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ABSTRACT. We study discretizations of Hamiltonian systems on the proba-
bility density manifold equipped with the L2-Wasserstein metric. Based on
discrete optimal transport theory, several Hamiltonian systems on graph (lat-
tice) with different weights are derived, which can be viewed as spatial dis-
cretizations to the original Hamiltonian systems. We prove the consistency
and provide the approximate orders for those discretizations. By regularizing
the system using Fisher information, we deduce an explicit lower bound for
the density function, which guarantees that symplectic schemes can be used
to discretize in time. Moreover, we show desirable long time behavior of these
schemes, and demonstrate their performance on several numerical examples.

1. INTRODUCTION

In recent years, there has been a lot of interest in studying Hamiltonian systems
defined on the probability space endowed with the L2-Wasserstein metric, also
known as Wasserstein manifold, and several authors have been concerned with
their connections to some well-known partial differential equations (PDEs); e.g.,
see [1, 7, 18].

Our present study is influenced by the point of view in [4], where the authors
showed that the push-forward density of a classical Hamiltonian vector field in
phase space is a Hamiltonian flow on the Wasserstein manifold. To be more precise,
consider a Hamiltonian system subject to initial condition (go,vo):

dv = —%—Z(U,q), v(0) = vo,

OH
dq = %(v,q), q(0) = qo,

(1.1)

where the position ¢ € R?, the conjugate momenta v € R%, and the real valued
Hamiltonian H € C?(R¢ x RY), d € N*. Let ¢(t), v(t) denote the solution of (1.1).
If we assume that the initial position ¢y is a random vector associated to a joint
probability density pg, then the density p of g(t) satisfies

OH
dhp+ V- (870) =0,
v
(1.2) Yo
ov+Vv-v+V-— =0.
dq
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By introducing v = V.S, one can rewrite this system as the Wasserstein-Hamiltonian
system

oH
0 V-(w—p) =0,
o+ V- ( 90 p)
1 OH
S+ S|VSP+ — =C(1),
15+ 3IVSE + S = C)
where C(t) is a function depending only on t and |VS|? = VS - VS.

The formulation (1.3) is remarkably powerful and general. Indeed, with different
choices of the Hamiltonian H, the Wasserstein-Hamiltonian system (1.3) leads to
differential equations arising in many different applications. For example, by tak-
ing H(v,q) = %|v|?, one obtains the well-known geodesic equations between two
densities p and p! on the Wasserstein manifold:

Oip+V - (pVS) =0,

(1.3)

1.4 1
(14 oS + 5VS]* =0,

with p(0) = p° p(1) = p'. In the seminal paper [2], it has been proven that the
solution of (1.4) is a minimizer of the following variational problem, commonly
known as the Benamou-Brenier formula:

1
(1.5) gW(/007/)1)2 = inf{/ <U7U>pdt 1 Op+ V- (pv) =0, p0 = PO701 = P1}7
Vi 0

where (v,v), := [ga [v]*pdz. As shown in [2], the optimal value gy (p°, p*) is the
L2-Wasserstein distance between p° and p!.
Similarly, a problem known as the Schridinger Bridge Problem can be stated as

1 2
(1.6) ir;f {/0 %(v,wp + %I(p)dt L0+ V- (pv) =0,p0 = p°, p1 = pl},
where it > 0 and I(p) := (Vlog(p), Vlog(p)), is the Fisher information. The min-
imizer of (1.6) satisfies the Wasserstein-Hamiltonian system (1.3) with the energy
H(v,p) =% [oa |v[*pda— %QI(p) in density space. Although the Schrodinger Bridge
problem is nearly 100 years old, it has recently received attention in control theory
and machine learning, see [17, 10, 16].
If we change the sign of the Fisher information term in (1.6), we get

. 1y h? 0 1
() inf{ ey T A+ V(o) =00 =0 = 3

and this is the variational formula that Nelson used to derive the Schrodinger
equation [14]. Its reformulation as Wasserstein-Hamiltonian system becomes the
well known Madelung system [13].

Remark 1.1. The Benamou-Brenier formula (1.5) has been extensively used to
study Wasserstein gradient flows; e.g., see [9, 15, 18, 19]. However, unlike the
variational formulations from (1.5) that use 2-point boundary values, much less
is known for Wasserstein-Hamiltonian flows, hence for solutions of (1.3) for given
initial values. The problem is subtle, for once because —depending on the initial
condition— the solution of (1.3) may develop singularities. Moreover, there are sev-
eral important properties of the Wasserstein-Hamiltonian flow, such as preservation
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of symplectic structure and other quantities, which make the numerical approxi-
mation of Wasserstein-Hamiltonian flows quite challenging. These considerations
have motivated us to carry out the present numerical study.

To the best of our knowledge, prior to our work, there are no numerical analysis
results on the full (i.e., space and time) discretization of Wasserstein-Hamiltonian
systems. The way we approach this problem is by first using discrete optimal
transport techniques to obtain Wasserstein-Hamiltonian systems on a graph, and
view these as spatial discretizations of the original Wasserstein-Hamiltonian system.
We explicitly show the consistency of the semi-discretizations, and derive lower
bounds for the probability density function on different graphs. Then, we combine
ideas from discrete optimal transport and symplectic integration to construct fully
discrete numerical schemes for the solution of the Wasserstein-Hamiltonian system.

We would like to emphasize the crucial role of Fisher information in our study.
Fisher information is widely used in many areas in statistics, physics and biology
(see e.g. [6]). It appears naturally in some Wasserstein-Hamiltonian systems, such
as (1.6), and it has recently been used as a regularization term in computations
of optimal transport and Wasserstein gradient flows (see [12, 11] and references
therein). Our analysis in this paper indicates that there are clear benefits to using
Fisher information as a regularization term for the approximation of Wasserstein-
Hamiltonian flows: it leads to maintaining positivity of the density function, it
is conducive to having schemes that are time reversible and gauge invariant, that
preserve mass and symplectic structure, and that almost preserve energy for very
long times (of O(7~"), where r is the order of the numerical scheme and 7 is the
time step-size).

This paper is organized as follows. In Section 2, we introduce the Wasserstein-
Hamiltonian vector field on graphs and study its properties. In Section 3, we give
an explicit lower bound of the probability density for the discrete Wasserstein-
Hamiltonian flow on different graphs; the proofs of the technical results in this
Section are in the Appendix at the end of the paper. Section 4 is devoted to
constructing and analyzing time discretizations, and in particular we develop and
analyze symplectic schemes. To compare with the results we obtain using Fisher
information as regularization device, in this Section 4 we also analyze regularized
schemes obtained by adding a viscosity term. Several numerical examples are given
in Section 5.

2. WASSERSTEIN-HAMILTONIAN VECTOR FIELD AND FLOW ON A FINITE
GRAPH

Our goal in this Section is three-fold: to introduce a special vector field (the
Wasserstein-Hamiltonian vector field) on a graph, to recognize it as a consistent
spatial discretization of the PDE (1.3), and to show relevant properties of the
associated flow. The latter effort is a prelude to Section 4 where also the time
discretization is examined.

2.1. Wasserstein-Hamiltonian flows via discrete optimal transport. Con-
sider a graph G = (V,E,Q) with a node set V = {a;},, an edge set F, and
wj1 € Q are the weights of the edges: w;; = w;; > 0, if there is an edge between a;
and a;, and 0 otherwise. Below, we will write (i,j) € E to denote the edge in F
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between the vertices a; and a;. Finally, throughout this paper, we assume that G
is an undirected, strongly connected graph with no self loops or multiple edges.
Let us denote the set of discrete probabilities on the graph by P(G):

()—{( ij—lpij for j € V'},

and let P,(G) be its interior (i.e., all p; > 0, for a; € V). Let V; be a linear
potential on each node a;, and W;; = W;; an interactive potential between nodes
aj,a;. Welet N(i) = {a; € V : (i,j) € E} be the adjacency set of node a; and
6;;(p) be the density dependent weight on the edge (3,7) € E.

Now, let us define the discrete Lagrange functional on the graph by

(2.1) £lp.0) = [ [0 vhay = V(o) = Wio) = 81Nt

where: p(-) € P,(G), the vector field v is a skew-symmetric matrix on E. And the
inner product of two vector fields u, v is deﬁned by

{u,v)o(p) - Z ujiv;i0ji-
(j l)eEE

The total linear potential V and interaction potential W are given by

N
= Vipi, W(p) = %Zwijpipj*
i=1 i

The parameter 5 > 0, and the discrete Fisher information is defined by

(2.2) Z > @il log(ps) — log(p;)[*0:5(p)

=1 jEN (i)

Remark 2.1. Note that in (2.2), we are allowing use of edge weights & and proba-

bility weights 5, different from w and #; this added flexibility may be exploited to
obtain more robust space discretizations than those obtained when choosing w=w
and 6 = 6, as done in [3].

The overall goal is to find the minimizer of L(p,v) subject to the constraint

=0,
dt &(pv) =
where the discrete divergence of the flux function pv is defined as
div(pv) = —( Y wvbj)-
LeEN(F)

As shown in [3], the critical point (p,v) of L satisfies v = VS = /w;;(S; —
S1)(j.yer for some function S on V. As a consequence, the minimization problem
leads to the following discrete Wasserstein-Hamiltonian vector field on the graph

dpi
+ > wii(S; = 8:)bi(p) =0,

dt =
JEN(3)
23) ds; 1 90:;(p)  OI(p)
i 20U (p E '
i +§ E wij(Si—Sj) 5'p¢ + 8 6 +V; + W”pj =0.

JEN() =1
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With respect to the variables p and S, we can rewrite (2.3) as a Hamiltonian
system with Hamiltonian function H(p,S) = K(S,p) + F(p), where K(S,p) =
1(V6S,VaS)o) and F(p) := BI(p) +V(p) + W(p). In particular, if 3 =0,V =0,
and W = 0, the infimum of £(p,v) induces the Wasserstein metric on the graph,
which is a discrete version of Benamou-Brenier formula:

1
. d )
W (p% p') := lg}f{ / (v,V)p(p)dt d*f + divg(pv) = 0, p(0) = p°, p(1) = p1}~
0

The following example illustrates the importance of adding Fisher information in
order to regularize the discrete Hamiltonian, so to avoid development of singularities
when solving the initial value problem (2.3).

Ezample 2.1. Consider a 2-point graph G. Let p1(0), p2(0) > 0 and S1(0), S2(0) be
the corresponding initial values on the two nodes, take the weights to be constant
(e.g., take them to be 1) and let F be some other assigned potential on the nodes.

By choosing 015 = 01 = ”1‘5"2, (2.3) becomes
. + ) +
P11 = —(52 - Sl)pl 5 p27 P2 = _(Sl - 52)p1 9 p27
(24) 1 5F 1 5F
. Lo o OF o 1. o OF
S = 4|52 S1l 3o So 4|51 Sa| Sy

Combining the above equations and using p; + p2 = 1, we get

Aorr) _ (s, - s,)
0(S1—S2)  OF OF
ot bp Op1
Now, we claim that if 7 has no singularity on the boundary of P(G), then positivity
of p1, po may fail. For example, taking F(p1, p2) = p?+2p3, we get p1 () —p2(t) =
(p1(0) — p2(0)) cos(t) + (S1(0) — S2(0)) sin(t). Then, we obtain

pr(t) = 3 + 5 cos(1)(p1(0) — pa(0)) + 3 sin(t)(S1(0) — S:(0)),
pa(t) = 3 + 5 cos(1) (p2(0) — pr(0)) + 5 sin(1)(S5(0) — (0).

It is clear that one of the density value can be a negative number if |S1(0) —S2(0)] >
1. When taking S;(0) = S3(0), the solution can be given in the following cases,

p1(t) = pa(t) = % if p1(0) = p2(0),
pi(t) > 0,pa(t) > 0, if [p1(0) — p2(0)] < 1,
p1(nm) =0, or pa(nm) =0, if |p1(0) — p2(0)] =1. O
Let us denote with T™* the first time for which lim;_, 7« p;(¢) < 0 or lim;_, 7« S;(t) =

oo for some index 4. Following arguments similar to those in [3], we have the fol-
lowing result.

Proposition 2.1. Consider (2.3) and assume that 8 > 0. Then, for any p° € P,(G)
and any function S° on V, there exists a unique solution of (2.3) and it satisfies
the following properties (i)-(vi).
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(i) Mass is conserved: before time T*,

N N
dopit)y=> =1
i=1 i=1

(ii) Energy is conserved: before time T,
H(p(t), S(t)) = H(p", 5°).

(iii) The solution is time reversible: if (p(t), S(¢)) is the solution of (2.3), then
(p(—t), —S(—t)) also solves (2.3).

(iv) It is time transverse invariant with respect to the linear potential: if V& =
V — «, then S% = S + at is the solution of (2.3) with potential V.

(v) A time invariant p* € P,(G) and S*(t) = —vt form an interior stationary
solution of (2.3) if and only if p* is the critical point of min,cp, () H(p, S)

and v = H(p") + 3 iy 350 Wisnip).
(vi) Assuming that 8 > 0 and 6,;(p) = 0 only if p; = p; = 0, then there exists
a compact set B C P,(G) such that p(t) € P,(G) for all t > 0.

Proof. The proof of properties (i)-(v) is the same (except for the use of 6;; instead
of 5”) as that of [3, Theorem 6], thus we omit it. Here we only prove (vi). Since the
coefficient of (2.3) is locally Lipschitz and p° € P,(G), it is not difficult to obtain
the local existence of a unique solution (p(t), S(t)) in [0,7*), where T* > 0 is the
largest time for which (p(t), S(t)) exists and p(t) € P,(G). Thus, it suffices to show
that the local solution can be extended to T* = oo, i.e., to show that the boundary
is a repeller for p(t). Consider B = {p € Po(G) | pI(p) < H(p,S) — F(p)}. It
is enough to prove that I(p) is positive infinity on the boundary. Denote M :=
H(p, S) —inf ,cp, (@) F(p). If there exists p such that min; p; = 0, and BI(p) < M,
then M > gzz > jene) wii(log(pi) — log(p;))205;(p). For some i, we have that
pi = 0 and that for j € N (i),

Bi;(log(p:) — log(p;))*0is(p) < M.

This implies that @j (p) = 0 for any j € N(i). Since G is connected and V is a
finite set, we get that max; p; = 0, which leads to a contradiction. (Il

From Property (vi) in Proposition 2.1, it is clear that the Fisher information term
helps maintain positivity of the density function in the Wasserstein-Hamiltonian
flow. This fact motivated us to regularize the discretized Wasserstein-Hamiltonian
system (2.3) by adding Fisher information, and the details are discussed in Section
4.2.

There are many choices for 6;; and 6;;, as long as we require that 6;;(p) = 0 only if
pi = pj = 0, as this is needed in order to get the lower bound estimate on the density
in Section 3. For 6;;, one can choose the upwind weight, 9% (p) = pi, if S; > S;, the

. A 0;+06; . . . i—pi
average weight 6} (p) = =5, or the logarithmic weight 6% (p) = m.
Remark 2.2. The above results hold even when G is not connected, in the following
sense. Consider the decomposition of G into disjoint connected components, and
let G = Ué-zlGj. Then, relative to each subgraph (G;,V7,w?), Zaievj pi(t) =
Zaievj pY and the properties (i)-(vi) in Proposition 2.1 also hold.
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2.2. Spatial consistency for Wasserstein-Hamiltonian flows. When the graph

G is a lattice grid on a domain M in R?, (2.3) can be viewed as a consistent spatial

discretization of the Wasserstein-Hamiltonian system (1.3). We show this next.
Let us consider a Hamiltonian in the density space

Hp.S)= [ H@9S(a)ple)is

_ / %|VS(£)|2p($)d$+}—(P)7
M

with the potential F(p) = [, V(x)p(z)dz+3% [\, [og Wz, y)p(x)p(y)dzdy+ BI(p),
and I(p) = [,,|Vlog(p)|*pdx. The corresponding Wasserstein-Hamiltonian vector

field is

dp  dH(p,S)

— _ 0
ot o =0, S(0) = S°.

We assume that for some T* > 0 there exists a unique smooth solution (p,S) of
(2.5) for all ¢ < T*. In the following, we show that the semi-discretization (2.3) is
consistent with (2.5) for all ¢ < T™*.

For simplicity, we consider the lattice graph (G,V,), which is a cartesian
product of d one dimensional lattices: G = Gy X --- X Gg with G, = (Vi, Ey),
kE =1,...,d. Also, let us assume that there is no interaction potential in (2.3).
Denote w = 75, let i = (i1,4a, - ,iq) represents a point (i) in R? and let the set
of neighbors of i be indicated by N(i):

Nk('l) = {(’Lla aik—17jk7ik+17"' 7id) : (ka]k) € Ek}

For the probability weights 6;;(p) and gij(p) in (2.3), we assume that

0ij(p) = O(pi,p;),  0ii(p) = O(pi, pj),

where © and © are symmetric C'T¢-continuous functions, € > 0. In order to show
the spatial consistency of (2.3), we further assume that

(2.6) 99(z,2) _

1
o 3 O(z,z) = z.

Proposition 2.2. Assume that § and ] satisfy (2.6). Then, the semi-discretization
(2.3) is a consistent finite difference scheme for the Hamiltonian PDE (2.5).

Proof. Let p;(t) = p(t,z(2)), Si(t) = S(t,z(i)) and eq,...,eq, be the standard
unit vectors. The lattice graph in the e direction contains two points near i, i.e.,
x(i) — exh and z(i) + e h, which we label i and i~ for short. At first, assume that
© and © are C? continuous. Then, by Taylor expansion at ¢ in the e, direction, we
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obtain

Z%(si—sl+ it ( +Zh25 S )0 ()

fE:LAEQ ,mH;ggumw#+ow%wmm+%ﬁ)xy+ow%
+§:h2&m D0+ g o (0,00 + 0 6(p) — 5 P 0

= 3G 0.000) #2500 T P 5 1 00

Similarly,
-8 Z %I log(pi+) — log(pi)l2w -8 zk: ﬁl log(pi-) — log(pz—)lwﬁg;i(p)

= s S 010,00+ OG22+ 0
—@ﬂ%}m§$”+mwnafﬂm+ow»

=- Zk: Igi(x(z‘),t)lﬂe;p(ip) - 2ﬂ% Xk: |algi(kpi) |28%;(i’)) +Oh).

Thus, if ‘%#EP) aeap(bp) =1, 0:;(p) = 04i(p) = pi, we have

D) S (8~ 500 ()~ 3 (51— 5,0 1)
k

dt h2 K22
- %tx(i)) + Vo - (Vo S(t, (i )) (t2(i))) + O(h?),
M

aeu
+ﬁzﬁ|10g(pi+) — log(p;)|*—2—E=
k

) 0S(t, x(i)) ) .

+V (i) = —5—— v(p(tvx(l))) +V(x(i)) + O(h?),
3

which implies that (2.3) is a second order consistent semi-discretization scheme.

By interpolation arguments, we complete the proof for the case that © and O are
C'*¢_continuous. O

1 Ny 12
+3Va S 2@ + g

As we show next, even if © and O are not sufficiently regular, spatial consistency
still holds as long as (2.6) holds. For example one can take 6 as the upwind weight,

05 (p) = OY(pi, pj) = pi, if S > S, 0 satisfies (2.6) and © is symmetric CT-
Continuous .
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Proposition 2.3. Assume that § = 0V, and that 0 satisfies (2.6). Then (2.3) is a
consistent spatial discretization of (2.5).

Proof. We use the same notations as in the proof of Proposition 2.2. For simplicity,
we assume that S(t,z(i)+exh) < S(t,z(i)) < S(t, (i) —exh) and that © is C?2 con-
tinuous. Similarly, we can show the same results for other possible configurations.
By Taylor expansion, we obtain

=Z%<S<t,x<z»—5< o0+ exk))p + 3 g S(6:2() = S(:2(0) —euh)
k
1 88 18? ,
= 3 Gy (000 5 ). 08 + O
1,08 16%S
=3 00+ 5 (0. 00+ O
= e (00065 = )+ 5 5 (0.0 (pis +p0) + O

I 1 80, I 1 90;;-(p
N ST NN NP
k

2 pi % h? pi
90;;+ 80,
=0 sl oalie) ~ ot 250 ﬂzh2|1og i) ~ log(po) 222 2)
% pi
_ 1 i a2 i N 42@'#(!3)
=3 D gl = 0? =8 X plosloie) ~ log(p P
1 065~
— BZ ﬁl log(p;-) — IOg(Pi)Fapi(p)
= QhQZ Jt)h + O(h%))?
8log o, 00:i(p)
—2Bh22 200 om T + o)

_ _ alog (p:) 852’1’(0)
= 5%]87%(:6( 25h22| o O,
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Therefore, combining with the above estimate and (2.5), we have that

w - Z %@i — S )i (p) - ij %@- = 5i-)0ii- ()

_ w + z Vao - (Va, S(t2(D)plt, 2(0)) + O(h) = O(h),

LD 33 dse - 57 B 15 s - 2l

+5 zk: %| log(pi+) — log(pz—)lﬁgg;i(p) +8 : %' log(pi-) - log(p")Fag)g;n(m
+Vialiy) = 20 ) IV S + B (p(t (i) + V (w(i) + O(h).

(]

Remark 2.3. In (2.3), take § = ’%2 > 0, a fixed number. By introducing the
. S5 ()
discrete Madelung transformation wu(t) = (u;(t))X (\V/pj (t)e‘STt)N (2.3)

j=1 = j=1>
can be viewed as a nonlinear spatial approximation of the nonlinear Schrodinger

equation and can be rewritten as

du; 2 al
==~ 5 (Bcu); +u;V; +uy > Wil
=1

where the Laplacian on the graph is defined by

(Agu)s = —us (g [ S winlPm(los(u)) — Im(los(m)))6n

2
|UJ| lEN())
+ > @j(Re(log(u;)) — Re(log(u)))b1]
lEN(j)
2005,
+ > wilm(log(u;) — log(w))* 52
1EN()) Pi
N 90
+ Y GalRe(log(u;) — log(u)) P52 ).
IEN() Pi

3. LOWER BOUND ESTIMATE OF THE DENSITY

In this section, we give an explicit lower bound for the density function in (2.3)
. . . . %Y o L L i — P
with the logarithmic weight 6;;(p) = ©%(pi, p;) = m. We take two
basic graphs as structures to illustrate the derivation of the lower bound. With
appropriate modifications, one can obtain the lower bounds for more general graphs
and different probability weights 6.

3.1. Lower bound for periodic nearest neighbor structure. This is the clas-
sic nearest neighbor graph, with periodic boundary conditions. Our goal is to
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analyze the properties of the extreme point of the Fisher information (2.2) in the
present case,

(3.1) I(p) = Z@,iﬂ(log(pi) —log(pi+1))(pi — pit+1),

on the set P,(G). Denote the tangent space at p € Po(G) by T,P,(G) = {(0)X, €
RN SN o =0}

Lemma 3.1. The function I(p) in (3.1) is strictly convex on P,(G) and achieves its
unique minimum at the uniform distribution.

Proof. The convexity of I can be obtained by directly calculating the Hessian matrix
and proving

. T T
Hess(I =1} >0.
UETI?g:(G){U ess(I(p))olo” o =1}

Direct calculations yield that

w7,1+1 2(pz+pz+1)+wzz 1 2(p7,+p7, 1) for ]:Z7

2 . .

0 I(p) = w”JrlP p1+1(Pz+Pz+1) for J.—’L‘-l-l,

8Png Wz,z 15, Dipi1 (pz + Pi— 1) for j=1i-— 1’
0 otherwise.

Thus we obtain
N 1 1

o HessI(p)o = Z(@z‘,wlg(pi + pit1) + @',H;(m +pic1))o}
i=1 T 2

N
. 1 - 1
+ Z;(Wi i+1m(ﬂi + pit1)0i0it1 + Wi,i—lm(pi + pi—1)0i0i—1)

N

g; g;
Z i1 (pi+ pis1) (S0 = =H)2 > 0,
Pi  Pit1

which implies the semi-positvity of Hess(I(p)). To show strict convexity, assume
that there exists a unit vector o* such that o*7 Hessl (p)o* = 0. Then we have
oL = %ifori=2,---,N. Since o € T,Po(G), then YN os = o1 (143N, &)=o.
As p € P,(@), we conclude that o; = 0 for all i, which contradicts that o*”o* = 1.
Strict convexity implies that there is a unique minimum point on P,(G). By using
the Lagrange multiplier technique to find the minimum of I(p) under the constraint
Zilil p; = 1 and taking the first derivative with respect to p, we obtain that the
extreme point satisfies

Wiit10( ;+1) Wi — 1z¢(

2 [

) A, for i< N,

where ¢(t) =1 —t —log(t),t € (0,00). It is not difficult to verify that ¢ is strictly
decreasing, convex, and ¢(1) = 0. Then when A = 0, p; = %, the extreme point
pi = = is the unique minimum point such that I(p) = 0. O

Due to convexity of I(p), for any C > 0 there exists ¢ < 1/N, such that
info<min, (p;)<c I(p) = C. On the other hand, we also know that the exact so-
lution preserves energy, which means that p(t) € B = {p € P,(G) | pl(p) <
Ho — min,(V(p) + W(p))}, where min,(V(p) + W(p)) < co. Denote M = Hy —
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min,(V(p) + W(p)). Thus, if we can find an upper bound ¢ such that I(p) > %,
then ¢ will be a lower bound for the exact solution p(t),t > 0. Since

N
> in O ) — ) ..
I(p) 2 min Giiys El(log(pz) log(pi+1))(pi — pj),
1=

”» N
the condition that > ;" (log(p;) — log(pi+1))(pi — p;)) > m% ensures
I(p) > % The following result gives the anticipated lower bound, and its proof is

given in the Appendix at the end, where we assume that @; ;41 = 1 for simplicity.

Proposition 3.1. Let min;(p?) < ;. Then it holds that

p1(t) > min (5 min ! : )
sup min p; () > min(= min p; , - .
+>0 ien g 1+Nexp(M(N’1)(B[N21]H))
Proof. See the Appendix. O

3.2. Lower bound for aperiodic structure. Here we consider the case of an
aperiodic graph (e.g., as when we have Neumann boundary conditions), and look
for the extreme points of I(p) under the constraint Zf\; pi = 1. We denote the
boundary point set by Vg, i.e., if a € Vg, then there exists only one edge connecting
with other points. The Fisher information term now is

N-1
(32) I(p) = Z Wi, i+1(10g(ps) — log(pi+1))(pi — pit1)-

Similarly to Lemma 3.1, we have strict convexity of I(p).

Lemma 3.2. I(p) in (3.2) is strictly convex on P,(G) and achieves its unique min-
imum at the uniform distribution.

The proof of the following lower bound estimate is also given in the Appendix,
where for simplicity we assume that w;;+; = 1.

Proposition 3.2. Let min; (py) < . Assume that £ < N —1 is the number of nodes
in Vg, dpmas is the largest distance' between two nodes in Vz. Then it holds that

inpi(1) > min (5 min(p,(0)) : )
sup min p;(¢) > min ( = min(p; , — — ,
PRI 2 1+ &(dmaz — 1) eXp@M)

where k is the number of nodes in Vg.

Proof. See the Appendix. O

4. TIME DISCRETIZATION OF WASSERSTEIN-HAMILTONIAN SYSTEMS ON GRAPH

Our purpose in this section is to look at the full discretization of Wasserstein-
Hamiltonian systems. In particular, we discuss the time discretization of the (reg-
ularized) spatial discretizations (2.3) and (2.5) and our main goal is to devise a
symplectic discretization of the Wasserstein-Hamiltonian flow (2.3) with g > 0.
Then, we will discuss general regularization strategies for (2.5).

IThe distance d;; between two nodes a; and a; is the smallest number of edges connecting a;
and a;.
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Presently, the discrete Lagrangian functional is
L(p,p) = <VGS V&S)o,h — F(p)h — BI(p)h

with the constramt £+ divl(pVeS) =0, and

Z > @iyllog(ps) — og(p))*0:5(p)-

=1 jEN (i)

We assume that cg < w;j < Cp,co < w;; < Cp, for some positive numbers
co, Co, and that max; V; + max;; W;; < My. For simplicity, in this part we restrict
consideration to 6;;(p) = 65(p) = 9142-03-’ and 0;;(p) = 05 (p) = W.
Denote the maximum numbers of edges connecting to a node with E,,,., and let
¢ be the uniform lower bound of p derived in Section 3. Then, the uniform upper
bound estimate of |S; — S| can be obtained in the following way.

Recall H(p, S) = K (S, p)+F(p), where K (S, p) := 2(VS, VS)g(,) and F(p) =
BI(p)+ V(p) +W(p). Due to the conservation of H, we have

K(S,p) + BI(p) Z > wiglSilt) = 5;(0)6:;(p(1))

i JGN(

+87 Z i3 (10 (i (1)) — log(p; (1)) (p(1))

i,j=1

N
< Ho — min(V; + > Wijps) = M.

=1
Then we get
2M 2M
max|Si *Sle § - N S . )
i min; ; w;; ming; 0;5(p(t)) — cmin, j w;;
M M
max |log(p:) — log(p;)|* < <

mini’j UT)ij minij 9”— (p(t)) - cminw- (Tuij ’

where ¢ > min (% min; p;(0), and « is the number

1+I{(dma171)exp(2ju(d7”a‘t 1)(N 1)))

iy 5 Tz
of nodes in Vp. Since z — y < log(x) —log(y) for 0 < y < & < 1, we also obtain
2 M M
f < <

min, ; w;; ming; 0;;(p(t)) ~ cmin; j 0;;

The Lipschitz constant of H, Lip(H), satisfies

max |p; —
7

. 1 06,
Lip(H) < max (\ > (Si = S5)wisbi ()], 3 D wi(Si—8))? ;i (p)] +MO)
- JEN(i) JEN (D)
Then on the set B = {(S, p)|K (S, p) + I(p) < M}, we have
2M 1M M

H H > maxCO S 7” > ma:cCO<77 +6 +B +M0)

I cco Op e 2 cep cco

1 M 0°H

|z, <c = 5 Gl < P0G + 5+ ).
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By recursive calculations, we further get 67;7,:‘ < BCo((n=2)1(2)" L+ (n—1)!(1)™)

for n > 3 and other partial derivatives bounded by % for n =3 and 0 for n > 4.

4.1. Symplectic methods. Based on the positivity of the probability density in
(2.3), the constraint on p can be rewritten as S(t) = (fAf)(t))Tp(t), where (fAz(t))‘L
is the pseudo-inverse of —div%(pV(+)). Thus we have the following equivalent
forms

1 1
L(p,VgS) = §<VG‘97 VaS)e, — Flp) = §<S’ Ab 1y SYh— F(p)

= (Vo= A 0, Val(~A%0) p(e))a, ~ F(p)
= AL H0), (~Ab) (A% 5(0) = Flp) = Lip. ),

where F(p) = BI(p) + V(p) + W(p), 8 > 0.

Consider the action integral S(p) = ttol L(p(t), p(t))dt among all curves p(t)
connecting two given probability densities p(tg) = p° and p(t;) = p', and let us
consider the approximation of the action integral between 0 and T, connecting p(0)
and p(T):

N-1

S-({p" o) = D L (o™, "),

n=0

where L, (p", p"*1) is an approximation of ftt"“ L(p(s), p(s))ds with given T =t

and 7 = t,, 41 —t,,. Then, letting g‘;; =0,forn=1,--- N —1, we get the discrete
Euler-Lagrange equation
oL oL
T/ n n+l T/ n—1 n =0
o () + G ) =0

where % and % refer to the partial derivatives with respect to the first and
second argument.

By introducing the discrete momenta via the discrete Legendre transformation
p" = —%(p”, p"t1), we can get dS, = pNdp" — p°dp°. S, is also called symplec-
ticity generating function. This implies the symplecticity of the map (p°, p°) —
(™, p") (see e.g. [8, Chapter VI]). Indeed, we get

n__aLT( n
p - ax p7p

oL
n+1 n+1 _ T n n+l
) p oy )

Let us consider the first time step approximation. Assume that we use some nu-
merical integration formula, and get L, (p°, p*) = 7> ;_, b;L(u(c;7), 0(c;7)), where
0<e¢ <+ <es <1 and u(t) is the collocation polynomial of degree s with
u(0) = p° and u(7) = p'. Then we can rewrite the above approximation as

Lo(p% p") =7 b L(D', D),
i=1

(I)i = pO —+ hZaijéj,

Jj=1
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subject to the constraint p; = po + hY s, b;®’. We assume that all the b; are
non-zero and that their sum equals 1. By the Lagrange multiplier method, the
extremum point satisfies

Sl — SO o TiblaH(Ez’ q)l)

=1 ap

L OH(Z, DY)
1: 0 bi ?
pt=p +T; 55—

J qﬂ)
0 ’
=5 —TE a” ,

:J,qﬂ
_p —‘,—TZGU )

where the coefficients satisfy the Condltlon ai;b; +ajib; = b;b;, of partitioned Runge
Kutta symplectic methods for the Wasserstein-Hamiltonian system (2.3).

Ezample 4.1. Symplectic Euler method (a;; =1, aj;, =0,b; =b; =1, s = 1)
OH Sn+1, n
anrl _ pn + ( P )7_

oo as ’
=pi = Z Wi (Sn+1 SleJrl)eij(pn)T
JEN(9)
SnJrl Sn _ aH(SnJrl’ pn)T
(2 8p )
1 90:5(p")  OF(p")
=57 — = wig (SpTH — S — Ly — 7,
where F(p) := BI(p) + V(p) + W(p). O

In the following, we focus on the case of symplectic Runge-Kutta methods, i.e.,
a;; = a;;. With minor modifications, all results hold for the partitioned Runge-
Kutta symplectic methods.

Theorem 4.1. Assume that G = (V, E,Q) is a connected weighted graph and that
min;< N p? > 0. Then the symplectic Runge-Kutta scheme (4.1) enjoys the follow-
ing properties.

(i) It preserves mass:

N N
Y= n
i=1 i=1

(ii) It preserves symplectic structure: dp™ A dS™ = dp° A dS°.

(iii) Assuming that the scheme is symmetric, then it is time reversible: if
(p™, S™) is the solution of the full discretization, then (p~",—S~") is also
the solution of the full discretization.

(iv) It is time transverse (gauge) invariant: if V¢ =V — «, then S* = S + at is
the solution of the scheme with linear potential V.

(v) A time invariant p* € P,(G) and S*" = —vn7 form an interior stationary
solution of the symplectic scheme if and only if (p*, S*) is the critical point

of H(p,S) and v =H(p*, §*) + § X, Y0, Wijpspi.
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(vi) When % is small enough, the scheme almost preserves the Hamiltonian up
to time T'= O(77"):

H(S™, p") = H(S% p°) + O(r"),
where r is the order of the symplectic numerical scheme.

Proof. Property (i) holds since this is a linear constraint. Property (ii) can be
verified by using the symplecticity condition a;;b; + a;;b; = b;b;. As far as (iii),
since the exact flow of the original system ®(y) = ®(S, p) is g-reversible, i.e., god =
®~log, with g(S, p) = (=S, p), then since the one-step method ®, is symmetric, i.e,
®,0®_, = I, then @, is g-reversible, i.e., go®, = ®-log, and (iii) holds. Property
(iv) holds because K (p,S) is an even function of S and the potential is linear. To
show Property (v), we only need to show that p* satisfies the Karush-Kuhn-Tucker
conditions of optimality for minimization of min,cp,_(a) H(p) = min,ep, @) (B1(p)+
V(p) + W(p)), which is done using the Lagrange multiplier method.

We next focus on the proof of (vi). Rewrite the r-th order Runge-Kutta scheme
as

y' ="+ 7Y bif (i),
=1

S
7 =y" Y ayf(@).
j=1

Assume that yo € B = {p € P,(G) | BI(p) < Ho — min,(V(p) + W(p))} and let
K be the smallest number such that y®*! ¢ B and for some j < N, yﬁiﬂl =

min?Y_, \yﬁiﬂ = ac,0 < a < 1. By Taylor expansion, using recursion, we have

K
lun+i(tes1) — yniil < lunvsilte) — yN1il + Crageo,co (1 + 5)(@ + 1)t

1
< K70 M eo,00 (1 + 5)(@ +1)77,
which implies that fori=1,--- | N,

K+1 1+t
yN+j(tK+1) < YN+j — KTC”’M’C“’CO(l + ﬁ)WT

Thus, before the time K7 > 2TTCT‘A;‘2;:;(1+5)(1 — ), the lower bound of the

original system is preserved by the numerical scheme. After K7, we can still write
the scheme until the lower bound of the density goes to 0. The solvability of the

scheme requires the classical condition, max (C’o, %CO %, BCy (%—i—c%—l—Mo))T <
constant, where the constant only depends on the numerical method. Due to the
fact that if T = O(77"), the lower bound of the density is uniformly controlled by

¢, we complete the proof of (vi) by using the Taylor expansion ot the energy. O

4.1.1. Backward Error Analysis. In spite of point (vi) in Theorem 4.1, symplectic
methods nearly preserve the Hamiltonian for times much longer than O(77"), since
the backward error analysis allows for an exponentially small error between the
symplectic scheme and its modified equation. To apply the backward error analysis,
we need to verify that the coefficients of the equation admit an analytic extension
on the complex domain, which we do next.
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By choosing the principle value of the logarithm of z in C/{0}, denoted by
Log(z) := log|z| + tArg(z), it is known that Log(z) is analytic except along the
negative real axis. Since % and log(p;) can be extended to analytic complex func-
tions for p; € C/{0}, we extend

OH OH
1 2 ~ Pj 2
= (=7 2 wulSi-8)7 = Y @02 1052,
JENG) JEN() pi pi
1
3 > Wz’j(Sz'—Sj)(mepj))
JEN(3)

to a complex function in C2" such that for any y° € B, f(y) is analytic in the
neighborhood of y° and that there exists R > 0 such that

If W)l < M, for [ly —4°|l < 2R.
This is applicable since we can choose R < idist(yo, B) such that

N N
min |y ;| = min [p;] > c,
i=1 =1
and that

1

1F @)= < BmarCo(5

Thus, the backward error analysis is applicable in our case. We first introduce
the truncated modified differential equation of (2.3) with respect to an r-th order
numerical scheme,

(4.1) U=Fx@), Fx@) = f@) + 7" frar@) + -+ 7V (@)

with (0) = y(0). It is well-known that the above modified equation is also a
Hamiltonian system with the modified Hamiltonian H(y) = H(y) + 7" Hri1(y) +
-+ 7N=1H \r(y). According to [8, Theorem 7.2 and Theorem 7.6], we have that for
the Runge-Kutta method, if f(y) is analytic and || f(y)|| < M, in the complex ball
Bar(yo), then the coefficients d; in the Taylor expansion of the numerical method

O-(y) =y +7f(y) +72da(y) + -+ T di(y) + ...,

M M 1
—+8 —+[37+M0).
CCo CCo C

are analytic and satisfy ||d;(y)| < C’Ag in Br(yo). If 7 < 79 with 79 < C% for

some constant C' > 0, then there exists N' = N (1) satisfying TN < hg such that
7 _70
19-(4°) = on- (¥O)|| < OTMee™ 7,

where y! = ®,(y") is the numerical solution and q/ﬁ_j\\f;(yo) is the exact solution of
(4.1) at t=r.

As a consequence of the above results, the long-time energy conservation is ob-
tained. Assume that the numerical solution of the symplectic method ®.(y) stays
in the compact set B, then there exists R, 79 and N (1) such that

H(y") — H(YO)| < nrMee™ ™,
M+

[My") = H") < C——7",
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Corollary 4.1. Under the same condition of Theorem 4.1, when % is small enough,

there exists 19 small enough, Cj; > 0, and a modified energy 'z'-~[7 O(1")-close to H,
such that for any 7 < 19, n7 < T,
[H(S™,p") = H(S°,p°)] < nrCre™ 7.

4.2. Regularizations. Here we look at two instances of regularization for (2.5):
one based on Fisher information, and one based on standard viscosity solution. We
assume that M C R is a bounded connected domain, and for simplicity restrict to
(2.5) subject to periodic boundary conditions without the term F(p). The initial
condition p(0) > 0, and S(0), are smooth and bounded functions on M. We remark
that all the proposed scheme can be constructed similarly in other domain in R,

4.2.1. Fisher information regularization symplectic scheme. For the system (2.5),
its Lagrangian formalism is equivalent to its Hamiltonian formalism. We can
directly apply the Fisher information regularization symplectic scheme (4.1) to
the semi-discretization of the considered Hamiltonian PDE. We use the mid-point
scheme applied to the graph generated by the central difference scheme under the
periodic condition as an example of a fully discrete scheme,

OH(S™ T2, pmt2)

Pt =i+ 5 7,
n T n+3 n+3 n4l
DY ﬁ(sg‘ﬂ — S )0:(p" " 2)
(4.2) JEN(9)
. STH—l o 8H(sn+%’pn+%)7_
? K2 8pZ ?
1 T n+i n+1 289ij +1 8[(p”+%)
=8 — = sitE gty i ety _ g T
ng\,:(i) 2 i) 8Pi( ) Opi

Then all the properties in Theorem 4.1 hold. According to the priori estimate on
the coefficients of discrete Hamiltonian PDEs, we have the following space-time
step size restriction,

<Cmin< 1 1 feepg 1 c? )
- I e
- Co’ Co M’Coﬂ(l—l-c—l—MocQ) ’
where
c> min(1 min p;(0) ! ), and ¢g = C !
= = ] 7 ’ 1 ) 0 — 0— 75-
2 1+ Nexp(M(N_l)([;vz Hl)hz) h?

If we do not add a regularization term, like Fisher information, to the numerical
scheme of (2.3), then the numerical scheme may develop singularities and pro-
duce unstable behavior. The following example indicates that even the structure-
preserving numerical scheme which uses the upwind weight Y without regulariza-
tion will fail —at a finite step n— to maintain positivity for p}', and will lead to blow
up for S7*.

Ezample 4.2. Assume that the graph has only two points. Assume that p;(0), p2(0) >
0 and S1(0), S2(0) are the corresponding initial densities and potentials of the two
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points. We choose 0;; = (Zj as the probability weight

For simplicity, assume that S1(0) > S2(0), F(p) = 0. Then the finite dimensional
system becomes

p1 = (Sl - 52),027 P2 = (52 - 51)02,
. . 1
S1=0, Sy = —§|51 — Sg|2.

_ 51(0)—=S2(0) :
Then S; — S; = 17%&1(0)7;2(0))”. Until t < m, p1 and po possess the

strict positivity property. When ¢ = m, p1 =1, po =0.

4.2.2. Regularization by adding viscosity. As alternative to adding Fisher infor-
mation as regularization term, a classical regularization procedure is obtained by
adding numerical viscosity in order to obtain monotone schemes for S. For example,
by introducing the numerical viscosity o;(S™) := a(Sf,; —25]' = S}* | ), where a € R
is used to guarantee the monotonicity of S;LH. This is a standard way of proceed-
ing (elliptic regularization, which we now detail and further use in the numerical
tests for comparison purposes. As we will see, although adding viscosity does lead
to a well defined discretization (4.3), unlike the regularization scheme (4.2), the
numerical scheme (4.3) does not preserve relevant properties of the Hamiltonian
system (see Theorem (4.2) below). This can be easily appreciated in the numerical
tests in Section 5.

Assume that max; , S?“h_s"n < R. Then, we can choose a (0 < a < %, a>R7)
such that
1— %((Sﬁu ;S?)+ + (574 ;SZL)+) 20 >0,
- %LL“ - ST e,
%(S?A;Ser +a>0.
Doing so, we get the following scheme:
R et e
(43) (PR g (PR
Snl = gn %7’| (s *:Tﬂ)i 2 - %T| (57" *h@nfl)i 2+ a,(S™).

Let p° and S° be the grid function of p(0) and S(0) on the grid G. Then
the proposed scheme (4.3) enjoys the following properties, which implies that the
numerical viscosity term leads to positivity of the density function and uniform
boundedness of S.

Theorem 4.2. Assume that max; , Sin =St <R, a> R%. Then there exists a

unique solution (pf, SI*),, of (4.3) and satisfies the following properties.

(1) Mass is preserved: Y., p? = >, p.
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(i) It is strictly positive: if min p? > 0, then min p? > 0 for any n.

(iii) If 7 is sufficient small, and 7,h — 0, then S}' converges to the viscosity
solution of the Hamilton Jacobi equation.

(iv) It holds that nh_}rrolo S™ = 8% and nh_}rrolo p" = p*, where p™ € P,(G).

(v) It holds that

1S™ 1o < 1Sl 11" [l <maX((1+R )" 0% i<, 1/R).

Proof. For Properties (i), (iii) and (v), we refer to [5] for their proof relative to the
numerical approximation
Sn+1 S 1 |(Sin+1 — SZL)
o2 h
We proceed to prove (ii) and (iv).
Due to the expression of ,0?"'1, we get

T SE—SEy S-S T
— > — —Nph
h(( ) () )pz 2 (1-2R-)pf,

2 + ;i (S™).

Pt =+
which leads to
pir > (1— 23%)%9

Thus we have that p? > e~ min; p{ for some ¢; > 0 and (ii) holds.

Now we are in a position to show (iv). Since S™ is uniformly bounded with
respect to n, there exists a sub-sequence {S™* }; converging to a constant S°°. By
using the comparison principle, we get that for any k,1,m € N*,

[|SrEtm g™ <[ ST — S [

Thus {S™*™} is a Cauchy sequence in [*°(V x N*) and converges to the same
limit S°°. On the other hand, one can also check that the solution of the following
relation

(4.4)

11(8° —8522,)~ —5°.)"
( 7 z+1) ’ 71— 1) +041(SOO):0

2 h 2’ h

must be 0. Indeed, let us assume that there is a nonzero solution for (4.4). From
the fact that o;(S°°) > 0 if S° — S, < 0, §7° — 529, < 0 and ;(5%) < 0, if
S0 — 858, >0, 87° — S7%, > 0, the nonzero solution of (4.4) should has different
signs for S7° — 577, and S¢° 7°, at each node a;. For simplicity assume that
S7¢ — Sy < 0 and S — S°°1 > 0. Now adding all the equations together, we
obtain that

N _
Z 1‘%“)‘2 _0
j— 2 ’
which contradicts the fact that S9° — 8%, <0fori=1,---,N. Repeating this

argument, it follows that for any 1 < n < N, the solution of the following relation

3 [T TSR )]

must be 0. As a consequence, for any subsequence {S™ }, we have
R 1‘(5;% S ’2 1‘(57k —Sit)” ‘2

7+1 _ =
T 2 h 2 h

=
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converges to

LI(SPe —=Sp) ™2 11(S5° —S52) |2
el I A T e A e VA (5®) =0
2 h 3 h T ea(§7) =0,
which only possesses the unique zero solution. Since ||plj;z = 1, there exists a

subsequence {p™*}; which converges to a density probability p>°. From (4.3) and
the convergence of S, we are in a position to show that all the subsequence of {p"},
converges to the same limit p>°. In the following, we show that for given k sufficient
large, then {p"*T™},. is a Cauchy sequence. Indeed, we have

o = ol < 7llptt e () = (P ) ) i
Sk — G 5o — oo
g e (Z =) = 22 e
ey (SEE S SE L S-S5
o e | (F— ) T = (P Tl

nE _ QNk S50

] i—1\— i _Szoi —
7l e (F ) = (P ) ) e

which, together with the uniform convergence of S, implies that p™**™ is a Cauchy
sequence and possesses the same limit p™. O

5. NUMERICAL EXAMPLES

Here we show performance of the numerical schemes on several examples. All
the numerical tests are performed under periodic boundary conditions in space, for
given initial conditions p(0) = p° and S(0) = S, as specified below.

Ezample 5.1. [Geodesic equations] This is the system (1.4):
Do+ V- (pVS) =0,

0,8 + %|v5|2 = 0.

We report on the results of two different strategies: the upwind scheme (4.3) with
numerical viscosity, and the Fisher information regularization symplectic scheme
(4.2). We choose three different initial value conditions to compare the evolution
of the density function and energy. (The different behaviors of S and VS for (4.3)
and (4.2) are not of interest, since for (4.3) S will always converge to a constant;
see Theorem 4.2.)

In Figure 5.1, we show the behavior of (4.3) and (4.2) with initial value p°(z) =
%Kx_om and S%(z) = —1log(cosh(5(x — 0.5))). Here K is a normalization
constant so that fol p°(z)dx = 1. We observe that for T < 0.15 the two scheme
behave quite closely to each other and the density concentrates at the point 0.5.
But, after T' = 0.15, the density of (4.2) begins to oscillate. Here, we choose spatial
step-size h = 5 x 1073, temporal step-size 7 = 10~*, viscosity coefficient o = 1/12
for (4.3), and 60;;(p) = 05 (p), gij(p) = 05(p), B = 1077 for (4.2). In Figure 5.2,
we also plot the density functions computed by (4.2) with different schemes and
different temporal and spatial step sizes, and clearly the oscillations appear to be
independent of the choice of schemes and mesh sizes; this leads us to believe that
the oscillations exists for the continuous system.
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Donsity evolution of numerical scheme with iscosity Density of numerical scheme with viscosity oor oy scosity
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FIGURE 5.1. The contour plot of p(t, z) (left), snapshots of p(¢, x)
at ¢ = (0.3,0.2,0.15,0.1,0.05) (middle) and energy error before
T = 0.315 (right) for the upwind scheme (4.3) with numerical vis-
cosity (top) and the Fisher information regularization symplectic
scheme (4.2) (bottom).

In Figure 5.3 and Firgure 5.4, we observe the same phenomenon for different
initial conditions. In Figure 5.3, we take M = [0,1], p°(z) = 1 and S°(x) =
—2 log(cosh(5(z — 0.5))). We choose spatial step-size h = 1.5 x 107®, temporal
step-size 7 = 1.3863 x 1075, viscosity coefficient a = 8 x 1072 for (4.3), and
0:i(p) = GZ(p), @j(p) = HiLj(p), B =5x 1077 for (4.2). In Firgure 5.4, we choose
P’ =1 8% = %sin(%mc), M = [0,2],the spatial step-size h = 1072, temporal
step-size 7 = 10~*, viscosity coefficient v = 5 x 1072 for (4.3), and 6;;(p) = 65 (p),
g?ij(p) =05(p), B =10"" for (4.2). All these numerical tests show that the Fisher
information regularization scheme (4.2) preserves more structures for (2.5), such
as the energy evolution and time transverse invariance, compared to the numerical
scheme (4.3). Meanwhile (4.2) causes oscillatory behaviors after the singularity of
(2.5) is developed.

Figure 5.5 shows the relationship between § and the largest time step-size 7 in
(4.2) that still gives correct approximation to the solution. In this numerical test, we
use h =5x1072,T =4, M = [0,1], So(z) = w, po(x) = 1. The parameter 3 is
chosen as five different values, 0.005788,0.005513,0.00525,0.005,0.00476, 0.00454.

From 5.5, we can see that the relationship between % and 7 is very sensitive when

ﬂ .
5 1s large.
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FIGURE 5.2. In (a) and (c), there are snapshots of p(t,z) at t =
(0.3,0.2,0.15,0.1,0.05) for (4.2) and (4.1) with h = 0.25x 102, 7 =
0.25 x 107% (left) and h = 0.125 x 1072, 7 = 0.2 x 10~* (right).
In (b), we show snapshots of p(t,z) at t = (0.3,0.2,0.15,0.1,0.05)
for (4.2) with h = 0.25 x 1072, 7 = 1/3 x 107* (left) and h =

1/8 x 1072, 7 = 1/2 x 10~° (right).
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iscosity

FIGURE 5.3. Contour plot of p(t,z) (left), snapshots of p(t, z) at
t = (0.2773,0.2079,0.1386,0.0693,0.0347) (right) and the energy
error before T' = 0.315 (right) for the upwind scheme (4.3) with
numerical viscosity (top) and the Fisher information regularization

symplectic scheme (4.2) (bottom).

Density evolution of numerical scheme with viscosity
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FIGURE 5.4. Contour plot of p(t,z) (left), snapshots of p(t, x) at
t =(0.5,0.4,0.3,0.2,0.1) (right) and the energy error before T' =
0.5 (right) for the upwind scheme (4.3) with numerical viscosity
(top) and the Fisher information regularization symplectic scheme

(4.2) (bottom).
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FIGURE 5.5. Relationship between % and the largest

time step-size 7 that (4.2) with parameter J =
0.005788,0.005513, 0.00525, 0.005, 0.00476, 0.00454.

Ezample 5.2. [Linear Madelung system| This is the reformulation of (1.7) as Wasserstein-
Hamiltonian system:

oip+V - (pVS) =0,

1 5 0
= —I(p) =0.
ats+2|v5| +ﬂap (p)=0

We use the scheme (4.2) for a given 5 > 0. Figure 5.6 shows the behaviors of
p and S, as well as the energy evolution. Here for the evolution of p and S, we
choose B =1,T =05, 7=10"%, h = 1072, S%(x) = 1/2sin(27z), p°(x) = 1. We
also plot the evolution of energy error H(t) — Ho and mass error up to 7' = 400,
which shows the good longtime behaviors of the proposed scheme.
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APPENDIX
Proof of Proposition 3.1. It suffices to find a constant 0 < ¢ < % such that inf ) I(p) >
0<min;(p;)<c
%. Since the graph is finite, we have that

OSminlinIf(pi)Sc I(,O) - {ISHI{/'I Oglilifgc I(p)

Due to convexity of I(p) on 0 < p; < ¢ for a fixed i < N, and the fact that I(p)
approaches oo when p approaches the boundary of P,(G), I(p) takes the minimum
at the boundary, i.e., O<inf< I(p) = inf I(p) on P,(G). Because of the periodic
Spisc pi=c

boundary condition, without loss of generality we can assume that p; = c¢. By
calculating the Hessian matrix of I(p), we get for any o # 0,

(pi + pis1 + pi-1))o;

+ ( (pi + pit1)0i0iy1 + (pi + pi—1)0i0i—1)

i—s PiPit+1 PiPi—1
1 1

+ —5(2p; + p3+¢) + ——(p2 + p3)
P3 pP2pP3

1
+ =5 (2pn +pNv-1+ )+ ———(pn +pN-1)
PN PNPN-1

—_

a; ag; 1
=D (it pie) (= ) 5 (pa + 0)oh +
2

1( +c)o% >0
pN +c)o )
Pi  Pit+1 P% N

: P

1=

which implies strict convexity of I(c,-) on Ziz p;i = 1 — c. Using the Lagrange
multiplier technique on I(¢, pa, -+, pn) — )\(Zf\;g pi—1+c¢), we get that the unique
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minimum point satisfies

c P3
—)+ (=) = A,
¢(p2) ¢(p2)
(A.1) o(PYy L p(PHy Z N if3<i < N -1,
Pi Pi
PN-1 c
+o(—) = A,
o( N ) ¢(pN)
where ¢(t) = 1—t—log(t). We claim that py_;+1 = piy1,fori=1,--- | %, if N—1
is even number. When N — 1 is odd, we have py_;41 = pi41, fori =1,---, [Ngl]’

where [s] is the largest integer smaller than or equal to s € R.
To prove this claim, it suffices to show that po = py. Assume that po > py,

Due to the monotonicity of ¢, we have p% < p%v,

- - ; — N-1
(A.2) Ps  PN-1 P4 PN-2 0 Pit2 pNZ,forlgig[ ).

P2 PN ’ P3 /JN—17 ’ Pi+1 PN —i+1

If N —1 is even, we obtain that

PN_1 PNt
P(——) < d(——),
Prn PR +2
. PN—1+1 PN—1+2 .
which leads to pé“ péﬂ, Le, py_1 iy > Py Thus, we can conclude
from (A.2) that
_ PN-1 g
p7N>M>...> 2+>17
P2 P3 PN_L

which contradicts the assumption ps > pn. If N —1 is odd, similar arguments yield
that

PN PNt PR
P2 p3 PIN=1141

which contradicts the assumption ps > pny. One can show that ps < pn is also
impossible by the same arguments. As a consequence, po = py. By further using
(A.1), we immediately get py—iy1 = piy1, fori=1,---, [%]

Now, we are going to show that the extreme point possesses the monotonicity
along the path starting from a;. Indeed, p; is increasing when d; ;41 is increasing
for i < [A52] if N is odd and for i < [A=L] + 1 if N is even. We use Figure A.1 to
illustrate these two different cases.

Step 1: A > 0. Since A = 0 if and only if p; = %, then I(p) = 0 which contradicts
the fact that inf, I(p) > 0. Assume that A\ < 0. Then (A.1), together with the

Ssymmetry pii1 = PN—_it1,8 = 1, ,[%], implies that when N — 1 is even, it
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Graph with N=7 Graph with N=8

FIGURE A.1. The picture of the graph with N = 7 (left) and with
N = 8 (right), where the red node represents v;.

holds that
o(Zly £ (Pl = N 2 <i< S 1,
(A.3) P pNﬂz
)=\
,DN—1+1

2

Since A\ < 0, we obtain that
prot g <pNo1 << P2 <1 =G

which contradicts the fact that Zf\; pi =1—c When N — 1 is odd, then (A.1)
and symmetry of p; imply that

i i ) ) N -1
S(P) (P =\ 2 < i < [,
A pi pi 2
(A.4) PNty
26(- =1y —
PIEF]+2

2
Then we get PNty < PN-ippy < < p2 < p1 =6 which is also not possible.
2 2
Thus it holds that A > 0. This indicates that

PINZL)4g > PNZL g >0 > P2 > pL=C

Step 2: % is strictly decreasing. If N — 1 is even, p;)# is strictly decreasing
for 1 <i < [252]. According to (A.3), it holds that

PN=1_4 N-1,q PN-1 PN=1L 4
2 :)\_ 2 — 2 _ 2
o) A = 0 e,
pN—liii pN—172— pN—lii pN—lii pN—lii
B(—E—) = A — p(—E—) = p(———) — () o),

3 3
pN;1_i pN;1_i PN;1 —it1 pN;1 —i pNgl—H—l
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where ¢ = 1,---, 75 5 The monotonicity of p;, i < %, together with A > 0,

leads to
pN=1_,_ PN-1_, N -5
G0 > g(——F ) fori = 0,000, o

pszlii pszliiJrl 2

If N —1is odd, 2 is strictly decreasing for 1 < i < (2] + 1. From (A.4), it
follows that

PIEAL

D Yl Y S P

PIN=1111 PIN-114q p[N 42 PIN-114q

= ¢(

PrN-1
&( (75 ]+2)

b

p[Ngll—i PR

9(

PIN-L]_jp1
[ }+) + o

where i = 0, --- 7[%] + 1. From the monotonicity of ¢, it follows that % is
strictly decreasing for 1 <4 < [H=2].
Step 3: Lower bound for ’)““ =1, [%] We first deal with the case that
P[N;1] N
PIN—1

. Since

N — 1 is even. Due to m0n0t0n1c1ty of

>; pi = 1, we have

p;fl, its minimum is k :=
;

[N2—1 [N—l]

c+2 ) pi=clr2 Y %):1.
1=2

=2

Pz+1

To find a lower bound of , it suffices to find an upper bound such that

(N1 N1

2

. k[ pl ]—]_ 1+e¢
1 Kl = .
+ Zz:; k—1 < 2¢
1
Let k < (ﬁ) . Then it holds that
2
N—1
[ §+1ki_1 N1y 1oc
- 2 - 2
=2
Finally, we get that
N 1]
inf I(p) =2 Z (log(p;) —log(pis1)) (P} — Pis)
P*Nfl
(A4 0, s 3
(log( p*N—l ))(p[¥]+1 C)'
(=]
N 1’
Pln1 1- 1- M
. [ J+1 C C
A f I(p) > 2(1 B —c) > 2log(k —c) > —
(A.5)  inf I(p) = 2(log( . Ng—p 9 22logk)(— —9) 2 3

PINZL] 12 )
PLozt)—i PIaGA] i P it P~ P it
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Now, we are able to show the desired lower bound estimate. If there exists % min; p;(0)N
< a < min; p;(0)N, ¢ = a such that inf,,—. I(p) > %, then

in pi(t) > ~ min p;(0)
R0 > im0

Otherwise, ¢ < Fa, for a < min;<y p;(0)N. From the estimate (A.5), it follows
that if ¢ < L then inf, —. I(p) > % Based on the above

_ Mo(N-1 (T
14+2[ 85 l]exp(ozﬁ(fa)z)

estimates, we have the following lower bound for p,
1 1

M(N—1) Y=L, = - -
o) 2 exp(ER)

sup min p; (t) >
t20 1SN 1+ 2[2-] exp(

Thus, it holds that

1 1
sup min p;(t) > min(§ min p; (0),

! —)-
t>0 iISN i 1+2[%]6XP(M(N—1)[N2 ])

B
Similar arguments yield the estimate when N — 1 is odd,

1 1
sup min p; () > min(= min p;(0), —
>0 i<N 2 1+2([N2—1] +1) eXp(M(N_l)(B[Nzl]"Fl))

).

O

Proof of Proposition 3.2. We use an induction argument and similar techniques to
those used in the proof of Proposition 3.1. Like the proof of Proposition 3.1, it

suffices to find the largest 0 < ¢ < & such that in(f ) I(p) > % Since the
0<min;(p;)<c

graph is finite and I(p) is convex, we have that
inf I(p) = min inf I(p).
Ogminlinl(pi)gc (p) ?Slljl\'fl/},n:(' (p)
When N = 3, then the graph only has two boundary nodes and we only need
to consider the case that p; = ¢ and ps = ¢, due to the symmetry on boundary
nodes. When p; = ¢, the Lagrange multiplier method yields that the extreme point
satisfies
P3 P2
A=)+ o(==) =X o(=)=A o(t)=1—1t—log(t) .
P2 P2 P3
Then it is not hard to get that A >0, p3 > pz > cand = < %. When py = ¢, the
Lagrange multiplier method yields that the extreme point satisfies
c c
(ZS - )= )‘7 ¢ - )= Aa
(Pl) (P3)
and so we obtain that A > 0, p3 > ¢, p1 > ¢. From these, similarly to the proof of
Proposition 3.1, we obtain

1

1
sup min p; (¢ zmin(fmin Z-O,—),

Now we proceed with the induction steps. Assume that for the graph with N —1
nodes, if inf;j<n_1inf|, <. I(p) = inf,,—. I(p) for some i, then we get A > 0 in
the Lagrange multiplier technique, and that for any path a; a;,a1, - a,, m <
N — 1, starting from a;, = a; to a boundary point a;,,, the probability density p;;,
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0 < 5 < m is increasing and J“ ,0 < j < m —1, is decreasing. We are going

to prove that the above statement also holds for the graph with N nodes. Let
inf; <y inf|, <. I(p) = inf, . I(p) for some i. Then either a; is a boundary vertex
of the the graph, or a; is an interior vertex of the graph.

Case 1: a; is an interior node of the graph. Assume that the numbers of edges
connecting to a; is n;. By using the Lagrange multiplier method and taking the
partial derivative with respect to p;, j # ¢, we obtain N — 1 equations. Since
v; is an interior node, these N — 1 equations can be rewritten as n; systems of
equations which are related to n; subgraphs sharing the same node a;. Notice that
the number of the nodes of each subgraphs is smaller than N —1. According to our
induction assumption, it holds that A > 0, for any path a;,a;,a;, - - - a;,,,m < N—1,
from a;, = a; to a boundary point a,,, the probability density p;,,0 < j < m is
increasing and ”1 ,0<j<m-—1,is decreasmg

Case 2: a; is a boundary node of the graph. By the Lagrange multiplier method,
with ¢(t) =1 —t — log(t), we obtain

3 as’” =), if j ¢ N(i).

leEN(j) Pi

3 ¢><’”>+¢< S = ifj € N,

LEN(5),l#14

We first show that A > 0. Assume that A < 0. If Vz has only two nodes, then by
the monotonicity of ¢, it holds that p is decreasing along the path a;,a;, a1, - - - ai,,
from a;, # a; to an interior node a;, . From the connectivity of the graph, we have
¢ > pi,1 < N, which leads to the contradiction that Zf\il pr=1<Nc<1.

If Vg has more than two nodes, then there must exist an interior node with
at least 3 outgoing edges. Denote a. the farthest interior node from a; which
has 3 or more outgoing edges. Since a. is connected to a; by a road, we denote
ae, the point that is closet to a. and belongs to such road. Then at the node
e, We have 37 o) e, P(51) + qb(%) = A < 0. Denote ap,,l € N(e),l # e
as the corresponding boundary node which contains the edge a;a.. Due to the
monotonicity of ¢, A < 0 and the fact that a; belongs to the road only connecting
ap, and ac, we have ¢(5t) > 0 for I € N(e),l # er. This implies that the density

along the road from a;, to a. is decreasing and that ¢(Pe: ) < 0. Then we can view
a. as a new boundary node of the left subgraph which is obtained by ignoring all
the roads from as, to a. and repeat the above procedures until we get a subgraph
which satisfying a; € Vp and Vg has only two nodes. And on the graph with two
boundary nodes, the density is decreasing from another boundary point to a;. This
will leads to the contradiction that Ei\il pr=1< Nc < 1. Thus we conclude that
A > 0. Following similar arguments, we obtain the increasing property of p;; along
the path a;,a;, a1, - - - a;,,, m < N—1 from a;, = a; to any boundary node a;,, € Vg.

by
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Next, we show the decreasing property of ZitL Since
]

> o)l >+¢<‘”2>4>o,

IEN(In) 14, lz P Pu
le 1 Plji1 .
> $(LL) 4 g Pt JH(H) =A>0,2<5<m 1,

EN Al Y P Pl

Pl
———)=A>0.
i le>

The increasing property of p along any path from a; to the node in Vp yields that

Pl — Pl Pl P, —
e S S L g (L B[
pl'mfl leN(lj),l;élm,lm,g plmfl plm—l plvn
The monotonicity of ¢ leads to Zi"‘—’z < %. By repeating the above procedures
on ay, 1 <j<m—2, we obtain that
P, Pl Pl
o2y (L) 4 > 6(Lh) + o “)=A+¢(7)-

PL; Pl Pi; Pi; Pl

LEN(15),0#l-1,0 41

Notice that ¢(t) + ¢(1/t) < 0,¢ > 0 and that ¢(L-) < 0 when [ # j — 1. As a
consequence, we get that ’

Pl Pi;
P(——) = A+ d(——),
( Pi; ) (Plj+1)

which implies that “1 ,0 <7 <m—1is decreasing along the path from a; to any

node in Vg. Thus the results holds for the graph with N nodes.

Now, we are going to derive the desired lower bound of the p;. Assume that x <
N — 1 is the numbers of nodes in Vg and that d,q, is largest distance d(a;,a;,,) <
N — k+1 from a; to a;,. Since Ef\;lpi = 1, there exists at least a node a,
such that the density at a, > ﬁ Then for the path a; a;, ceayccay,,ap =
Vi, a1, € VB,ay;, = an, M < dipge — 1, we have

m?

Adding all the paths, which have a; as a common node, together, we obtain

c(1+i§pf)21

s=1r=1

To find a lower bound of the ratio of pr“ for all the paths, we denote k =

r

ming<, plpl’# and let c(1+ > 0, > k") < 1. It suffices to require that 1 +

me—1
K(dmaz—l)kdm‘” ! < = 1 €. k; < (m)d"ml— 1, Thus it holds that m1n5<m %

(C“(dmam—l)) e ’ ifc S t(dmaz—1)+1"
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1
When ¢ < "7,

whose density is large than ﬁ,

we get that for some path which contains the node a;;

i
mg—1

in i > min i ) * o
g%%l;gcf(p)_gljrvl[gl:fc > (log(py; ) —log(pri | NPl = pri )
o Prni
> min inf log(———)(pm:i — ).

* s

i<N pi=c P,

1 1-c 1-¢
> 1 —c).
~ dypaz — 1 Og(c&(dmaw — 1))(N -1 °)
If there exists § min; p;(0)N < o < min; p;(0)N,c = a such that inf,,—. I(p) >
%, then

1
i it > —mi i .
ig}g{rﬁuj{}p (t) > 5 Tin p (0)

. . _ _ H .
Otherwise, taking dmalz—l log(m(dimi_l))(—;,_cl —c) =z Fandc= amin(4, 7(dmamil)m+l ),
where o < 2N min; p;(0), we obtain the lower bound as

1

1+ li(dmax — 1) exp(Q%) .

sup min p;(t) >
+ %

Combining all cases above, we have the following lower bound estimate

sup min p;(¢) > min (1 min(p;(0)) ! )
eoi T 250 il — 1) exp(2 2 dmea DINZL) /7
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