COMPUTING CONNECTING ORBITS VIA AN IMPROVED
ALGORITHM FOR CONTINUING INVARIANT SUBSPACES
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Abstract. A successive continuation method for locating connecting orbits in parametrized
systems of autonomous ODEs was considered in [10]. In this paper we present an improved algorithm
for locating and continuing connecting orbits, which includes a new algorithm for the continuation
of invariant subspaces. The latter algorithm is of independent interest, and can be used in different
contexts than the present one.
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1. Introduction. Homoclinic and heteroclinic orbits, also called connecting or-
bits, are trajectories connecting equilibrium points of a system of autonomous ordinary
differential equations. Computation of connecting orbits is becoming increasingly im-
portant, both in dynamical systems research, such as understanding chaotic dynamics,
and in a variety of applied problems, including wave propagation in combustion mod-
els, chemical reactions, neuronal interactions, solitary waves in fluid, solitons in non-
linear optical fiber, and communication processes in living cells, to name a few. The
corresponding numerical problem is that of finding solutions (u(t), A) of the system
of autonomous ODEs

(1) u/(t) _f(u(t)v/\) =0, u()vf(v) ER", A €R™,
(2) tlér_noou(t) = g, t_lgrnoou(t) = uy.

Most algorithms for the numerical analysis of connecting orbits reduce (1), (2) to a
boundary value problem on a finite interval using linear or higher order approximations
of stable and unstable manifolds near uy and wj, respectively. See recent papers by
Champneys, Kuznetsov, Sandstede [4], by Doedel, Friedman, Kunin [10] and Moore
[14] for the history of the question and the bibliography. Note that in the last work
an alternative approach was used based on the arclength parametrization, instead of
using time ¢ as a parameter.

The algorithms in [4] use a version of Beyn’s continuation algorithm based on
projection boundary conditions ([1], [2]). They were implemented in a set of routines,
HomCont, which are currently part of AUT097 [8]. HomCont has capabilities for detailed
bifurcation analysis of homoclinic orbits and some bifurcations of heteroclinic orbits.
It has limited capabilities for locating connecting orbits, namely, a simplified version
of the algorithm in [10].

The algorithms in [10] have their primary focus on locating connecting orbits
and use a modification of a continuation algorithm based on projection boundary
conditions (Friedman, Doedel [12]). They were implemented in an experimental code
based on AUT094 [9].
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In order to have a well posed problem, it is necessary for the boundary conditions
to be sufficiently smooth with respect to parameters. Both in [4] and [10], the bound-
ary conditions are defined with respect to bases of stable or unstable eigenspaces
of fu(uo,A) and fy(u1,\). The approach in [4] is to compute an orthonormal basis
in the appropriate eigenspace, at each pseudo-arclength continuation step, using a
“black box” routine based on the real Schur factorization and then to adapt this basis
to be smooth with respect to parameters, using a technique due to Beyn [2, App. C]
which amounts to the solution of a linear system of the dimension of the eigenspace
in question. The approach in [10] is to compute initially an orthonormal basis in the
appropriate eigenspace via the real Schur factorization and then to continue the real
Schur factorization equations (as a part of boundary conditions). At the same time
precise convergence of the algorithm in [10] is not clear, and it is somewhat cumber-
some to use. In some recent work, [6], Dieci and Eirola provide a general differential
equations framework for continuation of the block Schur factorization as well as other
matrix factorizations. Reference [6] includes a comprehensive set of references for
smooth matrix factorization for parameter dependent matrices.

In this paper we present an improved algorithm for locating and continuing con-
necting orbits, which includes a new algorithm for the continuation of invariant sub-
spaces (CIS). This CIS algorithm is based on iterative refinement techniques originally
due to Stewart [15], and later revisited by Demmel [5]. We provide some new twists
to these techniques: (i) we justify these iterative refinement techniques using the dif-
ferential equations which model continuation of block Schur forms, and (ii) we make
use of these differential equations to obtain an accurate approximation of the relevant
invariant subspace.

In the end, the new algorithm is more efficient than the algorithms in [4] and [10]
and is very robust. In particular, it provides several possible safeguards against fast
variation of eigenvalues. It has been implemented in an experimental code based on
AUTQ97 which is essentially a modification of the HomCont part of AUT097 to include the
algorithm in [10] for locating and continuing connecting orbits and the CIS algorithm,
while preserving the bifurcation analysis part of HomCont.

2. An improved algorithm for locating and continuing connecting or-
bits. Assume, for simplicity of notation, that the fixed points ug and u; are hyper-
bolic, and the eigenvalues of f,(ug, A) and f,(u1, ), respectively, satisfy

Repon < ... <Repong+1 <0< po1 < Repo2 < ... < Repong,
Reul,l <..< Re,ul_,nl <0< Reul,nﬁl <..< Re,ul_,n.

In this paper, we will assume that the matrices f,(uo1,A) are smooth functions of A
(for A in an appropriate subset of R™*).

The method extends to the case g1 = 0, as in [4]. It also extends to the
cases of complex and multiple o1 by a simple modification of Step 0, eq. (11)
below, of the algorithm (see [10, Section 4.3] for a computational example). The
algorithm requires evaluation of various projections associated with the eigenspaces
of fu(up,\) and f,(u1, ). Initially these projections are constructed using the real
Schur factorizations [13]

fuluo, N) = QoRoQF,  fului,A) = Q1R1Q7 .

The first factorization has been chosen so that the first ng columns qo 1, ..., qo,n, Of
Qo form an orthonormal basis of the right invariant subspace Sy of f,(ug, A), corre-
sponding to f:0,1, ..., [t0,ne, and the remaining n — ng columns qg ny+1, ..., Go,n of Qo
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form an orthonormal basis of the orthogonal complement S;-. Similarly, the first ny
columns ¢ 1, ...,q1,» of @1 form an orthonormal basis of the right invariant subspace
S1 of fu(ui,N), corresponding to f11,1, ..., 41,n,, and the remaining n — ny columns
Q1,n141, - q1,n Oof Q1 form an orthonormal basis of the orthogonal complement Sf-.
In the algorithm below the matrices Qp(A) and Q1(\) are assumed to be computed at
each continuation step by a “black box” routine, described in Section 3, which ensures
their continuity.

The approximate finite interval problem is to find a branch of solutions (u(t), A, ug,
u1,T), v € CY([0,1],R?), X € R™, provided ny = n — (ng +n1) +2; ny > 0,
ug,uy; € R™, T > 0, is the length of the time interval, for some small €y, €; > 0, of the
time-scaled differential equation

(3) u'(t) = Tf(u(t),\)=0, 0<t<l,
subject to left boundary conditions

(4) (w(0) — uo) - qo,ng+i(uo, A) =0, i=1,...,n —ng,
(5) |u(0) — uo| = €o,

right boundary conditions

(6) (w(l) —u1) - qrmg+i(ui, A) =0, i=1,...,n—n;.
(7) fu(1) — ua| = 1

and stationary state conditions

(8) f(uo, A) =0,
(9) f(u1,A) =0.

Remark 1. Initially, we integrate in time to obtain a typically crude orbit with
initial point «(0) € Sy but the terminal point u(1) ¢ S, in general. Hence 7; defined
by

(10) Ti = (u(l) — ul) . q17n1+i(u1,)\)/61, 7= 1, ey e =N — N,

are, in general, nonzero, and the initial connecting orbit on the branch of connecting
orbits is found via a sequence of homotopies that locate successive zero intercepts of
the 7; in (10). In each homotopy step we compute a branch, i.e., a one-dimensional
manifold, of solutions. For this we must have n. —n, = n— 1, where n. is the number
of constraints, and n,, is the number of scalar variables. We keep (1) free, while u (0)
is allowed to vary on the surface of the sphere in Sy of radius €y : (i) according to
equation (12) below at steps 0 through ng, when A is fixed and ¢; in (12) play the role
of the control parameters; and (ii) according to equation (5) at steps ng + 1 through
ng + ny, when X\ varies.

Let So.i, k =1, ...,n0, be the right invariant subspace of f,,(ug, Ag) corresponding
to the eigenvalues yig 1, ..., to,x- Then the first k£ columns go 1,...,qo,x of Qo form an
orthonormal basis of Sy and the remaining n — k columns qo k+1, ..., go,n of Qo form
an orthonormal basis of the orthogonal complement S&k.

1. Initialization.
Step 0. Initialize the problem parameter vector A, and set the algorithm parameters
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€0 and T to small, positive values, so that u(t) is approximately constant on [0,T].
Set

(11) u(t) = uo + €oc1go1, 0<t <1,
or
_ Rewo, it
u(t) = ug + €oc1qore , 0<t<1, Reug1>0,

€1 = |u(l) —ui|, s =1, 0or =1 and ¢3 = ... = ¢, = 0.

2. Locating a connecting orbit, A is fixed.
Step 1. Time integration to get an initial orbit. Compute a solution branch to the
system (3), (4), (10), (7), and

(12) (u(0) —ug) - qo,i(uo,N)/eo —¢c; =0, i=1,...,n. = no,

in the direction of increasing 7', until u(1) reaches an e;-neighborhood of w1, for some
€1 > 0. Scalar variables are T, ¢; € R, 7 € R"™ "1, There are n differential equations
with n. = 2n — ny; + 1 constraints and n, = n — n; + 2 scalar variables, and hence
n.—n, = n— 1. In practice one typically continues until ¢; stops decreasing, its value
being not necessarily small.
Step k, k = 2,...,n¢ (for ng > 1). Compute a branch of solutions to the system
(3)-(5), (10), (7), (12) to locate a zero of, say, 7x—1 (while 71, ..., 7k—2 = 0, fixed). Free
scalar variables are €1,c1,...,Ck, Tk—1,---; Tn—n,- Lhere are n differential equations
with n. = 2n — ny + 2 constraints and n, = n — ny + 3 scalar variables, and hence
Ne — Ny =N — 1.

3. Locating a connecting orbit, A\ varies.
Step k, k =ng+1,...n9g + ny = n —ny + 1. Compute a branch of solutions to the
system (3)-(5), (10), (7)-(9) to locate a zero of, say, 7,1 (while 71, ..., Tg—2 = 0, fixed).
Free scalar variables are €1, Tg—1, ...; Tn—nys A1, ..oy Ak—no € R, ug,u1 € R™. There are n
differential equations with n. = 4n —ng—mny + 2 constraints and n, = 3n—ng—n1+3
scalar variables, and hence n, —n, =n — 1.

4. Increasing the accuracy of the connecting orbit.
Compute a branch of solutions to the system (3)-(9) in the direction of decreasing €;
until it is ‘small’. Free scalar variables are €1,T, A1, ..., Ap, -1 € R, ug,u; € R". As
before, n. = 4n —ng —ny + 2, n, = 3n —ng — ny + 3.

5. Continue the connecting orbit.
Compute a branch of solutions to the system (3)-(9). Free variables are the (real)
scalar T', and A1, ..., Ay, , and the vectors ug, u; € R™. As before, n, = 4n—no—ni+2,
n, = 3n — ng — n1 + 3. Alternatively, a phase condition

"

1
(13) / (W ()~ (1) - u'(t) dt =0

may be added if T is kept fixed and ¢, and €; are allowed to vary. Here ¢(t) is a
previously computed orbit on the branch.

Remark 2. In principle, our algorithm of continuation of invariant subspaces of
fu(uo, A) and fy,(ug, A) in Section 3 breaks down only if two eigenvalues, one associated
with the subspace being continued and one not, approach the same point on the
imaginary axis (one from the left and one from the right). In this case the algorithm
should stop anyway since a bifurcation is being approached.
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3. Continuation of invariant subspaces. Let A()\) € R"*™ denote one of
the following: fi,(uo, A), fu(u1, A). The basic continuation algorithm requires at each
pseudo-arclength continuation step computation of a right invariant (typically, stable
or unstable) m-dimensional subspace S(A) of A(XA). In general, the function A is
smooth in A (say, differentiable), and it is important that S(\) be also smooth, as
otherwise convergence difficulties can be expected.

In this section we show how to constructively obtain smooth and orthogonal
QM) = [Q1(N) Q2(N)] € R™™, Q1(\) € R™™, Qa(\) € R™ ™™™ 50 that Q1())
span S(A), and Q2(\) span the orthogonal complement S(A\)*. Moreover, if we let
Sk(A), k = 1,...,m, be the right invariant subspaces of A()) corresponding to the
first k eigenvalues p1, ..., ug of A, then the first k columns ¢, ..., gx of Q(A) form an
orthonormal basis of Si()), and the remaining n — k columns form an orthonormal
basis of the orthogonal complement Sy, (\)*.

To justify our construction, we should recall that in our continuation procedure
we parametrize a solution branch in terms of so called pseudo-arclength; let s denote
the pseudo-arclength variable!. Thus, both fixed points ug and uq, see (8)—(9), as
well as the parameter(s) A are smooth functions of s. The matrix valued function
A: X € R™ — R™" can thus be viewed as a smooth function from s € R — R"*". As
a consequence, we can and will think of invariant subspaces’ continuation with respect
to the scalar pseudo-arclength variable s. For this reason, we will abuse notation and
freely write A(s) for A(M\). In what follows, a “” will indicate differentiation with
respect to s.

Remark 3. If ny =1 in (1), then one may be able to continue in A itself, rather
than reparametrizing the problem by arclength.

The basic issue is the following: Suppose that initially we have the (real) block
Schur factorization

(14) A(0) = QO)R(0)QT(0), Q(0) = [Q1(0) Q2(0)],

where R(0) is block upper triangular (R;;(0), ¢ = 1,2, are not required to be triangu-
lar)

_ | Ru1(0) R12(0)
ROY=1"0"" Ry |’

the columns of Q1(0) span an invariant subspace S(0) of A(0), and the columns of
Q2(0) span the orthogonal complement S(0)-. We want to obtain a block Schur
factorization for the matrix A(s), close to A(0), exploiting (if possible) the work
already done to obtain the block Schur form for A(0).

This problem fits within the general framework developed in [6]. Suppose that
the matrix A(s) has two groups of eigenvalues, A1(s) and As(s), which stay disjoint
for all s around 0. Then, in an interval about s = 0 there is the smooth factorization

(15) A(s) = Q(5)R(s)Q" (s),  Q(s) = [Q1(s) Qa(s)],
where R(s) is in block Schur form R(s) = Rél (s) g;zgg . Here, R;; has eigen-

values A; and Ryo has eigenvalues As. A constructive procedure to obtain the fac-
torization QRQT of A can be based upon differential equations models. As in [6], we

1Typically, this is the general procedure of most practical continuation algorithms; e.g., this is
the strategy implemented in AUTO.
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differentiate the relations A = QRQT and QTQ =1, let H := QT'Q, and obtain

(16) R=Q"AQ+ RH — HR,
(17) Q=QH.

Now we use triangularity of R and the fact that H must be skew symmetric, H? =
—H; we partition H in the same way as R, and then can determine Hi by solving
the Sylvester equation

(18) RooHL — HLRy1 = (QTAQ)q: .

The blocks H1; and Hso are not uniquely determined, and we may set them to 0
(in any case, they must be chosen skew symmetric). Thus, in principle, we can solve
(16)-(17) subject to initial conditions (ICs) obtained from the factorization of A(0),
in order to obtain a smooth path of block Schur factorizations.

We can accumulate the transformations in such a way that we are always looking
for corrections close to the identity. To be more precise, we can rewrite (for all s)

(19) Q(s) =Q(0)U(s), with U(0) =1,

and use this in (17), thereby obtaining a differential equation for U, U = UH (notice
that H is the same as before). We now look for exact solutions to the U differential
Uii(s) Uia(s)
Us1(s) Uaa(s)
block dimensions as R. Since U(0) = I, there is an open interval about 0, call it Iy,

equation. For all s, partition U(s) = [Ui(s) Ua(s)] = [ ], with same

where we can require that U; has the structure U; = [ I 1 ] U11. Next, for all
U21U11
s € Iy, we define
(20) Y (s) := Ua1(s)Uy; ' (s),
use the orthogonality relation U{U; = I, and choose U;; symmetric?, to obtain
Ui = ; (I+YTY)~1/2 In a similar way, for Uy we use UJ Us = I and U Uy = 0,
to eventually obtain for every s € Iy
_ I o1z [ YT TN—1/2
(21) U(s) = v I+Y'Y) I (I+YY") .

Thus, we need to find the function Y € R(®=™)*™ in (21). For any given s € I,
define E(s) by

Riy fElz
E51 Rao

QT(0)A(5)Q(0) = QT(0)[A(0) + (A(s) — A(0)))Q(0) =: R(0)+ E(s) =

(22)
Now we substitute Q(s) given by (19), (21) and A(s) obtained from (22) into the
invariant subspace relation:

(23) Q3 (s)A(s)Q1(s) = 0,

2This way, Ufll is the unique positive definite square root of I +Y7TY .
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to obtain the following algebraic Riccati equation for Y :

(24) RyyY — YRy = —Ea + YRy0Y,
or
(25) F(Y)=0, F(Y):=RyY — YRy + Ey — YR,Y.

Remark 4. If we think of S(0) and Q(0) as approximations to S(s) and Q(s), for
s given, then we may interpret the form (21) as well as the resulting Riccati equation
(24) as an iterative refinement technique to improve the accuracy of computed invari-
ant subspaces. This is the viewpoint in the works of Stewart [15], Dongarra, Moler
and Wilkinson [11], Chatelin [3], and Demmel [5]. However, we prefer to think of (21)
as the exact solution at a given s of the differential equation U = UH (see (17) and
(19)). We will exploit this fact later.

How to solve (24). The following two iterative methods have been often advocated
to solve the Riccati equation (24) (or (25)):
1. The iteration [15]:

(26) RooAp — ARy = —F(Yio1) , Yi = Ap+Yi1,

with Yo = 0, k = 1,2, .. ..
2. The Newton iteration [5]:

(27) (Raz — Yi_1R12)Ak — Ag(Riy 4+ Ri2Vi1) = —F (Y1) , Y= Ap+Yi 1,

with Yo =0,k =1,2,....

Therefore, we need to solve a Sylvester equation in the inner loop of the iterative
refinement. This can be effectively done by using LAPACK routines. As shown in the
convergence analysis for the iterations (26) and (27) by Stewart [15] and Demmel [5],
respectively, if we let

_ Rl Bar e
sep?(R11, Raz) 7

then under the assumptions k < 1/4 and k < 1/12, the iterations (26) and (27)
converge, linearly and quadratically, respectively. In (28), | - ||F is the Frobenius
norm of a matrix. R

The parameter k can be interpreted as follows. Its numerator, ||Riz2||r||E21l|lr
measures the quality of the initial approximate invariant subspace: it will be small
when the approximation is good, and the factor || E2; || will be zero if and only if the

(28)

initial approximation is in fact correct. The function sep(Ru, Rgg) in the denominator
is the smallest singular value of the operator which maps Y to RQQY YRH, and
it measures the separation of the spectra of R11 and RQQ If sep(Rll, Rgg) is small,
it means thAat some eigenvalues of R11 and RQQ can be made to merge with small
changes in R;;; this means that the invariant subspaces belonging to the two parts of
the spectrum are unstable and hard to compute. Thus k will be small if we start with
a good initial approximate invariant subspace and if the eigenvalues associated with
that subspace are well separated from the remainder of the spectrum. Oversimplifying,
both algorithms converge if (i) the spectra of R;1(0) and R22(0) are far enough apart,
and (ii) the perturbation E(s) of R(0) is small enough.

Remark 5. We point to some additional safeguards, which ensure proper perfor-
mance of the algorithms (26) and (27).
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1. Note that from (22) we have ||Eqoi||r < ||E|lr < ||A(s) — A(0)||p. Hence,
from (28), if

(29) olA(s) ~ AO)r < 5, 0= —elr__

4 sep?(R11, [22)
then k < 1/4. Therefore we are guaranteed that for any matrix X € R"*™ with
o X — A(0)||r < & we can find the invariant subspaces S and S* by Algorithm (26),
say. And no eigenvalue of A |g can ‘merge’ with an eigenvalue from A |g1, where A |g
denotes the restriction of A to S, etc.. In other words, the eigenvalues of A |g and
A | g1 remain separated for all matrices in a ball around A(0) of radius 1/(4a). Thus,
employing the safeguard (29) ensures that the iterations (26) and (27) will diverge
only when a small perturbation A(s) of A(0) will make an eigenvalue from S(s) and
an eigenvalue from S(s)* coalesce.

2. The quantity || Eay || /sep(Th1, Toz) can be interpreted [13, pp. 347-348] as an
estimate from above of the tangent of the angle between the subspaces S(0) and S(s)
spanned by Q1(0) and Q1(s), respectively. Hence the convergence of our algorithms
implies that this angle always stays between 0 and 7/2. It is useful to monitor this
angle and, in some situations, control it. A convenient measure in this case is the sine
of this angle given [13, p. 77] by

dist(5(0), 5(5)) = /1 - 02, (QF (0)Q1(5))-
Taking into account that by (15), (19), and (21)
Qu(s) = (Qu(0) + Q2(0)Y)(I + YY),

this reduces to

Y1l

2
VIHIYI:

The previous discussion has been motivated by the standard linear algebra view-
point, that is of “how to refine the initial trivial estimate U = I”. In particular,
this gave us the initial conditions Y = 0 for the iterations (26) and (27). However,
from the point of view of continuation, this is usually not the best strategy, since
it amounts to starting with the old solution as initial guess. We can do better by
using the differential equation formulation and taking an Euler approximation to the
solution.

Recall that the matrix Y, solution of (24), is related to U by (20): Y(s) =
Us1(s)Up; () for all s in a neighborhood of 0. Here, U; = [ g; ], and U = [U; Us)
solves the differential equation U = UH (see (17)-(19)). That is

(30) dist(5(0), 5(s)) = \/1 — 02 (1 +¥TY) V2 =

(31) Ul =UHy1 + UsHoq, Ug = —U1H2Tl + Us Hos.

Recall that the factor Hy; is determined by (18), but there is freedom insofar as
the choice of Hy; and Hss. We now show that the range of s—values guaranteeing
invertibility of Uy;(s) is unaffected by the choice of Hy; and Hay in (31), and hence
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there is little reason not to set Hy; and Hso both equal to 0 when we represent U as
in (21).

LEMMA 3.1. Let U = [U; Us] be the solution of (31) with U(0) = I, obtained
by setting Hi1n = 0 and Hoe = 0 in (31), while determining Hoy by (18). Let
U(s) = [Uy Us] be the solution of (31) with U(0) = I, and Hyy and Hay nonzero
skew symmetric matrices. Then, we have (for all s)

Ui(s) = Ui(s)C(s) ,

Un
Uan
larly for Uy, we have Y (s) = U1 (s)Up;" (s) = Ua1(s)Uy;" () for the same range of s
values.

Proof. For all s, let p(A, s) be the characteristic polynomial of the matrix A(s).
Then, we have the factorization p(A,s) = p1(}, s)p2(), s) where the factors p; and
p2 have no common root, and the roots of p; give Ay, while the roots of py give As.
Thus, we have

where C(s) € R™*™ js orthogonal. Therefore, partitioning Uy = [ ], and simi-

m(QT(0)A(s)Q(0), s)Uy(s) =0, and

pL(QT(0)A(5)Q(0), 5)Un(s) = 0.

Therefore, since rank(p;(A(s),s)) = n —m, then Ui(s) = Uy(s)C(s), where C(s) is
orthogonal (since U{ (s)Uy(s) = I). O
Now, because of Lemma 3.1 we can just integrate the differential equations (31)

with Hy; and Hes equal to O:
(U1 Us] = [UyHyy —UHL], U@0)=1I.

So, the idea is to approximate the solution of these differential equations from 0 to
s in order to get an approximation V; to Uj(s) and thus obtain an approximation to
Vi1

. We use a forward Euler
Va1

Y (s) from Vo Vﬁl, where we have partitioned V3 = [

step to obtain V;. 3
1. Initialization.
Set U(0) = I and obtain Ha1(0) from solving the Sylvester equation

(32) Ro2(0)H21(0) — Ha1(0)R11(0) = — (0 1) Q(0)TA(0)Q(0) (1 0)" .

2. Euler step.
Let Vi = U1(0) + sU2(0) H21(0). Obtain initial guess for the Riccati equation (24) (or
(25)):

(33) Yo =V Vip '

Remark 6. We now look at how this new initial guess Yj in (33) impacts conver-
gence of the iterations (26) and (27). We also make some comments on expense.

3Use of the Euler step is an accepted standard in continuation algorithms, and it is the strategy
implemented in AUTO.
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1. Observe that the value of Yj in (33) is nothing but Yy = sH1(0). It is easy
to verify that this is precisely the same approximation we would have obtained by
using a forward Euler step to approximate the solution at s of the differential equation
satisfied by Y.

2. By our construction, we see that Yy in (33) is a second order approximation
(in s) to the exact solution Y'(s). More precisely, from Taylor expansion at s = 0 of the
exact solution Y(s), we immediately get that Y (s) = sY (0)4+O(s?) = sHo1(0)+0(s2).
On the other hand, the initial guess Y = 0 is only an O(s) approximation to Y(s).

3. In practice, in (32), we do not have a close expression for A(0), but we can
replace it by the difference quotient (1/s)(A(s) — A(0)). With this choice, the value
of Yy (defined as in (33)) turns out to be the solution of the Sylvester equation

(34) RQQ(O)Yb — YQRll(O) = —Fb.

Since A(0) = (1/5)(A(s) — A(0)) + O(s?), the value of Yy in (34) is still a O(s?)
approximation to the exact Y (s).

4. The estimates (and proof) of convergence for (26) and (27) relied on the
value of £ in (28) to be sufficiently small. Much the same arguments can be used for
the refined guess in (33), by the following simple modification. In U(s) in (21), we let
Y (s) = Yy + AY and use this form of U in the invariant subspace relation (23). So
doing, we obtain the new Riccati equation

(35) (Raz — YoR12)AY — AY (Ry1 + R12Yo) = —F(Yg) + AY R5AY.

Now, it is a simple verification that iterative solution of (35) by either of the two
iterations (26) or (27), appropriately reformulated for the unknown AY', produces
precisely the same sequence as the original iterations on the unknown Y had they
been started with initial guess Y in (33). As a consequence, the convergence results
we quoted after (28) hold unchanged, except that we have a new « value, call it % :

| Razl| 7 || F'(Yo)ll

— . Ry = Ry + RisYo, Ry = Ras — YoRis.
sep? (Ru, 322)

(36) &=

We now look at the ratio

x| I

~ ~ 2
_ FM0)llF [ sep(Ra, Roo)
[E21llF \ sep(Ri1, Raz)

By our previous remark, F(Yp) is close to 0 at second order in s, whereas FEo; is
only first order close to 0. To compare sep(R11, Ro2) with sep(R11, Rao), we realize
that sep(R11, R22) is a second order approximation to sep(R11(s), Raa(s)), whereas

sep(R11, R22) is only a first order approximation to the same quantity. Therefore, in
S s N2
: : SeP(R11,R22) . .
first approximation, (7sep(ﬁzu,f%22)) is 1 4+ O(s/sep(R11(s), Ra2(s))). To summarize,
we have that

(37) k/k=0(s),

with an obvious improvement in the radius of convergence for both iterations (26)
and (27).
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5. By creating the initial guess Yy from (33) we need to solve the Sylvester
equation (32), or (34). Typically, this involves Schur reduction of the matrices R11(0)
and Ra2(0), which is somewhat expensive. However, suppose we use the Newton
iteration (27); then, at each iteration step we need to Schur factor the matrices Riy +
R12Yk 1 and R22 -Yi._ 1R12 At convergence of Newton’s method, these are precisely
the matrices we will need for the next continuation step in (32). Therefore, no extra
factorizations are needed in this case. For a practical comparison of the iterations for
the two initial guesses (33) and Yy = 0, we refer to the next section. More extensive
comparison and further details can be found in [7].

Remark 7. An alternative to our approach for continuing orthogonal invariant
subspaces could be easily obtained as follows. Let Q(0) : QT (0)A(0)Q(0) be a Schur
factorization of A(0), Q(0) = [Q1(0) Q2(0)] as usual, so that (say) @1(0) spans the
invariant subspace relative to the eigenvalues with positive real parts. Next, consider
A(s) which has the same number as A(0) of eigenvalues with positive real part. Then,
one may think to take the ordered Schur factorization of the matrix A(s) : PTA(s)P
and partition P = [Py P»] so that P; spans the invariant subspace relative to the
eigenvalues with positive real part of A(s). In general, P; is not smooth (i.e., it is
not true that P, = Q1(0) + sQ1(0) +...). To enforce smoothness, we may solve an
orthogonal Procrustes problem and replace P; with PV, where V is the orthogonal
polar factor of PL'Q1(0) (see [13]). Essentially, this is the approach used by Beyn,
[2], and then implemented in HomCont, [4]. However, we believe that the approach we
have adopted is preferable to the one we just outlined. For one thing, the latter is
usually more expensive than our approach. Moreover, unlike the one we just outlined,
our approach to continuation of invariant subspaces is more in tune with the original
continuation problem: continuation of the subspaces influences the continuation step,
and using first derivative information (as we did to obtain (33)) is bound to reflect
genuine difficulties of the original differential equation (such as nearing a bifurcation)
into the continuation algorithm.

4. Example: Heteroclinic orbits in a 4-D singular perturbation prob-
lem . Consider the problem of finding traveling wave front solutions to the FitzHugh-
Nagumo equations with two diffusive variables

(38) Ve = Vgpr +0(v—a)(1 —v) —w, W= 0wy +e(v—yw),

for small positive €, where § ranges between a small and large value. For ¢ small
this is a singularly perturbed reaction-diffusion system. In moving coordinates, v; =
v(2), va =v (2), w1 = w(z), we = w'(z) with z =t + cx, the reduced ODE is

V] = vg,
(39) vh = cvg —v1(1 —v1)(v1 — a) + w,
U)ll = w2,

wy = [cws — €(vy — ywy)]/d.

In [10] we located a heteroclinic orbit of (39). Here we first reproduced this result
with our new code and then located a heteroclinic orbit with § = ¢ = 0.001, v =
13.23529, a = 0.3, and ¢ = 0.2571271. In this case ng = ny = 2, where the relevant
eigenvalues are p19.1 = 0.6958, 1102 = 257.2, 11 = —0.4247, and p1 2 = —0.06553. We
then performed a two parameter continuation in (4, ¢) in the direction of increasing §,
see Fig. 1 for the bifurcation diagram and Fig. 2 for some typical solutions in (v1,t)
coordinates.
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We have implemented 4 methods to solve the Riccati equation: (i) the “Simple
Iteration” (26) with zero initial guess, (ii) Newton’s method (27) with zero initial
guess, (iil) Simple Iteration (26) with Euler initial guess, and (iv) Newton’s method
with Euler initial guess. The numerical results agree with our theoretical results; in
particular, the choice of the Euler initial guess is a big improvement with respect to
the simpler zero guess. Specifically, for the same pseudo-arclength continuation step
(it took 433 such steps to compute the branch), (iii) and (iv) required much fewer
iterations to converge than (i) and (ii). Some insight in the advantages gained by use
of the Euler guess is obtained by considering the typical convergence behavior of the
four methods (i)—(iv): on average, method (i) required 7 iterations for convergence,
method (ii) needed 5, method (iii) needed slightly more than 4, and method (iv)
required less than 3 iterations for convergence. In one exceptional case, methods (i)
and (ii) required as many as 25 iterations. Finally, (i) and (ii) failed to converge in
some cases (at the end of the continuation), because the continuation step was not
small enough, whereas (iii) and (iv) never failed to converge.

Labels 10, 11, 12, 14, and 15 mark local bifurcations (of the eigenvalues), while
label 13 marks a global bifurcation, the intersection of the current branch with the
branch ¢ = 0 (the detailed analysis of these bifurcations will be given elsewhere). For
comparison, we repeated the computation of the above branch using HomCont (in
AUTO97), see Fig. 3. Note that in this case we have not suceeded in continuing the
original branch beyond the global bifurcation point and instead switched branches.
Indeed, by varying the continuation step size, with our code we could select the desired
branch at label 13, but we could not achieve the same result with HomCont. Though
we do not have a precise explanation for this difference in performance, we feel that
this example confirms our theoretical insight that our numerical method is more in
tune with the original continuation problem.
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Figure 1. Bifurcation diagram in (§,¢) coordinates. At label 10 (6,¢) = (0.3198,
0.2376), the eigenvalues are: po1 = po,2 = 0.7406, p11 = —0.4357, and p12 =
—0.06502. At label 11 (0,¢) = (0.4462,0.2265), the eigenvalues are: po1 = o2 =
0.6204, p11 = —0.4409, and 12 = —0.06565. The eigenvalues are complex between
the labels 10 and 11. At label 12 (4, ¢) = (0.5085,0.2202), the eigenvalues are: pp1 =
0.5098, po.2 = 0.6538, p1,1 = —0.4436, and w12 = —0.06612, where |p1,1] + |p1,2] =
to1. At label 13 (6,¢) = (1.383,0), the eigenvalues are: po1 = —p1,2 = 0.1099,
to2 = —p1,1 = 0.5454. And the part of the branch below the 6-axis is symmetric to
the one above the §-axis.
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Some typical solutions in (v1,t) coordinates.
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Figure 3. Bifurcation diagram in (0,c) coordinates computed by HomCont (AUTO0Y7).




