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Abstract. In this paper, we propose a numerical method to solve the classic L2-optimal trans-4
port problem. Our algorithm is based on use of multiple shooting, in combination with a continuation5
procedure, to solve the boundary value problem associated to the transport problem. We exploit6
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1. Introduction. Optimal transport (OT) has a long and rich history, and it13

finds applications in various fields, such as image processing, machine learning and14

economics (e.g., see [19, 25]). The first mass transfer problem, a civil engineering15

problem, was considered by Monge in 1781. A modern treatment of this problem,16

in term of probability densities, was studied by Kantorovich in [16]. In this light,17

the optimal transport problem consists in moving a certain probability density into18

another, while minimizing a given cost functional. Depending on whether (one or19

both of) the densities are continuous or discrete, one has a fully discrete, or a semi-20

discrete, or a continuous OT problem. In this work, we consider a continuous OT21

problem subject to the cost given by the squared L2 norm. This is the most widely22

studied continuous OT problem, and the formulation we adopt in this paper is based23

on an optimal control formulation in a fluid mechanics framework, known as Benamou-24

Brenier formula, established in [3]. The starting point is to cast the OT problem in25

a variational form as26

inf
v
{
∫ 1

0

〈v, v〉ρdt : ∂tρ+∇ · (ρv) = 0, ρ(0) = µ, ρ(1) = ν},(1.1)27

where 〈v, v〉ρ :=
∫
Rd |v|2ρdx with smooth velocity field v(t, x) ∈ Rd, and µ and ν are28

probability density functions satisfying
∫
Rd |x|2µ(x)dx,

∫
Rd |x|2ν(x)dx < +∞. This29

ensures the existence and uniqueness of the optimal mapM∗ for the equivalent Monge-30

Kantorovich problem of (1.1), i.e., infM
∫
Rd |M(x) − x|pµ(x)dx with M : Rd → Rd31

transferring µ to ν (see e.g., [25, Theorem 1.22]). Moreover, the optimal map has the32

form M∗(x) = ∇ψ(x) = x + ∇φ(x), µ-a.s., with a convex function ψ(x). From [3],33

we have that ∇φ(x) = v(0, x) and that the characteristic line (X(t, x), v(t,X(t, x)))34

satisfies35

∂tρ(t,X(t, x)) +∇ · (ρ(t,X(t, x))v(t,X(t, x))) = 0,36

∂tv(t,X(t, x)) +∇(
1

2
|v(t,X(t, x))|2) = 0.37

38
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2 J. CUI, L. DIECI, AND H. ZHOU

When X(t, x) = x+ tv(0, x) is invertible, we obtain that ρ(t) = X(t, ·)#ρ(0) and that39

v(t, x) = v(0, X−1(t, x)) = ∇ψ(0, X−1(t, x)). We refer to [5, 13, 25] and references40

therein for results about regularity of M∗ and ψ. The optimal value in (1.1) is known41

as the L2-Wasserstein distance square between µ and ν, and written as g2W (µ, ν). The42

formulation (1.1) is interpreted as finding the optimal vector field v to transport the43

given density function µ to the density ν with the minimal amount of kinetic energy.44

(We emphasize that the “time variable” t has no true physical meaning, and it serves45

the role of a homotopy parameter.)46

By introducing the new variable S satisfying v = ∇S, the critical point of (1.1)47

satisfies (up to a spatially independent function C(t)) the following system in the48

unknowns (ρ, S):49

(1.2)

{
∂tρ+∇ · (ρ∇S) = 0

∂tS + 1
2 |∇S|

2 = 0,
50

subject to boundary conditions ρ(0) = µ, ρ(1) = ν. This is the well-known geodesic51

equation between two densities µ and ν on the Wasserstein manifold [27], and can52

also be viewed as a Wasserstein Hamiltonian flow with the Hamiltonian H(ρ, S) =53

1
2

∫
Rd |∇S|2ρdx when C(t) = 0, [8]. If S0 = S

∣∣∣
t=0

is known, the optimal value54

gW (µ, ν), the L2-Wasserstein distance between µ and ν, equals
√

2H(µ, S0).55

Remark 1.1. Obviously, S is defined only up to an arbitrary constant. As a con-56

sequence, the (ρ, S) formulation (1.2) of the boundary value problem cannot have a57

unique solution. Because of this fact, we will in the end reverse to using a formu-58

lation based on ρ and v, but the Hamiltonian structure of (1.2) will guide us in the59

development of appropriate semi-discretizations of the problem in the (ρ, v) variables.60

In recent years, there have been several numerical studies concerned with approx-61

imating solutions of OT problems, and many of them are focused on the continuous62

problem considered in this work, that is on computation of the Wasserstein distance63

gW and the underlying OT map. A key result in this context is that the optimal64

map is the gradient of a convex function u, which is the solution of the so-called65

Monge-Ampére equation, a non linear elliptic PDE subject to non-standard bound-66

ary conditions. We refer to [2, 4, 12, 15, 21, 23, 28], for a sample of numerical work67

on the solution of the Monge-Ampére equation. For different approaches, in the case68

of continuous, discrete, and semi-discrete OT problems, and for a variety of cost69

functions, we refer to [6, 10, 11, 18, 20, 22, 24, 26].70

However, numerical approximation of the solution of the geodesic equation has71

received little attention, and this is our main scope in this computational paper. There72

are good reasons to consider solving the geodesic equation: at once one can recover the73

Wasserstein distance, the OT map, and the “time dependent” vector field producing74

the optimal trajectory. At the same time, there are also a number of obstacles that75

make the numerical solution of the Wasserstein geodesic equation very challenging:76

the density ρ needs to be non-negative, mass conservation is required, and retaining77

the underlying symplectic structure is highly desirable too. Another hurdle, which78

is not at all obvious, is that the Hamiltonian system (1.2) with initial values on the79

Wasserstein manifold often develops singularities in finite time (see e.g. [9]). These80

challenges must be overcome when designing numerical schemes for the boundary81

value problem (1.2).82

In this paper, we propose to compute the solution of (1.2) by combining a multiple83

shooting method, in conjunction with a continuation strategy, for an appropriate semi-84
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discretization of (1.2). First, we consider a spatially discretized version of (1.2), which85

will give a (large) boundary value problem of ODEs. To solve the latter, we will use86

a multiple shooting method, whereby the interval [0, 1] is partitioned into several87

subintervals, [0, 1] = ∪K−1i=0 [ti, ti+1], initial guesses for the density and the velocity are88

provided at each ti, i = 0, . . . ,K − 1, initial value problems are solved on [ti, ti+1],89

and eventually enforcement of continuity and boundary conditions will result in a90

large nonlinear system to solve for the density ρ and velocity v at each ti. To solve91

the nonlinear system, we use Newton’s method, and –to enhance its convergence92

properties– we will adopt a continuation method to obtain good initial guesses for the93

Newton’s iteration.94

Multiple shooting is a well studied technique for solving two-point boundary value95

problems of ordinary differential equations (TPBVPs of ODEs), and we refer to [17] for96

an early derivation of the method, and to [1] for a comprehensive review of techniques97

for solving TPBVPs of ODEs, and relations (equivalence) between many of them.98

Our main reason for adopting multiple shooting is its overall simplicity, and the99

ease with which we can adopt appropriate time discretizations of symplectic type (on100

sufficiently short time intervals) in order to avoid finite time singularities when solving101

(1.2) subject to given initial conditions.102

The rest of paper is organized as follows. In Section 2, we briefly review the103

continuous OT problem and introduce a spatial discretization to convert (1.2) into104

Hamiltonian ODEs. At first, we propose the semi-discretization for the (ρ, S) vari-105

ables, but then in Section 3 we will revert it to the (ρ, v) variables, which are those106

with which we end up working. The multiple shooting method, and the continua-107

tion strategy, are also presented in Section 3 . Results of numerical experiments are108

presented in Section 4.109

2. Spatially discrete OT problems. In this section, we introduce the spatial110

discretization of (1.2). First of all, we need to truncate Rd to a finite computational111

domain, which for us will be a d-dimensional rectangular box in Rd: O = [xL, xR]d.112

We note that truncating Rd to a domain like O is effectively placing some natural113

condition on the type of densities µ and ν we envision having, namely they need to114

decay sufficiently fast outside of the box O ([14]). Then, we propose the spatial dis-115

cretization of (1.2), by following the theory of OT problem on a finite graph similarly116

to what we did in [9].117

Next, we let G = (V,E) be a uniform lattice graph with equal spatial step-size118

δx = xR−xL

n in each dimension. Here V is the vertex set with N = (n + 1)d nodes119

labeled by multi-index i = (ik)dk=1 ∈ V, ik ≤ n + 1. E is the edge set: ij ∈ E if120

j ∈ N(i) (read, j is a neighbor of i), where121

N(i) = ∪dk=1Nk(i), Nk(i) =
{

(i1, · · · , ik−1, jk, ik+1, · · · , id)
∣∣|ik − jk| = 1

}
.122

123

A vector field v on E is a skew-symmetric matrix. The inner product of two vector
fields u, v is defined by

〈u, v〉θ(ρ) :=
1

2

∑
(j,l)∈E

ujlvjlθjl(ρ),

where θ is a weight function depending on the probability density. In this study, we124

select it as the average of density on neighboring points, i.e.,125

(2.1) θij(ρ) :=
ρi + ρj

2
, if j ∈ N(i).126
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For more choices, we refer to [9] and references therein.127

The discrete divergence of the flux function ρv is defined as

divθG(ρv) := −(
∑
l∈N(j)

1

δx2
vjlθjl).

Using the discrete divergence and inner product, a discrete version of the Benamou-128

Brenier formula is introduced in [7],129

W 2(µ, ν) = inf
v

{∫ 1

0

〈v, v〉θ(ρ)dt :
dρ

dt
+ divθG(ρv) = 0, ρ(0) = µ, ρ(1) = ν

}
.130

131

By the Hodge decomposition on graph, it is proved that the optimal vector field v can132

be expressed as the gradient of potential function S defined on the node set V , i.e.133

v = ∇GS := (Sj − Sl)(j,l)∈E , ρt-a.s. Similarly, its critical point satisfies the discrete134

Wasserstein Hamiltonian flow (cfr. with (1.2))135

dρi
dt

=
∑

j∈N(i)

1

(δx)2
(Si − Sj)θij(ρ) =

∂H
∂Si

,

dSi
dt

= −1

2

∑
j∈N(i)

1

(δx)2
(Si − Sj)2

∂θij(ρ)

∂ρi
= −∂H

∂ρi
+ C(t)

(2.2)136

with boundary values ρ(0) = µ and ρ(1) = ν. Here the discrete Hamiltonian is

H(ρ, S) =
1

4

N∑
i=1

∑
j∈N(i)

|Si − Sj |2

(δx)2
θij(ρ).

We observe that (2.2) is a semi-discrete version of the Wasserstein Hamiltonian flow,
preserving the Hamiltonian and symplectic structure of the original system (1.2).
Likewise, the Wasserstein distance W (µ, ν) can be approximated by

√
2H(µ, S0),

where S0 is the initial condition of the spatially discrete S. Finally, define the density
set by

P(G) =
{
ρ = (ρi)i∈V

∣∣∣∑
i∈V

ρi(δx)d = 1, ρi ≥ 0, i ∈ V
}
,

where ρi represents the density on node i. The interior of P(G) is denoted by Po(G).137

In this study, (2.2) is the underlying spatial discretization for our numerical138

method (but see (3.2) below), in large part because of the following result which139

gives some important properties of (2.2), and whose proof is in [9, Proposition 2.1].140

Proposition 2.1. Consider (2.2) with initial values µ and S0 and let T ∗ be the141

first time where the system develops a singularity. Then, for any µ ∈ Po(G) and any142

function S0 on V , there exists a unique solution of (2.2) for all t < T ∗, and it satisfies143

the following properties for all t < T ∗.144

(i) Mass is conserved:
N∑
i=1

ρi(t) =

N∑
i=1

µ0
i .

(ii) Energy is conserved:
H(ρ(t), S(t)) = H(µ, S0).
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(iii) Symplectic structure is preserved:

dρ(t) ∧ dS(t) = dµ ∧ dS0.

(iv) The solution is time reversible: if (ρ(t), S(t)) is the solution of (2.2), then145

(ρ(−t),−S(−t)) also solves it.146

(v) A time invariant ρ̃ ∈ Po(G) and S̃(t) = −vt form an interior stationary147

solution of (2.2) if and only if H(ρ, S) is spatially independent (we denote it148

as H(ρ) in this case), ρ̃ is the critical point of min
ρ∈Po(G)

H(ρ) and v = H(ρ̃).149

3. Algorithm. In this section, we first present the ideas of shooting methods,150

then combine them with a continuation strategy to design our algorithm for approx-151

imating the solution of the OT problem (1.1).152

3.1. Single shooting. To illustrate the single shooting strategy, consider (2.2)153

in the time interval [0, 1]. Assuming that it exists, denote with ρ(t, S0), t ∈ [0, 1], the154

solution of (2.2) with initial values (µ, S0). To satisfy the boundary value at t = 1,155

one needs to find S0 such that the trajectory starting at (µ, S0) passes through ν at156

t = 1, i.e.,157

(3.1) ρ(1, S0)− ν = 0.158

To solve (3.1), root-finding algorithms must be used to update the current guess159

of S0 to achieve better approximations. For example, when using Newton’s method,160

the updates are supposedly computed by161

J(1, S(i))
(
S(i+1) − S(i)

)
= −(ρ(1, S(i))− ν), i = 0, 1, · · · ,162

163

where J(t, S) = ∂ρ(t,S)
∂S is the Jacobian of ρ(t, S) − ν with respect to S. To ensure164

successful computations in Newton’s method, finding a good initial guess for S0 and165

having an invertible Jacobi matrix are crucial. But, as we anticipated in Remark166

1.1, the Jacobian matrix J(t, S) is singular, as otherwise a solution of (3.1) ought to167

be isolated, which can’t be true, since adding an arbitrary constant will still give a168

solution.169

To remedy this situation, we reverse to the (ρ, v) formulation, and rewrite the170

Hamiltonian system (2.2) into an equivalent form in terms of (ρ, v). More precisely,171

by letting vij = Sj − Si for ij ∈ E, (2.2) becomes172

dρi
dt

= −
∑

j∈N(i)

1

(δx)2
vijθij(ρ),

dvij
dt

=
1

2

∑
k∈N(j)

1

(δx)2
v2kj

∂θjk(ρ)

∂ρj
− 1

2

∑
k∈N(i)

1

(δx)2
v2ki

∂θik(ρ)

∂ρi
.

(3.2)173

Since vij is the difference between Sj and Si, a constant shift in S has no impact on174

the values of v = {vij}. On the other hand, there are now many redundant equations175

in (3.2), because {vij} are not independent variables. For example, they must satisfy176

vij = −vji. Furthermore, there are total N = (n + 1)d unknown values for S, while177

2dn(n + 1)d−1 unknowns for v on the lattice graph G. Clearly, to determine S up178

to a constant, only N − 1 values for v are needed. In other words, there must be179

only N − 1 independent v-equations in (3.2) to be solved, and the remaining ones are180
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redundant and must be removed so that the resulting system leads to a non-singular181

Jacobian.182

There are different ways to remove the redundancies. To illustrate this in a simple183

setting, let us consider the 1-dimensional case (d = 1), in which the lattice graph G184

has n− 1 interior nodes and 2 boundary nodes. Each interior node has two neighbors185

while a boundary node has only one neighbor. We have at least two options: either186

to keep all equations for vi,i+1, i = 1, · · · , (N − 1), or to keep the equations for vi,i−1,187

i = 2, · · · , N . Adopting the first choice, we have the following equations to solve188

dρi
dt

=
1

(δx)2
v(i−1)iθ(i−1)i(ρ)− 1

(δx)2
vi(i+1)θi(i+1)(ρ),

dvi(i+1)

dt
=

1

4

1

(δx)2
v2(i−1)i −

1

4

1

(δx)2
v2i(i+1),

(3.3)189

for all i = 1, · · · , N − 1. If we take no-flux boundary conditions for (ρ, v), we have190

v01 = 0, θ01 = 0. Finally, mass conservation gives the condition ρN =
1−δx

∑N−1
i=1 ρi

δx .191

Denoting v(0) = v0 = {v0i,i+1}
N−1
i=1 = {S0

i+1 − S0
i }
N−1
i=1 , and the solution of (3.3)192

with initial values (µ, v0) as ρt = ρ(t, v0), vt = v(t, v0), we can revise the single shoot-193

ing strategy in terms of (ρ, v) as finding the initial velocity v0 such that ρ(1, v0)) = ν.194

By applying Newton’s method, we obtain195

Ĵ(1, v(m))
(
v(m+1) − v(m)

)
= −(ρ(1, v(m))− ν), m = 0, 1, · · · ,196197

where Ĵ(1, v(m)) =
[
∂ρt
∂v0

]
1,v(m)

is the Jacobian of ρ(t, v(0)) − ν with respect to v(0),

evaluated at t = 1, v = v(m). For later reference, and since ν plays no role in the
definition of Ĵ , let us define the function

Ĵ(t, v0) =

[
∂ρ

∂v0

]
t,v

, t ≥ 0 .

Now, the single shooting strategy we just outlined is plagued by a common short-198

fall of single shooting techniques, namely that the initial guess v(0) must be quite close199

to the exact solution. In the present context, this is further exacerbated by the fact200

that (1.2) may develop singularities in finite time (see e.g. [9]), and as consequence201

the choice of a poor initial guess may (and does) lead to finite time blow-up of the202

solution of the initial value problem. To overcome this serious difficulty, we now give a203

result showing that the function Ĵ(t, v0) remains invertible for sufficiently short times,204

and later will exploit this result to justify adopting a multiple shooting strategy.205

Lemma 3.1. Let G be a 1-dimensional uniform lattice graph and let t1 > 0 be206

sufficiently small. Assume that (ρ, v) is the smooth solution of (3.3) satisfying µ > 0.207

Then, the function Ĵ(t, v0) is invertible for t ∈ (0, t1].208

Proof. Direct calculation shows that the function Ĵ(t, v0) = ∂
∂v0 ρ(t, v0) satisfies209

d

dt

∂ρt
∂v0

= B11
∂vt
∂v0

+B12
∂ρt
∂v0

, Ĵ(0, v0) = 0n×n,210

d

dt

∂vt
∂v0

= B22
∂vt
∂v0

,

[
∂vt
∂v0

]
t=0

= I,211

212

where213

(B11)ii = −ρi + ρi+1

2(δx)2
, i = 1, · · · , n− 1,214
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(B11)i,i−1 =
ρi + ρi−1

2(δx)2
, i = 2, · · · , n,215

(B11)nn =
1−

∑n−1
i=1 ρiδx

2(δx)3
,216

(B12)11 = − v1
2(δx)2

, (B12)ii(ρ, v) = − vi
2(δx)2

+
vi−1

2(δx)2
, i = 2, · · · , n,217

(B12)i,i−1 =
vi−1

2(δx)2
, (B12)i,i+1 = − vi

2(δx)2
, i = 2, · · · , n− 1,218

(B12)n,i =
vn

2(δx)2
, i = 1, · · · , n− 2, (B12)n,n−1 =

vn
2(δx)2

+
vn−1

2(δx)2
,219

(B22)i,i+1 = − 1

2(δx)2
vi+1, i = 1, · · · , n− 1, (B22)i,i−1 =

1

2(δx)2
vi−1, i = 2, · · · , n.220

221

Since B11 is a lower triangular matrix, it is invertible if and only if

min
i≤n

(θi,i+1(ρ)) > 0,

where θij is defined in (2.1) and hence θi,i+1(ρ) > 0 for as long as ρ remains positive.222

Moreover, given the initial condition to the identity for ∂vt
∂v0 , if t1 > 0 is sufficiently223

small the matrix ∂vt
∂v0 remains invertible. Furthermore, since Ĵ(0, v0) = 0n×n, we224

conclude that for t > 0 sufficiently small225

Ĵ(t, v0) ≈ tB11 +O(t2),226

which implies that Ĵ(t, v0) is invertible for t > 0, and sufficiently small.227

Once v values become available, if desired we can reconstruct S on the lattice228

graph G from the relation vij = Si − Sj .229

We conclude this section by emphasizing that the semi-discretization (3.2) is230

a spatial discretization of the Wasserstein geodesic equations written in term of231

(ρ, v) [9]. However, this semi-discretization has been arrived at by designing a semi-232

discretization scheme for the system (1.2) in the (ρ, S) variables, respecting the Hamil-233

tonian nature of the problem, see (2.2) and Proposition 2.1.234

3.2. Multiple shooting method. As proved in Lemma 3.1, in the 1-d case the235

function Ĵ(t, v0) is invertible for sufficiently short times; however, for the success of236

single shooting, this ought to be invertible at t = 1, a fact which is often violated. In237

addition, our numerical experiments indicate poor stability behavior when using the238

single shooting method to solve the Wasserstein geodesic equations (2.2). To mitigate239

these drawbacks, we propose to use multiple shooting.240

We partition the interval [0, 1] into the union of sub-intervals [tk, tk+1], k =241

0, · · · ,K − 1, and let δt = maxk(tk+1 − tk). For example, we could take tk = kδt and242

Kδt = 1. To illustrate, we again take G as the d-dimensional uniform lattice graph.243

In each subinterval [tk, tk+1], k = 0, · · · ,K − 1, (2.2) is converted into equations in244

terms of (ρ, v), just like the ones in (3.2),245

dρk+1
i

dt
= −

∑
j∈N(i)

1

(δx)2
vk+1
ij θij(ρ),246

dvk+1
ij

dt
=

1

2

∑
l∈N(j)

1

(δx)2
(vk+1
jl )2

∂θlj(ρ)

∂ρj
− 1

2

∑
m∈N(i)

1

(δx)2
(vk+1
mi )2

∂θik(ρ)

∂ρi
,247
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248

where i ∈ N is a multi-index for a grid point in d-dimensional lattice. The super
script k + 1 in ρ and v indicates that the corresponding variables are defined in the
subinterval [tk, tk+1]. Then, the multiple shooting method requires finding the values
of ρ, v at temporal points {tk}K−1k=0 , i.e.,

(ṽ0, ρ̃1, ṽ1, · · · , ρ̃K−1, ṽK−1)T ,

such that the continuity conditions hold, that is, for k = 0, · · · ,K − 2,249

F2k+1(ρ̃k, ṽk, ρ̃k+1) = ρk+1(tk+1, ρ̃
k, ṽk)− ρ̃k+1 = 0,250

F2k+2(ρ̃k, ṽk, ṽk+1) = vk+1(tk+1, ρ̃
k, ṽk)− ṽk+1 = 0.251252

When k = 0 and k = K − 1, the given boundary values ρ(0) = µ and ρ(1) = ν yield253

that254

F1(µ, ṽ0, ρ̃1) = ρ1(t1, µ, ṽ
0)− ρ̃1 = 0,255

F2K−1(ρ̃K−1, ṽK−1, ν) = ρK(tK , ρ̃
K−1, ṽK−1)− ν = 0.256257

As customary, we use Newton’s method to find the root (ṽ0, ρ̃1, ṽ1, · · · , ρ̃K−1, ṽK−1)258

of F = (Fw)2K−1w=1 = 0. To this end, we first need to remove the redundant equations259

for the velocity field v. The number of unknown variables in ρ is N −1 = (n+1)d−1,260

which is one fewer than the total number of nodes in G, because the total probability261

must be one. The number of unknowns in S is N . The vector field v contains the262

differences in S, hence the total number of independent variables in v is also N − 1,263

due to the connectivity of G. The following lemma ensures that we can always find264

the N − 1 components of v from which one can generate all the components of v on265

the lattice graph G.266

Lemma 3.2. Given a connected d-dimensional lattice graph G and a vector field267

v which is generated by a potential S on G, there exists a subset consisting of N − 1268

components of v, denoted by v̂ = (v̂w)N−1w=1 , such that any vij can be expressed as269

combination of the entries of v̂, i.e.270

vij =
N−1∑
w=1

awv̂w, where aw = 1, or − 1, or 0 .(3.4)271

272

Proof. Since G is connected, there is always a path on the graph passing through273

all the nodes of G and with exactly N − 1 edges. We denote with v̂i the value of v on274

the i-th edge along the path. By definition of vij = Sj − Si, the values of S can be275

reconstructed, up to a constant shift, along the path. Therefore, all entries of v can276

be expressed as the above combination of the entries (v̂w)N−1w=1 .277

From the proof, we observe that the choice of v̂ is not unique, since every path278

going through all nodes of G using N−1 edges will give a system with no redundancy.279

The edges could be passed multiple times. Let us select one such choice and denote280

it by (v̂w)N−1w=1 . For instance, in 2-dimensional lattice graph G, we choose the v̂281

that generates the vector field (see Fig. 3.1) as follows. Denote every node on G282

by (i, j)n+1
i,j=1. For fixed i, (i, j)n+1

j=1 becomes 1-dimensional lattice graph in the x2283

direction. Following (3.3), we choose v̂w = v(i,j)(i,j+1) for w = n × (i − 1) + j,284

j = 1, · · · , n, i = 1, · · · , n+ 1, which gives (n+ 1)× n components of v̂w. Because of285
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Fig. 3.1. The edges (in red) of v̂ that generates of the velocity in 2D lattice graph. The path is
indicated by the arrows. Clearly, many edges are passed twice.

the connectivity of G relative to the x1 direction, the last n components of v̂w are286

chosen by v̂w = v(j,1)(j+1,1), for w = (n+ 1)×n+ j, j = 1, · · · , n. For convenience, let287

us denote the velocity on the related edges in this path by {viwiw+1
}N−1w=1 = {v̂w}N−1w=1 .288

Then the reduced Wasserstein system (2.2) becomes289

dρk+1
iw

dt
=

∑
j∈N(iw)

vk+1
jiw

θiwj(ρ),

dv̂k+1
iw

dt
=

1

2

∑
j∈N(iw)

1

(δx)2
(vk+1
iw,j

)2
∂θiwj(ρ)

∂ρiw

− 1

2

∑
m∈N(iw+1)

1

(δx)2
(vk+1
iw+1,m

)2
∂θiw+1j(ρ)

∂ρiw+1

,

(3.5)290

where vij satisfies (3.4) and the unknowns are (ρ, v̂) with291

ρk+1(tk, ρ(tk), v̂(tk)) = ρ(tk), ρk+1(tk+1, ρ(tk), v̂(tk)) = ρ(tk+1),292

v̂k+1(tk, ρ(tk), v̂(tk)) = v̂(tk), v̂k+1(tk+1, ρ(tk), v̂(tk)) = v̂(tk+1).293294

We apply the multiple shooting method to (3.5), i.e., we look for the root Z =295
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(v̂0, ρ1, v̂1, · · · , ρK−1, v̂K−1) of F defined by296

F2k+1(ρk, v̂k, ρk+1) = ρk+1(tk+1, ρ
k, v̂k)− ρk+1 = 0,

F2k+2(ρk, v̂k, v̂k+1) = v̂k+1(tk+1, ρ
k, v̂k)− v̂k+1 = 0, k ≤ K − 2,

F2K−1(ρK−1, v̂K−1, ρK) = ρK(tK−1, ρ
K−1, v̂K−1)− ν = 0,

(3.6)297

where ρ0 = µ, ρK = ν.298

Use of Newton’s method to solve (3.6) gives299

A(m)∆Z(m) = −F (m),(3.7)300301

where m is the iteration index, ∆Z(m) = Z(m+1) − Z(m),

Z(m) = (v0,(m), ρ1,(m), v1,(m), · · · , vK−1,(m), ρK−1,(m))T ,

F (m) = (F1(Z(m)), F2(Z(m)), · · · , F2K−1(Z(m)))T , and A(m) is the Jacobian of F ,
whose structure is as follows, where the X correspond to nonzero (N − 1)× (N − 1)
matrices: 

X X 0 0 0
X 0 X 0 0
0 X X X 0
0 X X 0 X

X X X 0
X X 0 X

. . .
. . .

X X X 0
X X 0 X

X X


.

Omitting the superscript m in the expressions of A(m), the blocks Aij , i, j = 1, · · · ,302

2K − 1, are easily seen to be the following. For i = 2, · · · ,K − 1,303

A2(i−1)+1,2(i−1) =
∂ρi(ti, v

i−1, ρi−1)

∂vi−1
, A2(i−1)+1,2(i−1)+1 =

∂ρi(ti, v
i−1, ρi−1)

∂ρi−1
,304

A2i,2(i−1) =
∂vi(ti, v

i−1, ρi−1)

∂vi−1
, A2i,2(i−1)+1 =

∂vi(ti, ρ
i−1, ρi−1)

∂ρi−1
,305

A2(i−1)+1,2i = −I, A2i,2i+1 = −I,306

A11 =
∂ρ1(t1, v

0)

∂v0
, A12 = −I,307

A21 =
∂v1(t1, v

0)

∂v0
, A23 = −I,308

309

and310

A2K−1,2K−2 =
∂ρK(tK , v

K−1, ρK−1)

∂vK−1
, A2K−1,2K−1 =

∂ρK(tK , v
K−1, ρK−1)

∂ρK−1
.311

312

Below we show invertibility of A(m) for δt sufficiently small.313

Theorem 3.1. Let (ρ, v) be the unique solution of (3.2) and Z∗ = (v(0), ρ(t1),314

v(t1), · · · , ρ(tK−1), v(tK−1))T be the exact solution evaluated at the multiple shooting315
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points. Assume that the initial vector Z(0) is sufficiently close to Z∗, i.e., |Z((0) −316

Z∗| = O(ε) for ε > 0 sufficiently small, (ρ, v) is continuously differentiable in [0, 1]317

satisfying (ρ, v) ∈ C2b ([0, 1];RN )× C2b ([0, 1];RN × RN ) and min
t∈[0,T ]

N
min
i=1

ρi ≥ c > 0, and318

that ∂ρ(1,ρ0,v0)
∂v0 is invertible. Then, Newton’s method of the multiple shooting method319

(3.7) is quadratically convergent to Z∗ for δt sufficiently small.320

Proof. By standard Newton’s convergence theory, it will be enough to prove the321

invertibility of Jacobian matrix A(0) for appropriately small ε and δt. Rewrite A(0) in322

partitioned form

(
A′11 A′12

ON−1,N−1 A′22

)
, where A′11 is a (2K − 2)n× n matrix, A′12 is a323

(2K− 2)n× (2K− 2)n matrix, and A′22 is a (N − 1)× (2K− 2)(N − 1) matrix. Using324

the property of determinant for the partitioned matrix and the fact that det(A′12) = 1,325

and writing A in lieu of A(0), we have326

det(A) = det

(
0N−1×N−1 A′22

A′11 A′12

)
327

= det(A′12) det(0N−1×N−1 −A′22(A′12)−1A′11)328

= (−1)N−1 det(A′22(A′12)−1A′11).329330

So, we are left to show that det(A′22(A′12)−1A′11) 6= 0. The structure of A′12 implies331

that332

A′22(A′12)−1A′11 = (
∂ρK,(0)

∂ρK−1,(0)
,
∂ρK,(0)

∂vK−1,(0)
)

K−1∏
i=2

(
∂ρi,(0)

∂ρi−1,(0)

∂ρi,(0)

∂vi−1,(0)

∂vi,(0)

∂ρi−1,(0)
∂vi,(0)

∂vi−1,(0)

)
(
∂ρ1,(0)

∂v0,(0)
,
∂v1,(0)

∂v0,(0)
)T ,

333

where ρi,(0) = ρi(tK , ρ
i−1,(0), vi−1,(0)), vi,(0) = vk(tK , ρ

i−1,(0), vi−1,(0)), for i = 2, · · · ,334

K, and v1,(0) = v1(t1, v
0,(0)), ρ1,(0) = ρ1(t1, v

0,(0)).335

Now, invertibility of the Jacobian matrix A (or A′22(A′12)−1A′11) follows from336

invertibility of the Jacobian matrix at the exact solution ∂ρ(tK ,ρ
0,v0)

∂v0 . To see this, due337

to (3.8), the continuous differentiability of the exact solution, and the assumption338

that |Z(0,(m)) − Z∗| = O(ε), we have that339

A′22(A′12)−1A′11 =
∂ρ(tK , ρ

0, v0)

∂v0
+O(ε) +O(δt).340

341

Therefore, the invertibility of ∂ρ(tK ,ρ
0,v0)

∂v0 with tK = 1 implies the invertibility of the342

Jacobian matrix A. Combining with the assumption that ε and δ are sufficiently343

small, we obtain that A(0) is invertible in a neighborhood of Z∗, which, together with344

the boundedness assumption on ρ, v, implies the quadratic convergence of Newton’s345

method.346

Remark 3.1. Of course, the initial value problems for the multiple shooting method347

must be integrated numerically. We have not accounted for this in Theorem 3.1. In348

principle, many choices are available to integrate these initial value problems; we have349

used the symplectic integrators developed in [9] for Wasserstein Hamiltonian flows,350

without regularization by Fisher information.351
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3.3. Continuation multiple shooting strategy. In light of Theorem 3.1, and352

notwithstanding the need for small δt, the multiple shooting method requires the353

initial guess to be near the exact solution Z∗. To make the method robust with354

respect to the initial guess, we adopt a standard continuation strategy by introducing355

a density function f(µ, ν, λ), which is smooth with respect to a homotopy parameter356

λ ∈ [0, 1] and satisfies357

f(µ, ν, 0) = µ, f(µ, ν, 1) = ν.(3.8)358359

The specific choice of f in (3.8) depends on the initial and terminal distributions µ360

and ν. We illustrate below with two typical situations.361

(a) “Gaussian-type” densities. If µ(x) = K0 exp(−c|x − b0|2) and ν(x) = K1

exp(−c|x− b1|2), with
∫
O µdx =

∫
O νdx = 1, we choose

f(µ, ν, λ)(x) = Kλ exp(−c|x− b0 − λ(b1 − b0)|2)

with Kλ chosen so that
∫
O fdx = 1. For µ = K0 exp(−c0|x − b0|2), ν =

K1 exp(−c1|x− b1|2), we choose

f(µ, ν, λ)(x) = Kλ exp(−(c0 + λ(c1 − c0))|x− b0 − λ(b1 − b0)|2)

with Kλ chosen so that
∫
O fdx = 1.362

(b) For general µ and ν, we choose f as the linear interpolant of µ and ν, which
is automatically normalized. That is, we take

f(µ, ν, λ) = (1− λ)µ+ λν.

Remark 3.2. For the success of our method, it is actually important that the363

densities be strictly positive (see Theorem 3.1). For this reason, and especially when364

the densities µ and ν are exponentially decaying (like Gaussians do), we add a small365

positive number, which we call shift, to the densities µ and ν and re-scale them so to366

keep the total probabilities equal to 1. In the numerical tests in Section 4, these are367

the values r0 and r1 we use.368

Using f , we consider the system (3.5) with λ dependent boundary conditions369

given by ρ(0) = µ and ρ(1) = f(µ, ν, λ). Obviously, the problem with λ0 = 0 is trivial370

to solve (the identity map), and it can be used as initial guess for the solution at371

the value λ1 = ∆λ. By gradually increasing λ from 0 to 1, we eventually obtain the372

solution for (2.2) with boundary conditions µ and ν, which is the original Wasserstein373

geodesic problem we wanted to solve. This basic idea to use the solution with smaller374

value of λ as the initial guess for the boundary value problem with larger value of375

λ is well understood, and universal. In our context, it is important to note that it376

works because of OT problem always has an optimal map as long as µ and f(µ, ν, λ)377

satisfy
∫
Rd |x|2µdx,

∫
Rd |x|2f(µ, ν, λ)dx < +∞ (e.g., see [25]). In turns, this implies378

the existence of v or S (up to ρt-measure 0 sets) for the BVP problem. In particular,379

this fact guarantees that there is a finite sequence {λj}j≤L, λL = 1, and Z∗λL
will be380

our approximation to the exact solution (ρ, v) at the multiple shooting points.381

Z0
λ0

:= (v0,(0), ρ1,(0), · · · , vK−1,(0), ρK−1,(0))T .(3.9)382383

For instance, we may take vk,(0), k ≤ K − 1, as constant vectors, ρk,(0), k ≤ K − 1,384

from linear interpolation of ρ0 = µ and ρ1 = f(µ, ν, λ0), i.e.,385

ρk,(0) = tkµ+ (1− tk)f(µ, ν, λ0), k ≤ K − 1.386
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387

Finally, throughout all of our experiments, we enforced the following stopping388

criterion for the Newton iteration:389

(3.10)
|F (Z(m+1))− F (Z(m))|

F (Z(m))
< 10−5 .390

We summarize the steps in the following algorithm.391

Algorithm 3.1

Input: Multiple shooting points tk, k = 0, . . . ,K, with t0 = 0 and tK = 1. Discrete
densities µ, ν, on the spatial grid of size δx, continuation parameter λ, max-
number of Newton’s iterations Maxits.

Output: The minimizer Z∗ at the multiple shooting points;

1: Follow (3.9) and produce a initial guess Z
(0)
λ0

;
2: Until λj = 1 or too many continuation steps, do
3: for m = 1, 2, · · · , Maxits, while (3.10) not satisfied do

4: Solve J
(m)
λj

d(m) = −F (Z
(m)
λj

);

5: Z
(m+1)
λj

= Z
(m)
λj

+ d(m);
6: end for
7: λj+1 = λj + ∆λ (see Remark 3.5);
8: put Z0

λj+1
= Z∗λj

as the new initial guess;
9: j + 1→ j, go back to step 2.

Remark 3.3. Based on the output of Algorithm 3.1, the Wasserstein distance (or392

the Hamiltonian of (2.2)) can be easily obtained. From the first component v0,∗ of393

Z∗, we can reconstruct the initial values for S0 as follows. The first component v0,∗ =394

(v̂w)N−1w=1 , {iwiw+1}N−1w=1 generates the initial vector field. We first define the potential395

S on a fixed node i0. Due to the connectivity of G, using Siw+1 = viw,iw+1 + Siw , we396

get the other initial values of S0. Then the Wasserstein distance can be evaluated as397

W (µ, ν) =
√

2H(µ, S0).398

Remark 3.4 (Barrier value for density). On rare occasions, we observed that399

during the Newton’s iteration the updates became negative, leading to a failure. To400

avoid this phenomenon, we adopted a simple strategy, whereby we created a barrier401

for the values of the densities, and reset to this barrier any value which went below it.402

In our tests in Section 4, use of this artifical barrier was needed only for Examples 4.6403

and 4.11. To witness, in Example 4.6, we used the barrier at 10−5, and in Example404

4.11 the barrier was set at 10−3. Clearly with this strategy the total mass of the405

numerical solution is not exactly equal to 1, but the error incurred in the total mass406

is at the same level of the barrier value.407

Remark 3.5 (Choosing continuation steps). We implemented a very simple and408

conservative continuation strategy. In all of our tests, we first try to take λ = 1, to409

see whether the continuation is really needed. If the method does not work without410

continuation, we begin with a value λ0 of λ for which multiple shooting works (e.g.,411

we usually take λ0 = 0.1 as initial step), and choose a value ∆λ = 1−λ0

L with given L412

(e.g., L = 10 or 20 is our usual choice). We then try to continue by taking steps of413

size ∆λ, though if the Newton’s multiple shooting fails we decrease ∆λ by dividing the414

remaining interval by L again and/or increase the value of L by doubling it. In all415

tests of Section 4, except Examples 4.1 and 4.5, the continuation strategy was needed.416
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dx Maximum Error L2-Error Iterations
1/16 0.00120 0.00068 4
1/32 0.00057 0.00034 5
1/64 0.00003 0.00017 6
1/128 0.000019 0.000086 11

Table 1
The error in the velocity for Example 4.1

Remark 3.6 (Choosing homotopy f(µ, ν, λ)). Finally, for all tests with Gaus-417

sian type densities µ, ν, we use the Gaussian interpolation (a) in subsection 3.3 for418

f(µ, ν, λ). For other examples, we use the linear interpolation (b) in subsection 3.3419

for f(µ, ν, λ). To exemplify, in Example 4.6, we take f(µ, ν, λ) as the normalization420

of exp(−5(x2 − 0.5 − 1.95λ)2 − 5(x1 − 1.5 − 0.95λ)2) + exp(−5(x2 − 0.5 − 1.95λ) −421

5(x1 − 1.5 + 0.95λ))2 + r and obtain a sequence of λ’s starting from λ0 = 0.1, with422

∆λ = 0.9/20.423

4. Numerical experiments. In this section, we apply Algorithm 3.1 to ap-424

proximate the solution of several OT problems. Throughout the experiments, the425

Jacobian in Newton’s method is approximated by using a 1st order divided difference426

approximation of the derivatives. The spatial boundary conditions for the density427

functions are set to be homogeneous Neumann boundary conditions for all exper-428

iments except for Example 4.1, which is subject to periodic boundary conditions.429

Except for this Example 4.1, we do not have the exact solutions of our test problems,430

so we display the evolution of the density from µ to ν as indication of the quality of431

the approximation.432

Example 4.1. Here the spatial domain is the 2-torus T2 = [0, 1] × [0, 1], subject
to periodic boundary conditions. Following the approach in [25], we define a smooth
function φ(x1, x2) = β sin(2πx1) sin(2πx2), with β = 1

64 (2π)−2, take initial density
µ(x1, x2) = det(I −D2φ(x1, x2)) and target density ν is the uniform distribution on
T2. In this case, the exact initial velocity can be explicitly given:

v0(x1, x2) = 2πβ(cos(2πx1) sin(2πx2), sin(2πx1) cos(2πx2)),

and in Table 1 we measure the approximation error of our method, with respect to the433

spatial grid-size. As it turns out, this was a very easy problem to solve, and single434

shooting with a quasi-Newton approach (only one Jacobian matrix was computed and435

factored and then used across all iterations) solved it adequately. There was no need436

of adopting a continuation strategy, and we took 160 integration steps from 0 to 1.437

About 90% of the computation time was spent on calculating the Jacobian at the initial438

guess. From Table 1, we observe 1st order convergence with respect to both L2 and439

sup norms, i.e., ‖v̂0 − v0‖l∞ , ‖v̂0 − v0‖L2 , where v̂ is the initial function on the grids440

solved by single shooting method, and l∞, L2 denote the discrete sup norm and L2441

norm respectively. This is in agreement with the semi-discretization scheme we used.442

4.1. 1D numerical experiments. Below we present results on 1-D OT prob-443

lems, with one or both densities of Gaussian types. Namely, the initial and terminal444

distributions µ and ν are normalizations of445

(4.1) µ̂ = exp(−a0(x− b0)2) + r0, ν̂ = exp(−a1(x− b1)2) + r1,446

scaled so that
∫
O µdx =

∫
O νdx = 1. (Here, O is a subinterval of the real line.)447
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Fig. 4.1. Example 4.2: evolution of ρ(t) for truncated interval [0, 2] (top) and [−0.5, 2.5] (bottom).

Example 4.2. Here we look at the performance of the multiple shooting method448

when varying the (truncation of the real line to the) finite interval O, and the shift449

number r. The parameters of initial and terminal distributions µ, ν in (4.1) are a0 =450

a1 = 15, b0 = 0.4, b1 = 1.4. We take K = 60 multiple shooting points, spatial step451

size dx = 3 × 10−2, N = 300 time steps per subinterval, r0 = r1 = 0.0001 in (4.1),452

and consider the intervals O = [0, 2] or [−0.5, 2.5]. In Fig. 4.1, we plot the evolution453

of density. The top figures refer to O = [0, 2] and show distortion in the density454

evolution. The bottom row refers to O = [−0.5, 2.5] and shows that the computation455

is more faithful when the truncated domain is large enough.456

Example 4.3. Here O = [0, 2], the initial distribution is the uniform distribution457

µ = 1
2 and the terminal distribution ν is the normalized Gaussian density as the ν̂458

used in Example 4.2 with a1 = 25, b1 = 1, r1 = 0. The number of multiple shooting459

points is K = 60, the space stepsize dx = 5 × 10−2 and we take N = 20 integration460

steps for subinterval. Fig. 4.2 shows the density evolution.461

Remark 4.1. In general, we observed that when we refine the spatial step size,462

the number of multiple shooting subintervals must increase in order to maintain non-463

negativity of the density at the temporal grids, and a successful completion of our464

multiple shooting method, whereas the number of integration steps on each subinterval465

is not as critical. See Table 2 for results on Example 4.3, which are typical of the466

general situation.467

Example 4.4. This is similar to Example 4.2, but the Gaussian has a much468
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Fig. 4.2. the evolution of probability given µ and ν in Example 3

dx K N success
1/16 10 20

√

1/32 10 40
√

1/64 10 80
√

1/128 10 160 ×
1/128 10 320 ×

dx K N success
1/16 10 20

√

1/32 20 20
√

1/64 20 20 ×
1/64 40 20

√

1/128 40 20
√

Table 2
The relationship between dx, K and N in Example 4.3.

greater variance. Let O = [−0.5, 2.5], dx = 4 × 10−2, K = 80, N = 200, and469

fix the parameters of initial and terminal Gaussian distributions µ, ν in (4.1) are470

a0 = a1 = 50, b0 = 0.4, b1 = 1.4, r0 = r1 = 0.0001. The evolution of the density is471

shown in Fig. 4.3, and the sharper behavior of the density evolution with respect to472

Figure 4.1 is apparent.473

Example 4.5. This example is used to test Gaussian type distributions µ and ν474

with different variances. Let O = [−0.5, 2.5], dx = 4×10−2, K = 80, N = 40, and let475

the parameters of initial and terminal Gaussian distributions µ, ν are a0 = 15, a1 = 10,476

b0 = 0.8, b1 = 1.6, r0 = r1 = 0.0001. The evolution of the density is shown in Figure477

4.4. In this problem, we also exemplify the impact of the shifting number; as it can be478

seen in Figure 4.4, if the shifting number is not sufficiently small (r0 = r1 = 0.01, in479

this case), one ends up with spurious oscillatory behavior (presently, in x = [0.4, 0.8]480

and [1.7, 2.1]).481

4.2. 2D numerical experiments. Here, we give computational results for a482

computational domain O which represents a truncation of R2. In Examples 4.6-4.10,483

we always take K = 10 multiple shooting subintervals, δx = 0.2 as spatial step size,484

and N = 30 integration steps on each subinterval [ti, ti+1], ti = i/K, i = 0, · · ·K − 1.485

In Examples 4.6-4.7, the initial and/or terminal distributions, µ, ν, are normal-486

izations of Gaussian type densities, namely487

µ̂ = exp(−a0(x2 − b0)2 − c0(x1 − d0)2) + r0,

ν̂ = exp(−a1(x2 − b1)2 − c1(x1 − d1)2) + r1.
(4.2)488

Example 4.6. Spatial domain is O = [−1, 4] × [−1, 4]. Initial density is the489

normalization of the Gaussian type density µ̂ in (4.2), with parameters a0 = 5, b0 =490
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Fig. 4.3. Evolution of probability density in Example 4.4

Fig. 4.4. Evolution of probability density in Example 4.5 with r = 0.0001 (up) oscillator
behaviors of probability density when r = 0.01(down)

0.5, c0 = 5, d0 = 1.5, r0 = 0.01. The terminal distribution is the normalization of ν̂491

below (a two-bump Gaussian)492

ν̂ = exp(−5(x2 − 2.45)2 − 5(x1 − 2.45)2)493

+ exp(−5(x2 − 2.45)2 − 5(x1 − 0.55)2) + 0.01.494495

In Fig. 4.5, we show the contour plots of the density at different times, from which496

the formation of the two bumps is apparent. The surfaces of the density at t = 0.8497

and the two components of initial velocity are shown in Fig. 4.6 and 4.7, respectively.498
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Fig. 4.5. Example 4.6: contour plots of ρ at t = 0, 0.2, 0.4, 0.6, 0.8, 1.

Fig. 4.6. Example 4.6: the surface ρ at t = 0.8.

Example 4.7. Spatial domain is O = [−1, 3]× [−1, 3]. Initial and terminal den-499

sities from (4.2) with parameters a0 = 2.5, a1 = 5, b0 = 0.5, b1 = 1.5, c0 = 5, c1 =500

10, d0 = 0.3, d1 = 1.3, r0 = r1 = 0.001. Contour plots of the density evolution are in501

Fig. 4.8.502

For the next set of examples, we choose the initial or terminal distributions as503

the normalization of the Laplace distribution. We use a0, b0, c0, r0 or a1, b1, c1, r1 to504

indicate the parameters of the Laplace type distribution given as:505

µ̂ = exp(−a0|x2 − b0| − c0|x1 − d0|) + r0,

ν̂ = exp(−a1|x2 − b1| − c1|x1 − d1|) + r1.
(4.3)506
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Fig. 4.7. Example 4.6: the two components of the initial velocity.

Example 4.8. Spatial domain O = [−1, 3]×[−1, 3]. Initial and terminal densities507

are normalizations of the Laplace distributions in (4.3) with parameters a0 = a1 =508

5, b0 = 0.5, b1 = 1.5, c0 = c1 = 5, d0 = 0.6, d1 = 1.6, r0 = r1 = 0.001. Contour plots of509

the density evolution are in Fig. 4.9.510

Example 4.9. Spatial domain O = [−1, 3]× [−1, 3]. Initial density is the uniform511

distribution. Terminal density is the normalization of the Laplace distribution ν̂ with512

parameters a1 = 10, b1 = 1.5, c1 = 10, d = 1.6, r = 0.01. The contour plots of the513

density evolution are presented in Fig. 4.10.514

Example 4.10. Spatial domain O = [−1, 3] × [−1, 3]. Initial density is the nor-515

malization of516

µ = (x1 + 1)2(x1 − 3)2 + (x2 + 1)2(x2 − 3)2.517518

Terminal distribution is the normalization of ν̂ in (4.3) with parameters a1 = 10, b1 =519
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Fig. 4.8. Example 4.7: contour plots of ρ at t = 0, 0.2, 0.4, 0.6, 0.8, 1.

Fig. 4.9. Example 4.8: contour plots of ρ at times t = 0, 0.2, 0.4, 0.6, 0.8, 1.

1.5, c1 = 10, d1 = 1.6, r1 = 0.01. The contour plots of the density evolution are pre-520

sented in Fig. 4.11.521

Example 4.11. Spatial domain O = [xL, xR] × [xL, xR], xL = −1, xR = 3. The522

initial density and terminal distributions are normalized Gaussian densities with pa-523

rameters a0 = a1 = 50, b0 = 0.5, b1 = 1.5, c0 = c1 = 50, d0 = 0.3, d1 = 1.3, r1 = r2 =524

0.001. The contour plot of the density evolution is presented in Fig. 4.12.525

5. Conclusions. In this paper, we proposed a new algorithm for the geodesic526

equation with L2-Wasserstein metric on probability set. Our algorithm is based on527

the Benamou-Brenier fluid-mechanics formulation of the OT problem. Namely, we528

view the geodesic equation as a boundary value problem with prescribed initial and529

terminal probability densities. To solve the boundary value problem, we adopted the530

multiple shooting method and used Newton’s method to solve the resulting nonlinear531

system. We further adopted a continuation strategy in order to enhance our ability532
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Fig. 4.10. Example 4.9: contour plots of ρ at times t = 0.1, 0.3, 0.5, 0.7, 0.9, 1.

Fig. 4.11. Example 4.10: contour plots of ρ at times t = 0, 0.2, 0.4, 0.6, 0.8, 1.

to provide good initial guesses for Newton’s method. Finally, we presented several533

numerical experiments on challenging problems, to display the effectiveness of our534

algorithm.535

There are many interesting questions that remain to be tackled. Surely adaptive536

techniques in space and time would be very desirable, especially if one wants to extend537

our numerical method to the Wasserstein geodesic equations in higher dimension.538

The concern of truncating the spatial domain to a finite computational domain has539

not been addressed in our work either, but this is clearly a problem of paramount540

importance and will require a careful theoretical estimation of decay rates of the541

densities involved. We expect to tackle some of these issues in future work.542
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Fig. 4.12. Example 4.11: contour plots of ρ at times t = 0, 0.2, 0.4, 0.6, 0.8, 1.

[1] U. M. Ascher, R. M. Mattheij, and R. D. Russell. Numerical solution of boundary value544
problems for ordinary differential equations. Prentice Hall Series in Computational Math-545
ematics. Prentice Hall, Inc., Englewood Cliffs, NJ, 1988.546

[2] J. D. Benamou and Y. Brenier. A numerical method for the optimal time-continuous mass547
transport problem and related problems. In Monge Ampère equation: applications to548
geometry and optimization (Deerfield Beach, FL, 1997), volume 226 of Contemp. Math.,549
pages 1–11. Amer. Math. Soc., Providence, RI, 1999.550

[3] J. D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-551
Kantorovich mass transfer problem. Numer. Math., 84(3):375–393, 2000.552

[4] J. D. Benamou, B. D. Froese, and A. M. Oberman. Numerical solution of the optimal trans-553
portation problem using the Monge-Ampère equation. J. Comput. Phys., 260:107–126,554
2014.555

[5] L. A. Caffarelli. Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math.,556
45(9):1141–1151, 1992.557

[6] Y. Chen, E. Haber, K. Yamamoto, T. T. Georgiou, and A. Tannenbaum. An efficient algorithm558
for matrix-valued and vector-valued optimal mass transport. J. Sci. Comput., 77(1):79–559
100, 2018.560

[7] S. Chow, L. Dieci, W. Li, and H. Zhou. Entropy dissipation semi-discretization schemes for561
Fokker-Planck equations. J. Dynam. Differential Equations, 31(2):765–792, 2019.562

[8] S. Chow, W. Li, and H. Zhou. Wasserstein Hamiltonian flows. J. Differential Equations,563
268(3):1205–1219, 2020.564

[9] J. Cui, L. Dieci, and H. Zhou. Time discretizations of Wasserstein-Hamiltonian flows.565
[10] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C. J. C.566

Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances567
in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.568

[11] L. Dieci and J. D. Walsh, III. The boundary method for semi-discrete optimal transport569
partitions and Wasserstein distance computation. J. Comput. Appl. Math., 353:318–344,570
2019.571

[12] B. D. Froese. A numerical method for the elliptic Monge-Ampère equation with transport572
boundary conditions. SIAM J. Sci. Comput., 34(3):A1432–A1459, 2012.573

[13] W. Gangbo and R. J. McCann. The geometry of optimal transportation. Acta Math.,574
177(2):113–161, 1996.575

[14] D. Givoli. Numerical methods for problems in infinite domains, volume 33 of Studies in Applied576
Mechanics. Elsevier Scientific Publishing Co., Amsterdam, 1992.577

[15] X. Gu, F. Luo, J. Sun, and S. Yau. Variational principles for Minkowski type problems, discrete578
optimal transport, and discrete Monge-Ampere equations. Asian J. Math., 20(2):383–398,579
2016.580

[16] L. V. Kantorovich. On a problem of Monge. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat.581
Inst. Steklov. (POMI), 312(Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 11):15–16,582

This manuscript is for review purposes only.



MULTIPLE SHOOTING METHOD FOR WASSERSTEIN GEODESIC EQUATION 23

2004.583
[17] H. B. Keller. Numerical solution of two point boundary value problems. Society for Industrial584

and Applied Mathematics, Philadelphia, Pa., 1976. Regional Conference Series in Applied585
Mathematics, No. 24.586

[18] W. Li, P. Yin, and S. Osher. Computations of optimal transport distance with Fisher informa-587
tion regularization. J. Sci. Comput., 75(3):1581–1595, 2018.588

[19] L. Métivier, R. Brossie, Q. Mérigot, E. Oudet, and J. Virieux. Measuring the misfit between589
seismograms using an optimal transport distance: application to full waveform inversion.590
J. Funct. Anal., 205(1):345–377, 2016.591

[20] A. M. Oberman and Y. Ruan. An efficient linear programming method for Optimal Trans-592
portation. arXiv e-prints, page arXiv:1509.03668, September 2015.593

[21] V. I. Oliker and L. D. Prussner. On the numerical solution of the equation594
(∂2z/∂x2)(∂2z/∂y2) − ((∂2z/∂x∂y))2 = f and its discretizations. I. Numer. Math.,595
54(3):271–293, 1988.596
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