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A CONTINUATION MULTIPLE SHOOTING METHOD FOR
WASSERSTEIN GEODESIC EQUATION*

JIANBO CUI'f, LUCA DIECIf, AND HAOMIN ZHOU'

Abstract. In this paper, we propose a numerical method to solve the classic L2-optimal trans-
port problem. Our algorithm is based on use of multiple shooting, in combination with a continuation
procedure, to solve the boundary value problem associated to the transport problem. We exploit
the viewpoint of Wasserstein Hamiltonian flow with initial and target densities, and our method is
designed to retain the underlying Hamiltonian structure. Several numerical examples are presented
to illustrate the performance of the method.
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1. Introduction. Optimal transport (OT) has a long and rich history, and it
finds applications in various fields, such as image processing, machine learning and
economics (e.g., see [19, 25]). The first mass transfer problem, a civil engineering
problem, was considered by Monge in 1781. A modern treatment of this problem,
in term of probability densities, was studied by Kantorovich in [16]. In this light,
the optimal transport problem consists in moving a certain probability density into
another, while minimizing a given cost functional. Depending on whether (one or
both of) the densities are continuous or discrete, one has a fully discrete, or a semi-
discrete, or a continuous OT problem. In this work, we consider a continuous OT
problem subject to the cost given by the squared L? norm. This is the most widely
studied continuous OT problem, and the formulation we adopt in this paper is based
on an optimal control formulation in a fluid mechanics framework, known as Benamou-
Brenier formula, established in [3]. The starting point is to cast the OT problem in
a variational form as

1
(1.1) irvlf{/o (v, )pdt = Opp+V - (pv) = 0,p(0) = p, p(1) = v},

where (v,v), 1= [ga [v]*pdz with smooth velocity field v(¢,z) € R%, and p and v are
probability density functions satisfying [ |2[*u(z)dx, [pa |2|*v(z)de < +oo. This
ensures the existence and uniqueness of the optimal map M™* for the equivalent Monge-
Kantorovich problem of (1.1), i.e., infas [pa |[M(z) — z[Pp(z)de with M : RY — R?
transferring p to v (see e.g., [25, Theorem 1.22]). Moreover, the optimal map has the
form M*(z) = Vi(z) = x + Vé(x), p-a.s., with a convex function 1 (z). From [3],
we have that Ve¢(z) = v(0,z) and that the characteristic line (X (¢, ), v(t, X (¢, z)))
satisfies

8tp(t7 X(t7 x)) + V- (p(tv X(t7 x))v(t, X(t, (E))) =0,
o(t, X(1,2)) + V(%|v(t,X(t,:z:))|2) —0.
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2 J. CUI, L. DIECI, AND H. ZHOU

When X (t,7) = 2 +tv(0, ) is invertible, we obtain that p(t) = X (t,-)#p(0) and that
v(t,z) = v(0, X" (t,x)) = Vb(0, X 1(t,x)). We refer to [5, 13, 25] and references
therein for results about regularity of M* and . The optimal value in (1.1) is known
as the L2-Wasserstein distance square between u and v, and written as g3, (u, ). The
formulation (1.1) is interpreted as finding the optimal vector field v to transport the
given density function p to the density v with the minimal amount of kinetic energy.
(We emphasize that the “time variable” ¢ has no true physical meaning, and it serves
the role of a homotopy parameter.)

By introducing the new variable S satisfying v = V.S, the critical point of (1.1)
satisfies (up to a spatially independent function C(t)) the following system in the
unknowns (p, S):

12) { Op+ V- (pVS) =0

S+ VS|2 =0,

subject to boundary conditions p(0) = p, p(1) = v. This is the well-known geodesic
equation between two densities p and v on the Wasserstein manifold [27], and can
also be viewed as a Wasserstein Hamiltonian flow with the Hamiltonian H(p,S) =
3 Joa IVS|?pdz when C(t) = 0, [8]. If S° = & is known, the optimal value

t=0

gw (p,v), the L2-Wasserstein distance between u and v, equals /2H (i, S°).

REMARK 1.1. Obuwiously, S is defined only up to an arbitrary constant. As a con-
sequence, the (p,S) formulation (1.2) of the boundary value problem cannot have a
unique solution. Because of this fact, we will in the end reverse to using a formu-
lation based on p and v, but the Hamiltonian structure of (1.2) will guide us in the
development of appropriate semi-discretizations of the problem in the (p,v) variables.

In recent years, there have been several numerical studies concerned with approx-
imating solutions of OT problems, and many of them are focused on the continuous
problem considered in this work, that is on computation of the Wasserstein distance
gw and the underlying OT map. A key result in this context is that the optimal
map is the gradient of a convex function w, which is the solution of the so-called
Monge-Ampére equation, a non linear elliptic PDE subject to non-standard bound-
ary conditions. We refer to [2, 4, 12, 15, 21, 23, 28], for a sample of numerical work
on the solution of the Monge-Ampére equation. For different approaches, in the case
of continuous, discrete, and semi-discrete OT problems, and for a variety of cost
functions, we refer to [6, 10, 11, 18, 20, 22, 24, 26].

However, numerical approximation of the solution of the geodesic equation has
received little attention, and this is our main scope in this computational paper. There
are good reasons to consider solving the geodesic equation: at once one can recover the
Wasserstein distance, the OT map, and the “time dependent” vector field producing
the optimal trajectory. At the same time, there are also a number of obstacles that
make the numerical solution of the Wasserstein geodesic equation very challenging:
the density p needs to be non-negative, mass conservation is required, and retaining
the underlying symplectic structure is highly desirable too. Another hurdle, which
is not at all obvious, is that the Hamiltonian system (1.2) with initial values on the
Wasserstein manifold often develops singularities in finite time (see e.g. [9]). These
challenges must be overcome when designing numerical schemes for the boundary
value problem (1.2).

In this paper, we propose to compute the solution of (1.2) by combining a multiple
shooting method, in conjunction with a continuation strategy, for an appropriate semi-
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MULTIPLE SHOOTING METHOD FOR WASSERSTEIN GEODESIC EQUATION 3

discretization of (1.2). First, we consider a spatially discretized version of (1.2), which
will give a (large) boundary value problem of ODEs. To solve the latter, we will use
a multiple shooting method, whereby the interval [0,1] is partitioned into several
subintervals, [0, 1] = UK [t;, t;41], initial guesses for the density and the velocity are
provided at each t;, ¢ = 0,..., K — 1, initial value problems are solved on [t;, t;11],
and eventually enforcement of continuity and boundary conditions will result in a
large nonlinear system to solve for the density p and velocity v at each ¢;. To solve
the nonlinear system, we use Newton’s method, and —to enhance its convergence
properties— we will adopt a continuation method to obtain good initial guesses for the
Newton’s iteration.

Multiple shooting is a well studied technique for solving two-point boundary value
problems of ordinary differential equations (TPBVPs of ODEs), and we refer to [17] for
an early derivation of the method, and to [1] for a comprehensive review of techniques
for solving TPBVPs of ODEs, and relations (equivalence) between many of them.
Our main reason for adopting multiple shooting is its overall simplicity, and the
ease with which we can adopt appropriate time discretizations of symplectic type (on
sufficiently short time intervals) in order to avoid finite time singularities when solving
(1.2) subject to given initial conditions.

The rest of paper is organized as follows. In Section 2, we briefly review the
continuous OT problem and introduce a spatial discretization to convert (1.2) into
Hamiltonian ODEs. At first, we propose the semi-discretization for the (p,.S) vari-
ables, but then in Section 3 we will revert it to the (p,v) variables, which are those
with which we end up working. The multiple shooting method, and the continua-
tion strategy, are also presented in Section 3 . Results of numerical experiments are
presented in Section 4.

2. Spatially discrete OT problems. In this section, we introduce the spatial
discretization of (1.2). First of all, we need to truncate R? to a finite computational
domain, which for us will be a d-dimensional rectangular box in R%: O = [z, 2]%.
We note that truncating R? to a domain like O is effectively placing some natural
condition on the type of densities p and v we envision having, namely they need to
decay sufficiently fast outside of the box O ([14]). Then, we propose the spatial dis-
cretization of (1.2), by following the theory of OT problem on a finite graph similarly
to what we did in [9].

Next, we let G = (V, F) be a uniform lattice graph with equal spatial step-size
dz = ZE=ZL in each dimension. Here V is the vertex set with N = (n + 1)? nodes
labeled by multi-index ¢ = (ik)%zl € Viip < n+ 1. E is the edge set: ij € E if
j € N(i) (read, j is a neighbor of i), where

N() = Ui Ne@), Vi) = { (i i e, ia)lin — Gl = 1}

A vector field v on F is a skew-symmetric matrix. The inner product of two vector
fields wu, v is defined by

1
{u,v)o(p) = 3 > wvpbip),
(J,h)eE

where 6 is a weight function depending on the probability density. In this study, we
select it as the average of density on neighboring points, i.e.,

i + Pj . . .
(2.1) biy(p) = P52, i j e NG,
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4 J. CUL L. DIECIL, AND H. ZHOU

For more choices, we refer to [9] and references therein.
The discrete divergence of the flux function pv is defined as

. 1
dwg(pv) = —( Z ﬁvﬂ&jl).
leN ()

Using the discrete divergence and inner product, a discrete version of the Benamou-
Brenier formula is introduced in [7],

1
. dp )
W2(u,v) = ngf {/ (v, V)g(pydt - pris divZ,(pv) = 0, p(0) =, p(1) = 1/}.
0

By the Hodge decomposition on graph, it is proved that the optimal vector field v can
be expressed as the gradient of potential function S defined on the node set V| i.e.
v=VgS = (5 — Si)yneE, pi-a.s. Similarly, its critical point satisfies the discrete
Wasserstein Hamiltonian flow (cfr. with (1.2))

dpi 1 ang (o OH
dt - Z 5.16)2 (S’2 Sj)elj(p) - 8517
(2 2) JEN (i)
’ dSZ o 1 1 Q. 269ij(p) o _87'[
e 2 'GXN‘Z') (593)2(52 S]) Op; B Opi +C(t>
J 7

with boundary values p(0) = p and p(1) = v. Here the discrete Hamiltonian is

N 2
W) =330 Y Bl

=1 jEN(4)

We observe that (2.2) is a semi-discrete version of the Wasserstein Hamiltonian flow,
preserving the Hamiltonian and symplectic structure of the original system (1.2).
Likewise, the Wasserstein distance W (u,v) can be approximated by +/2H(u, S?),
where S° is the initial condition of the spatially discrete S. Finally, define the density
set by
P(G) = {P = (Pi)iev‘ Zpi@l‘)d =1,p>20,i€ V},
eV

where p; represents the density on node i. The interior of P(G) is denoted by P,(G).

In this study, (2.2) is the underlying spatial discretization for our numerical
method (but see (3.2) below), in large part because of the following result which
gives some important properties of (2.2), and whose proof is in [9, Proposition 2.1].

PROPOSITION 2.1. Consider (2.2) with initial values p and S° and let T* be the
first time where the system develops a singularity. Then, for any p € Po(G) and any
function S° on V, there exists a unique solution of (2.2) for allt < T*, and it satisfies
the following properties for all t < T*.

(i) Mass is conserved:
N

N
sz‘(t) = Z#?

i=1

(i) Energy is conserved:

H(p(t), () = H(p, ).
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MULTIPLE SHOOTING METHOD FOR WASSERSTEIN GEODESIC EQUATION 5

(#ii) Symplectic structure is preserved:
dp(t) AdS(t) = du A dS°.

(iv) The solution is time reversible: if (p(t),S(t)) is the solution of (2.2), then
(p(—t), —=S(—t)) also solves it.

(v) A time invariant 5 € Po(G) and S(t) = —vt form an interior stationary
solution of (2.2) if and only if H(p, S) is spatially independent (we denote it
as H(p) in this case), p is the critical point of er;)lir(l@?-l(p) and v ="H(p).

PEPo
3. Algorithm. In this section, we first present the ideas of shooting methods,
then combine them with a continuation strategy to design our algorithm for approx-
imating the solution of the OT problem (1.1).

3.1. Single shooting. To illustrate the single shooting strategy, consider (2.2)
in the time interval [0,1]. Assuming that it exists, denote with p(¢, S°), t € [0,1], the
solution of (2.2) with initial values (i, S°). To satisfy the boundary value at ¢t = 1,
one needs to find S® such that the trajectory starting at (u, S) passes through v at
t=1,ie.,

(3.1) p(1,8% —v =0.

To solve (3.1), root-finding algorithms must be used to update the current guess
of S° to achieve better approximations. For example, when using Newton’s method,
the updates are supposedly computed by

J(LS(’L)) (S(i+1) - S(l)) = *(P(I,S(l)) - V)7 1= Oa 13 Tty

where J(¢,5) = %gs) is the Jacobian of p(t,S) — v with respect to S. To ensure
successful computations in Newton’s method, finding a good initial guess for S and
having an invertible Jacobi matrix are crucial. But, as we anticipated in Remark
1.1, the Jacobian matrix J(t,.5) is singular, as otherwise a solution of (3.1) ought to
be isolated, which can’t be true, since adding an arbitrary constant will still give a
solution.

To remedy this situation, we reverse to the (p,v) formulation, and rewrite the
Hamiltonian system (2.2) into an equivalent form in terms of (p,v). More precisely,
by letting v;; = S; — S, for ij € E, (2.2) becomes

a Z W”z‘jazj(l))a
JEN()

(3.2)

02 " 0p; 2

(555)2@“ pi

dvy; 1 1 5 00;(p) 1 1 5 00i(p)
dt 2 Z Z ’

keEN(j) keN (i)

Since v;; is the difference between S; and S;, a constant shift in S has no impact on
the values of v = {v;;}. On the other hand, there are now many redundant equations
in (3.2), because {v;;} are not independent variables. For example, they must satisfy
v;ij = —vj;. Furthermore, there are total N = (n + 1)? unknown values for S, while
2dn(n + 1)4=! unknowns for v on the lattice graph G. Clearly, to determine S up
to a constant, only N — 1 values for v are needed. In other words, there must be
only N — 1 independent v-equations in (3.2) to be solved, and the remaining ones are
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6 J. CUI, L. DIECI, AND H. ZHOU

redundant and must be removed so that the resulting system leads to a non-singular
Jacobian.

There are different ways to remove the redundancies. To illustrate this in a simple
setting, let us consider the 1-dimensional case (d = 1), in which the lattice graph G
has n — 1 interior nodes and 2 boundary nodes. Each interior node has two neighbors
while a boundary node has only one neighbor. We have at least two options: either

to keep all equations for v; ;41,4 =1,---, (N —1), or to keep the equations for v; ;_1,
1=2,---,N. Adopting the first choice, we have the following equations to solve
= v 1B i (0) — s 12O
(3 3) dt ((53?)20(1 1)iY (i l)z(p) (&E)sz(ﬁ-l) z(l-i-l)(p)a
’ d’Ui(i+1) 1 1 2 1 1 2
= — V- L — =V
dt 4 (6x)2 =D g (§)2 UL
forall i =1,--- ,N — 1. If we take no-flux boundary conditions for (p,v), we have
N-—-1
vo1 = 0,6p1 = 0. Finally, mass conservation gives the condition py = %.
Denoting v(0) = v = {v?,,, } 7" = {S%, — SP}Y7", and the solution of (3.3)

with initial values (i, v°) as p; = p(t,v%), vy = v(t,v°), we can revise the single shoot-
ing strategy in terms of (p,v) as finding the initial velocity v° such that p(1,v°)) = v.
By applying Newton’s method, we obtain

j(lvv(m))(v(erl) - U(m)) = _(p(LU(m)) - V)a m = 07 1a Tty

where J(1,0(™) = {%] Lot is the Jacobian of p(t,v(0)) — v with respect to v(0),

ov0

evaluated at ¢ = 1, v = 0™ For later reference, and since v plays no role in the
definition of J, let us define the function

J(t,0°) = [;ﬁ)} L t>0.
t,v

Now, the single shooting strategy we just outlined is plagued by a common short-
fall of single shooting techniques, namely that the initial guess v(®) must be quite close
to the exact solution. In the present context, this is further exacerbated by the fact
that (1.2) may develop singularities in finite time (see e.g. [9]), and as consequence
the choice of a poor initial guess may (and does) lead to finite time blow-up of the
solution of the initial value problem. To overcome this serious difficulty, we now give a
result showing that the function J (t,9°) remains invertible for sufficiently short times,
and later will exploit this result to justify adopting a multiple shooting strategy.

LEMMA 3.1. Let G be a I-dimensional uniform lattice graph and let t;1 > 0 be
sufficiently small. Assume that (p,v) is the smooth solution of (3.3) satisfying > 0.
Then, the function J(t,vY) is invertible for t € (0,t].

Proof. Direct calculation shows that the function J(t,1°) = %p(t, 1) satisfies

d Op; Oy opt 5,0 o
LI B S 4 Bl (0,0°) = 0nns
dt Ov0 g0 T P10 (0,075 x
dow _p Ov JOul
dtovd — TP o0" | w0 —
where
(Bip)u = —PitPil g

2(0z)% ’ ‘T
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Pit+pi—1 .
B ii—1 = T o e N9 :27"'7 )
(Bi)ii—a 2(6x)? ! "

_ 1= Z?;11 pidT
(Bi1)nn = W7
U1 U Vi—1

B = - B12)(p, = - i =2, s Yy
(Bia)in = =55 57 (Buz)ule,v) = =550 + 555501 "

Vi—1 U .
B B,1— :7aB 0,7 = - ’ :2a"'a _17
(B12)i,i-1 30012 (B12)i,i+1 26" n

Un . Un Un—1
B n,g — ) :17"'7 _2a B nn—1 = )
(Biz)ni = 55,5501 =2 (Bio)nn-1 = 5555+ 505,

1 1

(Ba2)ii+1 = _in-&-lai =1,---,n—1, (Ba)ii-1 = WW—M =2,---,n.
Since Bi; is a lower triangular matrix, it is invertible if and only if
rifgfll(ei,iﬂ(ﬂ)) >0,

where 6;; is defined in (2.1) and hence 6; ;11(p) > 0 for as long as p remains positive.
Ov

Moreover, given the initial condition to the identity for g%, if ¢; > 0 is sufficiently
small the matrix % remains invertible. Furthermore, since J (0,1%) = Opxn, we

conclude that for ¢ > 0 sufficiently small
J(t,0°) ~ tByy + O(t?),

which implies that J(¢,v°) is invertible for ¢ > 0, and sufficiently small. O

Once v values become available, if desired we can reconstruct S on the lattice
graph G from the relation v;; = S; — 5.

We conclude this section by emphasizing that the semi-discretization (3.2) is
a spatial discretization of the Wasserstein geodesic equations written in term of
(p,v) [9]. However, this semi-discretization has been arrived at by designing a semi-
discretization scheme for the system (1.2) in the (p, S) variables, respecting the Hamil-
tonian nature of the problem, see (2.2) and Proposition 2.1.

3.2. Multiple shooting method. As proved in Lemma 3.1, in the 1-d case the
function J (t,2°) is invertible for sufficiently short times; however, for the success of
single shooting, this ought to be invertible at ¢ = 1, a fact which is often violated. In
addition, our numerical experiments indicate poor stability behavior when using the
single shooting method to solve the Wasserstein geodesic equations (2.2). To mitigate
these drawbacks, we propose to use multiple shooting.

We partition the interval [0,1] into the union of sub-intervals [tg,tr11],k =
0,---,K —1, and let §t = maxy(tx+1 — tx). For example, we could take t;, = kdt and
Kot = 1. To illustrate, we again take G as the d-dimensional uniform lattice graph.
In each subinterval [t,tr1],k = 0,--- , K — 1, (2.2) is converted into equations in
terms of (p,v), just like the ones in (3.2),

dp; = ! o105 (p)
di 2 (gpy2 s TUD
JEN(7)
d'U/.C.+1 ]_

vj

dt

Z 1 (Uk+1)2%'(p)_1 Z 1 (ka)zM

(5 9, G ) "o,

gl

LEN(3) meN (1)
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where i € N is a multi-index for a grid point in d-dimensional lattice. The super
script k£ + 1 in p and v indicates that the corresponding variables are defined in the
subinterval [t,tg+1]. Then, the multiple shooting method requires finding the values
of p,v at temporal points {tk}fz_ol, ie.,

~0 ~1 ~1 ~K—1 ~K—1\T
(U7p7va"'7p » U )

)

such that the continuity conditions hold, that is, for k =0, -+ | K — 2,

Fosr (9%, 0%, pFF1) = p" (b, 77,0%) = ¥ = 0,
F2k+2(ﬁk7;[jk’5k+l) = Uk+1(tk+17ﬁka5k) - 5k+1 =0.

When k£ =0 and k = K — 1, the given boundary values p(0) = p and p(1) = v yield
that

Fl(uaijoaﬁl) = P1<t17/%710) _ﬁl = Oa

FQK—l(ﬁKilvaKila V) = pK(tKvﬁKila;[}/Kil) —v=0.

As customary, we use Newton’s method to find the root (v°, pt,vt, .-, pK—1 oK~1)
of F' = (Fw)ififl = 0. To this end, we first need to remove the redundant equations

for the velocity field v. The number of unknown variables in pis N —1 = (n+1)?—1,
which is one fewer than the total number of nodes in G, because the total probability
must be one. The number of unknowns in S is N. The vector field v contains the
differences in S, hence the total number of independent variables in v is also N — 1,
due to the connectivity of G. The following lemma ensures that we can always find
the N — 1 components of v from which one can generate all the components of v on
the lattice graph G.

LEMMA 3.2. Given a connected d-dimensional lattice graph G and a vector field
v which is generated by a potential S on G, there exists a subset consisting of N — 1
components of v, denoted by v = (ﬁw)f,f;}, such that any v;; can be expressed as
combination of the entries of U, i.e.

N-1
(3.4) v = Z QywUy, where au, =1, or —1, or 0.
w=1

Proof. Since G is connected, there is always a path on the graph passing through
all the nodes of G' and with exactly N — 1 edges. We denote with v; the value of v on
the i-th edge along the path. By definition of v;; = S; — S;, the values of S can be
reconstructed, up to a constant shift, along the path. Therefore, all entries of v can

be expressed as the above combination of the entries (3,,)Y 1. O

From the proof, we observe that the choice of ¥ is not unique, since every path
going through all nodes of G using N —1 edges will give a system with no redundancy.
The edges could be passed multiple times. Let us select one such choice and denote
it by (@w)g;ll. For instance, in 2-dimensional lattice graph G, we choose the ¥
that generates the vector field (see Fig. 3.1) as follows. Denote every node on G
by (%, j)fj'zll For fixed i, (i, ]);Lill becomes 1-dimensional lattice graph in the zs
direction. Following (3.3), we choose Uy = v(; j)@ij+1) for w = n x (i — 1) + j,
j=1,---,ni=1,--- ,n+1, which gives (n + 1) X n components of v,,. Because of
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n+1
— — — — — — — — — —
3
2
-
1 2 3 n+1

Fic. 3.1. The edges (in red) of © that generates of the velocity in 2D lattice graph. The path is
indicated by the arrows. Clearly, many edges are passed twice.

the connectivity of G relative to the x; direction, the last n components of v,, are

chosen by Dy, = v(;1)(j+1,1), for w = (n+1) xn+j, j = 1,--- ,n. For convenience, let
us denote the velocity on the related edges in this path by {viwiwﬂ}g;ll = {Uy 111\)/;11

Then the reduced Wasserstein system (2.2) becomes

dpi k+1
Tw
a Z Vst 05.,5(p),
JEN (iw)
ottt 1 1 301000i,i(p)
w1t k+1y2 OYiwi\P
(3.5) T2 2 Gl
JEN (iw)
1 Z L(UW )2M
2 .1:)2 tw+1,m apiwﬂ ’

MEN (iw+1)

where v;; satisfies (3.4) and the unknowns are (p,?) with

PP (b, p(t), 0(tR)) = pltr), P (trgr, p(tR), D)) = pltrs1),
0 (b, p(tr), 0(tr)) = 0(tr), 0% (b, p(tr), D(tr)) = D(trgr)-

We apply the multiple shooting method to (3.5), i.e., we look for the root Z =

This manuscript is for review purposes only.
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206 (0%, pt, 01, -, pK =1, K1) of F defined by

o (pF, 0%, p

k—i—l) _ pk+1(tk+17pk,@k) _ pk+1 =0,
207 (3.6) Fopo(p®, 0%, ") = 08 (140, p*, 0%) =081 =0, k< K — 2,
F2K—1(pK713®\K717pK) = pK(tK—la pK7176K71) —v= Oa
298 where p° = u, p¥ =v.
299 Use of Newton’s method to solve (3.6) gives
309 (3.7) AMAZM = _pm)

where m is the iteration index, AZ(™) = z(m+1) _ z(m)

Z(m) — (vO,(m)’pl,(m)vvl,(M)j e ,UKfl’(m),pKfla(m))T’

Fm) = (F(Z), Fy(Z™), - Fo 1(Z)NT and A is the Jacobian of F,
whose structure is as follows, where the X correspond to nonzero (N — 1) x (N — 1)

matrices:
X X 0 0 0
X 0 X 0 0
0 X X X o0
0 X X 0 X
X X X 0
X X 0 X
X X X 0
X X 0 X
X X

302 Omitting the superscript m in the expressions of A, the blocks Agji,j =1+,
303 2K — 1, are easily seen to be the following. For i =2,--- | K — 1,

A (ti,vi= 1, pi= 1) Al (ti, v, pi= 1)

S04 Agio1)41236-1) = 5y  Ao(i—1)41,2(i—1)41 = dp—1 ;
e 6Ui(ti7vi71api71) avi(t%piil,piil)
305 Agioi-1) = i1 » Aziaii-1+1 = dpi—t ’
306 Asii—1y1,2i = =1, Agigi1 = —1,

9p' (t1,0°)
307 Apn = —— 15— A =1,

11 900 12

ovl(ty,v%)
308 Apy = —— 5 Ay = -1,
309 o v’ “
310 and
. y _ Mt v oMY _ Ot v )
))12 2K—-12K—-2 — 31)K*1 sy A2K—-12K—-1 — apKfl

313 Below we show invertibility of A" for 6t sufficiently small.

314 THEOREM 3.1. Let (p,v) be the unique solution of (3.2) and Z* = (v(0), p(t1),
315 v(ty), -, pltr_1),v(tx_1))T be the evact solution evaluated at the multiple shooting

This manuscript is for review purposes only.



MULTIPLE SHOOTING METHOD FOR WASSERSTEIN GEODESIC EQUATION 11

316 points. Assume that the initial vector Z(©) is sufficiently close to Z*, i.e., |Z((0) —
317 Z*| = O(e) for € > 0 sufficiently small, (p,v) is continuously differentiable in [0, 1]
N
318 satisfying (p,v) € C2([0,1; RY) x C2([0,1; RN x RY) and II[lir,}] mi{l pi > c>0, and
te[0,T] 1=
319 that %ﬁ)’z’vo) 1s invertible. Then, Newton’s method of the multiple shooting method
320 (3.7) is quadratically convergent to Z* for 0t sufficiently small.

321 Proof. By standard Newton’s convergence theory, it will be enough to prove the
322 invertibility of Jacobian matrix A for appropriately small € and §t. Rewrite A©) in

A, Al
On_1,n—1 Aby
24 (2K —2)n x (2K —2)n matrix, and Ab, isa (N —1) x (2K —2)(N — 1) matrix. Using
25 the property of determinant for the partitioned matrix and the fact that det(A},) = 1,
26 and writing A in lieu of A, we have

323  partitioned form ( ) , where A}, is a (2K — 2)n x n matrix, A}, is a

. ON71><N71 A/22>
327 det(A) = det
() = de (M
328 = det(Aly) det(0n_1xn—1 — Aby(Aly) 1 AY)
338 = (—1)N " det(Ah, (Af,) T AY).

331 So, we are left to show that det(Ahy (A7) 1 AL;) # 0. The structure of A}, implies
332 that

8pK,(O) 8pK’(O)
12 / —1 47 _
22( 12) All - <8pK*1’(0)7 OvE—1,(0)

333 K=1 [ _8p"©® op- 1,(0 1,(0
H (apimo) Dui—1.(0) (5/7 (0 gl T
" v 0,(0)" §¢0,(0)7
i=2 9pi—1,(0) Hvi—1,(0) Bv 81}

331 where ph(0) = pi(tg, p'=HO) = 10)) gh(0) = k(g pi=1O0) =L O for =2, ...
335 K, and 5O = o (t, 00 O) pbO0) = pl(t; 0(0)),

336 Now, invertibility of the Jacobian matrix A (or Ab,(A},)"1A},) follows from
337 invertibility of the Jacobian matrix at the exact solution M“‘T’(ﬂo’”). To see this, due

338 to (3.8), the continuous differentiability of the exact solution, and the assumption
339 that |Z(0:0™) — Z*| = O(¢), we have that

0,0
340 Al (Aly)TTAY, = Op(tx, p°,v°)

au S+ 0(e) + 0(61).

342  Therefore, the invertibility of M”WM with tx = 1 implies the invertibility of the
343 Jacobian matrix A. Combining with the assumption that € and § are sufficiently
344 small, we obtain that A(®) is invertible in a neighborhood of Z*, which, together with
345 the boundedness assumption on p, v, implies the quadratic convergence of Newton’s

346 method. o

347 REMARK 3.1. Of course, the initial value problems for the multiple shooting methodli
348 must be integrated numerically. We have not accounted for this in Theorem 3.1. In
349 principle, many choices are available to integrate these initial value problems; we have
350 used the symplectic integrators developed in [9] for Wasserstein Hamiltonian flows,
351 without regularization by Fisher information.

This manuscript is for review purposes only.
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12 J. CUI, L. DIECI, AND H. ZHOU

3.3. Continuation multiple shooting strategy. In light of Theorem 3.1, and
notwithstanding the need for small §¢, the multiple shooting method requires the
initial guess to be near the exact solution Z*. To make the method robust with
respect to the initial guess, we adopt a standard continuation strategy by introducing
a density function f(u, v, \), which is smooth with respect to a homotopy parameter
A € [0,1] and satisfies

(3.8) fu,v,0) =p, fp,v,1) =v.

The specific choice of f in (3.8) depends on the initial and terminal distributions p
and v. We illustrate below with two typical situations.
(a) “Gaussian-type” densities. If u(zr) = Kgexp(—c|z — bo|?) and v(z) = K;
exp(—c|z — b1 |?), with [, pdx = [, vdx =1, we choose

Flu, v, N) () = Ky exp(—clz — bo — A(by — bo)[?)

with K chosen so that [, fdz = 1. For u = Kgexp(—colz — bo|?*),v =
K exp(—ci|z — b1]?), we choose

Flp, v, N) () = Ky exp(—(co 4+ Mcr — o))z — by — A(br — bo)[*)

with K chosen so that [, fdz = 1.
(b) For general 1 and v, we choose f as the linear interpolant of 4 and v, which
is automatically normalized. That is, we take

Flu,v, ) = (1= Np+ Av.

REMARK 3.2. For the success of our method, it is actually important that the
densities be strictly positive (see Theorem 3.1). For this reason, and especially when
the densities u and v are exponentially decaying (like Gaussians do), we add a small
positive number, which we call shift, to the densities p and v and re-scale them so to
keep the total probabilities equal to 1. In the numerical tests in Section 4, these are
the values roy and r1 we use.

Using f, we consider the system (3.5) with A dependent boundary conditions
given by p(0) = p and p(1) = f(u,v, A). Obviously, the problem with Ay = 0 is trivial
to solve (the identity map), and it can be used as initial guess for the solution at
the value \; = AX. By gradually increasing A from 0 to 1, we eventually obtain the
solution for (2.2) with boundary conditions p and v, which is the original Wasserstein
geodesic problem we wanted to solve. This basic idea to use the solution with smaller
value of A\ as the initial guess for the boundary value problem with larger value of
A is well understood, and universal. In our context, it is important to note that it
works because of OT problem always has an optimal map as long as p and f(u, v, \)
satisfy [pa |2[2pdz, [Ga @) f(p, v, N)de < +oo (e.g., see [25]). In turns, this implies
the existence of v or S (up to p;-measure 0 sets) for the BVP problem. In particular,
this fact guarantees that there is a finite sequence {\;};<r, Ar =1, and Zy5, will be
our approximation to the exact solution (p,v) at the multiple shooting points.

(3.9) ZEO = (’]_}0’(0), pl’(o)’ e 7/01(717(0)7 pK717(0))T.

For instance, we may take v®() k < K — 1, as constant vectors, pk’(o), k< K -1,
from linear interpolation of p = p and p! = f(u, v, o), i.e.,

PO =t + (1 —tr) fp, v, Mo)y k< K — 1.

This manuscript is for review purposes only.
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Finally, throughout all of our experiments, we enforced the following stopping
criterion for the Newton iteration:

|F(Zm) - F(Z0)]
F(Z0m)

We summarize the steps in the following algorithm.

(3.10) <107° .

Algorithm 3.1

Input: Multiple shooting points ¢, k =0, ..., K, with ¢ty = 0 and tx = 1. Discrete
densities u, v, on the spatial grid of size dx, continuation parameter A\, max-
number of Newton’s iterations Maxits.

Output: The minimizer Z* at the multiple shooting points;

1: Follow (3.9) and produce a initial guess Z ;?));

2: Until A\; = 1 or too many continuation steps, do

3: for m=1,2,--- ,Maxits, while (3.10) not satisfied do
4:  Solve J)(\T)d(m) = —F(ZSZ_"”));

5.z = Z{m) 4 gm),

6: end for ’

70 Ajy1 = Aj + AX (see Remark 3.5);

8: put Z)\ T ZA as the new initial guess;

9: j+1—>] gobacktostep2

REMARK 3.3. Based on the output of Algorithm 3.1, the Wasserstein distance (or
the Hamiltonian of (2.2)) can be easily obtained. From the first component UO’* of
Z*, we can reconstruct the initial values for SO as follows. The first component v°
(Vw )w 1 {zwsz}W i generates the initial vector field. We first define the potentml
S on a fized node ig. Due to the connectivity of G, using S;, ., = Vi, i1 + Si,, we
get the other initial values of S°. Then the Wasserstein distance can be evaluated as
W(p,v) =+/2H(u, S9).

REMARK 3.4 (Barrier value for density). On rare occasions, we observed that
during the Newton’s iteration the updates became megative, leading to a failure. To
avoid this phenomenon, we adopted a simple strategy, whereby we created a barrier
for the values of the densities, and reset to this barrier any value which went below it.
In our tests in Section 4, use of this artifical barrier was needed only for Examples /.6
and 4.11. To witness, in Example 4.6, we used the barrier at 107°, and in Example
4.11 the barrier was set at 1072, Clearly with this strategy the total mass of the
numerical solution is not exactly equal to 1, but the error incurred in the total mass
is at the same level of the barrier value.

REMARK 3.5 (Choosing continuation steps). We implemented a very simple and
conservative continuation strategy. In all of our tests, we first try to take A = 1, to
see whether the continuation is really needed. If the method does not work without
continuation, we begin with a value Ao of A for which multiple shooting works (e.g.,
we usually take Ao = 0.1 as initial step), and choose a value A\ = % with given L
(e.g., L =10 or 20 is our usual choice). We then try to continue by taking steps of
size AN, though if the Newton’s multiple shooting fails we decrease AX by dividing the
remaining interval by L again and/or increase the value of L by doubling it. In all
tests of Section /, except Examples 4.1 and 4.5, the continuation strategy was needed.

This manuscript is for review purposes only.



417
118
419
420
421
422
123
124
425
426
427
428
129
430
431
432

433
434
135
436
437
438
439
140
141
442

443
444
445

146

14 J. CUL L. DIECIL, AND H. ZHOU

dx Maximum Error | L2-Error | Iterations
1/16 0.00120 0.00068 4
1/32 0.00057 0.00034 5
1/64 0.00003 0.00017 6
1/128 0.000019 0.000086 11

TABLE 1

The error in the velocity for Example 4.1

REMARK 3.6 (Choosing homotopy f(u,v,A)). Finally, for all tests with Gaus-
sian type densities u,v, we use the Gaussian interpolation (a) in subsection 3.3 for
flu,v,N). For other examples, we use the linear interpolation (b) in subsection 3.3
for f(u,v,\). To exemplify, in Example 4.6, we take f(u,v,\) as the normalization
of exp(=5(xe — 0.5 — 1.950)2 — 5(z1 — 1.5 — 0.95))?) + exp(—5(w2 — 0.5 — 1.95)) —
5(z1 — 1.5+ 0.95)))2 + 7 and obtain a sequence of \’s starting from Ao = 0.1, with
AN =0.9/20.

4. Numerical experiments. In this section, we apply Algorithm 3.1 to ap-
proximate the solution of several OT problems. Throughout the experiments, the
Jacobian in Newton’s method is approximated by using a 1st order divided difference
approximation of the derivatives. The spatial boundary conditions for the density
functions are set to be homogeneous Neumann boundary conditions for all exper-
iments except for Example 4.1, which is subject to periodic boundary conditions.
Except for this Example 4.1, we do not have the exact solutions of our test problems,
so we display the evolution of the density from p to v as indication of the quality of
the approximation.

EXAMPLE 4.1. Here the spatial domain is the 2-torus T? = [0, 1] x [0,1], subject
to periodic boundary conditions. Following the approach in [25], we define a smooth
function ¢(x1,22) = Bsin(2rx1)sin(2wzy), with f = §7(2m) 72, take initial density
(1, z2) = det(I — D2¢p(x1,22)) and target density v is the uniform distribution on
T2. In this case, the exact initial velocity can be explicitly given:

00 (21, 20) = 27B(cos(2mxy ) sin(27xy), sin(2mzy ) cos(2mxs)),

and in Table 1 we measure the approximation error of our method, with respect to the
spatial grid-size. As it turns out, this was a very easy problem to solve, and single
shooting with a quasi-Newton approach (only one Jacobian matriz was computed and
factored and then used across all iterations) solved it adequately. There was no need
of adopting a continuation strategy, and we took 160 integration steps from 0 to 1.
About 90% of the computation time was spent on calculating the Jacobian at the initial
guess. From Table 1, we observe 1st order convergence with respect to both L? and
sup norms, i.e., ||[0° — v°|js, [[0° — 00| L2, where ¥ is the initial function on the grids
solved by single shooting method, and [°, L? denote the discrete sup norm and L?
norm respectively. This is in agreement with the semi-discretization scheme we used.

4.1. 1D numerical experiments. Below we present results on 1-D OT prob-
lems, with one or both densities of Gaussian types. Namely, the initial and terminal
distributions g and v are normalizations of

(4.1) i = exp(—ag(xz — bo)?) +ro, U = exp(—ay(x — b1)?) + 71,

scaled so that [, pdx = [, vde = 1. (Here, O is a subinterval of the real line.)

This manuscript is for review purposes only.



448
450
451
452
453
454
455

456

o ot
[oe}

=~

at
©

460
461

462
463
464
465
466
467

468

MULTIPLE SHOOTING METHOD FOR WASSERSTEIN GEODESIC EQUATION 15

Fi1c. 4.1. Ezample 4.2: evolution of p(t) for truncated interval [0,2] (top) and [—0.5,2.5] (bottom).

EXAMPLE 4.2. Here we look at the performance of the multiple shooting method
when varying the (truncation of the real line to the) finite interval O, and the shift
number r. The parameters of initial and terminal distributions u,v in (4.1) are ag =
a; = 15, bg = 0.4,b7 = 1.4. We take K = 60 multiple shooting points, spatial step
size dr = 3 x 1072, N = 300 time steps per subinterval, ro = 1 = 0.0001 in (4.1),
and consider the intervals O = [0,2] or [-0.5,2.5]. In Fig. /.1, we plot the evolution
of density. The top figures refer to O = [0,2] and show distortion in the density
evolution. The bottom row refers to O = [—0.5,2.5] and shows that the computation
is more faithful when the truncated domain is large enough.

EXAMPLE 4.3. Here O = [0,2], the initial distribution is the uniform distribution
w= % and the terminal distribution v is the normalized Gaussian density as the v
used in Fxample /.2 with a1 = 25,b;1 = 1,71 = 0. The number of multiple shooting
points is K = 60, the space stepsize dez = 5 x 1072 and we take N = 20 integration
steps for subinterval. Fig. 4.2 shows the density evolution.

REMARK 4.1. In general, we observed that when we refine the spatial step size,
the number of multiple shooting subintervals must increase in order to maintain non-
negativity of the density at the temporal grids, and a successful completion of our
multiple shooting method, whereas the number of integration steps on each subinterval
is not as critical. See Table 2 for results on Example /.3, which are typical of the
general situation.

EXAMPLE 4.4. This is similar to Example 4.2, but the Gaussian has a much

This manuscript is for review purposes only.
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16 J. CUI, L. DIECI, AND H. ZHOU

Fic. 4.2. the evolution of probability given u and v in Example 3

dx K | N | success dx K | N | success
1/16 | 10 | 20 Vv 1/16 | 10 | 20 vV
1/32 10 | 40 \/ 1/32 20 | 20 \/
1/64 | 10 | 80 4 1/64 | 20 | 20 X

1/128 | 10 | 160 X 1/64 | 40 | 20 vV
1/128 | 10 | 320 X 1/128 | 40 | 20 vV
TABLE 2

The relationship between dx, K and N in Example 4.3.

greater variance. Let O = [—0.5,2.5], dov = 4 x 1072, K = 80, N = 200, and
fiz the parameters of initial and terminal Gaussian distributions p,v in (4.1) are
ag = a1 = 50, bg = 0.4,b; = 1.4, ro = r; = 0.0001. The evolution of the density is
shown in Fig. 4.3, and the sharper behavior of the density evolution with respect to
Figure 4.1 is apparent.

ExXAMPLE 4.5. This example is used to test Gaussian type distributions p and v
with different variances. Let O = [—0.5,2.5], dor = 4x 1072, K = 80, N = 40, and let
the parameters of initial and terminal Gaussian distributions u,v are ag = 15,a; = 10,
bop = 0.8,b1 = 1.6, 7o = r1 = 0.0001. The evolution of the density is shown in Figure
4.4. In this problem, we also exemplify the impact of the shifting number; as it can be
seen in Figure 4.4, if the shifting number is not sufficiently small (ro = r; = 0.01, in
this case), one ends up with spurious oscillatory behavior (presently, in x = [0.4,0.8]
and [1.7,2.1]).

4.2. 2D numerical experiments. Here, we give computational results for a
computational domain O which represents a truncation of R?. In Examples 4.6-4.10,
we always take K = 10 multiple shooting subintervals, dx = 0.2 as spatial step size,
and N = 30 integration steps on each subinterval [t;, t;11], t; = i/K,i=0,--- K — 1.

In Examples 4.6-4.7, the initial and/or terminal distributions, u,v, are normal-
izations of Gaussian type densities, namely

(4.2) fi = exp(—ag(z2 — bo)* — co(z1 — do)?) + ro,
‘ U = exp(—ai(xa — b1)* — (w1 — d1)?) + 71
EXAMPLE 4.6. Spatial domain is O = [—1,4] x [—1,4]. Initial density is the

normalization of the Gaussian type density fi in (4.2), with parameters ag = 5,by =

This manuscript is for review purposes only.
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o

Fic. 4.3. Evolution of probability density in Fxample ./

Fic. 4.4. Ewolution of probability density in Ezample /.5 with r = 0.0001 (up) oscillator
behaviors of probability density when r = 0.01(down,)

0.5,¢c9 = 5,dg = 1.5,79 = 0.01. The terminal distribution is the normalization of U
below (a two-bump Gaussian)

U = exp(—5(zg — 2.45)% — 5(z; — 2.45)%)
+ exp(—5(zg — 2.45)% — 5(z; — 0.55)%) + 0.01.

In Fig. 4.5, we show the contour plots of the density at different times, from which
the formation of the two bumps is apparent. The surfaces of the density at t = 0.8
and the two components of initial velocity are shown in Fig. 4.6 and 4.7, respectively.

This manuscript is for review purposes only.
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Fic. 4.5. Ezxample 4.6: contour plots of p at t =0,0.2,0.4,0.6,0.8, 1.

t=0.8

0.5

0.4

F1c. 4.6. Ezample 4.6: the surface p at t = 0.8.

EXAMPLE 4.7. Spatial domain is O = [—1,3] x [—1,3]. Initial and terminal den-
sities from (4.2) with parameters ag = 2.5,a1 = 5,bp = 0.5,b; = 1.5,¢0 = 5,¢1 =
10,dg = 0.3,d; = 1.3,79 = 1 = 0.001. Contour plots of the density evolution are in
Fig. /.8

For the next set of examples, we choose the initial or terminal distributions as
the normalization of the Laplace distribution. We use ag, by, co, 79 or a1,b1,c1,71 to
indicate the parameters of the Laplace type distribution given as:

p(—ao|332 - bo| - Co|$1 - d0|) + 7o,

4.3
( ) p(—a1|x2—b1|—cl|x1—d1|)—|-7“1.

) ®)

ex
ex
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Fic. 4.7. Exzample 4.6: the two components of the initial velocity.

EXAMPLE 4.8. Spatial domain O = [—1,3]x[—1,3]. Initial and terminal densities
are normalizations of the Laplace distributions in (4.3) with parameters ap = a3 =
5,bp =0.5,b; = 1.5,¢0 = ¢1 = 5,dyp = 0.6,dy = 1.6,79 = r1 = 0.001. Contour plots of
the density evolution are in Fig. 4.9.

EXAMPLE 4.9. Spatial domain O = [—1,3] x [—1, 3]. Initial density is the uniform
distribution. Terminal density is the normalization of the Laplace distribution U with
parameters a; = 10,by = 1.5,¢; = 10,d = 1.6,7 = 0.01. The contour plots of the
density evolution are presented in Fig. 4.10.

EXAMPLE 4.10. Spatial domain O = [—1,3] x [—1,3]. Initial density is the nor-
malization of

p= (1 +1)%(z1 — 3)* + (w2 + 1)*(x2 — 3)%.

Terminal distribution is the normalization of ¥ in (4.3) with parameters a; = 10,b; =

This manuscript is for review purposes only.
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20 J. CUI, L. DIECI, AND H. ZHOU

F1c. 4.8. Ezxample 4.7: contour plots of p at t = 0,0.2,0.4,0.6,0.8, 1.

Fic. 4.9. Ezample 4.8: contour plots of p at times t = 0,0.2,0.4,0.6,0.8,1.

1.5,¢1 = 10,dy = 1.6, = 0.01. The contour plots of the density evolution are pre-
sented in Fig. /.11.

EXAMPLE 4.11. Spatial domain O = [zp,xg] X [xL,zRr]|, x, = —1,25 = 3. The
initial density and terminal distributions are normalized Gaussian densities with pa-
rameters ag = a1 = 50,by = 0.5,b1 = 1.5,¢g = ¢1 = 50,dy = 0.3,d; = 13,11, =19 =
0.001. The contour plot of the density evolution is presented in Fig. 4.12.

5. Conclusions. In this paper, we proposed a new algorithm for the geodesic
equation with L2-Wasserstein metric on probability set. Our algorithm is based on
the Benamou-Brenier fluid-mechanics formulation of the OT problem. Namely, we
view the geodesic equation as a boundary value problem with prescribed initial and
terminal probability densities. To solve the boundary value problem, we adopted the
multiple shooting method and used Newton’s method to solve the resulting nonlinear
system. We further adopted a continuation strategy in order to enhance our ability
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Fic. 4.10. Ezample 4.9: contour plots of p at times t = 0.1,0.3,0.5,0.7,0.9, 1.

Fic. 4.11. Ezample 4.10: contour plots of p at times t = 0,0.2,0.4,0.6,0.8, 1.

to provide good initial guesses for Newton’s method. Finally, we presented several
numerical experiments on challenging problems, to display the effectiveness of our
algorithm.

There are many interesting questions that remain to be tackled. Surely adaptive
techniques in space and time would be very desirable, especially if one wants to extend
our numerical method to the Wasserstein geodesic equations in higher dimension.
The concern of truncating the spatial domain to a finite computational domain has
not been addressed in our work either, but this is clearly a problem of paramount
importance and will require a careful theoretical estimation of decay rates of the
densities involved. We expect to tackle some of these issues in future work.
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