 77 only, so we may write Q (¢) = Q (¢, D¢X* (¢)). Given such arule Q
for calculating normal spaces, one can characterize invariance for x* by stating that the vector field has no component
in the normal directions at any point on the graph of x*. This gives the orthogonality condition in (2).

At a high level, equivalence between the PDE condition (5) and the orthogonality condition (2) is clear, since both
characterize an invariant torus. Nevertheless, it is insightful to highlight the algebraic equivalence between these two
conditions.

Proposition 2. Let [X, Q] be a reference torus, and let x* be as in (3). Then x* satisfies (5) if and only if it satisfies
(2). Moreover, X* satisfies these two conditions if and only if it satisfies

[Dgx* ()1 = D(x* (). (6)
Proof. The total derivative of x* with respect to time is

[Dgx*($)1$ = (IDgX($)] + [Dp O ($)plp—r(g) + (@) [Dgr(h))), (7
and the vector field evaluated at a point X*(¢) is

D(x*(§)) = [DgX($)1p + [Dy O ($)plpr( + O (). ®)

The above two equations combine to form

[Dyx*(§)1dp = Bx*($)) + Q($)([Dyr ()l — p). ©)
We multiply both sides by Q(¢)" and note that Q(¢)" Dyx*(¢) = 0 to obtain

Q($) " D(x*(¢)) + Q($)" 0(¢)([Dgr()1p — p) =0. (10)

Therefore, if x* satisfies (5), then it satisfies (2). Conversely, for x* parameterizable in the form of (3), the product
Q(¢)T§(¢) is invertible, so if x* satisfies (2), it must also satisfy (5).

To prove equivalence with (6), we note that if x* satisfies the PDE condition, then (9) implies that it satisfies (6).
The converse follows because multiplying both sides of (6) by Q(¢)T and Q(¢)T results in the orthogonality and PDE
conditions, respectively. [

The most important implication of the above proposition is that the PDE and orthogonality conditions both descend
from the same equation, (6). The two conditions simply represent different ways of reducing the dimensionality of
(6) and thus making the problem well-posed. We should note, too, that there is nothing special about tori in the above
discussion apart from the parameterization in ¢. All the results so far have analogs for any closed, compact, orientable
manifold with a proper parameterization, invariant under the flow of (1).

Remark 2.1. There is one final consequence of the equivalence between the PDE condition and other explicit invariance
conditions: Any discretization of an invariance condition generates an implied discretization of the PDE. While this
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implied discretization may be quite complicated, we can infer instability in certain cases by considering the discretization
of the PDE. Specifically, it must be true that any discretization of any invariance condition that is equivalent to the
PDE will be subject to instability if the implied discretization of the PDE is unstable. We believe that this explains the
observation in Section 6 that when the grid “lines up” with a periodic orbit the scheme becomes unstable. In practice,
one may be able to avoid instability by choosing a grid (or a discretization) wisely, just as it is necessary to do when
solving hyperbolic PDE by finite-differences.

3. Discretization of orthogonality condition

The types of discretizations investigated here are called box schemes. These schemes represent the torus as an ordered
set of p-dimensional boxes and approximate the normal directions at the center of each box using information from
the 27 vertices. A more precise discussion requires some standard terminology. Recall the term reference torus in
Definition 1.

A grid on a reference torus is a lexicographically ordered sequence,

(Xiriz,eonips Qitigoiy s

where iy =1, 2, ..., Ng, with toroidal periodicity. An update of a grid is a sequence of points of the form

R B _
Xiin,eonip = Xiginsnipy T Qigin,.ip¥itiz, i (11)

Occasionally, the term “update” will refer to the list of normal distances, {r;, ;. mip }, rather than the points themselves.
The existence of a grid with a toroidal ordering implies the existence of boxes on the reference torus or on an update.
For example, for any given point on an update, i\il,iz,...,i,,, a box is a set of 27 points, {%}g ,ié,...,i;,}’ such that i; = ix or

i; =i + 1 for each k. The points in a box are called vertices.

Each box on an update gives rise to a canonical set of p tangent vectors, ’)Z(_l), 32(_2) . ,32(_” ). For example, in a limit
cycle, the tangent vector is
=% -0 (12)
In a 2-torus, the tangent vectors are
R = @1y %)+ R — %),
and
9 = R %) + Rigr 1 —Xir1))- (13)

In general, for a p-torus there are p tangent vectors in each box that are the sums of 27~! differences. These vectors
represent tangent directions at the center of the box. (Note the suppression of the referencing subscript. No calculations
for the remainder of this paper will mix tangent vectors from different boxes, so it is not necessary to denote box
coordinates in the X" notation.)

In Section 5, we use a simplified version of (13). Since the ultimate goal is to compute normal directions, several
definitions of tangent vectors will suffice, so long as they span the same space. The following formulation is equivalent

to (13) for a 2-torus embedded in R3:

1 ~
0 =iy —Xi),
and
2 -
2 = ®ig1j — Ko (14

Some grids are better than others for numerical purposes. The following criteria restrict the possible grids by using
a scalar representation of acceptability.
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Definition 3. A J-grid on a reference torus is a grid that satisfies three properties:

(i) The shortest arc length distance along the surface of the torus between any two points in the same box is less

than 0.

< (@) <)

(i) The minimum angle between any two distinct tangent vectors X~ and X*° in the same box is large enough that
&)X | < s1xE =), (15)
(iii) For all tangent vectors, ig) and i(_j), in the same box,
IXO1/1KY 1> 1= 6. (16)

In other words, making ¢ small ensures that a d-grid is not overly coarse, skewed, or elongated in any particular box.
Depending on the size of the torus, the J required for the first property in the definition may be of a different order of
magnitude than the J required for the other two properties, so a more flexible definition would include a fixed constant
times 0 in the first property. We omit this extra constant for simplicity.

Stability/instability arguments will require closeness of solutions to the reference torus in a %' sense (not just a %
sense). Discrete solutions are collections of points, not functions, so it is necessary to extend the notion of %" -closeness
to numerical representations of tori.

Definition 4. An o-update of a grid is an update that satisfies

(1) ||rl~1,,~2,_._,l~p || < o at all points of the grid, and
(i1) If X, and Xy are two distinct points in the same box then

I—M<M<l+a, (17
[Xa — Xp |
and
(Xa — Xp) " (Xa — Xp) > (1 — &) [Xa — Xpl[Xa — Xpll. (13)

The second two inequalities in Definition 4 essentially constrain the difference between derivatives on the reference
torus and the update. It is now possible to define box schemes formally.

Definition 5. A reference torus is equipped with a box scheme if for every 6-grid with ¢ sufficiently small, there exists

o such that for every o-update and every index iy, iz, ..., i, there is a rule for generating a matrix, Q;, i, ...i » € R*>4
whose orthonormal columns are orthogonal to the tangent vectors X xU ) ’\(2) ... ,3(\(” ) Additionally, éil,iz,,_,,i , must
perturb smoothly with the update, and for any two members of the same box, Xi|.is..... and Xil il Qi .in...i b
Qi is.....ir, Imust be of order |[Xiy.iy....i, = X7 5, it Il
Given such a scheme, the discrete version of (2) is
T
Qll 12 (I)(Vll l2, lp) - (19)
where X, ... iy denotes the average of all points in the box corresponding to the point iy, iz, ..., i, on the update.

We will use a full Newton iteration to find the update {r;, i, i , 1 that solves (19), but first we propose a general box

scheme for computing the normal vectors Q;, i,.....i -
Two special cases admit canonical box schemes up to sign. For these two cases, our discretization choice is the same
choice of Moore [22].

(1) First, if the reference torus is actually a cycle in the plane, then at the center of the box i,

~ 0 1 ~ ~
Qi ==+ (_1 0) i1 — X))/ X1 — X . (20)
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(i1) Second, if the reference torus is a 2-torus embedded in R3, then the canonical normal vector is
01 =+ x 22/ R <32, 1)

where 5{\(_1) and 32(_2) are as in (13) or, equivalently, (14).

When é is a single vector, we write it as T below. Also, we suppress the subscript under @ or n when we perform
operations on a single box.

The box scheme in (i) above generally leads to a stable method as long as the cycle does not contain any fixed points.
However, we show in the next section that for the box scheme in (ii) the use of even numbers of points in both angular
directions of the grid will cause the method to be unconditionally unstable. We say that a method is “stable” if, for
an isolated invariant torus, a sufficiently close reference torus, and a sufficiently regular grid, the discrete equations in
(19) have a unique, isolated solution.

Before exploring stability properties, we first discretize the orthogonality condition in the general case of a p torus in
R", that is we discuss how we find Q;, ... - The way we do this differs from the work [22], where a global solution
to an orthogonal Procrustes problem is used.

Given a reference torus, J-grid, and a-update with ¢ and o sufficiently small, our goal is to calculate the orthogonal
matrices Qi i,,....i,——that is, the normal vectors at the center of each box—using only information from the box itself.
One way to obtain normal directions is to orthonormalize the tangent vectors by a complete QR decomposition using
Householder reflections [14]:

&P 2 Y= 0oR=(T O)R, (22)

where O € R"*" is orthogonal and R € R"*? is upper triangular with positive diagonal entries. The first p columns of
Q (i.e., T) are the orthonormalized set of tangent vectors, and the next g columns (i.e., Q) span the normal complement.
Unfortunately, this simple approach leads to discontinuities in Q, because small perturbations in the tangent vectors
can change the ordering of some of the last g columns of Q.

We correct this approach by using a priori information about the direction of the normal vectors. In particular, we
stabilize the QR decomposition by seeding it with approximate normal vectors from the reference torus. We notice that
this approach was already considered in [27, p. 172].

By assumption, the matrices @il iz.....i), SEOTE g Vectors that are normal to the reference torus at grid points. If we let

(Ouve) i1.iged be the average of the Q’s along the vertices of the box corresponding to the grid point (i1, i2, . . . , i p),then
for a given o-update with o sufficiently small, the columns of (Q e ) iLigeip will not lie in the span ofxV , 32(72) R <P
We therefore seed the decomposition with (@ave),-1 2y and use the corrected version of (22)
) =2 — ~
V2P 3P Qi) =T OR, (23)

where now R € R"™" is upper triangular with positive diagonal entries. This gives a smoothly varying set of normal
vectors at the center of each box.
To reiterate, the algorithm for approximating an invariant torus requires two main items:

(i) Aninitial guess, a reference torus, [X, 5]. Usually, we do not require the smooth torus itself, but rather just a o-grid
with ¢ sufficiently small, denoted [X;, . ....i, @,-1 is.....i,]- In the continuation process, this is commonly either a
known approximation from a previous / value, or else a suitable correction of such.

(i1) A box scheme for determining instantaneous normal vectors, typically (20), (21), or (23).

These two items define the g N | N3 - - - N, equations (19) which we will solve by Newton’s method for the unknown
(C11,.,15 11,20 o ENY Ny, N )

Remark 3.1. It is natural to ask why consider the box scheme and not other (nominally second order) discretiza-
tions? Indeed, the box scheme seems more complicated than, say, centered differences. Alas, we have tried center-
and directional-difference schemes without much success. Probably, the reason for the observed instability of center
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differences is similar to the reason for instability of the scheme of [10]. Indeed, as mentioned in Remark 2.1, any
discretization of the orthogonality condition generates a complementary discretization of the PDE (5) and a center-
difference approximation is a notoriously unstable choice.

4. Stability and consistency for periodic orbits

In the case of a periodic orbit, the strategy for proving stability is the same as for proving stability of numerical
schemes for two-point boundary value problems; in fact, we use the same setup as in [2, Section 5.2.2], to which we
refer for the overall theory.

We will prove that the discrete equations (19) admit an isolated solution by showing that the Jacobian of the equations
is non-singular when evaluated at the exact periodic solution (assumed to exist). In turn, the strategy for proving non-
singularity of the Jacobian is to compare its block elements to the Fréchet derivative of a similar continuous problem,
which will admit an isolated solution when certain (natural) conditions are satisfied. Consistency and second-order
convergence will come directly from a comparison to the midpoint collocation discretization.

Remark 4.1. Although the overall strategy for showing convergence is standard, in the literature we have not found
such arguments for precisely our problem. For this reason, we decided to give some details.

A hyperbolic! periodic solution of X = ®(x) satisfies the boundary value problem

X = 1D (x), 0<r<1,
=0,

x(1) —x(0) =0,

a(x) =0,

(24)

where 7 is the (unknown) period, and ¢ is a scalar phase condition that makes the problem well-posed, so that the
periodic orbit is a regular solution of (24). We will consider the following “classical choice” for ¢. Let X1 be a point on
a reference curve, and let X represent differentiation with respect to ¢. Then we consider

a(x) = (x(0) — %)%, (25)

with the understanding that x(0) is at the minimum distance from X;. Using this in (24) ensures that a hyperbolic,
periodic solution x*(¢), of period t*, will be a regular solution of (24) if (I)(x*(O))Til # 0; the proof of this result is
in [19]. Notice that the requirement ®(x* (O))Ti/1 # 0 is certainly satisfied if (3) holds.

Now take N points, X;, (ordered with respect to ¢) on the reference curve, and let X; be the values of their derivatives
with respect to ¢, i =1, ..., N. Let the periodic orbit x* be parameterized by X through (3), and assume that x*|;—¢ is
the closest point to X;. Then the problem

x = 1®(x), 0<r<l,
i =0, i=1,2,...,N,

(26)
x(1) —x(0)=0

x(t) — %)% =0, i=1,...,N,

where Tand 0 <, < --- <ty < 1 are unknowns, admits the periodic orbit x* of period t* and uniquely defined values
0=11,1,...,1tyN, as an isolated solution. (This is because the periodic solution x* satisfies (26) for uniquely defined
b, ..., ty, and is an isolated solution of (24)—(25).) Observe that in (26) rather than the values 7 and 15, ..., fy, we
can identify the unknowns also with the quantities

o=ty — 1), or p:=thj, hi:=tiq1—t, i=1,...,N, (27)

' The simple characteristic multiplier 1 is the only multiplier on the unit circle.
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with the usual constraints r; =0 and x4+ = 1. So doing, we can rewrite (26) as the following N (n + 1) boundary value
problem:
X = d(xh), 0<r<1,
ji =0,
x (1) —xiT1(0) =0,
(x'(0) — %)} =0.

(28)

With these preparations, we can now state the following proposition.

Proposition 6. Let x* be a hyperbolic periodic solution of (1), isolated in a tubular neighborhood, and let ® be €>
with a Lipschitz condition on the second derivative in that neighborhood. Then for any reference curve [X, Q) that is
equipped with a box scheme and parameterizes xX* through (3), there exists 6 > 0 such that for any 0-grid there exists
a unique solution of (19).

Proof. The N(n — 1) system of equations (19) has a solution if and only if the following N (n + 1) system does:

Xit1 —X; — W P((x41 +x%;)/2)=0, i=12,...,N,

x; — %)%} =0. (29)
Thus, it suffices to show that the Jacobian of (29) is invertible when evaluated at the periodic orbit under the
closeness conditions of the statement of the proposition. With respect to the ordering, {X1, X2, ..., XN, {1, Uy, - - -, Uy}
the Jacobian is
A B
J= ( A O) , (30)
where
ER FB 0 --- 0
0 E, F, --- 0
A= . S N (31)
Fy 0 0 --- Ey
—®(x1)2) 0 . 0
0 —®(xz2) - 0
B = ) ) ) ) , (32)
0 0 s —(D(XN /2)
& o0 -0
o & - 0
C= ) ) . ) , (33)
0 0 e (X )T

and we have used the following notation to condense the equations:
Ei=—(1+5D0wxp). (34)
Fi=(1-5p®x). (35)
and

Xi2 = (X; +Xj41)/2. (36)
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Left-multiplying the Jacobian by

_Fl_l 0 0 0
0 —-F' -~ 0 0
a=| - : :
0 0 ~Fy' 0
0 0 0 I

where
~F'E, —1I 0 0
0 —F'Ey -1 0
A = 2 )
—1I 0 0 —Fy'En
and
FI_I(D(Xl/z) 0 0
W 0 Fl®d(xpn) - 0
0 0 o Fyl®dxy))

We note for future reference that, referring to (34)—(36), one has

—F ' E; = exp(; D®(x;2)) + O ().

397

(37)

(38)

(39

(40)

(41)

Under the assumptions of the proposition, the system in (28) has an isolated solution, denoted, {x, zi}, that corre-
sponds to the periodic orbit in (1). We will show that J’ evaluated at this solution is invertible by comparing it to the

Fréchet derivative around the solution of (28).

Taking the perturbations, X’ — x’ +y' and u' — p/ + v, around the solution, the equations (28) leave a residue of

Yy —y' (1) and (x)"y'(0),
with the stipulation that
V' =g DOy +V D).

Applying the variation of constants formula to (43) gives
t

Yy @)=Y [yl 0) +' / (Y’(S))_I(D(X’)dS] ;
0

where Y (7) is the principal matrix solution of
¥ = u DOy,

thatis, fori=1,2,..., N,
Yoy =1

and

Y= DO ()Y, 0<r<l.

(42)

(43)

(44)

(45)

(46)
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It is now possible to write down the Fréchet derivative. The unknowns are {y'(0), v}, and combining (44) into (42)
gives the matrix

L M
T= ( e o ) : (47)
where C is the same as in (33),
y'‘ay -1 o0 -~ 0
0o YX1) —-I --- 0
L= ) ) . ) , (48)
—1 0 0o --- YN
and
PP 0 -~ 0
o P~ --- 0 . L | .
M=1 . . . where P; = Y’(l)/ (Y'(s)) "' D(x'(s))ds. 49)
: : - : 0
0 0 --- Py

It remains to be shown that the blocks of 7 and J’ approach each other in matrix norm as 6 — 0 for any reference
curve sufficiently close to the actual orbit. We may assume that J' is evaluated at the points of the periodic orbit, so
x; = x'(0) and y; = p'. Because of the bound on the second derivative of the vector field in the assumptions of the
proposition, é must be of the same order as ui, and X7 = x' (1 /2) + 0(52). Therefore, it suffices to show that the
blocks of A” and B’ converge toward the corresponding blocks of L and M, respectively. The first fact is simple, since
(41) implies that

1Y (1) — exp(! DO(x' (1/2)))]| = O(5?). (50)

Next, we examine

i —1
P — (1 — %D@(xi(l/2))) D(x'(1/2)).
Another way to write P; is
P=Y ()Y (1/2) ' D(x'(1/2)) + 0%
=Y'(1, 1/2)®(x'(1/2)) + 0(8%), (51)

where Y (1, 1/2) is the solution at 1 of the linearized problem on 1/2<t <1 with initial condition the identity at
t = 1/2. Therefore,

i -1
Yi(1,1/2) = (1 — %D(D(xi(l/Z))) +0(5%), (52)

and the result follows. [

There are obvious parallels between scheme in (29) and the midpoint collocation discretization for the boundary-
value problem (24). In particular, for mesh points 0 =] <t <--- <ty <1 = ty41, with step sizes h; = t;41 — t;,

i=1,..., N, the midpoint collocation equations for (24)—(25) are
Rt — % — thi®(®ip1 +%)/2) =0,  i=1,2,...,N,
& — X)X =0. (53)

As a consequence of general results [2] for the collocation solution of (53) we have

IX; —x*(t)| =0h%), i=1,2,...,N, (54)
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and
1t — | = O(h?), (55)

where & = max <; < v h;. This leads directly to consistency results for methods based on the orthogonality condition,
according to the following proposition.

Proposition 7. Let x* be a hyperbolic, periodic solution of (1) that is isolated in a tubular neighborhood of radius p,
and let ® be € with a Lipschitz condition on the second derivative in that neighborhood. Let [X, Q] be a reference
curve that is equipped with a box scheme and parameterizes X* through (3). Then the solution {X;} to (19) satisfies

IX; — X;|| = O(6%). (56)

Proof. We note that a set of points X; = X; + @ir,- satisfies (19) with a non-vanishing vector field if and only if it
satisfies (53) with

t(tipr — 1) = thi = [Xip1 =X |/ |1O(Xit1 +X)/2) . (57)

Since the vector field is bounded above and below in norm, these quantities are of order J, so (54) implies the
proposition. [

Regretfully, the above argument applies neither to higher-dimensional tori nor to closed curves with equilibria (e.g.,
heteroclinic cycles). In fact, the method is generally unstable when applied directly to cycles with equilibria. One
can nevertheless use the orthogonality condition to continue heteroclinic and homoclinic orbits, but it requires local
departures from the box scheme—for example, individual tracking of the equilibria, coupled with a center-difference
rule for the tangents, as in [25].

This leads to a natural question: what is the extension of this difficulty to the general case of a p-torus? Numerical
experiments indicate that any closed invariant sub-manifold can induce instabilities in methods based on the orthogo-
nality condition equipped with generalizations of the box scheme; we highlight this in Section 6, where we also give
some indications of how to avoid this difficulty in practice.

5. Difficulties in higher dimensions

As mentioned in the “Introduction”, the method can fail in two specific circumstances. One problem is the existence
of invariant sub-manifolds such as periodic orbits or fixed points. The other problem, which we analyze first, is when
more than one of the discretization numbers, N, Na, ..., N, is even. Below, we show specifically that if the sought-
after torus is a 2-torus in R*—and thus the box scheme is (21)—the Jacobian of the discrete system becomes arbitrarily
ill-conditioned when both N; and N, are even.

From a practical standpoint, the fix for the second problem is simple and effective—we use odd numbers of dis-
cretization points in all directions. It is nevertheless instructive to delve intuitively and formally into the reasons why
parity matters to the scheme.

5.1. Even—even discretizations of 2-Tori in R?

The geometrical explanation for how the method can fail with even—even discretizations relies on the fact that the
approximate tangent vectors are not tied strongly to their locations. Consider, for example, a box consisting of four
coplanar points. If we lift two opposite diagonal points above the plane by a certain amount and drop the other two
below the plane by the same amount, then neither the average of the points nor the cross-product of the normalized
tangents will change. Thus, the equation for that box is satisfied for many different configurations.

Globally, this does not present a problem unless one uses even numbers of points in both directions. To see why
this creates a problem, we consider the points on the torus laid out in a square with the standard top/bottom, left/right
identification. By lifting every other point (i.e., every other diagonal) and dropping the remaining points, it is possible to
alter the torus without disturbing the discrete equations. If the grid has an odd number of points in either the vertical or
horizontal direction, however, it is impossible to lift the diagonals uniformly without violating a boundary identification.
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More formally, the Jacobian of an even—even discretization admits eigenvectors with increasingly small eigenvalues as
the grid becomes more regular, a fact which we now prove.

Consider a reference 2-torus with a grid, [X; j, n; ;], embedded in R3. Combining (19) and (21) with the tangent
vector formulation of (14) yields a set of N1 N equations,

fi,j=0, i=1,....,Ny, j=1,..., N, (58)
where

Xit1,j+1 — Xij) X Xit1,j — Xi, j+1)
IXiv1,j+1 —Xij) X i1, —Xi j+ 0

fiji=0®"

In (58), X is the average at the vertices of the box:

X=,; +Xit1,j +Xi j+1 +Xiq1,j+1)/4 (59)
Since the update vectorr = (r1,1 712 - Inj, Nz)T is related to the update through X; j =X j +rijn; j, the unknown

in (58) is simply r. To simplify notation, let n denote the cross-product quotient in (58).
Applying Newton’s method to (58) leads to a matrix that is block, periodic, bi-diagonal with periodic, bi-diagonal
blocks. In other words, the sparsity pattern of the Jacobian is

Ay B 0 --- 0 0
0 Ay By --- 0 0
=1 - : : : (60)
0 0 o .- AN -1 Bn—1
By, 0 0 -~ 0 Ay

where each A; and B; is an N x N, periodic, bi-diagonal matrix (i.e., the same structure as J but with scalar blocks).
Each row of the Jacobian has four non-zero entries:

3f i N on
(A0)jj = ar_,l,] =EDOR® L+ O® i
of - N on
(ADj 1= o ;-ju =0 DDX)- léjl -+ (D(i)Tari o
ofij i1, n
(B = 5 =T DO®™ LT o
Fit1,j Tl
and
ofi ~T 04l ~1_ o0
(Bi)j 1= v DO —,— + @) T

We now show that if N; and N, are both even, then the Jacobian generally becomes ill-conditioned. A technical
proposition helps to establish this.

Proposition 8. Let [X, n] be a reference torus, and let W be the cross-product quotient in (58) (used in (61)). Then, for
any &> 0, there exist o, 6 > 0 such that for any 6-grid, [X; j, 0; ;|, and for any o-update, {r; ;},

‘ on on

Oriy1,j41  Orij
foralli=1,2,...,Ny,j=1,2,..., Na.

on on

Oritt,j  Orij1

<& and ‘ <§, (62)

Proof. We concentrate on the first inequality in (62) because the proof of the second is essentially identical. Recall the

definitions of ’)Z(_l’z) in (14), where with 5(\(_1’2) we indicate either of ')Z(_l) or 'i(_z), and let i(_u) and ﬁ(_1’2) be the natural

cee w) o =
analogs; e.g., n,) =My, j+1 — N ;).
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We write the sum of derivatives as

on N on Al xx? 62(_1) x'f(_z))('f(_l) xi(f))T (_(1) ,\(2)) 63)
= — _XX_7),
Orivijr o Orij IR x %P IR > =23
or more compactly as
on o ) x @
— (64)

+ — V )
Orig1,j+1  Orij KLY < @

where 11 7 is the projection onto the “tangent space at the half point”: the span of 3V and x?. The two-part strategy
for minimizing this projection is (1) show that the item being projected is bounded in norm, and then (2) show that it
approaches the normal direction, and thus that the norm of the projection goes to zero by restricting o and 9.

First, we find a lower bound on the cross product in the denominator in (64). Let 96(\(_1’2), i(_l’z)) denote the angle

A( ) <D . =(2) <@

between the vectors X. ’ and X_’ or X.-’ and X_~

the other vectors.
By (18), we have 062(_1’2), i(_l’z)) > cos~'(1 — ). By (15), we have Q(i(_l), i(_z)) < cos~1 (). Therefore, since

0", 3?) 20", x?) - 0", x) - 0c? %),

we have that

, respectively, and a similar notation be adopted for angles between

9(32(_1),32(_2))>cos_1(5) —2cos_1(1 — ). (65)
This implies
KD x| > RV IR, (66)

where C = sin(cos~1(8) — 2cos~ ! (1 — )). Applying (17), we obtain the overall bound,
(1 2 —( 2
a0 <X <3
1 2 1 2
Y <22 ca - IR?)

(67)
a)[Ix
‘We note that n(l) / ||X( )|| is a second-order approximation in J to a derivative of the unit normal vector along the

surface of the reference torus in the center of the box. Because the reference torus is % by assumption, this derivative
is well-defined and finite and lies in the tangent space. It therefore suffices to show that the cross product,

—(1) = 2 2

@0 /IxD 1) x &2 /IRE D,
approaches the direction of m as o, & — 0 (independently). The difference vectors %" and X are themselves second-
order approximations to tangent vectors, so for sufficiently small § we may express the difference as

a

”_(‘1) ” D 4+ 5x? + 08 (68)
By (18), the angle between X2 and x'"'? is of order o. This implies that
—(1)
7 =ax) + 5% + 0(x) + 0(3"), (69)
X ||
and thus,
( =(1) <) ) )
7| —5- x —— | =0@ + 0, (70)
(b I

which completes the proof. [
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Proposition 8 explains why the Jacobian becomes arbitrarily ill-conditioned when N and N, are even and « and o
are small. The difference between sub-blocks in (60) is

i1 cai 0 .- 0 0 &l 5;71 o - 0 0
0 Cip Cip - 0 0 0 &2 81/"2 T 0 0
Ai—Bi=| : : Lo : : +| : : : : ’
0 0 0 o Ci,N—1 Ci,Ny—1 0 0 0 T & Ny—1 81/-,]\,2_1
Ci,Ny 0 0 - 0 Ci,N, 81{,1\/2 0 0 - 0 i,N,
(71)
where
)" ( @ @ ) (72)
¢ i =DKX — ,
J al’,"j ari+1,j
IS TR
5 = nTD(D(X)”JfL'H’] (73)
and
~ Dy i — Mg on on on on
Sl{j =nTD(I)(X) i,j+1 i+1,j+1 +¢(§)T ( _ . + ) ‘
’ 4 Orijy1  Orig1j+1  Orij  Orig1
If N, is even, then the first matrix on the right-hand side of (71) has a null eigenvector:
v=(1 —-11 --- =T (74)

Hence, if ¢; ;, elf = 0 for all 7, j, and if Ny and N, are even, then the Jacobian is singular with a null eigenvector:
v —vT vyt oo —yDT (75)

To show ill-conditioning, it therefore suffices to minimize all the ¢; ; and 8; j using o and 0, which is a direct result of
Proposition 8.

5.2. Jacobian for general box schemes

The above argument technically only works for 2-tori in R>. Still, numerical experiments in several dimensions have
shown that box schemes with more than one even N tend to be unstable [25]. (Rigorously proving that even numbers
induce multiple solutions in the general algorithm would be extremely complicated, since the cross product and its
elegant derivative properties are not available.) Thus, the most obvious way to attempt to prevent ill-conditioning of
the Jacobian is to force all but possibly one of Ny, N2, ..., N, to be odd. Even this precaution will not guarantee
stability for tori that contain closed, invariant sub-manifolds. To apply the method to such systems, one should either
track the sub-manifolds individually and modify the box scheme with a priori information, or else ensure that the grid
does not align with the sub-manifolds [25] in the sense that an ordered set of points on the grid lies entirely on or near
a sub-manifold. In the next section we adopt the latter stabilization for an example of a 2-torus with periodic orbits
embedded in R*.

The sparsity pattern of the Jacobian for a box scheme applied to a p-torus in R" is well understood: The Jacobian is
periodic, block bi-diagonal with periodic, block bi-diagonal blocks, and so on to p levels of nesting. The lowest (pth)
structure is periodic, block, bi-diagonal with full (g x ¢) blocks. Fig. 1 illustrates the sparsity pattern of an example
Jacobian fora 5 x 5 x 5 three-torus in R’. The black boxes in the center of the plots indicate the region of magnification
for the next plot, ordered left to right, top to bottom.

A matrix of this form potentially contains g>2” N{N, - - - N p» non-zero elements, and thus the number of non-zero
elements in the Jacobian grows rapidly with the dimension of both the ambient space and the torus itself. While some
direct and iterative techniques are available for solving systems like these, both memory and computation time can be
limitations [25]. Our computations in the next section are restricted to problems that are small enough to permit general
purpose solution techniques of the resulting linear systems.
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Fig. 1. Sparsity plot of Jacobian for 5 x 5 x 5 Three-torus in R7.

6. Numerical results

With appropriate measures to cope with the difficulties explained above, the method is still attractive. We give several
examples of periodic orbits and 2-tori embedded in real spaces of various dimension.

The first example is a periodic orbit in the forced van der Pol oscillator (a one-torus in R?). The next two examples
are 2-tori embedded in R®. We compute a torus in the forced van der Pol oscillator that surrounds the aforementioned
periodic orbit, and then we compute a sometimes-quasi-periodic 2-torus in a system of three equations that model an
electrical circuit. Finally, we consider a pair of coupled oscillators that give rise to compute a 2-torus embedded in R*.

These examples test all modes of the algorithm and are common in the literature, which allows for comparison to
other techniques.

6.1. Forced van der Pol oscillator

We first test the method by computing both a branch of periodic orbits and a branch of tori that arise in the forced
van der Pol oscillator [15,16],

¥4 ax(x? — 1) 4+ x = Acos(wh), (76)
rewritten as the first-order system

=y +ax(l—x2/3),

y=—x + Acos(wh), (77)

where o > 0, » > 0, and A cos(w0) is the forcing term. It is well known that at 4 =0, the system has a unique attracting
periodic orbit, a fixed point for the period map. For / > 0, small, the period map has an invariant circle, an invariant torus
for the original system. Computation of this torus has been done several times before, e.g., see [8,10,11,22,26,29,30],
and thus the results we obtain can be cross-validated.

We add a trivial equation, 0 = 1, plus a shift, y < y — 5, to prevent the resulting invariant torus from overlapping
itself. Finally, we let x; = y cos(w#), x5 = y sin(wf), and x3 = x, and rewrite the system as

X1 =ix12 /(xlz—i-x%) — X1X3 /,/xlz—kx% — X2,

X2 = Ax1x2 /(x12+x§) — X2X3 /,/X%#—X% + wxq,

S ) 2 2

X3 =4/x7 + x5 —5+ax3(1 —x3/3). (78)

We let o = 0.4 and consider «» = +/0.84 and +/0.78, which are standard parameter values in the previously cited
literature.
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The bifurcation diagram of the averaged system ([15, pp. 70-72], for example), along with the associated phase
portraits, shows that for = +/0.84, the averaged system admits a source and a limit cycle from 4 = 0 until 1 ~ 0.26.
Immediately above that value of 4, the source remains, but the limit cycle transforms into a sink and a saddle linked
in a stable, closed heteroclinic cycle. This portrait persists until 4 ~ 0.35, and then the entire system collapses into a
single sink. In the full system, this sequence of bifurcations implies the existence of a repelling periodic orbit inside a
torus from 4 = 0 until 4 & 0.35, when both the orbit and the torus break down simultaneously. (The bifurcation value
of / in the full system will not exactly match the 2-D calculation due to averaging.)

The sequence for « =4+/0.78 is somewhat more complicated. The averaged system still has a source and a limit cycle
which bifurcates into a source and a closed, heteroclinic orbit at 4 & 0.37. After that, however, the system sees several
bifurcations in rapid succession until the whole system finally collapses into a sink at A ~ 0.39. The most important
event in that sequence is when the closed heteroclinic orbit breaks apart, so the saddle and sink are still connected, but
only along a single line. This indicates the breakdown of the torus in the full system, while the periodic orbit (which
now corresponds to the source) persists longer.

6.1.1. Periodic orbit in forced van der Pol

The first test of our method is the continuation of the periodic orbits in the forced van der Pol oscillator. We must
first start with an initial guess. The initial approximation at 2 =0 is a set of points on the known location of the periodic
orbit with known normal directions,

cos 0; o cost); O
ii:5<sin0i>, Qi:(siHOi O), (79)
0 0 1

fori =1,2,..., N and evenly spaced values, 0; =2n(i — 1)/N.
With this reference curve in hand, we compute the branch of periodic orbits according to the following process:

(i) Generate the initial grid {X;, Q,},i =1, 2, ..., N, for the initial /. This gives 2N equations through (19) and (23).

The 2N unknowns are {r;}, given through X; = X; + @,- r;.

(i1) Solve these equations using Newton’s method with a forward-difference Jacobian.

(iii) Upon convergence of Newton’s method, the approximation of the curve is {X;}. Update the grid, {X;} < {X;}.

(iv) Re-distribute {X;} by linear arc-length with fixed X;.

(v) Update the reference normal directions by performing the QR decomposition on the matrix (t; Q,), where t; =
(Xi+1 — Xi—1)/IIXi1 — Xi_1]l. (Recall that we take R with positive diagonal.) The new matrix Q; will be the last
two columns of the orthogonal matrix resulting from such QR decomposition, just as in (23).

(v) Update A and return to step (ii) with the new grid {ii,ai} and its resulting equations defined through (19)
and (23).

For our numerical experiments, we have used N = 55. The continuation step size starts at A4 = 0.1, and then we
divide the step size by 10 when the next 4 step would drive the process past breakdown. For example, when « =/0.84,
the breakdown point is 1 ~ 0.3416, so we proceed from 0 to 0.3 in steps of 0.1, then to 0.34 in steps of 0.01, then from
0.3411 to 0.3415 in steps of 0.0001.

The method has been implemented in Mat 1ab using its built-in functions for solving linear systems and estimating
the 1-norm condition number. The Jacobian comes from forward differences on r and the convergence condition for
the Newton process is that the 2-norm of the left-hand side of the system (19) be less than 10~*. The Newton process
converges quadratically throughout, and the Jacobians are well-conditioned along the branch. The condition numbers
are about 100 at the beginning and remain relatively low for most of the continuation process. As 4 approaches the
breakdown values, the condition number grows to about 3.5 x 103 and 2.5 x 10* for = =+/0.84 and +/0.78, respectively.

Fig. 2 shows the periodic orbits. The curves for m = +/0.84 are at 1 =0, 0.1, 0.2, 0.3, 0.34, 0.3410, and 0.3415. The
curves for o =+/0.78 are at A =0, 0.1, 0.2, 0.3, 0.35, 0.38, 0.39, and 0.3945. All curves show the computed orbit after
convergence, but before arc-length redistribution.

We have used this method for several other periodic orbits, including some planar examples where we have taken
advantage of the simple box scheme in (20). In our experience, the method is very robust, and its simplicity and low
cost make it a possible alternative to existing techniques for the approximation of periodic orbits [25].
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‘

A=0.3415

Fig. 2. Branch of periodic orbits; m = +/0.84 (1), ~/0.78 (r).

6.1.2. Torus in forced van der Pol

The computation of the full 2-torus in the forced van der Pol oscillator is similar to the periodic orbit, except that here
the cross-product is available to replace the more complicated “seeded QR decomposition,” because the codimension
in R? of the torus is 1.

For both values of w, the initial guess (guess, not solution) for an invariant torus at 4 = 0 is

(5 + 2cos(¢y) ) cos(¢y);
X((@1)ir (1)) =Xi,j = | =(5+2cos(¢y);)sin(¢y); | (80)
2sin(¢,)

where (¢); =2n(i — 1)/Ny and (¢;); =2n(j — 1)/Nx.

The initial normal vectors are the cross-product of center differences. We calculate the Jacobian from forward-
differencing on r. The cut-off criterion for Newton’s method is that the 2-norm of the Newton’s correction be less than
107°.

As with the periodic orbit, we begin with A/ = 0.1 and reduce it by a factor of 10~! when the next continuation step
would be beyond the breakdown point. The final step size near breakdown in both cases is 10™*. (We also resolve the
torus for w = +/0.84 at A =0.3415 in order to compare the torus to the periodic orbit near the breakdown of the orbit.)

When o = +/0.84, we use N; = Ny = 45, which leads to a 1-norm condition number estimate for the Jacobian of
approximately 600 at first, increasing to 10° near breakdown. When w = +/0.78, we set N = 105 and N, = 45. The
condition number is roughly the same as in the w = +/0.84 case, except that the lowest values are approximately 1200
instead of 600.

Even though the code is in Matlab and is not completely vectorizable—it is impossible to avoid at least one loop
over each column of the Jacobian—the sparsity of the Jacobian allows for relatively quick generation. On a 2.8 GHz
Intel Pentium IV platform, each Newton step takes about 1 s for Ny = N» =45 and 5s for N; = 105 and Ny =45. On
average, each continuation step requires three Newton steps.

Figs. 3 and 4 show the results of the method applied to the van der Pol torus. The center line in each plot is the
computed periodic orbit at that /. In both pictures, the torus contorts and pinches as the continuation process moves to
breakdown (c.f. [10,11,26]).

When o = +/0.84, we are able to continue the torus numerically to Amax = 0.3453 but the periodic orbit only to
0.3415. As mentioned above, the bifurcation diagram for the averaged system at that value of w suggests that the torus
collapses in a saddle-node bifurcation of limit cycles at the same time as the periodic orbit. Numerical continuation of
the periodic orbit using the standard package AUTO [9] verifies that the simultaneous collapse of the torus and periodic
orbit occurs at A &~ 0.342, which means that our method for invariant tori converges past the true breakdown point.”

2 Thanks to one of the referees for suggesting and verifying the AUTO calculations in this paper.
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Fig. 3. Forced van der Pol torus with periodic orbit; ® = 4/0.84, 1 = 0.3 and 0.3415.

Fig. 4. Forced van der Pol torus with periodic orbit; » = 4/0.78, 4 = 0.38 and 0.388.

This is often a limitation of manifold continuation methods in general—while the existence of an isolated manifold in
many cases implies the convergence of the method, the converse is not always true. To determine the exact breakdown
point, it is necessary to resort to other techniques, for example [20].

The breakdown mechanism for both the torus and the numerical method are more standard when @ = +/0.78.
Continuation of the periodic orbit using AUTO shows that the torus is indeed destroyed in an reverse Neimark-Sacker
bifurcation at 2 ~ 0.393, just as the averaged system indicates. Our final point is 4 = 0.388, which is close, albeit
there is significant further distortion of the torus before breakdown. We are not able to continue closer to A = 0.393
because the torus is distorting very quickly as it collapses into the periodic orbit, and thus the mesh is becoming very
irregular.

More continuation with AUTO illuminates the progress of the periodic orbit immediately before and after the de-
struction of the torus. Before the destruction of the torus, at A ~ 0.391, there is a saddle-node bifurcation of another
periodic orbit into an attracting and saddle-type orbit. At the Neimark-Sacker bifurcation, the torus shrinks into the
periodic orbit which we have been following, which thereafter changes stability from repelling to attracting. The (now
attracting) orbit continues until it undergoes a saddle-node bifurcation at 4 ~ 0.395 by colliding with the saddle
orbit from the above-mentioned bifurcation. The final 4 value computed with our method is 0.3945. We did not at-
tempt to follow the orbit for decreasing A after the fold because it has little to do with the breakdown of the torus
itself.
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6.2. Forced electrical circuit

The second example of a 2-torus in R> results from a set of equations that describe voltage in an electrical circuit.
This example is very similar in construction and philosophy to the forced van der Pol oscillator, and we include it here
for comparison to the recent work [28].

The circuit is a parametrically forced RLC circuit with a time-dependent inductor and a cubic resistor. The voltage
obeys a second-order equation, as explained in [28]. This equation is

¥+ —B)x’— (/2= B)+ (1+ Bsin2)x =0, (81)
where B is a scalar parameter and / is the continuation parameter. This reduces to the first-order system,

X =y,

y=—(1+ Bsin2)x + (/2 — B)y — (A — B)y". (82)

We replace time with a third variable, 0 = 2¢, add the trivial equation 0= 2, and make a shift, x <— x — 3. Finally,
we let x; = x cos(0), xo = x sin(0), and x3 = y, and rewrite the system as

X1 =Xx1x3 /,/xl2 +x§ — 2x7,
X2 = X2X3 /\/xlz—i-x% + 2x1,
X3 =—\/x? +x2 +3+3Bx, /,/xl2 +x3 — Bxa + (A/2 — B)x3(J. — B)xj. (83)

For comparison to [28], we let B = 0.1. For this value of B, the system admits a branch of quasi-periodic orbits with
occasional resonance windows. We refer to [28] for a detailed discussion of the bifurcation diagram; there, it is seen
that the 1:2 resonance tongue covers (approximately) 4 € [0.3, 1.6]; the 1:3 tongue covers 4 € [7.0, 7.1], and the 1:4
tongue covers 4 € [10.3, 12.8].

The method of [28] is limited to quasi-periodic tori, and the authors used it between the 1:2 and 1:3 tongues, from
A= 1.7 to 1 =6.98. The method we analyzed here is not designed solely for quasi-periodic tori, so we can consider
the larger interval 4 € [1.0, 12.8]. The initial guess for the torus at 4 = 1.0 is

(3 +0.9cos(¢y) ;) cos(¢y);
X((1)is (@) ;) =X j=| —(3+0.9cos(¢y);)sin(dy); |, (84)
0.9 sin(¢2)j

where the initial normal vectors again come from cross-products of center differences.

In order to compare the performance of this algorithm to the technique of [28], we choose N| =41 and N, =101. We
continue in steps of 0.1 from A = 1.0 to 4 = 12.8. Above that value, the Newton iterations fail to converge irrespective
of the step size. We re-distribute by arc length along each meridian every 10 continuation steps. All parameters in the
Newton iteration (e.g., convergence criterion, differencing technique) are the same in this example as for Example 6.1.
Condition numbers range from about 800 to about 10, with a median of approximately 1800.

Fig. 5 shows the results of the method. The center line is not a periodic orbit in this example—it is just an average
of the points in each meridian, placed on the plot to aid visualization. As before, the grid does not always lie directly
in the plane x, = 0, so some of the curves are linear interpolations. The plot contains curves for A from 1.0 to 12.0 in
increments of 1.0 as well as additional A values at 12.5 and 12.8. Clearly, the technique is not particularly penalized
by a lack of quasi-periodic motion.

Remark 6.1. Phase-locked regions do lead to closed, invariant sub-manifolds in the form of periodic orbits, and the
current method is not guaranteed to be stable in such situations. Nevertheless, even in these situations the method
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Fig. 5. Torus in forced circuit; A = 1.0,5.0,10.0, and 12.8 (1 to r, top to bottom).

appears to work properly, as long as the grid does not line up along one of the orbits. The next example illustrates this
point.

6.3. Coupled oscillators

The next example is a 2-torus in R*, which tests the general algorithm with the full implementation to retrieve the
normal vectors. We consider the following system of two linearly coupled planar oscillators:

%1 =oxy +x1(1 — X7 — x3) — A(x1 + X2 — X3 — X4),
Xo = —ox] + x2(1 — xlz — x%) — Ax1 +x3 — x3 — x4),
X3 =oxgq + x3(1 —x32 —xf) + A(x1 +x2 — x3 — x4),

xg = =0y + x4(1 — x5 — x7) + A0x1 + x2 — X3 — xa), (85)

where we fix « = 0.55 for comparison to previous studies [6,8,22,26].

At 4 = 0, the system consists of two uncoupled, planar oscillators. Each oscillator has an attracting periodic orbit
of unit radius and period 27/, and the cartesian products of these orbits trivially form an invariant 2-torus embedded
in R* for the whole system. As A increases, the invariant torus persists, with two periodic orbits on its surface: one
attracting, the other repelling. The attracting orbit lies on the intersection of the torus and the (x; = x3, x2 = x4) plane,
and the repelling orbit lies on the intersection of the torus and the (x| = —x3, x = —x4) plane [1]. Equilibria develop
on the second periodic orbit at A = a/2, but the torus actually breaks down before, when it loses its attractivity at
A~ 0.2605 [20,26].
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The initial X at 2 = 0 is a grid on the exact torus,

X((P)is () ) =Xij = (cos(¢y); sin(y); cos(hy); sin(y) ), (36)

and the initial normal vectors are

—  _ (cos(¢y); sin(¢); 0 0 !
0= (T L ) v

where (¢); =2n(i — 1)/Ny and (¢,); =2n(j — 1)/No.

The Jacobian in this case is still periodic block bi-diagonal, but each sub-block is now periodic block bi-diagonal
with full 2 x 2 blocks. The Jacobian is 2N{ N> x 2NN, with 16 N1 N; possible non-zero entries, and each high-level
block contains 4N22 entries when full. For the values of Ny and N7 in the present study, this memory requirement is
well within the reach of standard direct solution techniques and condition number estimators.

At first glance, it seems that the method might not work well for this torus because it has invariant sub-manifolds,
namely the periodic orbits. As it turns out, however, difficulties only show up when the discretization lines up at positive
A values with at least one of the two planar periodic orbits.

The following observations from numerical experiments show how the method is sensitive to the choice of number
of discretization points:

(1) If N1 and N, are both even, then the Jacobian is numerically singular at 4 = 0.
(i) If Ny = N, and odd, then the Jacobian is poorly conditioned as soon as 4> 0 (e.g., the condition number is of
order 10! for a 45 x 45 torus).
(iii) If Ny=N; =1, then the Jacobian is generally well-conditioned, and the method has no apparent problem continuing
the torus.

The first observation is most likely related to the observed ill-conditioning in the method for an even—even 2-torus
in R3. The second observation is probably related to the fact that if Ny = N>, then the grid lines up exactly along at
least one of the two periodic orbits. One simple way to prevent this is to choose N to be slightly different from N,,
which explains the third observation.

We are able to continue the branch of invariant tori up to A=0.2605, which is at, or near, breakdown. The continuation
step size shrinks from A/ =0.05 near 4=0 to A1 =0.0005 at the end. As with the 2-tori in R?, the largest expense is the
generation of the Jacobian, and much of this is probably due to the use of Matlab instead of a lower-level language
to perform all of the local (and hence looped) derivative approximations.

Because the torus distorts throughout the continuation process, the grid tends to skew. If left uncorrected, many of
the boxes would become pinched, and the method would break down. It is therefore necessary to re-distribute points
on the grid occasionally in a logical way.

There is no canonical mesh-distribution strategy for 2-tori. The method based on quasi-conformal mapping proposed
by Moore [22] seems to work well, but requires considerable extra computation. For this particular example, practice
has shown that a simple and effective correction strategy for a 45 x 46 torus is (1) re-distribute according to arc length
along each longitude (sections of the form X; ;, f constant), and then (2) independently re-distribute along each meridian
(sections of the form X; ;, where ¢ is constant). This strategy is best applied after convergence, up through 4 = 0.25,
after which the torus does not undergo any further re-distribution.

Figs. 6 and 7 show the tori and the intersections of the tori with two planes. The solid line corresponds to the x1 2 =x3 4
plane, so it indicates the stable periodic orbit. Similarly, the dashed line corresponds to the xj 2 = —x3 4 plane, so it
indicates the unstable periodic orbit.

Calculating the planar intersections is itself not a simple task. The lines on Figs. 6 and 7 represent averaged linear
interpolants of where the grid lines of the torus cross the planes of interest. The intersection between the x1 2 = —x3 4
plane and the torus seems to become non-transverse at breakdown, so the discrete grid only crosses that plane at
a few scattered points. Fig. 7 therefore shows only discrete points for which the difference between components
changes sign.
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Fig. 6. Oscillators with planar intersections; 4 = 0.25.
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Fig. 7. Oscillators with planar intersections; 4 = 0.2605.

7. Conclusions
In this paper we have studied a mid-point discretization scheme based on the “orthogonality condition” for the

approximation of invariant tori, originally introduced in [22].
We made several contributions. We gave explicit details to show that formulating invariance through the orthogonality
condition is equivalent at the smooth level to invariance formulated through the so-called PDE condition. We proved
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that the method is unconditionally stable and consistent for periodic orbits in arbitrary-dimensional space. We proved
that the method for 2-tori in R? is unconditionally unstable when one uses an even number of discretization points
in both angular directions. Numerical experiments showed that similar constraints apply more generally to p-tori in
R". Likewise, numerical experiments indicated that the presence of closed, invariant sub-manifolds can also cause
instabilities. Adapting the algorithm to account for these difficulties, we presented numerical results showing that the
end method is capable of approximating tori of practical interest at least as reliably as other competing methods, say
those of [6,8,26,28].

Our main theoretical contribution is probably the negative result of stability of the basic scheme for 2-tori in R>.
This negative result has led us to improved understanding of how to stabilize the method in practice. Regretfully, many
existing works on approximation of invariant tori lack a rigorous stability analysis of the proposed numerical methods,
and we suspect that a negative result similar to our own will apply to other techniques as well (see Remark 2.1).

To make progress toward understanding of techniques based on the orthogonality condition, we have made some
simplifications with respect to the original work [22]. Most notably we have not analyzed or implemented the mesh-
redistribution strategy proposed therein. It is possible that the mesh re-distribution technique has a stabilizing effect
on the basic scheme we analyzed, in a similar way to the practical remedies we adopted in our numerical experiments,
but rigorously inferring any of this will be very difficult.
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