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Abstract. We propose a new semi-discretization scheme to approximate nonlinear
Fokker-Planck equations, by exploiting the gradient flow structures with respect to the
optimal transport metric (2-Wasserstein metric). We discretize the underlying state by
a finite graph and define a discrete 2-Wasserstein metric. Based on such metric, we
introduce a dynamical system, which is a gradient flow of the discrete free energy. We
prove that the new scheme maintains dissipativity of the free energy and converges to a
discrete Gibbs measure at exponential (dissipation) rate. We exhibit these properties on
several numerical examples.

1. Introduction

In this paper we give new semi-discretization schemes for a certain type of partial
differential equations (PDEs) [15], which are gradient flows from the viewpoint of optimal
transportation theory [1, 2, 3, 10, 20, 21, 24, 25].

First, let us briefly review some known facts. Consider a nonlinear Fokker-Planck
equation [4, 10]

∂ρ

∂t
= ∇ · [ρ∇(V (x) +

∫
Rd
W (x, y)ρ(t, y)dy)] + β∆ρ. (1)

Here, the unknown ρ(t, ·) is a probability density function supported on Rd, which is
thus positive and conserves the total probability. The functions V : Rd → R, and W :
Rd × Rd → R are smooth and further W (x, y) = W (y, x) for any x, y ∈ Rd.

To (1) is associated a functional F : P(Rd)→ R, called free energy

F(ρ) =

∫
Rd
V (x)ρ(x)dx+

1

2

∫
Rd×Rd

W (x, y)ρ(x)ρ(y)dxdy + β

∫
Rd
ρ(x) log ρ(x)dx, (2)

which is a summation of linear potential energy, interaction energy and linear entropy,
from left to right. It is known that the free energy (2) is a Lyapunov function for (1):

d

dt
F(ρ(t, ·)) = −

∫
Rd

(∇F (x, ρ))2ρ(t, x)dx ≤ 0,
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where1

F (x, ρ) :=
δ

δρ(x)
F(ρ) = V (x) +

∫
Rd
W (x, y)ρ(y)dy + β log ρ(x) + β.

Under suitable conditions on V and W , the solution ρ(t, ·) of (1) converges to an equilib-
rium, called Gibbs measure2.

Recent work on optimal transport treats the probability set P(Rd) as a “manifold”
equipped with the 2-Wasserstein metric. From this viewpoint, (1) is a gradient flow of
the free energy F(ρ) on P(Rd), see [2, 24, 25]. Furthermore, under some requirements
on W , Carrillo, McCann and Villani show that ρ(t, ·) converges to a Gibbs measure with
exponential rate, see [10].

In this paper, we consider a similar matter in the discrete setting. In other words,
we plan to derive a semi-discretization scheme3 for (1), which also has a gradient flow
structure with respect to a discrete 2-Wasserstein metric.

Notice that the underlying state of (1) can be a variety other than Rd. For instance,
the domain can be a bounded open set, with a zero-flux conditions or periodic conditions.
In this paper, we use a graph setting to consider all these cases.

We shall consider a graph G = (V,E) to discretize the spatial domain, where V is the
vertex set

V = {1, 2, · · · , n},
and E is the edge set. The adjacency set of the vertex i ∈ V is denoted by

N(i) = {j ∈ V | (i, j) ∈ E}.

Here i ∈ V represents a point in Rd, and (i, j) is shorthand for an edge connecting i and j.
For concreteness, we can think of G as a lattice corresponding to a uniform discretization
of the domain with spacing ∆x.

We consider a discrete probability set4 supported on all vertices:

P(G) = {ρ = (ρi)
n
i=1 ∈ Rn |

n∑
i=1

ρi = 1, ρi ≥ 0, i ∈ V }.

Moreover, we consider a discrete free energy of F(ρ), as an analog of (2)

F(ρ) =
n∑
i=1

viρi +
1

2

n∑
i=1

n∑
j=1

wijρiρj + β
n∑
i=1

ρi log ρi,

where (vi)
n
i=1 = (V (i))ni=1 and (wij)1≤i,j≤n = (W (i, j))1≤i,j≤n are a fixed vector, and a

fixed symmetric matrix, respectively.

1 δ
δρ(x)

F is the first variation of the scalar functional F .
2ρ∗(x) is a Gibbs measure if it solves the fixed point problem

ρ∗(x) =
1

K
e
−
V (x)+

∫
Rd W (x,y)ρ∗(y)dy

β , where K =

∫
Rd
e
−
V (x)+

∫
Rd W (x,y)ρ∗(y)dy

β dx.

3We discretize the spatial variable, not the time variable.
4We abuse the notation. We let ρi represent a discrete probability measure, instead of probability

density.
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By this setting, we will derive and analyze the gradient flow of discrete free energy on
P(G) with a “discrete” 2-Wasserstein metric. Delaying the derivation details until section
2, we show the semi-discretization directly. We propose to take

dρi
dt

=
1

∆x2
{
∑
j∈N(i)

ρj(Fj(ρ)− Fi(ρ))+ −
∑
j∈N(i)

ρi(Fi(ρ)− Fj(ρ))+}, (3)

where i ∈ V , (·)+ = max{·, 0} and

Fi(ρ) =
∂

∂ρi
F(ρ), for any i ∈ V ,

and thus

Fi(ρ) = vi +
n∑
j=1

wijρj + β log ρi + β.

Besides showing that (3) is a well defined ordinary differential equation (ODE), we
demonstrate that (3) has a gradient flow structure. Firstly, the free energy is a Lyapunov
function of (3):

d

dt
F(ρ(t)) = −

∑
(i,j)∈E

(
Fi(ρ)− Fj(ρ)

∆x
)2
+ρi ≤ 0.

Then, if ρ(t) converges to an equilibrium ρ∞, then we will show that such equilibrium is
a discrete Gibbs measure

ρ∞i =
1

K
e
−
vi+

∑n
j=1 wijρ

∞
j

β , K =
n∑
i=1

e
−
vi+

∑n
j=1 wijρ

∞
j

β .

Furthermore, if ρ∞ is a strictly local minimizer of the free energy, and ρ(t) is in its basin
of attraction for the gradient dynamics, then we will show that the convergence speed is
exponential:

F(ρ(t))−F(ρ∞) ≤ e−Ct(F(ρ0)−F(ρ∞)),

where C is a positive constant. In fact, we will say more about this convergence. We will
give an explicit formula for the asymptotic convergence rate, which mimics the role of the
Hessian of the free energy at the Gibbs measure.

Finally, we will show that (3) is a consistent scheme for PDE (1). In fact, we will derive
a general consistent scheme for general diffusion systems, which may not be gradient flows.

The semi-discretization scheme in this paper is largely inspired by [12, 16], the upwind
scheme of [5], and optimal transport theory [25]. In addition, the convergence result is
influenced by the work of Carrillo, McCann and Villani, [10]. Our method can be viewed
as a discrete entropy5 dissipation method [11, 18], with a dynamical twist.

In the literature, people have studied 2-Wasserstein metric and Fokker-Planck equations
in discrete settings for a long time [7, 17, 14, 19, 22, 8, 9]. Maas [17] and Mielke [19]
introduce a different discrete 2-Wasserstein metric. Based on such metric, they analyze
the convergence rate of some schemes for one-dimensional linear Fokker-Planck equations.
Our scheme shows exponential convergence for all linear and nonlinear cases. Carrillo,

5Here the entropy refers the difference of free energy

F(ρ(t))−F(ρ∞).
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Chertock, Huang, Wolansky [8, 9] have recently designed several algorithms based on
optimal transport viewpoint. Particularly, the first order scheme designed in [8] share
some similarities with (3) for a lattice graph. However, (3) can be used in a broader
context (e.g., a manifold approximated by a finite graph). In addition, our derivation is
from the viewpoint of the discrete 2-Wasserstein metric.

This paper is arranged as follows. In section 2, we derive (3) based on a discrete 2-
Wasserstein metric. With respect to this metric, (3)’s gradient flow properties are given.
In section 3, we show that the solution of (3) converges to a discrete Gibbs measure
exponentially fast. Numerical analysis and several experiments on (3) are discussed in
sections 4 and 5. Finally, in the Appendix, we give a few explicit models of (simple)
discretizations to elucidate how the speed of convergence to a stationary measure depends
on the boundary conditions.

2. Semi-discretization scheme

In this section, we show that (3) is a gradient flow for the discrete free energy on the
probability set P(G) in the following three steps. First, we define a discrete 2-Wasserstein
metric. Second, based on such metric, we derive (3) as a gradient flow of the discrete free
energy. Third, we show that (3) is a well defined ODE with gradient flow structures.

2.1. Discrete 2-Wasserstein metric.

2.1.1. Motivation. Recall that the 2-Wasserstein metric (Benamou-Brenier formula, [3])
is a metric defined on a probability set supported on Rd:

W2(ρ0, ρ1)2 = inf
Φ
{
∫ 1

0
(∇Φ,∇Φ)ρdt :

∂ρ

∂t
+∇ · (ρ∇Φ) = 0, ρ(0) = ρ0, ρ(1) = ρ1},

where (·, ·)ρ represents an inner product on the probability set:

(∇Φ,∇Φ)ρ =

∫
Rd

(∇Φ(t, x))2ρ(t, x)dx,

and the infimum is taken among the potential functions Φ(t, x) ∈ Rd.

We give a similar metric definition on a discrete setting, which is a finite graph G =
(V,E). Consider a probability set supported on V with all positive measures:

Po(G) = {ρ = (ρi)
n
i=1 |

n∑
i=1

ρi = 1, ρi > 0, for any i ∈ V }.

We use three steps to define the metric on Po(G). Firstly, we define a potential vector
field on graph

∇GΦ := (Φi − Φj)(i,j)∈E ,

with the potential function Φ := (Φi)
n
i=1. Secondly, we introduce the divergence operator6

at ρ ∈ Po(G):

divG(ρ∇GΦ) :=
(
− 1

∆x2

∑
j∈N(i)

(Φi − Φj)gij(ρ)
)n
i=1
,

6Compare with ∇ · (ρ∇Φ).
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where

gij(ρ) :=


ρi if Fi(ρ) > Fj(ρ), j ∈ N(i),

ρj if Fi(ρ) < Fj(ρ), j ∈ N(i),
ρi+ρj

2 if Fi(ρ) = Fj(ρ), j ∈ N(i),

(4)

and Fi(ρ) := ∂
∂ρi
F(ρ). Lastly, we construct an inner product on Po(G):

(∇GΦ,∇GΦ)ρ :=
1

2∆x2

∑
(i,j)∈E

(Φi − Φj)
2gij(ρ),

where 1
2 is due to the fact that every edge in G is counted twice, i.e. (i, j), (j, i) ∈ E.

2.1.2. Discrete metric. We are ready to introduce a discrete 2-Wasserstein metric on
Po(G).

Definition 1. For any ρ0, ρ1 ∈ Po(G), define

(
W2(ρ0, ρ1)

)2
:= inf

Φ
{
∫ 1

0
(∇GΦ,∇GΦ)ρdt :

dρ

dt
+divG(ρ∇GΦ) = 0, ρ(0) = ρ0, ρ(1) = ρ1},

where the infimum is taken over all Φ for which ρ is a continuously differentiable curve
ρ : [0, 1]→ Po(G).

We justify that W2 in Definition 1 is a well defined metric7. We endow Po(G) with an
inner product on its tangent space

TρPo(G) = {(σi)ni=1 ∈ Rn |
n∑
i=1

σi = 0}.

Consider the equivalence relation “∼” in Rn which stands for “modulo additive constants,”
so that the quotient space is

Rn/ ∼= {[Φ] | (Φi)
n
i=1 ∈ Rn}, where [Φ] = {(Φ1 + c, · · · ,Φn + c) | c ∈ R1}.

We introduce an identification map

τ : Rn/ ∼→ TρPo(G), τ([Φ]) := (
∑
j∈N(i)

1

∆x2
(Φi − Φj)gij(ρ))ni=1.

Lemma 2. The map τ : Rn/ ∼→ TρPo(G) is a well defined map, linear, and one to one.

Proof. First, we show that τ is well defined. We denote

σi =
1

∆x2

∑
j∈N(i)

(Φi − Φj)gij(ρ).

7Our approach is a discrete version of Otto calculus [25].
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Our task is equivalent to show
∑n

i=1 σi = 0. Indeed,

n∑
i=1

σi =
1

∆x2
{
n∑
i=1

∑
j∈N(i)

(Φi − Φj)gij(ρ)}

=
1

∆x2
{
∑

(i,j)∈E

Φigij(ρ)−
∑

(i,j)∈E

Φjgij(ρ)}

Relabel i and j on the first formula

=
1

∆x2
{
∑

(i,j)∈E

Φjgji(ρ)−
∑

(i,j)∈E

Φjgij(ρ)} = 0.

Hence, the map τ is a well-defined linear map.

Next, we show τ is one to one. Since TρPo(G) and Rn/ ∼ are (n−1) dimensional linear
spaces, we only need to prove τ is injective. I.e., if

σi =
1

∆x2

∑
j∈N(i)

gij(ρ)(Φi − Φj) = 0, for any i ∈ V ,

then [Φ] = 0, meaning that Φ1 = Φ2 = · · · = Φn.

Assume this is not true. Let c = maxi∈V Φi. Since the graph G is connected, there
exists an edge (k, l) ∈ E, such that Φl = c and Φk < c. But, since σl = 0, we know that

Φl =

∑
j∈N(l) glj(ρ)Φj∑
j∈N(l) glj(ρ)

= c+

∑
j∈N(l) glj(ρ)(Φj − c)∑

j∈N(l) glj(ρ)
< c,

which contradicts Φl = c. �

This identification map induces a scalar inner product on Po(G).

Definition 3. For any two tangent vectors σ1, σ2 ∈ TρPo(G), we define an inner product
g : TρPo(G)× TρPo(G)→ R:

g(σ1, σ2) :=
1

2∆x2

∑
(i,j)∈E

gij(ρ)(Φ1
i − Φ1

j )(Φ
2
i − Φ2

j ), (5)

where [Φ1], [Φ2] ∈ Rn/ ∼, are such that σ1 = τ([Φ1]), σ2 = τ([Φ2]).

Under the above setting, we have(
W2(ρ0, ρ1)

)2
= inf{

∫ 1

0
g(σ, σ)dt :

dρ

dt
= σ, ρ(0) = ρ0, ρ(1) = ρ1, ρ ∈ C},

where C is the set of all continuously differentiable curves ρ : [0, 1] → Po(G). So, the
metric is well defined (see more details in [12]).

2.2. Derivation of the scheme. Based on the metric manifold (Po(G),W2), we now
derive the semi-discretization scheme (3) as gradient flow of the discrete free energy.

In abstract form, the gradient flow is defined by

dρ

dt
= −gradPo(G)F(ρ).
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Here gradF(ρ) is in the tangent space TρPo(G), which is defined by the duality condition:

g(gradPo(G)F(ρ), σ) = dF(ρ) · σ, for any σ ∈ TρPo(G),

where dF · σ =
∑n

i=1
∂
∂ρi
F(ρ)σi. Hence the gradient flow satisfies

(
dρ

dt
, σ)ρ + dF(ρ) · σ = 0, for any σ ∈ TρPo(G). (6)

Following (6), we derive (3) in Theorem 4 below.

Theorem 4. Given a graph G, a constant β > 0, a vector (vi)
n
i=1 and a symmetric matrix

(wij)1≤i,j≤n. Then the gradient flow of the discrete free energy

F(ρ) =
n∑
i=1

viρi +
1

2

n∑
i=1

n∑
j=1

wijρiρj + β
n∑
i=1

ρi log ρi,

on the metric manifold (Po(G),W2), is

dρi
dt

=
1

∆x2
{
∑
j∈N(i)

ρj(Fj(ρ)− Fi(ρ))+ −
∑
j∈N(i)

ρi(Fi(ρ)− Fj(ρ))+},

for any i ∈ V . Here Fi(ρ) = ∂
∂ρi
F(ρ) = vi +

∑n
j=1wijρj + β log ρi + β.

Proof of Theorem 4. We show the derivation of (3). For any σ ∈ TρPo(G), there exists

[Φ] ∈ Rn/ ∼, such that τ([Φ]) = σ. On one hand, we denote dρ
dt = (dρidt )ni=1. From definition

3,

(
dρ

dt
, σ)ρ =

1

2∆x2

∑
(i,j)∈E

gij(ρ)(
dρi
dt
− dρj

dt
)(Φi − Φj)

=
1

2∆x2
{
∑

(i,j)∈E

gij(ρ)
dρi
dt

(Φi − Φj)−
∑

(i,j)∈E

gij(ρ)
dρj
dt

(Φi − Φj)}

Relabel i, j on the second formula

=
1

2∆x2
{
∑

(i,j)∈E

gij(ρ)
dρi
dt

(Φi − Φj)−
∑

(j,i)∈E

gji(ρ)
dρi
dt

(Φj − Φi)}

=
1

∆x2

∑
(i,j)∈E

gij(ρ)
dρi
dt

(Φi − Φj)

=
1

∆x2

n∑
i=1

dρi
dt

∑
j∈N(i)

gij(ρ)(Φi − Φj).

(7)
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At the same time, we also have

dF(ρ) · σ =

n∑
i=1

∂

∂ρi
F(ρ) · σi =

1

∆x2

n∑
i=1

Fi(ρ)
∑
j∈N(i)

gij(ρ)(Φi − Φj)

=
1

∆x2
{
n∑
i=1

∑
j∈N(i)

gij(ρ)Fi(ρ)Φi −
n∑
i=1

∑
j∈N(i)

gij(ρ)Fi(ρ)Φj}

Relabel i and j on second formula

=
1

∆x2
{
∑

(i,j)∈E

gij(ρ)Fi(ρ)Φi −
∑

(i,j)∈E

gji(ρ)Fj(ρ)Φi}

=
1

∆x2
{
n∑
i=1

∑
j∈N(i)

gij(ρ)
(
Fi(ρ)− Fj(ρ)

)
Φi}.

(8)

Combining (7) and (8) into (6), we have

0 =(
dρ

dt
, σ)ρ + dF(ρ) · σ

=

n∑
i=1

{dρi
dt

+
1

∆x2

∑
j∈N(i)

gij(ρ)
(
Fi(ρ)− Fj(ρ)

)
}Φi.

Since the above formula is true for all (Φi)
n
i=1 ∈ Rn, then

dρi
dt

+
1

∆x2

∑
j∈N(i)

gij(ρ)
(
Fi(ρ)− Fj(ρ)

)
= 0

holds for all i ∈ V . From the definition of gij(ρ) in (4), we have (3). �

To summarize, we have introduced a new discretization, which can be formally repre-
sented as

dρ

dt
= divG(ρ∇GF (ρ)), F (ρ) = (

∂

∂ρi
F(ρ))ni=1,

where

divG(ρ∇GF (ρ)) =
1

∆x2

( ∑
j∈N(i)

ρj(Fj(ρ)− Fi(ρ))+ −
∑
j∈N(i)

ρi(Fi(ρ)− Fj(ρ))+

)n
i=1
.

2.3. Gradient flow properties. Here, we show that (3) is a well defined ODE with
gradient flow structures.

Theorem 5. For any initial condition ρ0 ∈ Po(G), (3) has a unique solution ρ(t) :
[0,∞)→ Po(G). Moreover,

(i) there exists a constant c = c(ρ0) > 0 depending on ρ0, such that ρi(t) ≥ c for all
i ∈ V and t > 0;

(ii) the free energy F(ρ) is a Lyapunov function of (3):

d

dt
F(ρ(t)) = −

∑
(i,j)∈E

(
Fi(ρ)− Fj(ρ)

∆x
)2
+ρi.

Further, if limt→∞ ρ(t) exists, call it ρ∞, then ρ∞ is a Gibbs measure.
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Proof. The proof of (i) can be found in [16], which is just a slight modification of [12].
Below, we only show (ii), which justifies saying that (3) is a gradient system. Firstly, we
show that F(ρ) is a Lyapunov function:

d

dt
F(ρ(t)) =

n∑
i=1

Fi(ρ) · dρi
dt

=
1

∆x2
{
n∑
i=1

∑
j∈N(i)

Fi(ρ)(Fj(ρ)− Fi(ρ))+ρj −
n∑
i=1

∑
j∈N(i)

Fi(ρ)(Fi(ρ)− Fj(ρ))+ρi}

Switch i, j on the first formula

=
1

∆x2
{
n∑
i=1

∑
j∈N(i)

Fj(ρ)(Fi(ρ)− Fj(ρ))+ρi −
n∑
i=1

∑
j∈N(i)

Fi(ρ)(Fi(ρ)− Fj(ρ))+ρi}

=−
∑

(i,j)∈E

(
Fi(ρ)− Fj(ρ)

∆x
)2
+ρi ≤ 0.

Secondly, we prove that if ρ∞ = limt→∞ ρ(t) exists, then ρ∞ is a Gibbs measure.
Since F(ρ) is bounded in P(G), then limt→∞

d
dtF(ρ(t)) = 0. From (i), we know that

ρ∞i ≥ c(ρ0) > 0 for any i ∈ V ; so, the relation

n∑
i=1

∑
j∈N(i)

(Fi(ρ
∞)− Fj(ρ∞))2

+ρ
∞
i = 0

implies Fi(ρ
∞) = Fj(ρ

∞) for any (i, j) ∈ E. Since the graph is strongly connected,

Fi(ρ
∞) = Fj(ρ

∞), for any i, j ∈ V .

Let

C := vi +

n∑
j=1

wijρ
∞
j + β log ρ∞i , which is constant for any i ∈ V ,

K = e
−C
β and use the fact

∑n
i=1 ρ

∞
i = 1. Then, we have

ρ∞i =
1

K
e
−
vi+

∑n
j=1 wijρ

∞
j

β , K =

n∑
j=1

e
−
vi+

∑n
j=1 wijρ

∞
j

β .

Hence ρ∞ is a Gibbs measure, which finishes the proof. �

Notice that (Po(G),W2) is not a smooth Riemannian manifold, since for fixed i and
j ∈ V , gij(ρ) may be discontinuous with respect to ρ. Still, even though (Po(G),W2) is
not smooth, (3) is a well defined ODE for any initial condition ρ0 ∈ Po(G).

One may be surprised by the unusual discretization of the Laplacian term, namely

1

∆x2
(log ρj − log ρi)gij(ρ) (9)

which is different from the commonly adopted centered difference. We call (9) the “Log-
Laplacian.” We observe that the Log-Laplacian plays a crucial role in the spatial discretiza-
tion. Not only it implies that (3)’s equilibria are Gibbs measures, but it also indicates
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that the boundary of the probability set8, ∂P(G), is a repeller for (3), which coincides
with what is known in continuous states. We will see that this boundary repeller property
plays a key role in the convergence result of section 3.

3. Dissipation rate to a discrete Gibbs measure

Considering the gradient flow (3), an important question arises. Assuming that ρ(t)
converges to an equilibrium ρ∞, how fast is the convergence speed? In the sequel, we
show that the rate of convergence is exponential. Indeed, we capture such rate by the
following explicit formula.

Definition 6. Denote

fij =
∂2

∂ρi∂ρj
F(ρ),

and

hij,kl =
fik + fjl − fil − fjk

∆x2
for any i, j, k, l ∈ V .

We define

λF (ρ) = min
(Φi)ni=1∈D

∑
(i,j)∈E

∑
(k,l)∈E

hij,kl(
Φi − Φj

∆x
)+ρi(

Φk − Φl

∆x
)+ρk,

where

D = {(Φi)
n
i=1 ∈ Rn |

∑
(i,j)∈E

(
Φi − Φj

∆x
)2
+ρi = 1}.

Remark 1. λF in Definition 6 plays the role of the smallest eigenvalue of the Hessian
operator (on metric manifold) of the free energy at Gibbs measure; see [16] for more
details about this connection.

Based on λF (ρ), we show the exponential convergence result for (3). We will assume
that ρ0 is in the basin of attraction of ρ∞ for the gradient flow. I.e., if ρ(t) is a solution
of (3) with initial condition ρ0, then

(A) lim
t→∞

ρ(t) = ρ∞ and ρ∞ is an isolated equilibrium.

Theorem 7. Let (A) hold, and let λF (ρ∞) > 0. Then there exists a constant C =
C(ρ0, G) > 0, depending on ρ0 and G, such that

F(ρ(t))−F(ρ∞) ≤ e−Ct(F(ρ0)−F(ρ∞)).

Moreover, the asymptotic convergence rate is 2λF (ρ∞). I.e., for any sufficiently small
ε > 0, there exists a time T > 0 depending on ε and ρ, such that when t > T ,

F(ρ(t))−F(ρ∞) ≤ e−2(λF (ρ∞)−ε)t(F(ρ(T ))−F(ρ∞)).

8

∂P(G) = {(ρi)ni=1 |
n∑
i=1

ρi = 1, there exists some index i, such that ρi = 0}.
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Motivation of the proof. Our proof is motivated by some known facts of gradient flows in
Rn. We consider a λ-convex energy g(x) ∈ C2(Rn) 9 The gradient flow associated to g is

dxt
dt

= −∇g(xt), xt ∈ Rn.

We compare the first and second derivative of g(xt) with respect to t:

d

dt
g(xt) =− (∇g(xt),∇g(xt)),

d2

dt2
g(xt) =− 2(HessRng(xt) · ∇g(xt),∇g(xt)) ≥ −2λ

d

dt
g(xt).

From the above comparison, we obtain the convergence result. Integrating on the time
interval [t,+∞),

d

dt
[g(xt)− g(x∞)] ≤ −2λ[g(xt)− g(x∞)],

and applying Gronwall’s inequality, the energy function g(xt) decreases exponentially

g(xt)− g(x∞) ≤ e−2λt(g(x0)− g(x∞)).

In addition, from the dynamical viewpoint, the strict convexity of the free energy can be
weakened: if the equilibrium x∞ is a strict local minimizer, the exponential convergence
result is still valid. Furthermore, the asymptotic convergence rate is 2λminHessRng(x∞)
10. �

Proof of Theorem 7. Motivated by the standard approach in Rn, we briefly sketch our
proof (see [16] for complete details). The main idea is to compare the first and second
derivatives of the free energy along (3).

Claim:

d2

dt2
F(ρ(t)) =

1

∆x4

∑
(i,j)∈E

∑
(k,l)∈E

hij,kl(Fi − Fj)+ρi(Fk − Fl)+ρk

+ o(
d

dt
F(ρ(t))).

(10)

Here we denote limh→0
o(h)
h = 0, Fi = ∂

∂ρi
F(ρ), fij = ∂2

∂ρi∂ρj
F(ρ) and hij,kl = fik + flj −

fil − fjk. If (10) holds, it is not hard to check that Theorem 7 holds.

Let’s show (10) directly. Recall the gradient flow (3)

dρi
dt

=
1

∆x2
{
∑
j∈N(i)

(Fj − Fi)+ρj −
∑
j∈N(i)

(Fi − Fj)+ρi}.

We compute the first derivative of the free energy along (3):

d

dt
F(ρ(t)) = −

n∑
i=1

∑
j∈N(i)

(
Fi − Fj

∆x
)2
+ρi.

9HessRng(x) � λI, λ > 0 for all x ∈ Rn.
10The smallest eigenvalue of the Hessian matrix of the energy at the minimizer.
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Then we obtain the second derivative11 by using the product rule:

d2

dt2
F(ρ(t)) = −

n∑
i=1

∑
j∈N(i)

(
Fi − Fj

∆x
)2
+

dρi
dt

♣

− 2
1

∆x2

n∑
i=1

∑
j∈N(i)

(
dFi
dt
− dFj

dt
)(Fi − Fj)+ρi. ♠

Hence, (10) can be shown by the following two steps. Firstly, since ρ(t) is assumed to
converge to an equilibrium ρ∞ and the boundary is a repeller (Theorem 5), we know that
dρ
dt → 0 while ρi(t) ≥ c(ρ0) > 0. Hence ♣ is a high order term of the first derivative

♣ = o(
d

dt
F(ρ(t))).

Secondly, we have the following Lemma.

Lemma 8.

♠ = 2
∑

(i,j)∈E

∑
(k,l)∈E

hij,kl(
Fi − Fj

∆x
)+ρi(

Fk − Fl
∆x

)+ρk.

11Notice that d2

dt2
F(ρ(t)) exists for all t ≥ 0, because (Fi(ρ)−Fj(ρ))2+ is differentiable everywhere with

respect to ρ.
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Proof of Lemma 8. We derive this result by a direct calculation12.

−1

2
♠ =

1

∆x2

n∑
i=1

∑
j∈N(i)

(Fi − Fj)+ρi(
d

dt
Fi(ρ(t))− d

dt
Fj(ρ(t)))

=
1

∆x2

n∑
i=1

∑
j∈N(i)

(Fi − Fj)+ρi(

n∑
k=1

∂Fi
∂ρk

dρk
dt
−

n∑
k=1

∂Fj
∂ρk

dρk
dt

)

=
1

∆x2

n∑
i=1

∑
j∈N(i)

(Fi − Fj)+ρi

n∑
k=1

(fik − fkj)
dρk
dt

=
1

∆x4

n∑
i=1

∑
j∈N(i)

(Fi − Fj)+ρi

n∑
k=1

(fik − fkj)[
∑

l∈N(k)

(Fl − Fk)+ρl −
∑

l∈N(k)

(Fk − Fl)+ρk]

=
1

∆x4

n∑
i=1

∑
j∈N(i)

(Fi − Fj)+ρi{
n∑
k=1

∑
l∈N(k)

(fik − fkj)(Fl − Fk)+ρl

−
n∑
k=1

∑
l∈N(k)

(fik − fkj)(Fk − Fl)+ρk}

Relabel k, l in the first formula

=
1

∆x4

n∑
i=1

∑
j∈N(i)

(Fi − Fj)+ρi{
n∑
k=1

∑
l∈N(k)

(fil − flj)(Fk − Fl)+ρk

−
n∑
k=1

∑
l∈N(k)

(fik − fkj)(Fk − Fl)+ρk}

=
1

∆x4

n∑
i=1

∑
j∈N(i)

n∑
k=1

∑
l∈N(k)

(fil − flj − fik + fkj)(Fi − Fj)+ρi(Fk − Fl)+ρk

=
1

∆x4

∑
(i,j)∈E

∑
(k,l)∈E

(fil − flj − fik + fkj)(Fi − Fj)+ρi(Fk − Fl)+ρk.

�

Combining all the above facts, the claim and the proof of Theorem 7 follow. �

3.1. Analysis of dissipation rate. In the sequel, we further elucidate the relationship
between convexity of the free energy (Hessian operator in Rn) and the dissipation rate.

Lemma 9. Denote

d̃ivG(ρ∇GΦ) :=
( 1

∆x2
{
∑
j∈N(i)

(Φi − Φj)+ρi −
∑
j∈N(i)

(Φj − Φi)+ρj}
)n
i=1
.

12Here we use the relabeling technique heavily: For a matrix (kij)1≤i,j≤n,∑
(i,j)∈E

kij =
∑

(j,i)∈E

kji.
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Then λF (ρ) in Definition 6 is equivalent to

λF (ρ) = min{
(
d̃ivG(ρ∇GΦ)

)T
HessRnF(ρ)d̃ivG(ρ∇GΦ) :

∑
(i,j)∈E

(
Φi − Φj

∆x
)2
+ρi = 1}.

The proof of Lemma 9 is based on a direct computation (see details in [16]).

Lemma 9 gives convergence rates for many semi-discretization schemes.

Corollary 10. Consider the gradient flow (3) of the free energy

F(ρ) =
n∑
i=1

viρi +
1

2

n∑
i=1

n∑
j=1

wijρiρj + β
n∑
i=1

ρi log ρi.

If the matrix W = (wij)1≤i,j≤n is semi positive definite, then there is a unique Gibbs
measure ρ∞, which is a global attractor of (3). Moreover, there exists a constant C > 0,
such that

F(ρ(t))−F(ρ∞) ≤ e−Ct(F(ρ0)−F(ρ∞))

with asymptotic rate 2λF (ρ∞).

Proof. The main idea of proof is as follows (full details are in [?]). Notice that since
HessRn

∑n
i=1 ρi log ρi = diag( 1

ρ∞k
)1≤k≤n and the matrix W is semi positive definite, then

HessRnF(ρ)|ρ=ρ∞ = W + βdiag(
1

ρ∞k
)1≤k≤n

is a positive definite matrix. Then, from Lemma 9 and Theorem 7, we know that (3)
converges exponentially. �

Throughout this section, we observe another important effect of the Log-Laplacian,
which reflects the convexity property of the linear entropy

H(ρ) =
n∑
i=1

ρi log ρi.

Lemma 9 says that

λH(ρ) = min{
n∑
i=1

1

ρi
(d̃ivG(ρ∇GΦ)|i)2 :

∑
(i,j)∈E

(
Φi − Φj

∆x
)2
+ρi = 1}.

Given any Gibbs measure ρ∞, we know that λH(ρ∞) > 0. To visualize that, consider a
simple example with no interaction energy, meaning that (wij) = 0. In this case, (3) is a
semi-discretization for a linear Fokker-Planck equation. The free energy is

F(ρ) =

n∑
i=1

viρi + βH(ρ).

Here, strict convexity of H(ρ) tells that there always exists a constant C > 0, such that

F(ρ(t))−F(ρ∞) ≤ e−Ct(F(ρ0)−F(ρ∞))

holds with asymptotic rate 2λH(ρ∞).
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4. Numerical analysis

In this section, we show some numerical properties of (3).

4.1. Spatial consistency. To begin with, we show that (3) is a finite volume scheme for
the PDE (1). For concreteness, we use a lattice graph. Rewrite (3) in the following form

dρi
dt

=
1

∆x2
{

d∑
v=1

∑
j∈Nv(i)

[Fj(ρ)− Fi(ρ)]+ρj −
d∑
v=1

∑
j∈Nv(i)

[Fi(ρ)− Fj(ρ)]+ρi}.

Denote i = (i1, · · · , id), and G is a cartesian graph of d one dimensional lattices, i.e.
G = G12 · · ·2Gd with Gv = (Vv, Ev). Here

Nv(i) = {(i1, · · · , iv−1, jv, iv+1, · · · , id) ∈ V | (iv, jv) ∈ Ev}.

Theorem 11. The semi-discretization (3) is a consistent finite volume scheme for the
PDE (1).

Proof. Denote by ρi(t) a discrete probability function

ρi(t) =

∫
Ci

ρ(t, x)dx,

where Ci is a cube in Rd centered at point i with equal width ∆x. Here i ∈ V represents a
point x(i) ∈ Rd. Let ev = (0, · · · , 1, · · · , 0)T , where 1 is in the v-th position, v = 1, · · · , d.
So in this setting, Nv(i) for a lattice graph only contains the two points x(i) − ev∆x,
x(i) + ev∆x. Denote ρj(t) by

ρj(t) =

∫
Ci+

ρ(t, x)dx,

where j ∈ N(i) satisfies x(j) = x(i)+ev∆x and Ci+ is a cube centered at the point j ∈ V .
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Without loss of generality, we assume F (x(i) + ev∆x, ρ) ≥ F (x(i), ρ) ≥ F (x(i) −
ev∆x, ρ). Applying Taylor expansion of (3) relative to the direction ev, we obtain

1

∆x2
{
∑

j∈Nv(i)

[Fj(ρ)− Fi(ρ)]+ρj −
∑

j∈Nv(i)

[Fi(ρ)− Fj(ρ)]+ρi}

=
1

∆x2
{[F (x(i) + ev∆x, ρ)− F (x(i), ρ)]

∫
Ci+

ρ(t, x)dx

− [F (x(i), ρ)− F (x(i)− ev∆x, ρ)]

∫
Ci

ρ(t, x)dx}

=
1

∆x2
{[ ∂F
∂xv

(x(i), ρ)∆x+
1

2

∂F

∂xv
(x(i), ρ)∆x2]

∫
Ci+

ρ(t, x)dx

− [
∂F

∂xv
(x(i), ρ)∆x− 1

2

∂

∂xv
F (x(i), ρ)∆x2]

∫
Ci

ρ(t, x)dx+O(∆x3)}

=
1

∆x

∂F

∂xv
(x(i), ρ)[

∫
Ci+

ρ(t, x)dx−
∫
Ci

ρ(t, x)dx]

+
1

2

∂2F

∂x2
v

(x(i), ρ)[

∫
Ci+

ρ(t, x)dx+

∫
Ci

ρ(t, x)dx] +O(∆x)

=
∂F

∂xv
(x(i), ρ)

∫
Ci

ρ(t, x+ ev∆x)− ρ(t, x)

∆x
dx

+
∂2F

∂x2
v

(x(i), ρ)

∫
Ci

ρ(t, x+ ev∆x) + ρ(t, x)

2
dx+O(∆x)

=

∫
Ci

∇xv ·
(
ρ(t, x)∇xvF (x, ρ)

)
dx+O(∆x) .

(11)

Similarly, we can show the same results for other possible configurations, such as F (x(i)−
ev∆x, ρ) ≥ F (x(i), ρ) ≥ F (x(i) + ev∆x, ρ), F (x(i), ρ) ≥ F (xv − ev∆x, ρ) ≥ F (x(i) +
ev∆x, ρ).

Therefore, combining all directions ev with v = 1, · · · , d, the right-hand-side of (3)
becomes

dρi
dt
− 1

∆x2

d∑
v=1

{
∑

j∈Nv(i)

[Fj(ρ)− Fi(ρ)]+ρj −
∑

j∈Nv(i)

[Fi(ρ)− Fj(ρ)]+ρj}

=

∫
Ci

{∂ρ(t, x)

∂t
−

d∑
v=1

∇xv ·
(
ρ(t, x)∇xvF (x, ρ)

)
}dx+ dO(∆x)

=

∫
Ci

{∂ρ(t, x)

∂t
−∇ ·

(
ρ(t, x)∇xF (x, ρ)

)
}dx+ dO(∆x)

=O(∆x).

This shows that (3) is a finite volume first order semi-discretization scheme for (1). �

Remark 2. Although we proved consistency of the scheme by using a square lattice graph,
we can easily extend it to other regular polygonal discretizations, e.g. equilateral triangular
grids in R2.
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4.2. Time discretization. To deal with the time discretization, we use a forward Euler
scheme on (3):

ρk+1
i − ρki

∆t
=

1

∆x2
{
∑
j∈N(i)

ρkj (Fj(ρ
k)− Fi(ρk))+ −

∑
j∈N(i)

ρki (Fi(ρ
k)− Fj(ρk))+}. (12)

Lemma 12. Assume that the discrete free energy F(ρ) is strictly convex on Po(G).

(i) For a given small tolerance constant ε > 0, and initial measure ρ0 ∈ Po(G), there
exists a finite time T = O(log 1

ε ), such that when t > T ,

|F(ρ(t))−F(ρ∞)| < ε.

(ii) There exists a constant h, such that if 0 < ∆t ≤ h, ρk = (ρki )
n
i=1 ∈ Po(G), for all

k = 0, 1, · · · , [ T∆t ], where T is the value from (i).

Proof. (i) can be shown by the exponential convergence result in Corollary 10. Since there
exists a constant C > 0, such that

F(ρ(T ))−F(ρ∞) ≤ e−CT (F(ρ0)−F(ρ∞)),

then if ρ(T ) satisfies |F(ρ(T ))−F(ρ∞)| < ε, we need to set

T ≥ 1

C
log

F(ρ0)−F(ρ∞)

F(ρ(T ))−F(ρ∞)
.

In other words, we can approximate ρ∞ with O(ε) precision by time T = O(log 1
ε ).

We prove (ii) in two steps.
Firstly, we show that ρk = (ρki )

n
i=1 stays positive (mini∈V ρ

k
i > 0) for all k = 1, · · · , N .

From Theorem 4, we know that the boundary is a repeller for (3). This means that there
exists a constant ε0 = ε0(ρ0) > 0, such that

min
i∈{1,··· ,n}

ρi(t) ≥ ε0(ρ0), for all t ≥ 0.

Since the forward Euler scheme is convergent for Lipschitz right-hand-sides (and this is
the case for us), there exists constant h, such that when ∆t ≤ h, we have

min
i∈{1,··· ,n}

|ρi(k∆t)− ρki | ≤
ε0
2
,

from which mini∈{1,··· ,n} ρ
k
i ≥ 1

2ε0 > 0.

Secondly, we show that
∑n

i=1 ρ
k
i = 1 for all k = 1, · · · , N . Since

∑n
i=1 ρ

0 = 1, it is
sufficient to prove that

n∑
i=1

ρk+1
i =

n∑
i=1

ρki , for any k.
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This is a linear invariant, and it is therefore kept by Euler method. Indeed, an explicit
computation gives

n∑
i=1

ρk+1
i − ρki

∆t

=

n∑
i=1

1

∆x2
{
∑
j∈N(i)

ρkj (Fj(ρ
k)− Fi(ρk))+ −

∑
j∈N(i)

ρki (Fi(ρ
k)− Fj(ρk))+}

=
n∑
i=1

∑
j∈N(i)

(Fj(ρ
k)− Fi(ρk))gij(ρk)

=
∑

(i,j)∈E

Fj(ρ
k)gij(ρ

k)−
∑

(i,j)∈E

Fi(ρ
k))gij(ρ

k)

Relabel i and j for the first formula and notice gij = gji

=
∑

(i,j)∈E

Fi(ρ
k)gji(ρ

k)−
∑

(i,j)∈E

Fi(ρ
k))gij(ρ

k) = 0.

�

Remark 3. In practice, cfr. with [8], we may consider13 ∆t ≤ ∆x2

∆(G)M , with M =

2 supi∈V ] |Fi(ρk)| and ∆(G) representing the maximal degree14 of the graph G. For suffi-
ciently small ∆t, we know that M will be a bounded function up to a finite time T .

4.3. An extension. We extend the idea of semi-discretization scheme (3) to deal with
more general Fokker-Planck equations. Consider

∂ρ

∂t
= ∇ · [ρ

(
fv(x, ρ)

)d
v=1

]. (13)

Here, (13) may fail to be a gradient flow with respect to the 2-Wasserstein metric. In
this case, we cannot consider a discretization which is a gradient flow of a certain free
energy. However, we can still construct a flow (semi-discretization scheme) whose solutions
lie on the probability set. The observation to use is that there always exists functions
(uv(x, ρ))di=1 such that

∇xvuv(x, ρ) = fv(x, ρ), for v ∈ {1, · · · , d}.

Example 1 (van der Pol). Consider the 2 dimensional Fokker-Planck equation

∂ρ

∂t
= −∇ · (ρ

(
x2

α(1− x2
1)− x2

)
) +

∂2ρ

∂x2
2

= ∇ · (ρ
(
−f1(x)
−f2(x)

)
),

where x = (x1, x2), f1(x, ρ) = x2 and f2(x, ρ) = (1− x2
1)− x2 +∇x2 log ρ(x). We let

u1(x) =

∫
f1(x, ρ)dx1 = x1x2,

and

u2(x) =

∫
f2(x, ρ)dx2 = (1− x2

1)x2 −
1

2
x2

2 + log ρ(x1, x2).

13This is a classical CFL condition for a lattice graph.
14The number of edges incident to any vertex i ∈ V .
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Then the Fokker-Planck equation becomes

∂ρ

∂t
= −∇ · (ρ

(
−∇x1u1(x)
−∇x2u2(x)

)
).

Based on the above observation, we naturally extend (3) to the semi-discretization of
(13)

dρi
dt

=
1

∆x2
{

d∑
v=1

∑
j∈Nv(i)

[uv(j, ρ)− uv(i, ρ)]+ρj −
d∑
v=1

∑
j∈Nv(i)

[uv(i, ρ)− uv(j, ρ)]+ρi}. (14)

We observe that (3) is a special case of (14). Similarly to Theorem 11, we can show that
the semi-discretization (14) is a consistent finite volume scheme for (13).

5. Numerical experiments

In this section, we illustrate the proposed semi-discretization with several numerical
experiments.

Example 2 (Nonlinear Fokker-Planck equation). We consider a nonlinear interaction-
diffusion equation in granular gas [4, 23],

∂ρ

∂t
= ∇ · [ρ∇

(
W ∗ ρ+ V (x)

)
] + β∆ρ,

where W (x, y) = 1
3‖x− y‖

3 and V (x) = ‖x‖2
2 with ‖ · ‖ the 2 norm in Rd, d = 1, 2.

The PDE has a unique stationary measure (Gibbs measure),

ρ∗(x) =
1

K
e
−

∫
Rd W (x,y)ρ∗(y)dy+V (x)

β , where K =

∫
Rd
e
−

∫
R2 W (x,y)ρ∗(y)dy+V (x)

β dx.

We apply (3) to discretize this PDE with β = 0.01:

dρi
dt

=
1

∆x2
{
∑
j∈N(i)

ρj(
n∑
i=1

wijρi −
n∑
j=1

wijρj + vj − vi + β log ρj − β log ρi)+

−
∑
j∈N(i)

ρi(
n∑
j=1

wijρj −
n∑
i=1

wijρi + vi − vj + β log ρi − β log ρj)+},

and further discretize in time with the forward Euler method (12) with time step ∆t = 10−4

and initial condition ρ0
i = 1

Le
− ‖x(i)‖

2

200 , L =
∑n

i=1 e
− ‖x(i)‖

2

200 .

When d = 1, we take a one dimensional lattice graph of [−5, 5] with ∆x = 0.5; see
Figure 1
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Figure 1. Example 2: 1-d.

When d = 2, we consider a two dimensional lattice graph of [−5, 5] × [−5, 5] with
∆x = 0.5; see Figure 2
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Figure 2. Example 2: 2-d.

It is known, see [10], that solutions of this PDE converge to the unique Gibbs measure,
which itself converges to a δ-measure supported at the origin when β → 0. In addition, the
solution converges to the Gibbs measure exponentially. We observe that (3) reflects all of
these behaviors and the free energy along solutions of (3) decreases exponentially.

Example 3 (Linear Fokker-Planck equation). We consider a linear Fokker-Planck equa-
tion

∂ρ

∂t
= ∇ · [ρ∇V (x)] + β∆ρ, (15)

with a potential function V (x) = ‖x‖4
4 − ‖x‖

2

2 . Here the underlying state is Rd, d = 1, 2.
In this case, the unique Gibbs measure is.

ρ∗(x) =
1

K
e
−V (x)

β , where K =

∫
Rd
e
−V (x)

β dx.
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We use (3) to approximate the solution of this PDE with β = 0.01,

dρi
dt

=
1

∆x2
{
∑
j∈N(i)

ρj(vj − vi + β log ρj − β log ρi)+

−
∑
j∈N(i)

ρi(vi − vj + β log ρi − β log ρj)+},

and further discretize in time by the forward Euler method (12) with time step ∆t = 10−4.

Initial condition is ρ0
i = 1

Le
− ‖x(i)‖

2

200 , L =
∑n

i=1 e
− ‖x(i)‖

2

200 .

If d = 1, we take a uniform discretization of [−5, 5] with ∆x = 0.5; see Figure 3.
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Figure 3. Example 3: 1-d.

If d = 2, we take a uniform discretization of [−5, 5]× [−5, 5] with ∆x = 0.5; see Figure
4.
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Figure 4. Example 3: 2-d.

Is is known, see [18], that the solution of the linear Fokker-Planck equation always con-
verges to the Gibbs measure exponentially. The computational results in both cases reflects
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this fact, in agreement with the discussion of Section 3. Note that here the potential func-
tion V (x) is not strictly convex. It is the strict convexity of the entropy in probability set
that plays the key role in convergence. This asymptotic convergence rate is fully determined
by λH(ρ∞) in Definition 6.

Example 4 (Hexagonal graph). We apply (3) with a regular hexagonal graph to ap-
proximate the solution of the linear Fokker-Planck equation (15), where ∆x =

√
3a and

a = 1
2
√

3
is the length of the hexagon side. We consider the potential function V (x) = ‖x‖2

2

and β = 0.01 in R2. We solve (3) similarly to Example 3.

(a) Hexagonal graph. (b) Gibbs measure.

Figure 5. Example 4.

A node in the hexagonal graph typically has 6 neighbors, while in the square lattice just
4. The two graphs represents two different discretization of the spatial variable. However,
in Theorem 5, we know that (3) always converges to its equilibrium, which is the discrete
Gibbs measure of current spatial discretization.

Example 5 (General Fokker-Planck equation). We consider the Fokker-Planck equation
[13]

∂ρ

∂t
+∇ · (ρ

(
x2

α(1− x2
1)− x2

)
) = β∆x2ρ,

whose underlying state is the stochastic van der Pol oscillator

dx1 = x2dt

dx2 = [α(1− x2
1)x2 − x1]dt+

√
2βdWt.

We apply the semi-discretization (14) to approximate the solution of this PDE,

dρi
dt

=
1

∆x2
{
∑

j∈N1(i)

ρj [u1j − u1i]+ −
∑

j∈N1(i)

ρi[u1i − u1j ]+

+
∑

j∈N2(i)

ρj [u2j − u2i]+ −
∑

j∈N2(i)

ρi[u2i − u2j ]+},

where i ∈ V ⊂ R2 and

u1i = −x1x2|(x1,x2)=i, u2i = −α(1− x2
1)x2 +

1

2
x2

2 + β log ρ(x1, x2)|(x1,x2)=i.
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Further, we discretize in time by the forward Euler method (12) with time step ∆t = 10−4.

Initial condition is ρ0
i = 1

Le
− ‖x(i)‖

2

200 , L =
∑n

i=1 e
− ‖x(i)‖

2

200 .

Let α = 1, β = 0.125, and consider a lattice graph on [−10, 10]×[−10, 10] with ∆x = 0.4.
The result in Figure 6 shows the obtained approximation of the stationary measure of the
stochastic van der Pol oscillator.
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Figure 6. Example 5. Stationary measure, van der Pol.

Similarly, we consider the Fokker-Planck equation

∂ρ

∂t
+∇ · (ρ

(
x2

−2ξωx2 + ωx1 − ω2rx3
1

)
) = β∆x2ρ,

associated with the stochastic Duffing oscillator

dx1 = x2dt

dx2 = [−2ξωx2 + ωx1 − ω2rx3
1]dt+

√
2βdWt.

Let ξ = 0.2, ω = 1, r = 0.1, β = 0.125 and a lattice graph of [−10, 10]× [−10, 10] with
∆x = 0.4. The computed invariant measure is shown in Figure 7.
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Figure 7. Example 5. Stationary measure, Duffing.

In these examples, we have shown that our discretization scheme (14) finds a two-peaks
stationary measure, even though the underlying Fokker-Planck equations are not gradient
flow type.

It is interesting to observe that, in the above two figures, stationary measures are
supported around the limit cycles of the oscillators. The two peaks in the stationary
measures reflect that there is slow and fast motion in the underlying dynamical systems;
namely, the two peaks are witness to the fact that there is a larger probability that a
trajectory at time t will be found in the slow motion region, see figure 8.
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Figure 8. The plot of stationary measure and limit cycle (red) of van der
Pol oscillator.
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6. Conclusion

We have derived a new semi-discretization scheme (3) for the PDE (1). In comparison
to other methods, our scheme (3) has the following advantages.

(1) Firstly, our scheme (3) works on a finite graph, which is a spatial discretization of
the underlying state. As a result of having this graph, we can handle a variety of
boundary conditions, e.g. zero-flux conditions or periodic conditions, and different
types of underlying states, such as Rd, open set of Rd, or Riemannian manifold.

(2) Secondly, we derive (3) from the viewpoint of free energy and optimal transport.
Hence, (3) can keep the gradient flow structure of (1). On one hand, this fact gives
that (3) is a well defined flow whose equilibria are discrete Gibbs measures; on the
other hand, solutions of (3) converge to a Gibbs measure with exponential rate.
This property allowed us to discretize (3) in time by a forward Euler scheme.

(3) Lastly, we bring a new twist to discretize the diffusion term, namely

1

∆x2

∑
j∈N(i)

(log ρj − log ρi)gij(ρ).

We called it Log-Laplacian, and it is quite different from commonly known centered
differences or the Graph Laplacian. Although the log term brings some nonlinear-
ities into the algorithm, it also brings many benefits. One is that solutions of (3)
always stay in Po(G), and thus remain positive and conserve the total probability
automatically. The other is that the scheme naturally inherits the convexity of the
entropy, a fact which plays a critical role in the convergence result.

Our results also open the door to many new research questions. “What is the asymp-
totic convergence rate of (3)?” This rate certainly depends on the boundary conditions
of the PDE and on the explicit form of the interaction potential, and it deserves more
investigation. In future works, we will study this problem and work on other gradient flow
types of advection diffusion equations.
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7. Appendix

In general, it appears to be very difficult to obtain sharp information on the asymptotic
convergence rates of Theorem 7, namely the quantity λF (ρ) there. Here, we consider a
simple 1-d model problem, for which exact formulas for λF (ρ) can be given, and we can
highlight the dependence of these convergence rates on the graph structure (hence the
boundary conditions of the PDE).

A 1-d model problem. Suppose that the free energy contains only the linear entropy
term, so that the gradient flow is the heat equation:

∂ρ

∂t
= ∆ρ, x ∈ (a, b). (16)

Here, we consider either (i) Neumann boundary conditions (zero flux) ∂ρ
∂x |x=a = ∂ρ

∂x |x=b = 0,
or (ii) periodic boundary conditions ρ(t, a) = ρ(t, b).

We approximate the solution of (16) by (3), with a uniform discretization ∆x = b−a
n−1 :

dρi
dt

=
1

∆x2
{
∑
j∈N(i)

ρj(log ρj − log ρi)+ −
∑
j∈N(i)

ρi(log ρi − log ρj)+}. (17)
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The above two types of boundary conditions lead to distinct graph structures.
(i) A lattice graph Ln:

(ii) A cycle graph Cn:

In both cases, (17) is the gradient flow of the discrete linear entropy

H(ρ) =

n∑
i=1

ρi log ρi,

and the unique Gibbs measure is ρ∞ = ( 1
n , · · · ,

1
n). We are going to estimate how fast the

solution ρ(t) of the semi-discretization scheme (17) converges to the equilibrium ρ∞.

As we have seen in Theorem 7, the asymptotic convergence rates are determined by
λF (ρ):

λH(ρ∞) = min
Φ∈Rn

{ 1

∆x4

∑
(i,j)∈E

∑
(k,l)∈E

hij,kl(Φi − Φj)+(Φk − Φl)+ :

∑
(i,j)∈E

(
Φi − Φj

∆x
)2
+ρi = 1},

(18)

where

hij,kl = fik + fjl − fil − fjk, and fij(ρ
∞) =

∂2

∂ρi∂ρj
H(ρ)|ρ=ρ∞ =


1

ρ∞i
if i = j;

0 if i 6= j.

For the present model, we can find exact values of (18) for the above two graphs.

Theorem 13. We have

λH(ρ∞) =
π2

(b− a)2
+ o(1), (Ln)

and

λH(ρ∞) =
4π2

(b− a)2
+ o(1). (Cn)

Proof. First, consider the lattice graph Ln. Without loss of generality, let (Φi)
n
i=1 in (18)

satisfy the relation

Φ1 ≥ Φ2 ≥ · · · ≥ Φn. (19)

Denote ξ := (ξi)
n−1
i=1 ∈ Rn−1

+ by

ξi :=
Φi+1 − Φi√

n∆x
, 1 ≤ i ≤ n, (20)
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and substitute ρ∞ into (18), to obtain

λH(ρ∞) = min
ξ∈Rn−1

+

{ 1

∆x2
ξTAξ : ξT ξ = 1},

where

A =



2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


∈ R(n−1)×(n−1).

It is simple to observe that A is positive definite and that15

λH(ρ∞) =
1

∆x2
× (the smallest eigenvalue of A) =

1
(b−a)2

(n−1)2

[2− 2 cos(
π

n− 1
)]

=
π2

(b− a)2
+ o(1).

Next, we analyze the convergence rate for the cycle graph Cn. Again we assume the
relation (19) and let ξ as in (20). Since Cn has one more edge than Ln, we let η ∈ R:

η :=
Φ1 − Φn√
n∆x

=

n−1∑
i=1

ξi.

Substituting ρ∞ into (18), we have

λH(ρ∞) = min
(ξ,η)∈Rn+

{ 1

∆x2
[ξTAξ + 2ξ1η + 2ξn−1η + 2η2] :

ξT ξ + η2 = 1, η =
n−1∑
i=1

ξi}.
(21)

The following transformations reduce (21) to a simpler eigenvalue problem. Let

(ξ, η)T = PξT , where P =

(
I

1T

)
∈ Rn×(n−1)

with the identity matrix I ∈ R(n−1)×(n−1) and 1 ∈ Rn−1 being the vector of all 1’s. Then,
(21) becomes

λH(ρ∞) = min
ξ∈Rn−1

+

{ 1

∆x2
(Pξ)TB(Pξ) : (Pξ)T (Pξ) = 1}, (22)

where

B =

(
A bT

b 2

)
∈ Rn×n with bT ∈ Rn−1, b = (1, 0, · · · , 0, 1),

and A is as above.

Below, we compute (22). First, we give explicit formulas for the eigenvalues and eigen-
vectors of B.

15Here the eigenvector of A corresponding to the smallest eigenvalue satisfies the assumption (19).
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Lemma 14. Let n ≥ 3. For each k = 0, 1, . . . , n− 1, the eigenvalues of B are

λk = 2− 2 cos(
2kπ

n
).

For k = 0, 1, · · · , n− 1, the associated eigenvectors in un-normalized form are:

vk = (vk(j))
n
j=1, wk = (wk(j))

n
j=1,

where, for j = 1, · · · , n− 1,

vk(j) = sin(
2πkj

n
), wk(j) = cos(

2πkj

n
);

and when j = n,

vk(n) = − sin(
2πkj

n
), wk(j) = − cos(

2πkj

n
).

Proof. The proof is by direct computation. We just show the details for the case of j = 1.
We have

(Bvk)(1) =2vk(1)− vk(2) + vk(n)

=2 sin(
2πk

n
)− sin(

2 · 2πk
n

)− 0 By double angle formula

=(1− 2 cos
2kπ

n
)vk(1).

And

(Bwk)(1) =2wk(1)− wk(2) + wk(n)

=2 cos(
2πk

n
)− cos(

2 · 2πk
n

) + 1 By double angle formula

=(1− 2 cos
2kπ

n
)wk(1).

�

Note that in Lemma 14, many eigenvalues are repeated. As a consequence, obviously
there are only two eigenvectors associated to each repeated eigenvalues, and not four; the
repeating eigenvalues, in fact, have identical pairs vk, wk, up to sign. However, the eigen-
value equal to 0 is simple, with associated eigenvector w0 = (1, · · · , 1,−1)T . Moreover,
aside from this 0 eigenvalue, all other eigenvalues are positive.

Now, observe that P Tw = 0, and therefore the matrix V = [w,P ] is invertible and

BV = V

[
0 0
0 C

]
,

where C ∈ Rn−1,n−1. Further, notice that P TP is positive definite and thus it has a unique
positive definite square root (P TP )1/2. Thus, ξTP TBPξ, subject to (Pξ)TPξ = 1, can be
rewritten as

ξTP TBPξ = ξTP TPCξ = ξT (P TP )1/2(P TP )1/2C(P TP )−1/2(P TP )1/2ξ

and thus, with x = (P TP )1/2ξ, we end up with the problem

min
x: xT x=1

xT
[
(P TP )1/2C(P TP )−1/2

]
x .
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Finally, we notice that the matrix
[
(P TP )1/2C(P TP )−1/2

]
is symmetric, and it is obviously

similar to C, so that indeed

min
x: xT x=1

xT
[
(P TP )1/2C(P TP )−1/2

]
x =

min
ξ∈Rn−1

+

{(Pξ)TB(Pξ) : (Pξ)T (Pξ) = 1} = The second smallest eigenvalue of B.
(23)

Putting it all together, (22) gives

λH(ρ∞) =
1

∆x2
(the second smallest eigenvalue of B)

=
1

(b−a)2

(n−1)2

[2− 2 cos(
2π

n
)] =

4π2

(b− a)2
+ o(1),

and the proof of Theorem 13 is completed. �

From Theorem 13, we see that the graph structure plays a key role in the convergence
rate. In particular, the cyclic graph structure in the above model gives a decay rate 4 times
that of the lattice case. Although the above model is for the linear entropy, Theorem 7
indicates more than that. The convergence rate λF (ρ) holds for the entire free energy,
which can contain the interaction energy 1

2

∑n
i=1

∑n
j=1wijρiρj . The question of “how the

graph structure and interaction energy affect the convergence rate” deserves further study.
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