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Abstract. We study discretizations of Hamiltonian systems on the proba-

bility density manifold equipped with the L2-Wasserstein metric. Based on
discrete optimal transport theory, several Hamiltonian systems on graph (lat-

tice) with different weights are derived, which can be viewed as spatial dis-

cretizations to the original Hamiltonian systems. We prove the consistency
and provide the approximate orders for those discretizations. By regularizing

the system using Fisher information, we deduce an explicit lower bound for

the density function, which guarantees that symplectic schemes can be used
to discretize in time. Moreover, we show desirable long time behavior of these

schemes, and demonstrate their performance on several numerical examples.

1. Introduction

In recent years, there has been a lot of interest in studying Hamiltonian systems
defined on the probability space endowed with the L2-Wasserstein metric, also
known as Wasserstein manifold, and several authors have been concerned with
their connections to some well-known partial differential equations (PDEs); e.g.,
see [1, 7, 18].

Our present study is influenced by the point of view in [4], where the authors
showed that the push-forward density of a classical Hamiltonian vector field in
phase space is a Hamiltonian flow on the Wasserstein manifold. To be more precise,
consider a Hamiltonian system subject to initial condition (q0, v0):

dv = −∂H
∂q

(v, q), v(0) = v0,

dq =
∂H

∂v
(v, q), q(0) = q0,

(1.1)

where the position q ∈ Rd, the conjugate momenta v ∈ Rd, and the real valued
Hamiltonian H ∈ C2(Rd ×Rd), d ∈ N+. Let q(t), v(t) denote the solution of (1.1).
If we assume that the initial position q0 is a random vector associated to a joint
probability density ρ0, then the density ρ of q(t) satisfies

∂tρ+∇ · (∂H
∂v

ρ) = 0,

∂tv +∇v · v +∇ · ∂H
∂q

= 0.
(1.2)

2010 Mathematics Subject Classification. Primary 65P10, Secondary 35R02, 58B20, 65M12.
Key words and phrases. Wasserstein-Hamiltonian flow; Symplectic schemes; Optimal trans-

port; Fisher information.

1



2 JIANBO CUI, LUCA DIECI, AND HAOMIN ZHOU

By introducing v = ∇S, one can rewrite this system as the Wasserstein-Hamiltonian
system

∂tρ+∇ · (∂H
∂v

ρ) = 0,

∂tS +
1

2
|∇S|2 +

∂H

∂q
= C(t),

(1.3)

where C(t) is a function depending only on t and |∇S|2 = ∇S · ∇S.
The formulation (1.3) is remarkably powerful and general. Indeed, with different

choices of the Hamiltonian H, the Wasserstein-Hamiltonian system (1.3) leads to
differential equations arising in many different applications. For example, by tak-
ing H(v, q) = 1

2 |v|
2, one obtains the well-known geodesic equations between two

densities ρ0 and ρ1 on the Wasserstein manifold:

∂tρ+∇ · (ρ∇S) = 0,

∂tS +
1

2
|∇S|2 = 0,

(1.4)

with ρ(0) = ρ0, ρ(1) = ρ1. In the seminal paper [2], it has been proven that the
solution of (1.4) is a minimizer of the following variational problem, commonly
known as the Benamou-Brenier formula:

gW (ρ0, ρ1)2 = inf
vt
{
∫ 1

0

〈v, v〉ρdt : ∂tρ+∇ · (ρv) = 0, ρ0 = ρ0, ρ1 = ρ1},(1.5)

where 〈v, v〉ρ :=
∫
Rd |v|

2ρdx. As shown in [2], the optimal value gW (ρ0, ρ1) is the

L2-Wasserstein distance between ρ0 and ρ1.
Similarly, a problem known as the Schrödinger Bridge Problem can be stated as

(1.6) inf
v

{∫ 1

0

1

2
〈v, v〉ρ +

~2

8
I(ρ)dt : ∂tρ+∇ · (ρv) = 0, ρ0 = ρ0, ρ1 = ρ1

}
,

where ~ > 0 and I(ρ) := 〈∇ log(ρ),∇ log(ρ)〉ρ is the Fisher information. The min-
imizer of (1.6) satisfies the Wasserstein-Hamiltonian system (1.3) with the energy

H(v, ρ) = 1
2

∫
Rd |v|

2ρdx− ~2

8 I(ρ) in density space. Although the Schrödinger Bridge
problem is nearly 100 years old, it has recently received attention in control theory
and machine learning, see [17, 10, 16].

If we change the sign of the Fisher information term in (1.6), we get

(1.7) inf
v

{∫ 1

0

1

2
〈v, v〉ρ −

~2

8
I(ρ)dt : ∂tρ+∇ · (ρv) = 0, ρ0 = ρ0, ρ1 = ρ1

}
,

and this is the variational formula that Nelson used to derive the Schrödinger
equation [14]. Its reformulation as Wasserstein-Hamiltonian system becomes the
well known Madelung system [13].

Remark 1.1. The Benamou-Brenier formula (1.5) has been extensively used to
study Wasserstein gradient flows; e.g., see [9, 15, 18, 19]. However, unlike the
variational formulations from (1.5) that use 2-point boundary values, much less
is known for Wasserstein-Hamiltonian flows, hence for solutions of (1.3) for given
initial values. The problem is subtle, for once because –depending on the initial
condition– the solution of (1.3) may develop singularities. Moreover, there are sev-
eral important properties of the Wasserstein-Hamiltonian flow, such as preservation
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of symplectic structure and other quantities, which make the numerical approxi-
mation of Wasserstein-Hamiltonian flows quite challenging. These considerations
have motivated us to carry out the present numerical study.

To the best of our knowledge, prior to our work, there are no numerical analysis
results on the full (i.e., space and time) discretization of Wasserstein-Hamiltonian
systems. The way we approach this problem is by first using discrete optimal
transport techniques to obtain Wasserstein-Hamiltonian systems on a graph, and
view these as spatial discretizations of the original Wasserstein-Hamiltonian system.
We explicitly show the consistency of the semi-discretizations, and derive lower
bounds for the probability density function on different graphs. Then, we combine
ideas from discrete optimal transport and symplectic integration to construct fully
discrete numerical schemes for the solution of the Wasserstein-Hamiltonian system.

We would like to emphasize the crucial role of Fisher information in our study.
Fisher information is widely used in many areas in statistics, physics and biology
(see e.g. [6]). It appears naturally in some Wasserstein-Hamiltonian systems, such
as (1.6), and it has recently been used as a regularization term in computations
of optimal transport and Wasserstein gradient flows (see [12, 11] and references
therein). Our analysis in this paper indicates that there are clear benefits to using
Fisher information as a regularization term for the approximation of Wasserstein-
Hamiltonian flows: it leads to maintaining positivity of the density function, it
is conducive to having schemes that are time reversible and gauge invariant, that
preserve mass and symplectic structure, and that almost preserve energy for very
long times (of O(τ−r), where r is the order of the numerical scheme and τ is the
time step-size).

This paper is organized as follows. In Section 2, we introduce the Wasserstein-
Hamiltonian vector field on graphs and study its properties. In Section 3, we give
an explicit lower bound of the probability density for the discrete Wasserstein-
Hamiltonian flow on different graphs; the proofs of the technical results in this
Section are in the Appendix at the end of the paper. Section 4 is devoted to
constructing and analyzing time discretizations, and in particular we develop and
analyze symplectic schemes. To compare with the results we obtain using Fisher
information as regularization device, in this Section 4 we also analyze regularized
schemes obtained by adding a viscosity term. Several numerical examples are given
in Section 5.

2. Wasserstein-Hamiltonian Vector Field and Flow on a Finite
Graph

Our goal in this Section is three-fold: to introduce a special vector field (the
Wasserstein-Hamiltonian vector field) on a graph, to recognize it as a consistent
spatial discretization of the PDE (1.3), and to show relevant properties of the
associated flow. The latter effort is a prelude to Section 4 where also the time
discretization is examined.

2.1. Wasserstein-Hamiltonian flows via discrete optimal transport. Con-
sider a graph G = (V,E,Ω) with a node set V = {ai}Ni=1, an edge set E, and
ωjl ∈ Ω are the weights of the edges: ωjl = ωlj > 0, if there is an edge between aj
and al, and 0 otherwise. Below, we will write (i, j) ∈ E to denote the edge in E
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between the vertices ai and aj . Finally, throughout this paper, we assume that G
is an undirected, strongly connected graph with no self loops or multiple edges.

Let us denote the set of discrete probabilities on the graph by P(G):

P(G) = {(ρ)Nj=1 :
∑
j

ρj = 1, ρj ≥ 0, for j ∈ V },

and let Po(G) be its interior (i.e., all ρj > 0, for aj ∈ V ). Let Vj be a linear
potential on each node aj , and Wjl = Wlj an interactive potential between nodes
aj , al. We let N(i) = {aj ∈ V : (i, j) ∈ E} be the adjacency set of node ai and
θij(ρ) be the density dependent weight on the edge (i, j) ∈ E.

Now, let us define the discrete Lagrange functional on the graph by

(2.1) L(ρ, v) =

∫ 1

0

[1
2
〈v, v〉θ(ρ) − V(ρ)−W(ρ)− βI(ρ)

]
dt,

where: ρ(·) ∈ Po(G), the vector field v is a skew-symmetric matrix on E. And the
inner product of two vector fields u, v is defined by

〈u, v〉θ(ρ) :=
1

2

∑
(j,l)∈E

ujlvjlθjl.

The total linear potential V and interaction potential W are given by

V(ρ) =

N∑
i=1

Viρi, W(ρ) =
1

2

∑
i,j

Wijρiρj .

The parameter β ≥ 0, and the discrete Fisher information is defined by

(2.2) I(ρ) =
1

2

N∑
i=1

∑
j∈N(i)

ω̃ij | log(ρi)− log(ρj)|2θ̃ij(ρ)

Remark 2.1. Note that in (2.2), we are allowing use of edge weights ω̃ and proba-

bility weights θ̃, different from ω and θ; this added flexibility may be exploited to
obtain more robust space discretizations than those obtained when choosing ω̃ = ω

and θ̃ = θ, as done in [3].

The overall goal is to find the minimizer of L(ρ, v) subject to the constraint

dρi
dt

+ divθG(ρv) = 0,

where the discrete divergence of the flux function ρv is defined as

divθG(ρv) := −(
∑
l∈N(j)

√
ωjlvjlθjl).

As shown in [3], the critical point (ρ, v) of L satisfies v = ∇GS :=
√
ωjl(Sj −

Sl)(j,l)∈E for some function S on V . As a consequence, the minimization problem
leads to the following discrete Wasserstein-Hamiltonian vector field on the graph
G:

dρi
dt

+
∑

j∈N(i)

ωij(Sj − Si)θij(ρ) = 0,

dSi
dt

+
1

2

∑
j∈N(i)

ωij(Si − Sj)2
∂θij(ρ)

∂ρi
+ β

∂I(ρ)

∂ρi
+ Vi +

N∑
j=1

Wijρj = 0.

(2.3)
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With respect to the variables ρ and S, we can rewrite (2.3) as a Hamiltonian
system with Hamiltonian function H(ρ, S) = K(S, ρ) + F(ρ), where K(S, ρ) :=
1
2 〈∇GS,∇GS〉θ(ρ) and F(ρ) := βI(ρ) +V(ρ) +W(ρ). In particular, if β = 0, V = 0,
and W = 0, the infimum of L(ρ, v) induces the Wasserstein metric on the graph,
which is a discrete version of Benamou-Brenier formula:

W (ρ0, ρ1) := inf
v

{√∫ 1

0

〈v, v〉θ(ρ)dt :
dρ

dt
+ divθG(ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1

}
.

The following example illustrates the importance of adding Fisher information in
order to regularize the discrete Hamiltonian, so to avoid development of singularities
when solving the initial value problem (2.3).

Example 2.1. Consider a 2-point graph G. Let ρ1(0), ρ2(0) > 0 and S1(0), S2(0) be
the corresponding initial values on the two nodes, take the weights to be constant
(e.g., take them to be 1) and let F be some other assigned potential on the nodes.
By choosing θ12 = θ21 = ρ1+ρ2

2 , (2.3) becomes

ρ̇1 = −(S2 − S1)
ρ1 + ρ2

2
, ρ̇2 = −(S1 − S2)

ρ1 + ρ2
2

,

Ṡ1 = −1

4
|S2 − S1|2 −

δF
δρ1

, Ṡ2 = −1

4
|S1 − S2|2 −

δF
δρ2

.
(2.4)

Combining the above equations and using ρ1 + ρ2 = 1, we get

∂(ρ1 − ρ2)

∂t
= −(S2 − S1)

∂(S1 − S2)

∂t
=
δF
δρ2
− δF
δρ1

.

Now, we claim that if F has no singularity on the boundary of P(G), then positivity
of ρ1, ρ2 may fail. For example, taking F(ρ1, ρ2) = 1

2ρ
2
1+ 1

2ρ
2
2, we get ρ1(t)−ρ2(t) =

(ρ1(0)− ρ2(0)) cos(t) + (S1(0)− S2(0)) sin(t). Then, we obtain

ρ1(t) =
1

2
+

1

2
cos(t)(ρ1(0)− ρ2(0)) +

1

2
sin(t)(S1(0)− S2(0)),

ρ2(t) =
1

2
+

1

2
cos(t)(ρ2(0)− ρ1(0)) +

1

2
sin(t)(S2(0)− S1(0)).

It is clear that one of the density value can be a negative number if |S1(0)−S2(0)| >
1. When taking S1(0) = S2(0), the solution can be given in the following cases,

ρ1(t) = ρ2(t) =
1

2
, if ρ1(0) = ρ2(0),

ρ1(t) > 0, ρ2(t) > 0, if |ρ1(0)− ρ2(0)| < 1,

ρ1(nπ) = 0, or ρ2(nπ) = 0, if |ρ1(0)− ρ2(0)| = 1. �

Let us denote with T ∗ the first time for which limt→T∗ ρi(t) ≤ 0 or limt→T∗ Si(t) =
∞ for some index i. Following arguments similar to those in [3], we have the fol-
lowing result.

Proposition 2.1. Consider (2.3) and assume that β ≥ 0. Then, for any ρ0 ∈ Po(G)
and any function S0 on V , there exists a unique solution of (2.3) and it satisfies
the following properties (i)-(vi).
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(i) Mass is conserved: before time T ∗,

N∑
i=1

ρi(t) =

N∑
i=1

ρ0i = 1.

(ii) Energy is conserved: before time T ∗,

H(ρ(t), S(t)) = H(ρ0, S0).

(iii) The solution is time reversible: if (ρ(t), S(t)) is the solution of (2.3), then
(ρ(−t),−S(−t)) also solves (2.3).

(iv) It is time transverse invariant with respect to the linear potential: if Vα =
V− α, then Sα = S + αt is the solution of (2.3) with potential Vα.

(v) A time invariant ρ∗ ∈ Po(G) and S∗(t) = −vt form an interior stationary
solution of (2.3) if and only if ρ∗ is the critical point of minρ∈Po(G)H(ρ, S)

and v = H(ρ∗) + 1
2

∑N
i=1

∑N
j=1 Wijρ

∗
i ρ
∗
j .

(vi) Assuming that β > 0 and θ̃ij(ρ) = 0 only if ρi = ρj = 0, then there exists
a compact set B ⊂ Po(G) such that ρ(t) ∈ Po(G) for all t > 0.

Proof. The proof of properties (i)-(v) is the same (except for the use of θij instead

of θ̃ij) as that of [3, Theorem 6], thus we omit it. Here we only prove (vi). Since the
coefficient of (2.3) is locally Lipschitz and ρ0 ∈ Po(G), it is not difficult to obtain
the local existence of a unique solution (ρ(t), S(t)) in [0, T ∗), where T ∗ > 0 is the
largest time for which (ρ(t), S(t)) exists and ρ(t) ∈ Po(G). Thus, it suffices to show
that the local solution can be extended to T ∗ =∞, i.e., to show that the boundary
is a repeller for ρ(t). Consider B = {ρ ∈ Po(G) | βI(ρ) ≤ H(ρ, S) − F(ρ)}. It
is enough to prove that I(ρ) is positive infinity on the boundary. Denote M :=
H(ρ, S)− infρ∈Po(G) F(ρ). If there exists ρ such that mini ρi = 0, and βI(ρ) ≤M ,

then M ≥ β
2

∑
i

∑
j∈N(i) ω̃ij(log(ρi) − log(ρj))

2θ̃ij(ρ). For some i, we have that

ρi = 0 and that for j ∈ N(i),

βω̃ij(log(ρi)− log(ρj))
2θ̃ij(ρ) ≤M.

This implies that θ̃ij(ρ) = 0 for any j ∈ N(i). Since G is connected and V is a
finite set, we get that maxi ρi = 0, which leads to a contradiction. �

From Property (vi) in Proposition 2.1, it is clear that the Fisher information term
helps maintain positivity of the density function in the Wasserstein-Hamiltonian
flow. This fact motivated us to regularize the discretized Wasserstein-Hamiltonian
system (2.3) by adding Fisher information, and the details are discussed in Section
4.2.

There are many choices for θij and θ̃ij , as long as we require that θ̃ij(ρ) = 0 only if
ρi = ρj = 0, as this is needed in order to get the lower bound estimate on the density
in Section 3. For θij , one can choose the upwind weight, θUij(ρ) = ρi, if Sj > Si, the

average weight θAij(ρ) =
θi+θj

2 , or the logarithmic weight θLij(ρ) =
ρi−ρj

log(ρi)−log(ρj) .

Remark 2.2. The above results hold even when G is not connected, in the following
sense. Consider the decomposition of G into disjoint connected components, and
let G = ∪lj=1Gj . Then, relative to each subgraph (Gj , V

j , ωj),
∑
ai∈Vj ρi(t) =∑

ai∈Vj ρ
0
i and the properties (i)-(vi) in Proposition 2.1 also hold.



TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 7

2.2. Spatial consistency for Wasserstein-Hamiltonian flows. When the graph
G is a lattice grid on a domainM in Rd, (2.3) can be viewed as a consistent spatial
discretization of the Wasserstein-Hamiltonian system (1.3). We show this next.

Let us consider a Hamiltonian in the density space

H(ρ, S) =

∫
M
H(x,∇S(x))ρ(x)dx

=

∫
M

1

2
|∇S(x)|2ρ(x)dx+ F(ρ),

with the potential F(ρ) =
∫
MV(x)ρ(x)dx+ 1

2

∫
M
∫
MW(x, y)ρ(x)ρ(y)dxdy+βI(ρ),

and I(ρ) =
∫
M |∇ log(ρ)|2ρdx. The corresponding Wasserstein-Hamiltonian vector

field is

∂ρ

∂t
− δH(ρ, S)

δS
= 0, ρ(0) = ρ0,

∂S

∂t
+
δH(ρ, S)

δρ
= 0, S(0) = S0.

(2.5)

We assume that for some T ∗ > 0 there exists a unique smooth solution (ρ, S) of
(2.5) for all t ≤ T ∗. In the following, we show that the semi-discretization (2.3) is
consistent with (2.5) for all t ≤ T ∗.

For simplicity, we consider the lattice graph (G,V,Ω), which is a cartesian
product of d one dimensional lattices: G = G1 × · · · × Gd with Gk = (Vk, Ek),
k = 1, . . . , d. Also, let us assume that there is no interaction potential in (2.3).
Denote ω = 1

h2 , let i = (i1, i2, · · · , id) represents a point x(i) in Rd and let the set
of neighbors of i be indicated by N(i):

Nk(i) = {(i1, · · · , ik−1, jk, ik+1, · · · , id) : (ik, jk) ∈ Ek}.

For the probability weights θij(ρ) and θ̃ij(ρ) in (2.3), we assume that

θij(ρ) = Θ(ρi, ρj), θ̃ij(ρ) = Θ̃(ρi, ρj),

where Θ and Θ̃ are symmetric C1+ε-continuous functions, ε > 0. In order to show
the spatial consistency of (2.3), we further assume that

∂Θ(x, x)

∂x
=

1

2
, Θ(x, x) = x.(2.6)

Proposition 2.2. Assume that θ and θ̃ satisfy (2.6). Then, the semi-discretization
(2.3) is a consistent finite difference scheme for the Hamiltonian PDE (2.5).

Proof. Let ρi(t) = ρ(t, x(i)), Si(t) = S(t, x(i)) and e1, . . . , ed, be the standard
unit vectors. The lattice graph in the ek direction contains two points near i, i.e.,
x(i)− ekh and x(i) + ekh, which we label i+ and i− for short. At first, assume that

Θ and Θ̃ are C2 continuous. Then, by Taylor expansion at i in the ea direction, we
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obtain∑
k

1

h2
(Si − Si+)θii+(ρ) +

∑
k

1

h2
(Si − Si−)θii−(ρ)

=
∑
k

1

h2
(− ∂S

∂xk
(x(i), t)h+

1

2

∂2S

∂x2k
(x(i), t)h2 +O(h3))(θii(ρ) +

∂θii(ρ)

∂ρi

∂ρi
∂xk

h+O(h2))

+
∑
k

1

h2
(
∂S

∂xk
(x(i), t)h+

1

2

∂2S

∂x2k
(x(i), t)h2 +O(h3))(θii(ρ)− ∂θii(ρ)

∂ρi

∂ρi
∂xk

h+O(h2))

=
∑
k

(
∂2S

∂x2k
(x(i), t)θii(ρ) + 2

∂S

∂xk
(x(i), t)

∂θii(ρ)

∂ρi

∂ρi
∂xk

) +O(h2).

Similarly,

− 1

2

∑
k

1

h2
(Si+ − Si)2

∂θii+(ρ)

∂ρi
− 1

2

∑
k

1

h2
(Si− − Si)2

∂θii−(ρ)

∂ρi

− β
∑
k

1

h2
| log(ρi+)− log(ρi)|2

∂θ̃ii+(ρ)

∂ρi
− β

∑
k

1

h2
| log(ρi−)− log(ρi)|2

∂θ̃ii−(ρ)

∂ρi

= − 1

h2

∑
k

(
∂S

∂xk
(x(i), t)h+O(h2))2(

∂θii(ρ)

∂ρi
+O(h))

− β 1

h2

∑
k

(
∂ log(ρi)

∂xk
+O(h2))2(

∂θ̃ii(ρ)

∂ρi
+O(h))

= −
∑
k

| ∂S
∂xk

(x(i), t)|2 ∂θii(ρ)

∂ρi
− 2β

1

h2

∑
k

|∂ log(ρi)

∂xk
|2 ∂θ̃ii(ρ)

∂ρi
+O(h2).

Thus, if ∂θii(ρ)
∂ρi

= ∂θ̃ii(ρ)
∂ρi

= 1
2 , θ̃ii(ρ) = θii(ρ) = ρi, we have

dρ(t, x(i))

dt
−
∑
k

1

h2
(Si − Si+)θii+(ρ)−

∑
k

1

h2
(Si − Si−)θii−(ρ)

=
∂ρ(t, x(i))

∂t
+∇xk · (∇xkS(t, x(i))ρ(t, x(i))) +O(h2),

dS(t, x(i))

dt
+

1

2

∑
k

1

h2
(Si+ − Si)2

∂θii+(ρ)

∂ρi
+

1

2

∑
k

1

h2
(Si− − Si)2

∂θii−(ρ)

∂ρi

+ β
∑
k

1

h2
| log(ρi+)− log(ρi)|2

∂θ̃ii+(ρ)

∂ρi
+ β

∑
k

1

h2
| log(ρi−)− log(ρi)|2

∂θ̃ii−(ρ)

∂ρi

+ V (x(i)) =
∂S(t, x(i))

∂t
+

1

2
|∇xkS(t, x(i))|2 + β

∂I

∂ρi
(ρ(t, x(i))) + V (x(i)) +O(h2),

which implies that (2.3) is a second order consistent semi-discretization scheme.

By interpolation arguments, we complete the proof for the case that Θ and Θ̃ are
C1+ε-continuous. �

As we show next, even if Θ and Θ̃ are not sufficiently regular, spatial consistency
still holds as long as (2.6) holds. For example, one can take θ as the upwind weight,

θUij(ρ) = ΘU (ρi, ρj) := ρi, if Sj > Si, θ̃ satisfies (2.6) and Θ̃ is symmetric C1+ε-
continuous .
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Proposition 2.3. Assume that θ = θU , and that θ̃ satisfies (2.6). Then (2.3) is a
consistent spatial discretization of (2.5).

Proof. We use the same notations as in the proof of Proposition 2.2. For simplicity,

we assume that S(t, x(i)+ekh) ≤ S(t, x(i)) ≤ S(t, x(i)−ekh) and that Θ̃ is C2 con-
tinuous. Similarly, we can show the same results for other possible configurations.
By Taylor expansion, we obtain

∑
k

1

h2
(Si − Si+)θii+(ρ) +

∑
k

1

h2
(Si − Si−)θii−(ρ)

=
∑
k

1

h2
(S(t, x(i))− S(t, x(i) + ekh))ρi+ +

∑
k

1

h2
(S(t, x(i))− S(t, x(i)− ekh))ρi

=
∑
k

1

h2
(− ∂S

∂xk
(x(i), t)h+

1

2

∂2S

∂x2k
(x(i), t)h2 +O(h3))ρi+

−
∑
k

1

h2
(
∂S

∂xk
(x(i), t)h+

1

2

∂2S

∂x2k
(x(i), t)h2 +O(h3))ρi

=
1

h

∂S

∂xk
(x(i), t)(ρi+ − ρi) +

1

2

∂2S

∂x2k
(x(i), t)(ρi+ + ρi) +O(h)

= ∇xk · (ρ(t, x(i))∇xkS(t, x(i))) +O(h),

and

− 1

2

∑
k

1

h2
(Si+ − Si)2

∂θii+(ρ)

∂ρi
+−1

2

∑
k

1

h2
(Si− − Si)2

∂θii−(ρ)

∂ρi

− β
∑
k

1

h2
| log(ρi+)− log(ρi)|2

∂θ̃ii+(ρ)

∂ρi
− β

∑
k

1

h2
| log(ρi−)− log(ρi)|2

∂θ̃ii−(ρ)

∂ρi

= −1

2

∑
k

1

h2
(Si+ − Si)2 − β

∑
k

1

h2
| log(ρi+)− log(ρi)|2

∂θ̃ii+(ρ)

∂ρi

− β
∑
k

1

h2
| log(ρi−)− log(ρi)|2

∂θ̃ii−(ρ)

∂ρi

= − 1

2h2

∑
k

(
∂S

∂xk
(x(i), t)h+O(h2))2

− 2β
1

h2

∑
k

(
∂ log(ρi)

∂xk
+O(h2))2(

∂θ̃ii(ρ)

∂ρi
+O(h))

=
1

2

∑
k

| ∂S
∂xk

(x(i), t)|2 − 2β
1

h2

∑
k

|∂ log(ρi)

∂xk
|2 ∂θ̃ii(ρ)

∂ρi
+O(h).
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Therefore, combining with the above estimate and (2.5), we have that

dρ(t, x(i))

dt
−
∑
a

1

h2
(Si − Si+)θii+(ρ)−

∑
k

1

h2
(Si − Si−)θii−(ρ)

=
∂ρ(t, x(i))

∂t
+
∑
k

∇xk · (∇xkS(t, x(i))ρ(t, x(i))) +O(h) = O(h),

dS(t, x(i))

dt
+

1

2

∑
k

1

h2
(Si+ − Si)2

∂θii+(ρ)

∂ρi
+

1

2

∑
k

1

h2
(Si− − Si)2

∂θii−(ρ)

∂ρi

+ β
∑
k

1

h2
| log(ρi+)− log(ρi)|2

∂θ̃ii+(ρ)

∂ρi
+ β

∑
k

1

h
| log(ρi−)− log(ρi)|2

∂θ̃ii−(ρ)

∂ρi

+ V (x(i)) =
∂S(t, x(i))

∂t
+
∑
k

1

2
|∇xkS(t, x(i))|2 + β

∂I

∂ρi
(ρ(t, x(i))) + V (x(i)) +O(h).

�

Remark 2.3. In (2.3), take β = ~2

8 > 0, a fixed number. By introducing the

discrete Madelung transformation u(t) = (uj(t))
N
j=1 = (

√
ρj(t)e

i
Sj(t)

~ )Nj=1, (2.3)
can be viewed as a nonlinear spatial approximation of the nonlinear Schrödinger
equation and can be rewritten as

~i
duj
dt

= −~2

2
(∆Gu)j + ujVj + uj

N∑
l=1

Wjl|ul|2,

where the Laplacian on the graph is defined by

(∆Gu)j := −uj
( 1

|uj |2
[ ∑
l∈N(j)

ωjl(Im(log(uj))− Im(log(ul)))θjl

+
∑
l∈N(j)

ω̃jl(Re(log(uj))−Re(log(ul)))θ̃jl
]

+
∑
l∈N(j)

ωjl|Im(log(uj)− log(ul))|2
∂θjl
∂ρj

+
∑
l∈N(j)

ω̃jl|Re(log(uj)− log(ul))|2
∂θ̃jl
∂ρj

)
.

3. Lower bound estimate of the density

In this section, we give an explicit lower bound for the density function in (2.3)

with the logarithmic weight θ̃ij(ρ) = ΘL(ρi, ρj) :=
ρi−ρj

log(ρi)−log(ρj) . We take two

basic graphs as structures to illustrate the derivation of the lower bound. With
appropriate modifications, one can obtain the lower bounds for more general graphs

and different probability weights θ̃.

3.1. Lower bound for periodic nearest neighbor structure. This is the clas-
sic nearest neighbor graph, with periodic boundary conditions. Our goal is to
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analyze the properties of the extreme point of the Fisher information (2.2) in the
present case,

(3.1) I(ρ) =

N∑
i=1

ω̃i,i+1(log(ρi)− log(ρi+1))(ρi − ρi+1),

on the set Po(G). Denote the tangent space at ρ ∈ Po(G) by TρPo(G) = {(σ)Ni=1 ∈
RN |

∑N
i=1 σi = 0}.

Lemma 3.1. The function I(ρ) in (3.1) is strictly convex on Po(G) and achieves its
unique minimum at the uniform distribution.

Proof. The convexity of I can be obtained by directly calculating the Hessian matrix
and proving

min
σ∈TρPo(G)

{σTHess(I(ρ))σ|σTσ = 1} > 0.

Direct calculations yield that

∂2

∂ρiρj
I(ρ) =


ω̃i,i+1

1
ρ2i

(ρi + ρi+1) + ω̃i,i−1
1
ρ2i

(ρi + ρi−1) for j = i;

−ω̃i,i+1
1

ρiρi+1
(ρi + ρi+1) for j = i+ 1;

−ω̃i,i−1 1
ρiρi−1

(ρi + ρi−1) for j = i− 1;

0 otherwise.

Thus we obtain

σTHessI(ρ)σ =

N∑
i=1

(ω̃i,i+1
1

ρ2i
(ρi + ρi+1) + ω̃i,i−1

1

ρ2i
(ρi + ρi−1))σ2

i

+

N∑
i=1

(ω̃i,i+1
1

ρiρi+1
(ρi + ρi+1)σiσi+1 + ω̃i,i−1

1

ρiρi−1
(ρi + ρi−1)σiσi−1)

=

N∑
i=1

ω̃i,i+1(ρi + ρi+1)(
σi
ρi
− σi+1

ρi+1
)2 ≥ 0,

which implies the semi-positvity of Hess(I(ρ)). To show strict convexity, assume

that there exists a unit vector σ∗ such that σ∗THessI(ρ)σ∗ = 0. Then we have
σ1

ρ1
= σi

ρi
for i = 2, · · · , N . Since σ ∈ TρPo(G), then

∑N
i=1 σi = σ1(1+

∑N
i=2

ρi
ρ1

) = 0.

As ρ ∈ Po(G), we conclude that σi = 0 for all i, which contradicts that σ∗Tσ∗ = 1.
Strict convexity implies that there is a unique minimum point on Po(G). By using
the Lagrange multiplier technique to find the minimum of I(ρ) under the constraint∑N
i=1 ρi = 1 and taking the first derivative with respect to ρ, we obtain that the

extreme point satisfies

ω̃i,i+1φ(
ρi+1

ρi
) + ω̃i−1,iφ(

ρi−1
ρi

) = λ, for i ≤ N,

where φ(t) = 1− t− log(t), t ∈ (0,∞). It is not difficult to verify that φ is strictly
decreasing, convex, and φ(1) = 0. Then when λ = 0, ρi = 1

N , the extreme point

ρi = 1
N is the unique minimum point such that I(ρ) = 0. �

Due to convexity of I(ρ), for any C > 0 there exists c < 1/N , such that
inf0<mini(ρi)≤c I(ρ) ≥ C. On the other hand, we also know that the exact so-
lution preserves energy, which means that ρ(t) ∈ B = {ρ ∈ Po(G) | βI(ρ) ≤
H0 − minρ(V(ρ) +W(ρ))}, where minρ(V(ρ) +W(ρ)) < ∞. Denote M := H0 −
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minρ(V(ρ) +W(ρ)). Thus, if we can find an upper bound c such that I(ρ) ≥ M
β ,

then c will be a lower bound for the exact solution ρ(t), t ≥ 0. Since

I(ρ) ≥ min
i≤N−1

ω̃ii+1

N∑
i=1

(log(ρi)− log(ρi+1))(ρi − ρj),

the condition that
∑N
i=1(log(ρi) − log(ρi+1))(ρi − ρj)) ≥ 1

mini≤N−1 ω̃ii+1

M
β ensures

I(ρ) ≥ M
β . The following result gives the anticipated lower bound, and its proof is

given in the Appendix at the end, where we assume that ω̃i,i+1 = 1 for simplicity.

Proposition 3.1. Let mini(ρ
0
i ) <

1
N . Then it holds that

sup
t≥0

min
i≤N

ρi(t) ≥ min(
1

2
min
i
ρ0i ,

1

1 +N exp(
M(N−1)([N−1

2 ]+1)

β )
).

Proof. See the Appendix. �

3.2. Lower bound for aperiodic structure. Here we consider the case of an
aperiodic graph (e.g., as when we have Neumann boundary conditions), and look

for the extreme points of I(ρ) under the constraint
∑N
i=1 ρi = 1. We denote the

boundary point set by VB , i.e., if a ∈ VB , then there exists only one edge connecting
with other points. The Fisher information term now is

I(ρ) =

N−1∑
i=1

ω̃i,i+1(log(ρi)− log(ρi+1))(ρi − ρi+1).(3.2)

Similarly to Lemma 3.1, we have strict convexity of I(ρ).

Lemma 3.2. I(ρ) in (3.2) is strictly convex on Po(G) and achieves its unique min-
imum at the uniform distribution.

The proof of the following lower bound estimate is also given in the Appendix,
where for simplicity we assume that ω̃ii+1 = 1.

Proposition 3.2. Let mini(ρ
0
i ) <

1
N . Assume that κ ≤ N−1 is the number of nodes

in VB , dmax is the largest distance1 between two nodes in VB . Then it holds that

sup
t

min
i
ρi(t) ≥ min

(1

2
min
i

(ρi(0)),
1

1 + κ(dmax − 1) exp(2M(dmax−1)(N−1)
β )

)
,

where κ is the number of nodes in VB .

Proof. See the Appendix. �

4. Time discretization of Wasserstein-Hamiltonian systems on graph

Our purpose in this section is to look at the full discretization of Wasserstein-
Hamiltonian systems. In particular, we discuss the time discretization of the (reg-
ularized) spatial discretizations (2.3) and (2.5) and our main goal is to devise a
symplectic discretization of the Wasserstein-Hamiltonian flow (2.3) with β > 0.
Then, we will discuss general regularization strategies for (2.5).

1The distance dij between two nodes ai and aj is the smallest number of edges connecting ai
and aj .
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Presently, the discrete Lagrangian functional is

L(ρ, ρ̇) =
1

2
〈∇GS,∇GS〉θρh−F(ρ)h− βI(ρ)h

with the constraint dρ
dt + divθG(ρ∇GS) = 0, and

I(ρ) =
1

2

N∑
i=1

∑
j∈N(i)

ω̃ij | log(ρi)− log(ρj)|2θ̃ij(ρ).

We assume that c0 ≤ ωij ≤ C0, c0 ≤ ω̃ij ≤ C0, for some positive numbers
c0, C0, and that maxiVi + maxijWij ≤M0. For simplicity, in this part we restrict

consideration to θij(ρ) = θAij(ρ) =
θi+θj

2 , and θ̃ij(ρ) = θLij(ρ) =
ρi−ρj

log(ρi)−log(ρj) .

Denote the maximum numbers of edges connecting to a node with Emax, and let
c be the uniform lower bound of ρ derived in Section 3. Then, the uniform upper
bound estimate of |Si − Sj | can be obtained in the following way.

RecallH(ρ, S) = K(S, ρ)+F(ρ), whereK(S, ρ) := 1
2 〈∇GS,∇GS〉θ(ρ) and F(ρ) :=

βI(ρ) + V(ρ) +W(ρ). Due to the conservation of H, we have

K(S, ρ) + βI(ρ) :=
1

4

∑
i

∑
j∈N(i)

ωij |Si(t)− Sj(t)|2θij(ρ(t))

+ β
1

2

N∑
i,j=1

ω̃ij(log(ρi(t))− log(ρj(t)))
2θ̃ij(ρ(t))

≤ H0 −min
i

(Vi +

N∑
j=1

Wijρj) =: M.

Then we get

max
i
|Si − Sj |2 ≤

2M

mini,j ωij minij θij(ρ(t))
≤ 2M

cmini,j ωij
,

max
i
| log(ρi)− log(ρj)|2 ≤

M

mini,j ω̃ij minij θij(ρ(t))
≤ M

cmini,j ω̃ij
,

where c ≥ min
(

1
2 mini ρi(0), 1

1+κ(dmax−1) exp(2M(dmax−1)(N−1)
mini,j ω̃ijβ

)

)
and κ is the number

of nodes in VB . Since x− y ≤ log(x)− log(y) for 0 < y ≤ x < 1, we also obtain

max
i
|ρi − ρj |2 ≤

M

mini,j ω̃ij minij θij(ρ(t))
≤ M

cmini,j ω̃ij
.

The Lipschitz constant of H, Lip(H), satisfies

Lip(H) ≤ max
i≤N

(∣∣ ∑
j∈N(i)

(Si − Sj)ωijθij(ρ)
∣∣, ∣∣1

2

∑
j∈N(i)

ωij(Si − Sj)2
∂θij
∂ρi

+ β
∂I

∂ρi
(ρ)
∣∣+M0

)
.

Then on the set B = {(S, ρ)|K(S, ρ) + I(ρ) ≤M}, we have∥∥∥∂H
∂S

∥∥∥
l∞
≤ EmaxC0

√
2M

cc0
,
∥∥∥∂H
∂ρ

∥∥∥
l∞
≤ EmaxC0

(1

2

M

cc0
+ β

√
M

cc0
+ β

1

c
+M0

)
,∥∥∥∂2H

∂S2

∥∥∥
l∞
≤ C0,

∥∥∥ ∂2H
∂ρ∂S

∥∥∥
l∞
≤ 1√

2
C0

√
M

cc0
,
∥∥∥∂2H
∂ρ2

∥∥∥
l∞
≤ βC0

(1

c
+

1

c2
+M0

)
.
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By recursive calculations, we further get ∂nH
∂ρn ≤ βC0((n−2)!( 1

c )n−1 + (n−1)!( 1
c )n)

for n ≥ 3 and other partial derivatives bounded by C0

2 for n = 3 and 0 for n ≥ 4.

4.1. Symplectic methods. Based on the positivity of the probability density in
(2.3), the constraint on ρ can be rewritten as S(t) = (−∆θ

ρ(t))
†ρ̇(t), where (−∆θ

ρ(t))
†

is the pseudo-inverse of −divθG(ρ∇G(·)). Thus we have the following equivalent
forms

L(ρ,∇GS) =
1

2
〈∇GS,∇GS〉θρ −F(ρ) =

1

2
〈S,∆θ

ρ(t)S〉h−F(ρ)

=
1

2
〈∇G((−∆θ

ρ(t))
†ρ̇(t)),∇G((−∆θ

ρ(t))
†ρ̇(t))〉θρ −F(ρ)

=
1

2
〈(−∆θ

ρ(t))
†ρ̇(t)), (−∆θ

ρ(t))(−∆θ
ρ(t))

†ρ̇(t)〉 − F(ρ) =: L(ρ, ρ̇),

where F(ρ) = βI(ρ) + V(ρ) +W(ρ), β > 0.

Consider the action integral S(ρ) =
∫ t1
t0
L(ρ(t), ρ̇(t))dt among all curves ρ(t)

connecting two given probability densities ρ(t0) = ρ0 and ρ(t1) = ρ1, and let us
consider the approximation of the action integral between 0 and T , connecting ρ(0)
and ρ(T ):

Sτ ({ρn}Nn=0) =

N−1∑
n=0

Lτ (ρn, ρn+1),

where Lτ (ρn, ρn+1) is an approximation of
∫ tn+1

tn
L(ρ(s), ρ̇(s))ds with given T = tN

and τ = tn+1− tn. Then, letting ∂Sτ
∂ρn = 0, for n = 1, · · · , N − 1, we get the discrete

Euler-Lagrange equation

∂Lτ
∂x

(ρn, ρn+1) +
∂Lτ
∂y

(ρn−1, ρn) = 0,

where ∂Lτ
∂x and ∂Lτ

∂y refer to the partial derivatives with respect to the first and

second argument.
By introducing the discrete momenta via the discrete Legendre transformation

pn = −∂Lτ∂x (ρn, ρn+1), we can get dSτ = pNdρN − p0dρ0. Sτ is also called symplec-

ticity generating function. This implies the symplecticity of the map (p0, ρ0) →
(pN , ρN ) (see e.g. [8, Chapter VI]). Indeed, we get

pn = −∂Lτ
∂x

(ρn, ρn+1), pn+1 =
∂Lτ
∂y

(ρn, ρn+1).

Let us consider the first time step approximation. Assume that we use some nu-
merical integration formula, and get Lτ (ρ0, ρ1) = τ

∑s
i=1 biL(u(ciτ), u̇(ciτ)), where

0 ≤ c1 < · · · < cs ≤ 1 and u(t) is the collocation polynomial of degree s with
u(0) = ρ0 and u(τ) = ρ1. Then we can rewrite the above approximation as

Lτ (ρ0, ρ1) = τ

s∑
i=1

biL(Φi, Φ̇i),

Φi = ρ0 + h

s∑
j=1

aijΦ̇
j ,
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subject to the constraint ρ1 = ρ0 + h
∑s
i=1 biΦ̇

i. We assume that all the bi are
non-zero and that their sum equals 1. By the Lagrange multiplier method, the
extremum point satisfies

S1 = S0 − τ
s∑
i=1

bi
∂H(Ξi,Φi)

∂ρ
,

ρ1 = ρ0 + τ

s∑
i=1

bi
∂H(Ξi,Φi)

∂S
,

Ξi = S0 − τ
s∑
j=1

ãij
∂H(Ξj ,Φj)

∂ρ
,

Φi = ρ0 + τ

s∑
j=1

aij
∂H(Ξj ,Φj)

∂S

where the coefficients satisfy the condition ãijbi+ajibj = bibj , of partitioned Runge
Kutta symplectic methods for the Wasserstein-Hamiltonian system (2.3).

Example 4.1. Symplectic Euler method (ãij = 1, aji = 0, bi = bj = 1, s = 1)

ρn+1
i = ρni +

∂H(Sn+1, ρn)

∂S
τ,

= ρni −
∑

j∈N(i)

ωij(S
n+1
j − Sn+1

i )θij(ρ
n)τ

Sn+1
i = Sni −

∂H(Sn+1, ρn)

∂ρ
τ,

= Sni −
1

2

∑
j∈N(i)

ωij(S
n+1
i − Sn+1

j )2
∂θij(ρ

n)

∂ρi
τ − ∂F(ρn)

∂ρi
τ,

where F(ρ) := βI(ρ) + V(ρ) +W(ρ). �

In the following, we focus on the case of symplectic Runge–Kutta methods, i.e.,
ãij = aij . With minor modifications, all results hold for the partitioned Runge–
Kutta symplectic methods.

Theorem 4.1. Assume that G = (V,E,Ω) is a connected weighted graph and that
mini≤N ρ

0
i > 0. Then the symplectic Runge–Kutta scheme (4.1) enjoys the follow-

ing properties.

(i) It preserves mass:
N∑
i=1

ρni =

N∑
i=1

ρ0i .

(ii) It preserves symplectic structure: dρn ∧ dSn = dρ0 ∧ dS0.
(iii) Assuming that the scheme is symmetric, then it is time reversible: if

(ρn, Sn) is the solution of the full discretization, then (ρ−n,−S−n) is also
the solution of the full discretization.

(iv) It is time transverse (gauge) invariant: if Vα = V−α, then Sα = S +αt is
the solution of the scheme with linear potential Vα.

(v) A time invariant ρ∗ ∈ Po(G) and S∗n = −vnτ form an interior stationary
solution of the symplectic scheme if and only if (ρ∗, S∗) is the critical point

of H(ρ, S) and v = H(ρ∗, S∗) + 1
2

∑N
i=1

∑N
j=1 Wijρ

∗
i ρ
∗
j .
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(vi) When M
β is small enough, the scheme almost preserves the Hamiltonian up

to time T = O(τ−r):

H(Sn, ρn) = H(S0, ρ0) +O(τ r),

where r is the order of the symplectic numerical scheme.

Proof. Property (i) holds since this is a linear constraint. Property (ii) can be
verified by using the symplecticity condition aijbi + ajibj = bibj . As far as (iii),
since the exact flow of the original system Φ(y) = Φ(S, ρ) is g-reversible, i.e., g◦Φ =
Φ−1◦g, with g(S, ρ) = (−S, ρ), then since the one-step method Φτ is symmetric, i.e,
Φτ ◦Φ−τ = I, then Φτ is g-reversible, i.e., g◦Φτ = Φ−1τ ◦g, and (iii) holds. Property
(iv) holds because K(ρ, S) is an even function of S and the potential is linear. To
show Property (v), we only need to show that ρ∗ satisfies the Karush-Kuhn-Tucker
conditions of optimality for minimization of minρ∈Po(G)H(ρ) = minρ∈Po(G)(βI(ρ)+
V(ρ) +W(ρ)), which is done using the Lagrange multiplier method.

We next focus on the proof of (vi). Rewrite the r-th order Runge–Kutta scheme
as

y1 = y0 + τ

s∑
i=1

bif(ỹi),

ỹi = y0 + τ

s∑
j=1

aijf(ỹj).

Assume that y0 ∈ B = {ρ ∈ Po(G) | βI(ρ) ≤ H0 − minρ(V(ρ) +W(ρ))} and let

K be the smallest number such that yK+1 /∈ B and for some j ≤ N , yK+1
N+j =

minNi=1 |yK+1
N+i | = αc, 0 < α < 1. By Taylor expansion, using recursion, we have

|yN+i(tK+1)− yK+1
N+i | ≤ |yN+i(tK)− yKN+i|+ Cr,M,c0,C0(1 + β)(

1

c2r+1
+ 1)τ r+1

≤ KτCr,M,c0,C0(1 + β)(
1

c2r+1
+ 1)τ r,

which implies that for i = 1, · · · , N ,

yN+j(tK+1) ≤ yK+1
N+j −KτCr,M,c0,C0

(1 + β)
1 + c2r+1

c2r+1
τ r.

Thus, before the time Kτ ≥ c2r+2

2τrCr,M,c0,C0
(1+β) (1 − α), the lower bound of the

original system is preserved by the numerical scheme. After Kτ , we can still write
the scheme until the lower bound of the density goes to 0. The solvability of the

scheme requires the classical condition, max
(
C0,

1√
2
C0

√
M
cc0
, βC0

(
1
c+ 1

c2 +M0

))
τ ≤

constant, where the constant only depends on the numerical method. Due to the
fact that if T = O(τ−r), the lower bound of the density is uniformly controlled by
c, we complete the proof of (vi) by using the Taylor expansion ot the energy. �

4.1.1. Backward Error Analysis. In spite of point (vi) in Theorem 4.1, symplectic
methods nearly preserve the Hamiltonian for times much longer than O(τ−r), since
the backward error analysis allows for an exponentially small error between the
symplectic scheme and its modified equation. To apply the backward error analysis,
we need to verify that the coefficients of the equation admit an analytic extension
on the complex domain, which we do next.



TIME DISCRETIZATIONS OF WASSERSTEIN-HAMILTONIAN FLOWS 17

By choosing the principle value of the logarithm of z in C/{0}, denoted by
Log(z) := log |z| + iArg(z), it is known that Log(z) is analytic except along the
negative real axis. Since 1

ρi
and log(ρi) can be extended to analytic complex func-

tions for ρi ∈ C/{0}, we extend

f(S, ρ) := (−∂H
∂ρ

,
∂H
∂S

)

=
(
− 1

4

∑
j∈N(i)

ωij(Si − Sj)2 −
∑

j∈N(i)

ω̃ij(1−
ρj
ρi
− log(

ρj
ρi

)),

1

2

∑
j∈N(i)

ωij(Si − Sj)(ρi + ρj)
)

to a complex function in C2n such that for any y0 ∈ B, f(y) is analytic in the
neighborhood of y0 and that there exists R > 0 such that

‖f(y)‖ ≤Mc, for ‖y − y0‖ ≤ 2R.

This is applicable since we can choose R ≤ 1
4dist(y0, B) such that

N
min
i=1
|yN+i| =

N
min
i=1
|ρi| ≥ c,

and that

‖f(y)‖l∞ ≤ EmaxC0

(1

2

M

cc0
+ β

√
M

cc0
+ β

1

c
+M0

)
.

Thus, the backward error analysis is applicable in our case. We first introduce
the truncated modified differential equation of (2.3) with respect to an r-th order
numerical scheme,

˙̃y = FN (ỹ), FN (ỹ) = f(ỹ) + τ rfr+1(ỹ) + · · ·+ τN−1fN (ỹ)(4.1)

with ỹ(0) = y(0). It is well-known that the above modified equation is also a

Hamiltonian system with the modified Hamiltonian H̃(y) = H(y) + τ rHr+1(y) +
· · ·+τN−1HN (y). According to [8, Theorem 7.2 and Theorem 7.6], we have that for
the Runge-Kutta method, if f(y) is analytic and ‖f(y)‖ ≤Mc in the complex ball
B2R(y0), then the coefficients dj in the Taylor expansion of the numerical method

Φτ (y) = y + τf(y) + τ2d2(y) + · · ·+ τ jdj(y) + . . . ,

are analytic and satisfy ‖dj(y)‖ ≤ C
Mj
c

R in BR(y0). If τ ≤ τ0 with τ0 ≤ C R
Mc

for

some constant C > 0, then there exists N = N (τ) satisfying τN ≤ h0 such that

‖Φτ (y0)− φ̃N,τ (y0)‖ ≤ CτMce
− τ0τ ,

where y1 = Φτ (y0) is the numerical solution and φ̃N ,τ (y0) is the exact solution of
(4.1) at t = τ .

As a consequence of the above results, the long-time energy conservation is ob-
tained. Assume that the numerical solution of the symplectic method Φτ (y) stays
in the compact set B, then there exists R, τ0 and N(τ0) such that

|H̃(yn)− H̃(y0)| ≤ nτMce
− τ0τ ,

|H(yn)−H(y0)| ≤ CM
p+1
c

Rp
τp,
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Corollary 4.1. Under the same condition of Theorem 4.1, when M
β is small enough,

there exists τ0 small enough, CM > 0, and a modified energy H̃, O(τ r)-close to H,
such that for any τ < τ0, nτ < T ,

|H̃(Sn, ρn)− H̃(S0, ρ0)| ≤ nτCMe−
τ0
τ .

4.2. Regularizations. Here we look at two instances of regularization for (2.5):
one based on Fisher information, and one based on standard viscosity solution. We
assume that M⊂ R is a bounded connected domain, and for simplicity restrict to
(2.5) subject to periodic boundary conditions without the term F(ρ). The initial
condition ρ(0) > 0, and S(0), are smooth and bounded functions onM. We remark
that all the proposed scheme can be constructed similarly in other domain in Rd.

4.2.1. Fisher information regularization symplectic scheme. For the system (2.5),
its Lagrangian formalism is equivalent to its Hamiltonian formalism. We can
directly apply the Fisher information regularization symplectic scheme (4.1) to
the semi-discretization of the considered Hamiltonian PDE. We use the mid-point
scheme applied to the graph generated by the central difference scheme under the
periodic condition as an example of a fully discrete scheme,

ρn+1
i = ρni +

∂H(Sn+
1
2 , ρn+

1
2 )

∂Si
τ,

= ρni −
∑

j∈N(i)

τ

h2
(S

n+ 1
2

j − Sn+
1
2

i )θij(ρ
n+ 1

2 )

Sn+1
i = Sni −

∂H(Sn+
1
2 , ρn+

1
2 )

∂ρi
τ,

= Sni −
1

2

∑
j∈N(i)

τ

h2
(S

n+ 1
2

i − Sn+
1
2

j )2
∂θij
∂ρi

(ρn+
1
2 )− β ∂I(ρn+

1
2 )

∂ρi
τ.

(4.2)

Then all the properties in Theorem 4.1 hold. According to the priori estimate on
the coefficients of discrete Hamiltonian PDEs, we have the following space-time
step size restriction,

τ ≤ C min
( 1

C0
,

1

C0

√
cc0
M

,
1

C0

c2

β(1 + c+M0c2)

)
,

where

c ≥ min(
1

2
min
i
ρi(0),

1

1 +N exp(
M(N−1)([N−1

2 ]+1)h2

β )
), and c0 = C0 =

1

h2
.

If we do not add a regularization term, like Fisher information, to the numerical
scheme of (2.3), then the numerical scheme may develop singularities and pro-
duce unstable behavior. The following example indicates that even the structure-
preserving numerical scheme which uses the upwind weight θU without regulariza-
tion will fail –at a finite step n– to maintain positivity for ρni , and will lead to blow
up for Sni .

Example 4.2. Assume that the graph has only two points. Assume that ρ1(0), ρ2(0) >
0 and S1(0), S2(0) are the corresponding initial densities and potentials of the two
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points. We choose θij = θ̃ij as the probability weight

θij(ρ) = ρj , if Si > Sj ,

θij(ρ) = ρi, if Si < Sj .

For simplicity, assume that S1(0) > S2(0), F(ρ) = 0. Then the finite dimensional
system becomes

ρ̇1 = (S1 − S2)ρ2, ρ̇2 = (S2 − S1)ρ2,

Ṡ1 = 0, Ṡ2 = −1

2
|S1 − S2|2.

Then S1 − S2 = S1(0)−S2(0)

1− 1
2 (S1(0)−S2(0))t)

. Until t < 2
S1(0)−S2(0)

, ρ1 and ρ2 possess the

strict positivity property. When t = 2
S1(0)−S2(0)

, ρ1 = 1, ρ2 = 0.

4.2.2. Regularization by adding viscosity. As alternative to adding Fisher infor-
mation as regularization term, a classical regularization procedure is obtained by
adding numerical viscosity in order to obtain monotone schemes for S. For example,
by introducing the numerical viscosity αi(S

n) := α(Sni+1−2Sni −Sni−1), where α ∈ R
is used to guarantee the monotonicity of Sn+1

i . This is a standard way of proceed-
ing (elliptic regularization, which we now detail and further use in the numerical
tests for comparison purposes. As we will see, although adding viscosity does lead
to a well defined discretization (4.3), unlike the regularization scheme (4.2), the
numerical scheme (4.3) does not preserve relevant properties of the Hamiltonian
system (see Theorem (4.2) below). This can be easily appreciated in the numerical
tests in Section 5.

Assume that maxi,n |
Sni+1−S

n
i

h | ≤ R. Then, we can choose α (0 < α < 1
2 , α ≥ R

τ
h )

such that

1− τ

h
(
(Sni+1 − Sni )+

h
+

(Sni−1 − Sni )+

h
)− 2α ≥ 0,

− τ

h

(Sni+1 − Sni )+

h
+ α ≥ 0,

− τ

h

(Sni−1 − Sni )+

h
+ α ≥ 0.

Doing so, we get the following scheme:

ρn+1
i = ρni + τ(

Sni − Sni+1

h2
)+ρni+1 + τ(

Sni − Sni−1
h2

)+ρni−1

+ τ(
Sni − Sni+1

h2
)−ρni + τ(

Sni − Sni−1
h2

)−ρni

Sn+1
i = Sni −

1

2
τ |

(Sni − Sni+1)−

h
|2 − 1

2
τ |

(Sni − Sni−1)−

h
|2 + αi(S

n).

(4.3)

Let ρ0 and S0 be the grid function of ρ(0) and S(0) on the grid G. Then
the proposed scheme (4.3) enjoys the following properties, which implies that the
numerical viscosity term leads to positivity of the density function and uniform
boundedness of S.

Theorem 4.2. Assume that maxi,n |
Sni+1−S

n
i

h | ≤ R, α ≥ R τ
h . Then there exists a

unique solution (ρni , S
n
i )n of (4.3) and satisfies the following properties.

(i) Mass is preserved:
∑
i ρ
n
i =

∑
i ρ

0
i .
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(ii) It is strictly positive: if min ρ0i > 0, then min ρni > 0 for any n.
(iii) If τ

h is sufficient small, and τ, h → 0, then Sni converges to the viscosity
solution of the Hamilton Jacobi equation.

(iv) It holds that lim
n→∞

Sn = S∞ and lim
n→∞

ρn = ρ∞, where ρ∞ ∈ Po(G).

(v) It holds that

‖Sn‖l∞ ≤ ‖S0‖l∞ , ‖ρn‖l∞ ≤ max((1 +R
τ

h
)n‖ρ0‖l∞ , 1/h).

Proof. For Properties (i), (iii) and (v), we refer to [5] for their proof relative to the
numerical approximation

Sn+1
i = Sni −

1

2
τ |

(Sni+1 − Sni )

h
|2 + αi(S

n).

We proceed to prove (ii) and (iv).
Due to the expression of ρn+1

i , we get

ρn+1
i ≥ ρni +

τ

h

(
(
Sni − Sni+1

h
)− + (

Sni − Sni−1
h

)−
)
ρni ≥ (1− 2R

τ

h
)ρni ,

which leads to

ρni ≥ (1− 2R
τ

h
)nρ0i .

Thus we have that ρni ≥ e−c1
τn
h mini ρ

0
i for some c1 > 0 and (ii) holds.

Now we are in a position to show (iv). Since Sn is uniformly bounded with
respect to n, there exists a sub-sequence {Snk}k converging to a constant S∞. By
using the comparison principle, we get that for any k, l,m ∈ N+,

‖Snk+m − Snl+m‖l∞ ≤ ‖Snk − Snl‖l∞ .

Thus {Snk+m}k is a Cauchy sequence in l∞(V × N+) and converges to the same
limit S∞. On the other hand, one can also check that the solution of the following
relation

1

2

∣∣∣ (S∞i − S∞i+1)−

h

∣∣∣2 +
1

2

∣∣∣ (S∞i − S∞i−1)−

h

∣∣∣2 + αi(S
∞) = 0(4.4)

must be 0. Indeed, let us assume that there is a nonzero solution for (4.4). From
the fact that αi(S

∞) > 0 if S∞i − S∞i+1 < 0, S∞i − S∞i+1 < 0 and αi(S
∞) < 0, if

S∞i − S∞i+1 > 0, S∞i − S∞i+1 > 0, the nonzero solution of (4.4) should has different
signs for S∞i − S∞i+1 and S∞i − S∞i−1 at each node ai. For simplicity assume that
S∞i − S∞i+1 < 0 and S∞i − S∞i−1 > 0. Now adding all the equations together, we
obtain that

N∑
i=1

1

2

∣∣∣ (S∞i − S∞i+1)−

h

∣∣∣2 = 0,

which contradicts the fact that S∞i − S∞i+1 < 0 for i = 1, · · · , N . Repeating this
argument, it follows that for any 1 ≤ n ≤ N , the solution of the following relation

n∑
i=1

[
1

2

∣∣∣ (S∞i − S∞i+1)−

h

∣∣∣2 +
1

2

∣∣∣ (S∞i − S∞i−1)−

h

∣∣∣2 + αi(S
∞)

]
= 0

must be 0. As a consequence, for any subsequence {Snk}k, we have

Snk+1
i − Snki

τ
= −1

2

∣∣∣ (Snki − Snki+1)−

h

∣∣∣2 − 1

2

∣∣∣ (Snki − Snki−1)−

h

∣∣∣2 + αi(S
nk)
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converges to

1

2

∣∣∣ (S∞i − S∞i+1)−

h

∣∣∣2 +
1

2

∣∣∣ (S∞i − S∞i−1)−

h

∣∣∣2 + αi(S
∞) = 0,

which only possesses the unique zero solution. Since ‖ρ‖l1 = 1, there exists a
subsequence {ρnk}k which converges to a density probability ρ∞. From (4.3) and
the convergence of S, we are in a position to show that all the subsequence of {ρn}n
converges to the same limit ρ∞. In the following, we show that for given k sufficient
large, then {ρnk+m}m is a Cauchy sequence. Indeed, we have

‖ρnk+1
i − ρnki ‖l∞ ≤ τ‖ρ

nk
i+1‖l∞‖

(
(
Snki − S

nk
i+1

h2
)+ − (

S∞i − S∞i+1

h2
)+
)
‖l∞

+ τ‖ρnki+1‖l∞‖
(Snki − Snki−1

h2
)+ −

S∞i − S∞i−1
h2

)+
)
‖l∞

+ τ‖ρnki ‖l∞‖
(Snki − Snki+1

h2
)− − (

S∞i − S∞i+1

h2
)−
)
‖l∞

+ τ‖ρnki ‖l∞‖
(Snki − Snki−1

h2
)− − (

S∞i − S∞i−1
h2

)−
)
‖l∞ ,

which, together with the uniform convergence of S, implies that ρnk+m is a Cauchy
sequence and possesses the same limit ρ∞. �

5. Numerical examples

Here we show performance of the numerical schemes on several examples. All
the numerical tests are performed under periodic boundary conditions in space, for
given initial conditions ρ(0) = ρ0 and S(0) = S0, as specified below.

Example 5.1. [Geodesic equations] This is the system (1.4):

∂tρ+∇ · (ρ∇S) = 0,

∂tS +
1

2
|∇S|2 = 0.

We report on the results of two different strategies: the upwind scheme (4.3) with
numerical viscosity, and the Fisher information regularization symplectic scheme
(4.2). We choose three different initial value conditions to compare the evolution
of the density function and energy. (The different behaviors of S and ∇S for (4.3)
and (4.2) are not of interest, since for (4.3) S will always converge to a constant;
see Theorem 4.2.)

In Figure 5.1, we show the behavior of (4.3) and (4.2) with initial value ρ0(x) =
exp(−10(x−0.5)2)

K and S0(x) = − 1
5 log(cosh(5(x − 0.5))). Here K is a normalization

constant so that
∫ 1

0
ρ0(x)dx = 1. We observe that for T < 0.15 the two scheme

behave quite closely to each other and the density concentrates at the point 0.5.
But, after T = 0.15, the density of (4.2) begins to oscillate. Here, we choose spatial
step-size h = 5× 10−3, temporal step-size τ = 10−4, viscosity coefficient α = 1/12

for (4.3), and θij(ρ) = θUij(ρ), θ̃ij(ρ) = θLij(ρ), β = 10−5 for (4.2). In Figure 5.2,
we also plot the density functions computed by (4.2) with different schemes and
different temporal and spatial step sizes, and clearly the oscillations appear to be
independent of the choice of schemes and mesh sizes; this leads us to believe that
the oscillations exists for the continuous system.
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Figure 5.1. The contour plot of ρ(t, x) (left), snapshots of ρ(t, x)
at t = (0.3, 0.2, 0.15, 0.1, 0.05) (middle) and energy error before
T = 0.315 (right) for the upwind scheme (4.3) with numerical vis-
cosity (top) and the Fisher information regularization symplectic
scheme (4.2) (bottom).

In Figure 5.3 and Firgure 5.4, we observe the same phenomenon for different
initial conditions. In Figure 5.3, we take M = [0, 1], ρ0(x) = 1 and S0(x) =
− 1

5 log(cosh(5(x − 0.5))). We choose spatial step-size h = 1.5 × 10−3, temporal

step-size τ = 1.3863 × 10−5, viscosity coefficient α = 8 × 10−2 for (4.3), and

θij(ρ) = θUij(ρ), θ̃ij(ρ) = θLij(ρ), β = 5 × 10−7 for (4.2). In Firgure 5.4, we choose

ρ0 = 1
2 , S0 = 1

8 sin(2πx), M = [0, 2],the spatial step-size h = 10−2, temporal

step-size τ = 10−4, viscosity coefficient α = 5× 10−2 for (4.3), and θij(ρ) = θUij(ρ),

θ̃ij(ρ) = θLij(ρ), β = 10−4 for (4.2). All these numerical tests show that the Fisher
information regularization scheme (4.2) preserves more structures for (2.5), such
as the energy evolution and time transverse invariance, compared to the numerical
scheme (4.3). Meanwhile (4.2) causes oscillatory behaviors after the singularity of
(2.5) is developed.

Figure 5.5 shows the relationship between β and the largest time step-size τ in
(4.2) that still gives correct approximation to the solution. In this numerical test, we

use h = 5×10−2, T = 4,M = [0, 1], S0(x) = sin(πx)
π , ρ0(x) = 1. The parameter β is

chosen as five different values, 0.005788, 0.005513, 0.00525, 0.005, 0.00476, 0.00454.
From 5.5, we can see that the relationship between H0

β and τ is very sensitive when
H0

β is large.
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(a) Midpoint scheme
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(b) Implicit Euler scheme
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(c) Symplectic Euler scheme

Figure 5.2. In (a) and (c), there are snapshots of ρ(t, x) at t =
(0.3, 0.2, 0.15, 0.1, 0.05) for (4.2) and (4.1) with h = 0.25×10−2, τ =
0.25 × 10−4 (left) and h = 0.125 × 10−2, τ = 0.2 × 10−4 (right).
In (b), we show snapshots of ρ(t, x) at t = (0.3, 0.2, 0.15, 0.1, 0.05)
for (4.2) with h = 0.25 × 10−2, τ = 1/3 × 10−4 (left) and h =
1/8× 10−2, τ = 1/2× 10−5 (right).
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Figure 5.3. Contour plot of ρ(t, x) (left), snapshots of ρ(t, x) at
t = (0.2773, 0.2079, 0.1386, 0.0693, 0.0347) (right) and the energy
error before T = 0.315 (right) for the upwind scheme (4.3) with
numerical viscosity (top) and the Fisher information regularization
symplectic scheme (4.2) (bottom).
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Figure 5.4. Contour plot of ρ(t, x) (left), snapshots of ρ(t, x) at
t = (0.5, 0.4, 0.3, 0.2, 0.1) (right) and the energy error before T =
0.5 (right) for the upwind scheme (4.3) with numerical viscosity
(top) and the Fisher information regularization symplectic scheme
(4.2) (bottom).
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Figure 5.5. Relationship between H0

β and the largest

time step-size τ that (4.2) with parameter β =
0.005788, 0.005513, 0.00525, 0.005, 0.00476, 0.00454.

Example 5.2. [Linear Madelung system] This is the reformulation of (1.7) as Wasserstein-
Hamiltonian system:

∂tρ+∇ · (ρ∇S) = 0,

∂tS +
1

2
|∇S|2 + β

∂

∂ρ
I(ρ) = 0.

We use the scheme (4.2) for a given β > 0. Figure 5.6 shows the behaviors of
ρ and S, as well as the energy evolution. Here for the evolution of ρ and S, we
choose β = 1, T = 0.5, τ = 10−3, h = 10−2, S0(x) = 1/2 sin(2πx), ρ0(x) = 1. We
also plot the evolution of energy error H(t) − H0 and mass error up to T = 400,
which shows the good longtime behaviors of the proposed scheme.
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Appendix

Proof of Proposition 3.1. It suffices to find a constant 0 < c < 1
N such that inf

0≤mini(ρi)≤c
I(ρ) ≥

M0

β . Since the graph is finite, we have that

inf
0≤mini I(ρi)≤c

I(ρ) = min
i≤N

inf
0≤ρi≤c

I(ρ)

Due to convexity of I(ρ) on 0 ≤ ρi ≤ c for a fixed i ≤ N , and the fact that I(ρ)
approaches ∞ when ρ approaches the boundary of Po(G), I(ρ) takes the minimum
at the boundary, i.e., inf

0≤ρi≤c
I(ρ) = inf

ρi=c
I(ρ) on Po(G). Because of the periodic

boundary condition, without loss of generality we can assume that ρ1 = c. By
calculating the Hessian matrix of I(ρ), we get for any σ 6= 0,

σTHessI(ρ)σ =
N−1∑
i=3

(
1

ρ2i
(ρi + ρi+1 + ρi−1))σ2

i

+

N−1∑
i=3

(
1

ρiρi+1
(ρi + ρi+1)σiσi+1 +

1

ρiρi−1
(ρi + ρi−1)σiσi−1)

+
1

ρ22
(2ρi + ρ3 + c) +

1

ρ2ρ3
(ρ2 + ρ3)

+
1

ρ2N
(2ρN + ρN−1 + c) +

1

ρNρN−1
(ρN + ρN−1)

=

N−1∑
i=2

(ρi + ρi+1)(
σi
ρi
− σi+1

ρi+1
)2 +

1

ρ22
(ρ2 + c)σ2

2 +
1

ρ2N
(ρN + c)σ2

N > 0,

which implies strict convexity of I(c, ·) on
∑N
i=2 ρi = 1 − c. Using the Lagrange

multiplier technique on I(c, ρ2, · · · , ρN )−λ(
∑N
i=2 ρi−1+c), we get that the unique
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minimum point satisfies

φ(
c

ρ2
) + φ(

ρ3
ρ2

) = λ,

φ(
ρi−1
ρi

) + φ(
ρi+1

ρi
) = λ, if 3 ≤ i ≤ N − 1,

φ(
ρN−1
ρN

) + φ(
c

ρN
) = λ,

(A.1)

where φ(t) = 1−t−log(t). We claim that ρN−i+1 = ρi+1, for i = 1, · · · , N−12 , ifN−1

is even number. When N − 1 is odd, we have ρN−i+1 = ρi+1, for i = 1, · · · , [N−12 ],
where [s] is the largest integer smaller than or equal to s ∈ R.

To prove this claim, it suffices to show that ρ2 = ρN . Assume that ρ2 > ρN ,
Due to the monotonicity of φ, we have c

ρ2
< c

ρN
,

ρ3
ρ2

>
ρN−1
ρN

,
ρ4
ρ3

>
ρN−2
ρN−1

, · · · , ρi+2

ρi+1
>

ρN−i
ρN−i+1

, for 1 ≤ i ≤ [
N − 1

2
].(A.2)

If N − 1 is even, we obtain that

φ(
ρN−1

2 +2

ρN−1
2 +1

) < φ(
ρN−1

2 +1

ρN−1
2 +2

),

which leads to
ρN−1

2
+1

ρN−1
2

+2

<
ρN−1

2
+2

ρN−1
2

+1

, i.e., ρN−1
2 +2 > ρN−1

2 +1. Thus, we can conclude

from (A.2) that

ρN
ρ2

>
ρN−1
ρ3

> · · · >
ρN−1

2 +2

ρN−1
2 +1

> 1,

which contradicts the assumption ρ2 > ρN . If N−1 is odd, similar arguments yield
that

φ(
ρ[N−1

2 ]+2

ρ[N−1
2 ]+1

) < φ(
ρ[N−1

2 ]+2

ρ[N−1
2 ]+3

),

which implies that ρ[N−1
2 ]+3 > ρ[N−1

2 ]+1. Thus from (A.2), we have that

ρN
ρ2

>
ρN−1
ρ3

> · · · >
ρ[N−1

2 ]+3

ρ[N−1
2 ]+1

> 1,

which contradicts the assumption ρ2 > ρN . One can show that ρ2 < ρN is also
impossible by the same arguments. As a consequence, ρ2 = ρN . By further using
(A.1), we immediately get ρN−i+1 = ρi+1, for i = 1, · · · , [N−12 ].

Now, we are going to show that the extreme point possesses the monotonicity
along the path starting from a1. Indeed, ρi is increasing when d1,i+1 is increasing

for i ≤ [N−12 ] if N is odd and for i ≤ [N−12 ] + 1 if N is even. We use Figure A.1 to
illustrate these two different cases.

Step 1: λ > 0. Since λ = 0 if and only if ρi = 1
N , then I(ρ) = 0 which contradicts

the fact that infρ I(ρ) > 0. Assume that λ < 0. Then (A.1), together with the

symmetry ρi+1 = ρN−i+1, i = 1, · · · , [N−12 ], implies that when N − 1 is even, it
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Graph with N=7 Graph with N=8

Figure A.1. The picture of the graph with N = 7 (left) and with
N = 8 (right), where the red node represents v1.

holds that

φ(
ρi−1
ρi

) + φ(
ρi+1

ρi
) = λ, if 2 ≤ i ≤ N − 1

2
− 1,

φ(
ρN−1

2

ρN−1
2 +1

) = λ.
(A.3)

Since λ < 0, we obtain that

ρN−1
2 +1 < ρN−1

2
< · · · < ρ2 < ρ1 = c,

which contradicts the fact that
∑N
i=2 ρi = 1 − c. When N − 1 is odd, then (A.1)

and symmetry of ρi imply that

φ(
ρi−1
ρi

) + φ(
ρi+1

ρi
) = λ, if 2 ≤ i ≤ [

N − 1

2
],

2φ(
ρ[N−1

2 ]+1

ρ[N−1
2 ]+2

) = λ.
(A.4)

Then we get ρ[N−1
2 ]+2 < ρ[N−1

2 ]+1 < · · · < ρ2 < ρ1 = c, which is also not possible.

Thus it holds that λ > 0. This indicates that

ρ[N−1
2 ]+2 > ρ[N−1

2 ]+1 > · · · > ρ2 > ρ1 = c.

Step 2: ρi+1

ρi
is strictly decreasing. If N − 1 is even, ρi+1

ρi
is strictly decreasing

for 1 ≤ i ≤ [N−12 ]. According to (A.3), it holds that

φ(
ρN−1

2 −1

ρN−1
2

) = λ− φ(
ρN−1

2 +1

ρN−1
2

) = φ(
ρN−1

2

ρN−1
2 +1

)− φ(
ρN−1

2 +1

ρN−1
2

),

φ(
ρN−1

2 −i−1

ρN−1
2 −i

) = λ− φ(
ρN−1

2 −i+1

ρN−1
2 −i

) = φ(
ρN−1

2 −i

ρN−1
2 −i+1

)− φ(
ρN−1

2 −i+1

ρN−1
2 −i

) + φ(
ρN−1

2 −i+2

ρN−1
2 −i+1

),
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where i = 1, · · · , N−52 . The monotonicity of ρi, i ≤ N−1
2 , together with λ > 0,

leads to

φ(
ρN−1

2 −i−1

ρN−1
2 −i

) > φ(
ρN−1

2 −i

ρN−1
2 −i+1

), for i = 0, · · · , N − 5

2
.

If N − 1 is odd, ρi+1

ρi
is strictly decreasing for 1 ≤ i ≤ [N−12 ] + 1. From (A.4), it

follows that

φ(
ρ[N−1

2 ]

ρ[N−1
2 ]+1

) = λ− φ(
ρ[N−1

2 ]+2

ρ[N−1
2 ]+1

) = 2φ(
ρ[N−1

2 ]+1

ρ [N−1
2 ]+2

)− φ(
ρ[N−1

2 ]+2

ρ[N−1
2 ]+1

),

φ(
ρ[N−1

2 ]−i−1

ρ[N−1
2 ]−i

) = λ− φ(
ρ[N−1

2 ]−i+1

ρ[N−1
2 ]−i

) = φ(
ρ[N−1

2 ]−i

ρ[N−1
2 ]−i+1

)− φ(
ρ[N−1

2 ]−i+1

ρ[N−1
2 ]−i

) + φ(
ρ[N−1

2 ]−i+2

ρ[N−1
2 ]−i+1

),

where i = 0, · · · , [N−12 ] + 1. From the monotonicity of φ, it follows that ρi+1

ρi
is

strictly decreasing for 1 ≤ i ≤ [N−12 ].

Step 3: Lower bound for ρi+1

ρi
, i = 1, · · · , [N−12 ]. We first deal with the case that

N − 1 is even. Due to monotonicity of ρi+1

ρi
, its minimum is k :=

ρ
[N−1

2
]+1

ρ
[N−1

2
]

. Since∑
i ρi = 1, we have

c+ 2

[N−1
2 ]∑
i=2

ρi = c(1 + 2

[N−1
2 ]∑
i=2

ρi
c

) = 1.

To find a lower bound of ρi+1

ρi
, it suffices to find an upper bound such that

1 +

[N−1
2 ]∑
i=2

ki−1 =
k[
N−1

2 ] − 1

k − 1
<

1 + c

2c
.

Let k ≤ ( 1−c
2c[N−1

2 ]
)

1

[N−1
2

] . Then it holds that

[N−1
2 ]+1∑
i=2

ki−1 ≤ [
N − 1

2
]k[

N−1
2 ] ≤ 1− c

2c
.

Finally, we get that

inf
ρ1=c

I(ρ) = 2

[N−1
2 ]∑
i=1

(log(ρ∗i )− log(ρ∗i+1))(ρ∗i − ρ∗i+1)

≥ 2(log(
ρ∗
[N−1

2 ]+1

ρ∗
[N−1

2 ]

))(ρ∗
[N−1

2 ]+1
− c).

Since there exists at least ρ∗j , j ≤ N such that ρ∗j >
1−c
N−1 , thus it holds that

inf
ρ1=c

I(ρ) ≥ 2(log(
ρ∗
[N−1

2 ]+1

ρ∗
[N−1

2 ]

))(
1− c
N − 1

− c) ≥ 2 log(k)(
1− c
N − 1

− c) ≥ M

β
.(A.5)
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Now, we are able to show the desired lower bound estimate. If there exists 1
2 mini ρi(0)N

≤ α < mini ρi(0)N, c = α 1
N such that infρ1=c I(ρ) ≥ H0

β , then

sup
t≥0

min
i≤N

ρi(t) ≥
1

2
min
i
ρi(0).

Otherwise, c < 1
N α, for α ≤ 1

2 mini≤N ρi(0)N . From the estimate (A.5), it follows

that if c < 1

1+2[N−1
2 ] exp(

M0(N−1)([N−1
2

])

2β(1−α)
)

, then infρ1=c I(ρ) > M
β . Based on the above

estimates, we have the following lower bound for ρ,

sup
t≥0

min
i≤N

ρi(t) ≥
1

1 + 2[N−12 ] exp(
M(N−1)[N−1

2 ]

2β(1−α) )
≥ 1

1 + 2[N−12 ] exp(
M(N−1)[N−1

2 ]

β )
.

Thus, it holds that

sup
t≥0

min
i≤N

ρi(t) ≥ min(
1

2
min
i
ρi(0),

1

1 + 2[N−12 ] exp(
M(N−1)[N−1

2 ]

β )
).

Similar arguments yield the estimate when N − 1 is odd,

sup
t≥0

min
i≤N

ρi(t) ≥ min(
1

2
min
i
ρi(0),

1

1 + 2([N−12 ] + 1) exp(
M(N−1)([N−1

2 ]+1)

β )
).

�

Proof of Proposition 3.2. We use an induction argument and similar techniques to
those used in the proof of Proposition 3.1. Like the proof of Proposition 3.1, it
suffices to find the largest 0 < c < 1

N such that inf
0≤mini(ρi)≤c

I(ρ) ≥ M
β . Since the

graph is finite and I(ρ) is convex, we have that

inf
0≤mini I(ρi)≤c

I(ρ) = min
i≤N

inf
ρi=c

I(ρ).

When N = 3, then the graph only has two boundary nodes and we only need
to consider the case that ρ1 = c and ρ2 = c, due to the symmetry on boundary
nodes. When ρ1 = c, the Lagrange multiplier method yields that the extreme point
satisfies

φ(
c

ρ2
) + φ(

ρ3
ρ2

) = λ, φ(
ρ2
ρ3

) = λ, φ(t) = 1− t− log(t) .

Then it is not hard to get that λ > 0, ρ3 > ρ2 > c and c
ρ2
< ρ2

ρ3
. When ρ2 = c, the

Lagrange multiplier method yields that the extreme point satisfies

φ(
c

ρ1
) = λ, φ(

c

ρ3
) = λ,

and so we obtain that λ > 0, ρ3 > c, ρ1 > c. From these, similarly to the proof of
Proposition 3.1, we obtain

sup
t

min
i
ρi(t) ≥ min

(1

2
min
i
ρi(0),

1

1 + 2 exp(4Mβ )

)
,

Now we proceed with the induction steps. Assume that for the graph with N−1
nodes, if infj≤N−1 inf |ρj |≤c I(ρ) = infρi=c I(ρ) for some i, then we get λ > 0 in
the Lagrange multiplier technique, and that for any path al0al1al2 · · · alm , m ≤
N − 1, starting from al0 = ai to a boundary point alm , the probability density ρlj ,
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0 ≤ j ≤ m is increasing and
ρlj+1

ρlj
, 0 ≤ j ≤ m − 1, is decreasing. We are going

to prove that the above statement also holds for the graph with N nodes. Let
infj≤N inf |ρj |≤c I(ρ) = infρi=c I(ρ) for some i. Then either ai is a boundary vertex
of the the graph, or ai is an interior vertex of the graph.

Case 1: ai is an interior node of the graph. Assume that the numbers of edges
connecting to ai is ni. By using the Lagrange multiplier method and taking the
partial derivative with respect to ρj , j 6= i, we obtain N − 1 equations. Since
vi is an interior node, these N − 1 equations can be rewritten as ni systems of
equations which are related to ni subgraphs sharing the same node ai. Notice that
the number of the nodes of each subgraphs is smaller than N −1. According to our
induction assumption, it holds that λ > 0, for any path al0al1al2 · · · alm ,m ≤ N−1,
from al0 = ai to a boundary point alm , the probability density ρlj , 0 ≤ j ≤ m is

increasing and
ρlj+1

ρlj
, 0 ≤ j ≤ m− 1, is decreasing.

Case 2: ai is a boundary node of the graph. By the Lagrange multiplier method,
with φ(t) = 1− t− log(t), we obtain

∑
l∈N(j)

φ(
ρl
ρj

) = λ, if j /∈ N(i).

∑
l∈N(j),l 6=i

φ(
ρl
ρj

) + φ(
c

ρj
) = λ, if j ∈ N(i).

We first show that λ > 0. Assume that λ ≤ 0. If VB has only two nodes, then by
the monotonicity of φ, it holds that ρ is decreasing along the path al0al1al2 · · · alm
from al0 6= ai to an interior node alm . From the connectivity of the graph, we have

c ≥ ρl, l ≤ N , which leads to the contradiction that
∑N
l=1 ρl = 1 ≤ Nc < 1.

If VB has more than two nodes, then there must exist an interior node with
at least 3 outgoing edges. Denote ae the farthest interior node from ai which
has 3 or more outgoing edges. Since ae is connected to ai by a road, we denote
ae1 the point that is closet to ae and belongs to such road. Then at the node
ae, we have

∑
l∈N(e),l 6=e1 φ( ρlρe ) + φ(

ρe1
ρe

) = λ ≤ 0. Denote abl , l ∈ N(e), l 6= e1
as the corresponding boundary node which contains the edge alae. Due to the
monotonicity of φ, λ ≤ 0 and the fact that al belongs to the road only connecting
abl and ae, we have φ( ρlρe ) ≥ 0 for l ∈ N(e), l 6= e1. This implies that the density

along the road from abl to ae is decreasing and that φ(
ρe1
ρe

) ≤ 0. Then we can view

ae as a new boundary node of the left subgraph which is obtained by ignoring all
the roads from abl to ae and repeat the above procedures until we get a subgraph
which satisfying ai ∈ VB and VB has only two nodes. And on the graph with two
boundary nodes, the density is decreasing from another boundary point to ai. This

will leads to the contradiction that
∑N
l=1 ρl = 1 ≤ Nc < 1. Thus we conclude that

λ > 0. Following similar arguments, we obtain the increasing property of ρlj along
the path al0al1al2 · · · alm , m ≤ N−1 from al0 = ai to any boundary node alm ∈ VB .
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Next, we show the decreasing property of
ρlj+1

ρlj
. Since∑

l∈N(l1),l 6=i,l2

φ(
ρl
ρl1

) + φ(
c

ρl1
) + φ(

ρl2
ρl1

) = λ > 0,

∑
l∈N(lj),l 6=lj−1,lj

φ(
ρl
ρlj

) + φ(
ρlj−1

ρlj
) + φ(

ρlj+1

ρlj
) = λ > 0, 2 ≤ j ≤ m− 1,

φ(
ρlm−1

ρlm
) = λ > 0.

The increasing property of ρ along any path from ai to the node in VB yields that

φ(
ρlm−2

ρlm−1

) = λ−
∑

l∈N(lj),l 6=lm,lm−2

φ(
ρl

ρlm−1

)− φ(
ρlm
ρlm−1

) > φ(
ρlm−1

ρlm
).

The monotonicity of φ leads to
ρlm−2

ρlm−1
<

ρlm−1

ρlm
. By repeating the above procedures

on alj , 1 ≤ j ≤ m− 2, we obtain that

φ(
ρlj−1

ρlj
) + φ(

ρlj
ρlj+1

) +
∑

l∈N(lj),l 6=lj−1,lj+1

φ(
ρl
ρlj

) + φ(
ρlj+1

ρlj
) = λ+ φ(

ρlj
ρlj+1

).

Notice that φ(t) + φ(1/t) ≤ 0, t > 0 and that φ( ρlρlj
) < 0 when l 6= j − 1. As a

consequence, we get that

φ(
ρlj−1

ρlj
) ≥ λ+ φ(

ρlj
ρlj+1

),

which implies that
ρlj+1

ρlj
, 0 ≤ j ≤ m− 1 is decreasing along the path from ai to any

node in VB . Thus the results holds for the graph with N nodes.
Now, we are going to derive the desired lower bound of the ρt. Assume that κ ≤

N − 1 is the numbers of nodes in VB and that dmax is largest distance d(ai, alm) ≤
N − κ + 1 from ai to alm . Since

∑N
i=1 ρi = 1, there exists at least a node an

such that the density at an >
1−c
N−1 . Then for the path al0al1 · · · alj · · · alm , al0 =

vi, alm ∈ VB , alj = an, m ≤ dmax − 1, we have

m∑
r=0

ρlr = c(1 +

m∑
r=1

ρlr
c

)

Adding all the paths, which have ai as a common node, together, we obtain

c(1 +

κ∑
s=1

ms∑
r=1

ρlsr
c

) ≥ 1

To find a lower bound of the ratio of
ρls
r+1

ρlsr
for all the paths, we denote k =

mins≤κ
ρlsms
ρls
ms−1

and let c(1 +
∑κ
s=1

∑ms
r=1 k

r) < 1. It suffices to require that 1 +

κ(dmax−1)kdmax−1 < 1
c , i.e., k ≤ ( 1−c

cκ(dmax−1) )
1

dmax−1 . Thus it holds that mins≤κ
ρlsms
ρls
ms−1

≥

( 1−c
cκ(dmax−1) )

1
dmax−1 , if c ≤ 1

κ(dmax−1)+1 .
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When c ≤ 1
κ(dmax−1)+1 , we get that for some path which contains the node alj

whose density is large than 1−c
N−1 ,

min
i≤N

inf
ρi=c

I(ρ) ≥ min
i≤N

inf
ρi=c

mis−1∑
r=0

(log(ρ∗lir )− log(ρ∗lir+1
))(ρ∗lir − ρ

∗
lir+1

)

≥ min
i≤N

inf
ρi=c

log(
ρ∗mis
ρ∗mis−1

)(ρmis − c).

≥ 1

dmax − 1
log(

1− c
cκ(dmax − 1)

)(
1− c
N − 1

− c).

If there exists 1
2 mini ρi(0)N ≤ α < mini ρi(0)N, c = α 1

N such that infρ1=c I(ρ) ≥
M0

β , then

sup
t≥0

min
i≤N

ρi(t) ≥
1

2
min
i
ρi(0).

Otherwise, taking 1
dmax−1 log( 1−c

cκ(dmax−1) )(
1−c
N−1−c) ≥

H0

β and c = αmin( 1
N ,

1
(dmax−1)κ+1 ),

where α < 1
2N mini ρi(0), we obtain the lower bound as

sup
t

min
i
ρi(t) ≥

1

1 + κ(dmax − 1) exp(2M(dmax−1)(N−1)
β )

.

Combining all cases above, we have the following lower bound estimate

sup
t

min
i
ρi(t) ≥ min

(1

2
min
i

(ρi(0)),
1

1 + κ(dmax − 1) exp(2M(dmax−1)(N−1)
β )

)
.
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