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Abstract. A successive continuation method for locating connecting orbits in parametrized
systems of autonomous ODEs was considered in [10]. In this paper we present an improved algorithm
for locating and continuing connecting orbits, which includes a new algorithm for the continuation
of invariant subspaces. The latter algorithm is of independent interest, and can be used in different
contexts than the present one.
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1. Introduction. Homoclinic and heteroclinic orbits, also called connecting or-
bits, are trajectories connecting equilibrium points of a system of autonomous ordinary
differential equations. Computation of connecting orbits is becoming increasingly im-
portant, both in dynamical systems research, such as understanding chaotic dynamics,
and in a variety of applied problems, including wave propagation in combustion mod-
els, chemical reactions, neuronal interactions, solitary waves in fluid, solitons in non-
linear optical fiber, and communication processes in living cells, to name a few. The
corresponding numerical problem is that of finding solutions (u(t), λ) of the system
of autonomous ODEs

u′(t) − f(u(t), λ) = 0, u(·), f(·, ·) ∈ R
n, λ ∈ R

nλ ,(1)

lim
t→−∞

u(t) = u0, lim
t→+∞

u(t) = u1.(2)

Most algorithms for the numerical analysis of connecting orbits reduce (1), (2) to a
boundary value problem on a finite interval using linear or higher order approximations
of stable and unstable manifolds near u0 and u1, respectively. See recent papers by
Champneys, Kuznetsov, Sandstede [4], by Doedel, Friedman, Kunin [10] and Moore
[14] for the history of the question and the bibliography. Note that in the last work
an alternative approach was used based on the arclength parametrization, instead of
using time t as a parameter.

The algorithms in [4] use a version of Beyn’s continuation algorithm based on
projection boundary conditions ([1], [2]). They were implemented in a set of routines,
HomCont, which are currently part of AUTO97 [8]. HomCont has capabilities for detailed
bifurcation analysis of homoclinic orbits and some bifurcations of heteroclinic orbits.
It has limited capabilities for locating connecting orbits, namely, a simplified version
of the algorithm in [10].

The algorithms in [10] have their primary focus on locating connecting orbits
and use a modification of a continuation algorithm based on projection boundary
conditions (Friedman, Doedel [12]). They were implemented in an experimental code
based on AUTO94 [9].
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In order to have a well posed problem, it is necessary for the boundary conditions
to be sufficiently smooth with respect to parameters. Both in [4] and [10], the bound-
ary conditions are defined with respect to bases of stable or unstable eigenspaces
of fu(u0, λ) and fu(u1, λ). The approach in [4] is to compute an orthonormal basis
in the appropriate eigenspace, at each pseudo-arclength continuation step, using a
“black box” routine based on the real Schur factorization and then to adapt this basis
to be smooth with respect to parameters, using a technique due to Beyn [2, App. C]
which amounts to the solution of a linear system of the dimension of the eigenspace
in question. The approach in [10] is to compute initially an orthonormal basis in the
appropriate eigenspace via the real Schur factorization and then to continue the real
Schur factorization equations (as a part of boundary conditions). At the same time
precise convergence of the algorithm in [10] is not clear, and it is somewhat cumber-
some to use. In some recent work, [6], Dieci and Eirola provide a general differential
equations framework for continuation of the block Schur factorization as well as other
matrix factorizations. Reference [6] includes a comprehensive set of references for
smooth matrix factorization for parameter dependent matrices.

In this paper we present an improved algorithm for locating and continuing con-
necting orbits, which includes a new algorithm for the continuation of invariant sub-
spaces (CIS). This CIS algorithm is based on iterative refinement techniques originally
due to Stewart [15], and later revisited by Demmel [5]. We provide some new twists
to these techniques: (i) we justify these iterative refinement techniques using the dif-
ferential equations which model continuation of block Schur forms, and (ii) we make
use of these differential equations to obtain an accurate approximation of the relevant
invariant subspace.

In the end, the new algorithm is more efficient than the algorithms in [4] and [10]
and is very robust. In particular, it provides several possible safeguards against fast
variation of eigenvalues. It has been implemented in an experimental code based on
AUTO97which is essentially a modification of the HomCont part of AUTO97 to include the
algorithm in [10] for locating and continuing connecting orbits and the CIS algorithm,
while preserving the bifurcation analysis part of HomCont.

2. An improved algorithm for locating and continuing connecting or-
bits. Assume, for simplicity of notation, that the fixed points u0 and u1 are hyper-
bolic, and the eigenvalues of fu(u0, λ) and fu(u1, λ), respectively, satisfy

Reµ0,n ≤ ... ≤ Reµ0,n0+1 < 0 < µ0,1 < Reµ0,2 ≤ ... ≤ Reµ0,n0
,

Reµ1,1 ≤ ... ≤ Reµ1,n1
< 0 < Reµ1,n1+1 ≤ ... ≤ Reµ1,n.

In this paper, we will assume that the matrices fu(u0,1, λ) are smooth functions of λ
(for λ in an appropriate subset of R

nλ).
The method extends to the case µ0,1 = 0, as in [4]. It also extends to the

cases of complex and multiple µ0,1 by a simple modification of Step 0, eq. (11)
below, of the algorithm (see [10, Section 4.3] for a computational example). The
algorithm requires evaluation of various projections associated with the eigenspaces
of fu(u0, λ) and fu(u1, λ). Initially these projections are constructed using the real
Schur factorizations [13]

fu(u0, λ) = Q0R0Q
T
0 , fu(u1, λ) = Q1R1Q

T
1 .

The first factorization has been chosen so that the first n0 columns q0,1, ..., q0,n0
of

Q0 form an orthonormal basis of the right invariant subspace S0 of fu(u0, λ), corre-
sponding to µ0,1, ..., µ0,n0

, and the remaining n − n0 columns q0,n0+1, ..., q0,n of Q0
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form an orthonormal basis of the orthogonal complement S⊥
0 . Similarly, the first n1

columns q1,1, ..., q1,n of Q1 form an orthonormal basis of the right invariant subspace
S1 of fu(u1, λ), corresponding to µ1,1, ..., µ1,n1

, and the remaining n − n1 columns
q1,n1+1, ..., q1,n of Q1 form an orthonormal basis of the orthogonal complement S⊥

1 .
In the algorithm below the matrices Q0(λ) and Q1(λ) are assumed to be computed at
each continuation step by a “black box” routine, described in Section 3, which ensures
their continuity.

The approximate finite interval problem is to find a branch of solutions (u(t), λ, u0,
u1, T ), u ∈ C1([0, 1], Rn), λ ∈ R

nλ , provided nλ = n − (n0 + n1) + 2; nλ ≥ 0,
u0, u1 ∈ R

n, T > 0, is the length of the time interval, for some small ǫ0, ǫ1 > 0, of the
time-scaled differential equation

u′(t) − Tf(u(t), λ) = 0, 0 < t < 1,(3)

subject to left boundary conditions

(u(0) − u0) · q0,n0+i(u0, λ) = 0, i = 1, ..., n − n0,(4)

|u(0) − u0| = ǫ0,(5)

right boundary conditions

(u(1) − u1) · q1,n1+i(u1, λ) = 0, i = 1, ..., n − n1.(6)

|u(1) − u1| = ǫ1(7)

and stationary state conditions

f(u0, λ) = 0,(8)

f(u1, λ) = 0.(9)

Remark 1. Initially, we integrate in time to obtain a typically crude orbit with
initial point u(0) ∈ S0 but the terminal point u(1) /∈ S1, in general. Hence τi defined
by

τi = (u(1) − u1) · q1,n1+i(u1, λ)/ǫ1, i = 1, ..., nτ = n − n1,(10)

are, in general, nonzero, and the initial connecting orbit on the branch of connecting
orbits is found via a sequence of homotopies that locate successive zero intercepts of
the τj in (10). In each homotopy step we compute a branch, i.e., a one-dimensional
manifold, of solutions. For this we must have nc−nv = n−1, where nc is the number
of constraints, and nv is the number of scalar variables. We keep u(1) free, while u (0)
is allowed to vary on the surface of the sphere in S0 of radius ǫ0 : (i) according to
equation (12) below at steps 0 through n0, when λ is fixed and ci in (12) play the role
of the control parameters; and (ii) according to equation (5) at steps n0 + 1 through
n0 + nλ , when λ varies.

Let S0,k, k = 1, ..., n0, be the right invariant subspace of fu(u0, λ0) corresponding
to the eigenvalues µ0,1, ..., µ0,k. Then the first k columns q0,1, ..., q0,k of Q0 form an
orthonormal basis of S0,k and the remaining n− k columns q0,k+1, ..., q0,n of Q0 form
an orthonormal basis of the orthogonal complement S⊥

0,k.
1. Initialization.

Step 0. Initialize the problem parameter vector λ, and set the algorithm parameters
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ǫ0 and T to small, positive values, so that u(t) is approximately constant on [0, T ].
Set

u(t) = u0 + ǫ0c1q01, 0 ≤ t ≤ 1,(11)

or

u(t) = u0 + ǫ0c1q01e
Reµ0,1t, 0 ≤ t ≤ 1, Reµ0,1 > 0,

ǫ1 = |u(1) − u1|, c1 = 1, or −1 and c2 = ... = cn0
= 0.

2. Locating a connecting orbit, λ is fixed.
Step 1. Time integration to get an initial orbit. Compute a solution branch to the
system (3), (4), (10), (7), and

(u (0) − u0) · q0,i(u0, λ)/ǫ0 − ci = 0, i = 1, ..., nc = n0,(12)

in the direction of increasing T , until u(1) reaches an ǫ1-neighborhood of u1, for some
ǫ1 > 0. Scalar variables are T , ǫ1 ∈ R, τ ∈ R

n−n1 . There are n differential equations
with nc = 2n − n1 + 1 constraints and nv = n − n1 + 2 scalar variables, and hence
nc−nv = n−1. In practice one typically continues until ǫ1 stops decreasing, its value
being not necessarily small.
Step k, k = 2, ..., n0 (for n0 > 1). Compute a branch of solutions to the system
(3)-(5), (10), (7), (12) to locate a zero of, say, τk−1 (while τ1, ..., τk−2 = 0, fixed). Free
scalar variables are ǫ1, c1, ..., ck, τk−1, ..., τn−n1

. There are n differential equations
with nc = 2n − n1 + 2 constraints and nv = n − n1 + 3 scalar variables, and hence
nc − nv = n − 1.

3. Locating a connecting orbit, λ varies.
Step k, k = n0 + 1, ...,n0 + nλ ≡ n − n1 + 1. Compute a branch of solutions to the
system (3)-(5), (10), (7)-(9) to locate a zero of, say, τk−1(while τ1, ..., τk−2 = 0, fixed).
Free scalar variables are ǫ1, τk−1, ..., τn−n1

, λ1, ..., λk−n0
∈ R, u0, u1 ∈ R

n. There are n
differential equations with nc = 4n−n0−n1 +2 constraints and nv = 3n−n0−n1 +3
scalar variables, and hence nc − nv = n − 1.

4. Increasing the accuracy of the connecting orbit.
Compute a branch of solutions to the system (3)-(9) in the direction of decreasing ǫ1
until it is ‘small’. Free scalar variables are ǫ1, T, λ1, ..., λnλ−1 ∈ R, u0, u1 ∈ R

n. As
before, nc = 4n − n0 − n1 + 2, nv = 3n − n0 − n1 + 3.

5. Continue the connecting orbit.
Compute a branch of solutions to the system (3)-(9). Free variables are the (real)
scalar T , and λ1, . . . , λnλ

, and the vectors u0, u1 ∈ R
n. As before, nc = 4n−n0−n1+2,

nv = 3n − n0 − n1 + 3. Alternatively, a phase condition

∫ 1

0

(u
′

(t) − q
′

(t)) · u
′′

(t) dt = 0(13)

may be added if T is kept fixed and ǫ0 and ǫ1 are allowed to vary. Here q(t) is a
previously computed orbit on the branch.

Remark 2. In principle, our algorithm of continuation of invariant subspaces of
fu(u0, λ) and fu(u1, λ) in Section 3 breaks down only if two eigenvalues, one associated
with the subspace being continued and one not, approach the same point on the
imaginary axis (one from the left and one from the right). In this case the algorithm
should stop anyway since a bifurcation is being approached.
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3. Continuation of invariant subspaces. Let A(λ) ∈ R
n×n denote one of

the following: fu(u0, λ), fu(u1, λ). The basic continuation algorithm requires at each
pseudo-arclength continuation step computation of a right invariant (typically, stable
or unstable) m-dimensional subspace S(λ) of A(λ). In general, the function A is
smooth in λ (say, differentiable), and it is important that S(λ) be also smooth, as
otherwise convergence difficulties can be expected.

In this section we show how to constructively obtain smooth and orthogonal
Q(λ) = [Q1(λ) Q2(λ)] ∈ R

n×n, Q1(λ) ∈ R
n×m, Q2(λ) ∈ R

n×(n−m), so that Q1(λ)
span S(λ), and Q2(λ) span the orthogonal complement S(λ)⊥. Moreover, if we let
Sk(λ), k = 1, ..., m, be the right invariant subspaces of A(λ) corresponding to the
first k eigenvalues µ1, ..., µk of A, then the first k columns q1, ..., qk of Q(λ) form an
orthonormal basis of Sk(λ), and the remaining n − k columns form an orthonormal
basis of the orthogonal complement Sk(λ)⊥.

To justify our construction, we should recall that in our continuation procedure
we parametrize a solution branch in terms of so called pseudo-arclength; let s denote
the pseudo-arclength variable1. Thus, both fixed points u0 and u1, see (8)–(9), as
well as the parameter(s) λ are smooth functions of s. The matrix valued function
A : λ ∈ R

nλ → R
n×n can thus be viewed as a smooth function from s ∈ R → R

n×n. As
a consequence, we can and will think of invariant subspaces’ continuation with respect
to the scalar pseudo-arclength variable s. For this reason, we will abuse notation and
freely write A(s) for A(λ). In what follows, a “̇ ” will indicate differentiation with
respect to s.

Remark 3. If nλ = 1 in (1), then one may be able to continue in λ itself, rather
than reparametrizing the problem by arclength.

The basic issue is the following: Suppose that initially we have the (real) block
Schur factorization

A(0) = Q(0)R(0)QT (0), Q(0) = [Q1(0) Q2(0)],(14)

where R(0) is block upper triangular (Rii(0), i = 1, 2, are not required to be triangu-
lar)

R(0) =

[
R11(0) R12(0)

0 R22(0)

]
,

the columns of Q1(0) span an invariant subspace S(0) of A(0), and the columns of
Q2(0) span the orthogonal complement S(0)⊥. We want to obtain a block Schur
factorization for the matrix A(s), close to A(0), exploiting (if possible) the work
already done to obtain the block Schur form for A(0).

This problem fits within the general framework developed in [6]. Suppose that
the matrix A(s) has two groups of eigenvalues, Λ1(s) and Λ2(s), which stay disjoint
for all s around 0. Then, in an interval about s = 0 there is the smooth factorization

A(s) = Q(s)R(s)QT (s), Q(s) = [Q1(s) Q2(s)],(15)

where R(s) is in block Schur form R(s) =

[
R11(s) R12(s)

0 R22(s)

]
. Here, R11 has eigen-

values Λ1 and R22 has eigenvalues Λ2. A constructive procedure to obtain the fac-
torization QRQT of A can be based upon differential equations models. As in [6], we

1Typically, this is the general procedure of most practical continuation algorithms; e.g., this is
the strategy implemented in AUTO.
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differentiate the relations A = QRQT and QT Q = I, let H := QT Q̇, and obtain

Ṙ = QT ȦQ + RH − HR ,(16)

Q̇ = QH .(17)

Now we use triangularity of R and the fact that H must be skew symmetric, HT =
−H ; we partition H in the same way as R, and then can determine H12 by solving
the Sylvester equation

R22H
T
12 − HT

12R11 = (QT ȦQ)21 .(18)

The blocks H11 and H22 are not uniquely determined, and we may set them to 0
(in any case, they must be chosen skew symmetric). Thus, in principle, we can solve
(16)-(17) subject to initial conditions (ICs) obtained from the factorization of A(0),
in order to obtain a smooth path of block Schur factorizations.

We can accumulate the transformations in such a way that we are always looking
for corrections close to the identity. To be more precise, we can rewrite (for all s)

Q(s) = Q(0)U(s) , with U(0) = I ,(19)

and use this in (17), thereby obtaining a differential equation for U, U̇ = UH (notice
that H is the same as before). We now look for exact solutions to the U differential

equation. For all s, partition U(s) = [U1(s) U2(s)] =

[
U11(s) U12(s)
U21(s) U22(s)

]
, with same

block dimensions as R. Since U(0) = I, there is an open interval about 0, call it I0,

where we can require that U1 has the structure U1 =

[
I

U21U
−1
11

]
U11. Next, for all

s ∈ I0, we define

Y (s) := U21(s)U
−1
11 (s) ,(20)

use the orthogonality relation UT
1 U1 = I, and choose U11 symmetric2, to obtain

U1 =

[
I
Y

]
(I+Y T Y )−1/2. In a similar way, for U2 we use UT

2 U2 = I and UT
1 U2 = 0,

to eventually obtain for every s ∈ I0

U(s) =

[(
I
Y

)
(I + Y T Y )−1/2

(
−Y T

I

)
(I + Y Y T )−1/2

]
.(21)

Thus, we need to find the function Y ∈ R
(n−m)×m in (21). For any given s ∈ I0,

define E(s) by

QT (0)A(s)Q(0) = QT (0)[A(0)+(A(s)−A(0))]Q(0) =: R(0)+E(s) =

[
R̂11 R̂12

E21 R̂22

]
.

(22)
Now we substitute Q(s) given by (19), (21) and A(s) obtained from (22) into the
invariant subspace relation:

QT
2 (s)A(s)Q1(s) = 0,(23)

2This way, U
−1

11
is the unique positive definite square root of I + Y T Y .
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to obtain the following algebraic Riccati equation for Y :

R̂22Y − Y R̂11 = −E21 + Y R̂12Y,(24)

or

F (Y ) = 0 , F (Y ) := R̂22Y − Y R̂11 + E21 − Y R̂12Y.(25)

Remark 4. If we think of S(0) and Q(0) as approximations to S(s) and Q(s), for
s given, then we may interpret the form (21) as well as the resulting Riccati equation
(24) as an iterative refinement technique to improve the accuracy of computed invari-
ant subspaces. This is the viewpoint in the works of Stewart [15], Dongarra, Moler
and Wilkinson [11], Chatelin [3], and Demmel [5]. However, we prefer to think of (21)
as the exact solution at a given s of the differential equation U̇ = UH (see (17) and
(19)). We will exploit this fact later.

How to solve (24). The following two iterative methods have been often advocated
to solve the Riccati equation (24) (or (25)):

1. The iteration [15]:

R̂22∆k − ∆kR̂11 = −F (Yk−1) , Yk = ∆k + Yk−1 ,(26)

with Y0 = 0, k = 1, 2, . . ..
2. The Newton iteration [5]:

(R̂22 − Yk−1R̂12)∆k − ∆k(R̂11 + R̂12Yk−1) = −F (Yk−1) , Yk = ∆k + Yk−1 ,(27)

with Y0 = 0, k = 1, 2, . . ..
Therefore, we need to solve a Sylvester equation in the inner loop of the iterative

refinement. This can be effectively done by using LAPACK routines. As shown in the
convergence analysis for the iterations (26) and (27) by Stewart [15] and Demmel [5],
respectively, if we let

κ =
‖R̂12‖F ‖E21‖F

sep2(R̂11, R̂22)
,(28)

then under the assumptions κ < 1/4 and κ < 1/12, the iterations (26) and (27)
converge, linearly and quadratically, respectively. In (28), ‖ · ‖F is the Frobenius
norm of a matrix.

The parameter κ can be interpreted as follows. Its numerator, ‖R̂12‖F ‖E21‖F

measures the quality of the initial approximate invariant subspace: it will be small
when the approximation is good, and the factor ‖E21‖F will be zero if and only if the

initial approximation is in fact correct. The function sep(R̂11, R̂22) in the denominator

is the smallest singular value of the operator which maps Y to R̂22Y − Y R̂11, and
it measures the separation of the spectra of R̂11 and R̂22. If sep(R̂11, R̂22) is small,

it means that some eigenvalues of R̂11 and R̂22 can be made to merge with small
changes in R̂ii; this means that the invariant subspaces belonging to the two parts of
the spectrum are unstable and hard to compute. Thus κ will be small if we start with
a good initial approximate invariant subspace and if the eigenvalues associated with
that subspace are well separated from the remainder of the spectrum. Oversimplifying,
both algorithms converge if (i) the spectra of R11(0) and R22(0) are far enough apart,
and (ii) the perturbation E(s) of R(0) is small enough.

Remark 5. We point to some additional safeguards, which ensure proper perfor-
mance of the algorithms (26) and (27).
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1. Note that from (22) we have ‖E21‖F ≤ ‖E‖F ≤ ‖A(s) − A(0)‖F . Hence,
from (28), if

α‖A(s) − A(0)‖F ≤
1

4
, α =

‖R̂12‖F

sep2(R̂11, R̂22)
,(29)

then κ < 1/4. Therefore we are guaranteed that for any matrix X ∈ R
n×n with

α‖X −A(0)‖F ≤ 1
4 we can find the invariant subspaces S and S⊥ by Algorithm (26),

say. And no eigenvalue of A |S can ‘merge’ with an eigenvalue from A |S⊥ , where A |S
denotes the restriction of A to S, etc.. In other words, the eigenvalues of A |S and
A |S⊥ remain separated for all matrices in a ball around A(0) of radius 1/(4α). Thus,
employing the safeguard (29) ensures that the iterations (26) and (27) will diverge
only when a small perturbation A(s) of A(0) will make an eigenvalue from S(s) and
an eigenvalue from S(s)⊥ coalesce.

2. The quantity ‖E21‖F /sep(T̂11, T̂22) can be interpreted [13, pp. 347-348] as an
estimate from above of the tangent of the angle between the subspaces S(0) and S(s)
spanned by Q1(0) and Q1(s), respectively. Hence the convergence of our algorithms
implies that this angle always stays between 0 and π/2. It is useful to monitor this
angle and, in some situations, control it. A convenient measure in this case is the sine
of this angle given [13, p. 77] by

dist(S(0), S(s)) =
√

1 − σ2
min

(
QT

1 (0)Q1(s)
)
.

Taking into account that by (15), (19), and (21)

Q1(s) = (Q1(0) + Q2(0)Y )(I + Y T Y )−1/2,

this reduces to

dist(S(0), S(s)) =

√
1 − σ2

min (I + Y T Y )
−1/2

=
‖Y ‖2√

1 + ‖Y ‖
2
2

(30)

The previous discussion has been motivated by the standard linear algebra view-
point, that is of “how to refine the initial trivial estimate U = I”. In particular,
this gave us the initial conditions Y0 = 0 for the iterations (26) and (27). However,
from the point of view of continuation, this is usually not the best strategy, since
it amounts to starting with the old solution as initial guess. We can do better by
using the differential equation formulation and taking an Euler approximation to the
solution.

Recall that the matrix Y , solution of (24), is related to U by (20): Y (s) =

U21(s)U
−1
11 (s) for all s in a neighborhood of 0. Here, U1 =

[
U11

U21

]
, and U = [U1 U2]

solves the differential equation U̇ = UH (see (17)–(19)). That is

U̇1 = U1H11 + U2H21, U̇2 = −U1H
T
21 + U2H22.(31)

Recall that the factor H21 is determined by (18), but there is freedom insofar as
the choice of H11 and H22. We now show that the range of s–values guaranteeing
invertibility of U11(s) is unaffected by the choice of H11 and H22 in (31), and hence
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there is little reason not to set H11 and H22 both equal to 0 when we represent U as
in (21).

Lemma 3.1. Let U = [U1 U2] be the solution of (31) with U(0) = I, obtained
by setting H11 = 0 and H22 = 0 in (31), while determining H21 by (18). Let
Ũ(s) = [Ũ1 Ũ2] be the solution of (31) with Ũ(0) = I, and H11 and H22 nonzero
skew symmetric matrices. Then, we have (for all s)

Ũ1(s) = U1(s)C(s) ,

where C(s) ∈ R
m×m is orthogonal. Therefore, partitioning U1 =

[
U11

U21

]
, and simi-

larly for Ũ1, we have Y (s) = U21(s)U
−1
11 (s) = Ũ21(s)Ũ

−1
11 (s) for the same range of s

values.
Proof. For all s, let p(λ, s) be the characteristic polynomial of the matrix A(s).

Then, we have the factorization p(λ, s) = p1(λ, s)p2(λ, s) where the factors p1 and
p2 have no common root, and the roots of p1 give Λ1, while the roots of p2 give Λ2.
Thus, we have

p1(Q
T (0)A(s)Q(0), s)U1(s) = 0, and

p1(Q
T (0)A(s)Q(0), s)Ũ1(s) = 0.

Therefore, since rank(p1(A(s), s)) = n − m, then Ũ1(s) = U1(s)C(s), where C(s) is
orthogonal (since ŨT

1 (s)Ũ1(s) = I).
Now, because of Lemma 3.1 we can just integrate the differential equations (31)

with H11 and H22 equal to 0:

[U̇1 U̇2] = [U2H21 − U1H
T
21] , U(0) = I .

So, the idea is to approximate the solution of these differential equations from 0 to
s in order to get an approximation V1 to U1(s) and thus obtain an approximation to

Y (s) from V21V
−1
11 , where we have partitioned V1 =

[
V11

V21

]
. We use a forward Euler

step to obtain V1.
3

1. Initialization.
Set U(0) = I and obtain H21(0) from solving the Sylvester equation

R22(0)H21(0) − H21(0)R11(0) = − (0 I)Q(0)T Ȧ(0)Q(0) (I 0)
T

.(32)

2. Euler step.
Let V1 = U1(0)+ sU2(0)H21(0). Obtain initial guess for the Riccati equation (24) (or
(25)):

Y0 = V21V
−1
11 .(33)

Remark 6. We now look at how this new initial guess Y0 in (33) impacts conver-
gence of the iterations (26) and (27). We also make some comments on expense.

3Use of the Euler step is an accepted standard in continuation algorithms, and it is the strategy
implemented in AUTO.
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1. Observe that the value of Y0 in (33) is nothing but Y0 = sH21(0). It is easy
to verify that this is precisely the same approximation we would have obtained by
using a forward Euler step to approximate the solution at s of the differential equation
satisfied by Y .

2. By our construction, we see that Y0 in (33) is a second order approximation
(in s) to the exact solution Y (s). More precisely, from Taylor expansion at s = 0 of the
exact solution Y (s), we immediately get that Y (s) = sẎ (0)+O(s2) = sH21(0)+O(s2).
On the other hand, the initial guess Y0 = 0 is only an O(s) approximation to Y (s).

3. In practice, in (32), we do not have a close expression for Ȧ(0), but we can
replace it by the difference quotient (1/s)(A(s) − A(0)). With this choice, the value
of Y0 (defined as in (33)) turns out to be the solution of the Sylvester equation

R22(0)Y0 − Y0R11(0) = −E21.(34)

Since Ȧ(0) = (1/s)(A(s) − A(0)) + O(s2), the value of Y0 in (34) is still a O(s2)
approximation to the exact Y (s).

4. The estimates (and proof) of convergence for (26) and (27) relied on the
value of κ in (28) to be sufficiently small. Much the same arguments can be used for
the refined guess in (33), by the following simple modification. In U(s) in (21), we let
Y (s) = Y0 + ∆Y and use this form of U in the invariant subspace relation (23). So
doing, we obtain the new Riccati equation

(R̂22 − Y0R̂12)∆Y − ∆Y (R̂11 + R̂12Y0) = −F (Y0) + ∆Y R12∆Y.(35)

Now, it is a simple verification that iterative solution of (35) by either of the two
iterations (26) or (27), appropriately reformulated for the unknown ∆Y , produces
precisely the same sequence as the original iterations on the unknown Y had they
been started with initial guess Y0 in (33). As a consequence, the convergence results
we quoted after (28) hold unchanged, except that we have a new κ value, call it κ̃ :

κ̃ =
‖R̂12‖F ‖F (Y0)‖F

sep2(R̃11, R̃22)
, R̃11 = R̂11 + R̂12Y0, R̃22 = R̂22 − Y0R̂12 .(36)

We now look at the ratio

κ̃

κ
=

‖F (Y0)‖F

‖E21‖F

(
sep(R̂11, R̂22)

sep(R̃11, R̃22)

)2

.

By our previous remark, F (Y0) is close to 0 at second order in s, whereas E21 is

only first order close to 0. To compare sep(R̃11, R̃22) with sep(R̂11, R̂22), we realize
that sep(R̃11, R̃22) is a second order approximation to sep(R11(s), R22(s)), whereas

sep(R̂11, R̂22) is only a first order approximation to the same quantity. Therefore, in

first approximation,
(

sep( bR11, bR22)

sep(R̃11,R̃22)

)2

is 1 + O(s/sep(R11(s), R22(s))). To summarize,

we have that

κ̃/κ = O(s),(37)

with an obvious improvement in the radius of convergence for both iterations (26)
and (27).
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5. By creating the initial guess Y0 from (33) we need to solve the Sylvester
equation (32), or (34). Typically, this involves Schur reduction of the matrices R11(0)
and R22(0), which is somewhat expensive. However, suppose we use the Newton

iteration (27); then, at each iteration step we need to Schur factor the matrices R̂11 +

R̂12Yk−1 and R̂22 −Yk−1R̂12. At convergence of Newton’s method, these are precisely
the matrices we will need for the next continuation step in (32). Therefore, no extra
factorizations are needed in this case. For a practical comparison of the iterations for
the two initial guesses (33) and Y0 = 0, we refer to the next section. More extensive
comparison and further details can be found in [7].

Remark 7. An alternative to our approach for continuing orthogonal invariant
subspaces could be easily obtained as follows. Let Q(0) : QT (0)A(0)Q(0) be a Schur
factorization of A(0), Q(0) = [Q1(0) Q2(0)] as usual, so that (say) Q1(0) spans the
invariant subspace relative to the eigenvalues with positive real parts. Next, consider
A(s) which has the same number as A(0) of eigenvalues with positive real part. Then,
one may think to take the ordered Schur factorization of the matrix A(s) : PT A(s)P ,
and partition P = [P1 P2] so that P1 spans the invariant subspace relative to the
eigenvalues with positive real part of A(s). In general, P1 is not smooth (i.e., it is
not true that P1 = Q1(0) + sQ̇1(0) + . . .). To enforce smoothness, we may solve an
orthogonal Procrustes problem and replace P1 with P1V , where V is the orthogonal
polar factor of PT

1 Q1(0) (see [13]). Essentially, this is the approach used by Beyn,
[2], and then implemented in HomCont, [4]. However, we believe that the approach we
have adopted is preferable to the one we just outlined. For one thing, the latter is
usually more expensive than our approach. Moreover, unlike the one we just outlined,
our approach to continuation of invariant subspaces is more in tune with the original
continuation problem: continuation of the subspaces influences the continuation step,
and using first derivative information (as we did to obtain (33)) is bound to reflect
genuine difficulties of the original differential equation (such as nearing a bifurcation)
into the continuation algorithm.

4. Example: Heteroclinic orbits in a 4-D singular perturbation prob-
lem . Consider the problem of finding traveling wave front solutions to the FitzHugh-
Nagumo equations with two diffusive variables

vt = vxx + v(v − a)(1 − v) − w, wt = δwxx + ǫ(v − γw),(38)

for small positive ǫ, where δ ranges between a small and large value. For δ small
this is a singularly perturbed reaction-diffusion system. In moving coordinates, v1 =
v(z), v2 = v

′

(z), w1 = w(z), w2 = w′(z) with z = t + cx, the reduced ODE is

v′1 = v2,

v′2 = cv2 − v1(1 − v1)(v1 − a) + w,(39)

w′

1 = w2,

w′

2 = [cw2 − ǫ(v1 − γw1)]/δ.

In [10] we located a heteroclinic orbit of (39). Here we first reproduced this result
with our new code and then located a heteroclinic orbit with δ = ǫ = 0.001, γ =
13.23529, a = 0.3, and c = 0.2571271. In this case n0 = n1 = 2, where the relevant
eigenvalues are µ0,1 = 0.6958, µ0,2 = 257.2, µ1,1 = −0.4247, and µ1,2 = −0.06553. We
then performed a two parameter continuation in (δ, c) in the direction of increasing δ,
see Fig. 1 for the bifurcation diagram and Fig. 2 for some typical solutions in (v1, t)
coordinates.
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We have implemented 4 methods to solve the Riccati equation: (i) the “Simple
Iteration” (26) with zero initial guess, (ii) Newton’s method (27) with zero initial
guess, (iii) Simple Iteration (26) with Euler initial guess, and (iv) Newton’s method
with Euler initial guess. The numerical results agree with our theoretical results; in
particular, the choice of the Euler initial guess is a big improvement with respect to
the simpler zero guess. Specifically, for the same pseudo-arclength continuation step
(it took 433 such steps to compute the branch), (iii) and (iv) required much fewer
iterations to converge than (i) and (ii). Some insight in the advantages gained by use
of the Euler guess is obtained by considering the typical convergence behavior of the
four methods (i)–(iv): on average, method (i) required 7 iterations for convergence,
method (ii) needed 5, method (iii) needed slightly more than 4, and method (iv)
required less than 3 iterations for convergence. In one exceptional case, methods (i)
and (ii) required as many as 25 iterations. Finally, (i) and (ii) failed to converge in
some cases (at the end of the continuation), because the continuation step was not
small enough, whereas (iii) and (iv) never failed to converge.

Labels 10, 11, 12, 14, and 15 mark local bifurcations (of the eigenvalues), while
label 13 marks a global bifurcation, the intersection of the current branch with the
branch c = 0 (the detailed analysis of these bifurcations will be given elsewhere). For
comparison, we repeated the computation of the above branch using HomCont (in
AUTO97), see Fig. 3. Note that in this case we have not suceeded in continuing the
original branch beyond the global bifurcation point and instead switched branches.
Indeed, by varying the continuation step size, with our code we could select the desired
branch at label 13, but we could not achieve the same result with HomCont. Though
we do not have a precise explanation for this difference in performance, we feel that
this example confirms our theoretical insight that our numerical method is more in
tune with the original continuation problem.
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Figure 1. Bifurcation diagram in (δ, c) coordinates. At label 10 (δ, c) = (0.3198,
0.2376), the eigenvalues are: µ0,1 = µ0,2 = 0.7406, µ1,1 = −0.4357, and µ1,2 =
−0.06502. At label 11 (δ, c) = (0.4462, 0.2265), the eigenvalues are: µ0,1 = µ0,2 =
0.6204, µ1,1 = −0.4409, and µ1,2 = −0.06565. The eigenvalues are complex between
the labels 10 and 11. At label 12 (δ, c) = (0.5085, 0.2202), the eigenvalues are: µ0,1 =
0.5098, µ0,2 = 0.6538, µ1,1 = −0.4436, and µ1,2 = −0.06612, where |µ1,1| + |µ1,2| =
µ0,1. At label 13 (δ, c) = (1.383, 0), the eigenvalues are: µ0,1 = −µ1,2 = 0.1099,
µ0,2 = −µ1,1 = 0.5454. And the part of the branch below the δ-axis is symmetric to
the one above the δ-axis.



COMPUTING CONNECTING ORBITS 15

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.25

0.00

0.25

0.50

0.75

1.00

10

13 16

Figure 2. Some typical solutions in (v1, t) coordinates.
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Figure 3. Bifurcation diagram in (δ, c) coordinates computed by HomCont (AUTO97).


