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DOUBLE DESCENT AND INTERMITTENT COLOR DIFFUSION

FOR GLOBAL OPTIMIZATION AND LANDSCAPE EXPLORATION

LUCA DIECI, MANUELA MANETTA, HAOMIN ZHOU

Abstract. In this work, we present a method to explore the landscape of a smooth
potential in the search of global minimizers, combining a double-descent technique and
a basin-escaping technique based on intermittent colored diffusion. Numerical results
illustrate the performance of the method.

1. Introduction

Let g : R
n → R, n ≥ 1, be a sufficiently smooth function (say, C∞); we call g the

“potential,” or “objective function.” Let ∇g be the gradient of g, and H be the Hessian.
Finally, we also let G : R

n → R
+ be defined as G = 1

2 (∇g)T (∇g); we call G the “auxiliary
potential.” Our goal is to minimize g.

Finding global minimizers for a general objective function g is one of the oldest and
most challenging problems in applied mathematics. Whereas it is at times possible to
exploit a-priori knowledge for specific potentials, it remains an outstanding task to devise
effective general optimization strategies which can be applied to a general problem. In the
literature, one finds extensive collections of real-world potentials, arising from chemistry,
physics, mathematics, etc., as well as artificial problems. Many challenging problems in the
first group are obtained as models of interatomic forces, and are distinguished by having
a reduced region of interest, expensive computation of the potential and its gradient,
and full (not sparse) Hessians. Problems in the second group are useful to validate an
optimization technique, to illustrate it, and to have objective functions with selectively
distinguished features: a single global minimum, multiple global minima in the presence
of many local minima (in which case any deterministic technique will be trapped in the
basin of attraction of a minimizer without being able to escape it), long narrow valleys
(which will slow down the search process), and flat surfaces. Unsurprisingly, some methods
perform well on some problems, and poorly on others, and -aside from knowing ahead of
time what method to use on a specific potential- one is left wandering on what to use for
a given problem.
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We are often confronted with this frustrating state of affairs when teaching a course
on numerical methods for optimization. Even absolutely marvelous textbooks (e.g., [5])
are ultimately having to accept some uncertainties, and to deal with fine-tuning of pa-
rameters, and empirical choices. To be fair, these difficulties are intrinsic to the task at
hand, and surely not the result of negligence. So, when we teach such a course, we end up
teaching local techniques, maybe continuation and embedding techniques, emphasize gra-
dient descent and Newton’s method and their variants, stress convex or maybe polynomial
functions, but in the end we fail at providing rigorous answers to the recurring questions
of alert students relative to a general smooth function g: “how do we know that we found
the global minimum? how do we know that we have visited the interesting regions of con-
figuration space?” We don’t know, and most likely we will not know for the foreseeable
future. Indeed, borrowing a painstaking and extensive search of the configuration space,
we have few hints to offer to our students for answering their questions above. Motivated
by our classroom experience, one of our purposes in this work is to present methods and
ideas that can be taught in a numerical optimization course. That said, quite honestly, we
have no pretense that our work is an answer to the above questions, but we are hopeful
to be taking a (small) step in the right direction.

Let us immediately stress that we are putting forth some ideas for a general purpose
method, one which does not rely on the specific properties of the potential. With this
purpose in mind, we may recall that the main components of a global minimization algo-
rithm are: to explore the landscape, and to locate minima. The shape of the level sets of
g is of course dictating the nature of the landscape: flat, rough, predictable, crowded with
minima. At the same time, the shape of the level sets of G is more directly responsible for
properly identifying the basins of attraction of the minima of g for important techniques,
such as Newton’s method. Naturally, the level sets of g and of G are often of a very dif-
ferent nature; for example, in Figure 1 we show them relative to the function of Example
6.1.1.
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Figure 1. Level sets for g (on the left) and G (on the right); Example 6.1.1

Regardless, unfortunately, graphical insight provided by the level sets is all but unavail-
able for problems in several variables, and exploration of the landscape remains a mix of
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randomization and subdivision ideas. Indeed, the most widely adopted exploratory tech-
nique appears to be Monte-Carlo, which is then combined with localization methods such
as gradient descent, Newton’s method, and their modifications. For example, the popular
“basin-hopping” methods randomly perturb a minimum and search for other minima by
gradient descent (e.g., see [11]). And, of course, the best known instance of a method ex-
ploiting stochastic effects is simulated annealing, which makes use of a probability function
to decide how to move in the search space; briefly, the method can be described as follows:
call x the current state, xnew a randomly selected neighbor of x, and let the probability
function be given by

P (x, xnew, T ) =

{

1, if g(xnew) < g(x),

exp
(

−[g(xnew)−g(x)]
T

)

, if g(xnew) > g(x),

where T is called the temperature and is a function of the ratio between the current
iteration number and the total number of iterations allowed. Given this setting, a random
number r is generated: if the probability to move from x to xnew is greater than r, then the
new state is accepted, otherwise it is rejected; note that a downhill direction will always be
accepted, though one may also take uphill steps. This method is inherently better suited
for discrete problems, and it is sequential in nature (see [2] for more details on simulated
annealing).

To a large extent, everyone needs to deal with the key two aspects above: how to explore
the landscape, and how to locate minima once the decision is made that there is one in
the vicinity of the iterates. Our goal is to do so while avoiding a purely Monte Carlo
technique, but rather using the information gathered at the critical points to move in an
educated way in the landscape exploration.

In this work we introduce a method which uses a combination of new techniques, namely
a double-descent method to search for minima, and an intermittent colored diffusion tech-
nique to escape the basins of attraction of critical points.

All along, we will tacitly assume that critical points (i.e., values x where G(x) = 0)
are simple, in the sense that the Hessian is invertible there. In particular, at minima, the
associated Hessian will be positive definite. Nevertheless, the proposed method will also
be able to solve problems where at the critical point the Hessian has eigenvalues equal to
0.

We conclude this introduction with some practical considerations.

(i) Although we are considering an unconstrained minimization problem, the case of
constrained optimization is of course also important, and we expect to consider it
in the future.

(ii) Of the many minimization methods proposed during the years, some use only
gradient information, some also Hessian, and some use only functional evaluations
(so-called direct search algorithms). Whereas, of course, the specific problem at
hand may inhibit using the gradient and/or the Hessian, we will assume that
these are available to us. In fact, in our technique, we make use of repeated
eigen-decomposition of the Hessian. Of course, this is an expense which may be
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prohibitive for truly large problems, though by today standards it is easily doable
for dimensions of up to a few hundreds. It is not by coincindence that a lot of
people have been concerned with efficient updating of Hessian factorizations (e.g.,
the BFGS (Broyden-Fletcher-Goldfarb-Shanno) or the DFP (Davidon-Fletcher-
Powell) updates); see [7].

(iii) The prevailing wisdom (e.g., see the well known Levenberg-Marquardt algorithm,
trust-region methods, and the discussion in [5] and [10]) is to do Newton’s method
near a minimizer. Our technique is designed to automatically do Newton’s method
as well, as we reach the neighborhood of a minimize, or of another critical point.

(iv) Many recent advances in global optimization (e.g., genetic algorithms, direct search
techniques, multiple random initializations) have found their place in public do-
main software; e.g., see [8] and the Matlab Global Optimization Toolbox. In par-
ticular, the latter contains two routines which we have used for cross-comparison of
our results: GlobalSearch and simulannealbnd. The function simulannealbnd is
the Matlab implementation of simulated annealing. Instead, GlobalSearch finds
minimizers at different stages: first a local search (carried out by the function
fmincon) starts from an initial point x0 provided by the user, and then a list of
trial point is generated as potential starting points, taking into account penalty
functions, spherical basins of attractions, and run-time, to eventually perform the
local search from a large number of initial points. (For fair comparison with the
results of our method, we used this function by providing gradient and Hessian
information).

(v) Finally, we must stress that it is very delicate to implement any method, and that
methods that look good on paper will not deliver according to expectations, if not
properly implemented. For this reason, we will detail our implementation choices
so that our results may be replicated.

A plan of this paper is as follows. In section 2 we give some background material. In
section 3 we introduce the double-descent technique, and in section 4 we give the combined
“double-descent-color-intermittent-diffusion” method (DD-CID, for short). An overview
of our numerical method is in section 5, and several numerical experiments are reported
in section 6.

2. Preliminaries

2.1. Intermittent Diffusion. In the recent work [3], the authors proposed a general
methodology, called intermittent diffusion (ID, for short), motivated by the fact that the
most widely used stochastic technique available for global optimization, the simulated an-
nealing mentioned before, needs a deterministic part to speed up the convergence towards
the minimizers. In order to do so, ID alternates between gradient descent and diffusion
processes, by turning on and off a white noise term. In mathematical terms, the ID
methodology can be summarized by the following stochastic differential equation:

(1) dx(t, w) = −∇g(x(t, w))dt + σ(t)dW (t), t ∈ [0,+∞]
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where W (t) is Brownian motion in R
n, w is a random path in the Wiener space and σ(t)

is a piecewise constant function of time alternating between positive and zero values. In
particular, when the noise is off (σ(t) = 0), the method reduces to the gradient descent
technique, leading the trajectory towards a minimizer of the potential, when the noise is
on (σ(t) > 0), the trajectory should leave a neighborhood of the minimizer and, eventually,
reach the basins of attraction of different minima.

The discontinous diffusion term is given in [3] as

(2) σ(t) =

N
∑

i=1

σiI[Sj ,Tj ](t)

where 0 = S1 < T1 < S2 < T2 · · · < SN < TN < SN+1 = T and I[Sj ,Tj ] is the characteristic

function of the interval [Sj, Tj ]. In [3], the length of the intervals Tj−Sj, and the constants
σj are supposedly chosen randomly for all j = 1, . . . , N ; therefore, when the characteristic
function is 1, the minimizer is perturbed by a positive random number for a certain amount
of time, and when the noise is off, namely I[Sj ,Tj ] = 0, the method reduces to gradient
descent and slowly converges to a local minimum.

As originally proposed, the ID approach is a general methodology, but to make it become
a practical method requires making a lot of choices; for example, to decide how long the
diffusion process needs to be carried out. In our experimentation of this technique, we
used the discrete analog of (1):

(3) xk+1 = xk − h∇g(xk) + +
√

hσ(tk)W ,

where W ∈ N(0, 1)n. However, when using this technique, we faced the need to adjust
too many parameters based on the potential we were trying to minimize, and realized that
there were some key aspects to be addressed:

• the local convergence towards minima, using the gradient descent, was too slow,
and a faster method (eventually, Newton-like) was desirable;

• white noise based diffusion did not account for the local landscape of the potential,
and we eventually wanted to modify this with color noise diffusion;

• criteria were needed to replace choosing the interval length randomly, finding in-
stead a deterministic criterion to switch the noise on and off.

We addressed all of the above concerns in the present paper.

In order to achieve our goal to build up a method which automatically adjusts to the
optimization problem, we resorted to exploiting the Hessian’s spectral information.

2.2. R
n via the Hessian. Below, we clarify the structure of regions of R

n where the
eigenvalues of H have a specified signature (inertia).

Definition 1. Given a symmetric matrix H, the inertia of H is the triplet

ν(H) = {n+(H), n0(H), n−(H)},
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where n+, n0, n−, are the number of positive, zero, or negative, eigenvalues of H, counted
with their multiplicities. H is called hyperbolic if n0(H) = 0.

Observe that H : R
n → R

n×n is a smooth symmetric function of n parameters, hence
the reasonings below are valid.
We will always order the eigenvalues of H as λ1 ≥ λ2 ≥ · · · ≥ λn, and v1, . . . , vn, will
be the corresponding orthogonal eigenvectors. According to ν(H), we will also use the
notation V = [v1, . . . , vn] = [V+, V0, V−], and will call V+ the basis for the positively
dominant subspace, or simply (with improper language) the dominant subspace, etc..

Lemma 2. Consider the set P := {x ∈ R
n : yTH(x)y > 0 , ∀y ∈ R

n}. We have the
following properties:

(1) P is open.
(2) P = ∪iPi, where each Pi is open and connected and Pi ∩ Pj = ∅ for i 6= j.
(3) Each Pi is path connected.

Proof. (1) follows from these considerations.

(i) The eigenvalues of the function H are continuous functions of x. (This is a standard
result).

(ii) If A is a symmetric positive definite function, and B = BT is such that ‖A−B‖2 <
λn(A), then B is positive definite. (This is also well known).

Thus, if we take a value x0 where H(x0) is pos-def, consider the smallest eigenvalue of H as
a function of x, and use the continuity of λn(·), then H(·) must remain positive definite for
x ∈ Br(x0) (an open ball centered at x0, of radius r): Br(x0) = {y ∈ R

n : ‖x − y‖ < r},
or also Br(x0) = {x ∈ R

n : x = x0 + ρw, ‖w‖ = 1, ρ < r}.
As far as (2), the observation is that the function H ceases to be positive definite when
λn(x) = 0. So, we define a set Pi as that component of P such that for any two x, y ∈ Pi

there is a curve joining x and y such that along this curve λn > 0. As above, Pi is open,
and thus the set P is separated into open connected components Pi’s, and Pi ∩ Pj = ∅,
for i 6= j.
(3) follows from a classical result in topology, telling that “open connected sets in R

n are
path connected”. [It is also possible to argue directly, since, given that the Pi’s are open,
an open ball centered at any point x ∈ P must intersect all coordinate directions]. �

Remark 3. Properties similar to (1)-(2)-(3) above are still true in case the Hessian is
hyperbolic. Indeed, considering the set

P := {x ∈ R
n : n0(H(x)) = 0 , n+(H(x)) and n−(H(x)) constant 6= 0} ,

this set is open and the union of (path) connected components. The reason is that perturba-
tion of a hyperbolic Hessian renders a hyperbolic one, with same inertia, as a consequence
of the fact that invertible matrices form an open set.

2.3. Courant’s theorem. As we will see in the following, a main idea of our method is
to escape the basin of attraction of a minimizer by searching for a saddle point. Now,
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it is well-known that if the potential is a function of one real variable, g : R → R, and
x1 and x2 are two strict minima, that is g′′(x1,2) > 0, then g must have another critical
point x3 between x1 and x2. However, as soon as we consider a real-valued function of two
variables, a similar result does not hold, in general1. Nevertheless, under certain conditions
the existence of other non-extremal critical points has been proved, and this result, due
to Courant, dates back to 1950 (see [9, p.49], where g is only assumed to be C1).

Theorem 4. Suppose that g is coercive2 and possesses two distinct strict relative minima
x1 and x2. Then g possesses a third critical point distinct from x1 and x2, characterized
by

g(x3) = inf
Σ∈Γ

max
x∈Σ

g(x) ,

where Γ = {Σ ⊂ R
N ; Σ is compact and connected and x1, x2 ∈ Σ}.

Moreover, x3 is not a relative minimizer; that is in every neighborhood of x3, there exists
a point x such that g(x) < g(x3).

Thus, x3 in Theorem 4 can be viewed as the set which topologically separates x1 and
x2.

Theorem 4 is part of “mountain pass theory.” An accessible introduction to this theory
and its applications is in [1], a comprehensive treatment is [9], and the report [12] and
the work [13] propose numerical methods to approximate mountain pass points (here,
the authors use the characterization of mountain pass points as critical points where the
(nonsingular) Hessian has exactly one negative eigenvalue).

3. Descent directions and the double-descent

Here we introduce the double descent direction. First, we recall the definition of (gra-
dient) descent and Newton’s directions.

(a) (Descent direction). Assuming that ∇g(x0) 6= 0, any direction v such that g(x0 +
αv) < g(x0), for some α > 0, is called a direction of descent for the potential g. A
trivial computation shows that a direction of descent v must satisfy (∇g(x0))

T v <
0. The classic choice is v = −∇g(x0) (the so-called gradient descent choice).

(b) (Newton’s direction). This is the direction resulting from using Newton’s method
to solve the problem ∇g(x) = 0. In other words, it is the direction (assuming that
∇g(x0) 6= 0 and that the Hessian is invertible) given by v(x0) = −H(x0)

−1∇g(x0).
We note that this is a descent direction for the functional G at x0, since ∇G =
H∇g.

Remark 5. Of course, we can always normalize a descent (and/or Newton’s) direction
to be a vector of norm 1.

1As an example, consider the function g1(x, y) = (x2y − x− 1)2 + (x2 − 1)2: it has two local minima at
(1, 2) and (−1, 0), and no other critical point.

2Recall g : R
n → R is coercive if lim‖x‖→∞ g(x) = +∞, that is for any constant M there is a constant

RM such that ‖g(x)‖ > M whenever ‖x‖ > RM .
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3.1. Descent direction within a positive definite region. The following result, which
is both fundamental and well known (see [5, p.114]), serves as motivation for some of our
later algorithmic choices.

Lemma 6. Let x0 be a point where ∇g 6= 0 and let H(x0) be positive definite. Then, the
Newton’s direction is a direction of descent for g.

Proof. We need to show that –at x0– we have (∇g)T v < 0 when v = −H−1∇g. But this
is obvious since H is positive definite. �

With the help of Lemma 6, the following is immediate.

Proposition 7. Suppose that x0 ∈ Ω0, where Ω0 is a path-connected component where H
is positive definite. Then, either ∇g(x0) = 0, or there exists a direction v ∈ R

n, and a
scalar α > 0, such that both G(x0 + αv) < G(x0) and g(x0 + αv) < g(x0). Further, one
can also choose τ so that both potentials decrease and H(x0 + τv) is positive definite.

Proof. We want v such that both of these relations hold at x0:

vT∇G < 0 and vT∇g < 0 .

Since ∇G = H∇g, the sought relations rewrite as

vT H∇g < 0 and vT∇g < 0 .

Each of the above inequalities defines an open half space, and the Newton’s direction is in
both of these. Therefore, the existence of a unit vector v giving us the sought decrease is
established, and there exists a scalar α, positive, such that both G(x0 + αv) < G(x0) and
g(x0 + αv) < g(x0).
Further, since H(x0) is positive definite, then there is an open ball centered at x0 and
of radius r > 0, Br(x0), such that H(x) remains positive definite for any x ∈ Br(x0).
Therefore, there exist τ so that H(x) is positive definite for x = x0 + τv. �

Remark 8. Because of Lemma 6, in Proposition 7 we can choose v to be the Newton’s
direction.

We note right away that it is often not advisable to select the step-length τ so that the
Hessian remains positive definite. Indeed, in our numerical experiments, doing so often
resulted in a severe restriction of the step-length and inefficient computations, and it was
quite preferable to allow a decrease in the potentials without forcing a fixed inertia for
the Hessian. For this reason, we now define the double-descent direction allowing for the
Hessian to be indefinite.

3.2. Descent direction within an indefinite region. Here, we generalize the above
result to the case of regions with different Hessian’s inertia.

Proposition 9. Let Ω be a path-connected region where ν(H) = {n+, n0, n−} for all
x ∈ Ω, with n+ ≥ 1. Let x0 ∈ Ω, and let V+ = span{v1, . . . , vn+

} be the subspace spanned
by the first n+ eigenvectors of H(x0).
Then, if V T

+ ∇g(x0) 6= 0, there exists a direction v ∈ R
n, and a scalar α > 0, such that both
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G(x0 + αv) < G(x0) and g(x0 + αv) < g(x0). Further, if n0 = 0, i.e. H(x0) is hyperbolic,
then there exists τ > 0 so that ν(H(x0 + τv)) = ν(H(x0)).
Finally, in all cases above, the direction v can be taken as v = −(H+(x0))

†∇g(x0), where
H+ is the closest positive semidefinite matrix to H; that is, if H = V ΛV T , and Λ =
diag(Λ+,Λ0,Λ−), then H+ = V Λ+V T , with Λ+ = diag(Λ+, 0n0

, 0n−), and thus (H+)† =

V+(Λ+)−1V T
+ .

Proof. We want v such that both of these relations hold at x0:

vT H∇g < 0 and vT∇g < 0 .

Considering the direction v given in the statement, we have

vT∇g = −∇g(x0)
T (H+(x0))

†∇g(x0) < 0

since V T
+ ∇g(x1) 6= 0. For the same reason, we also have

vT H∇g = −∇g(x0)
T (H+(x0))

†H∇g(x0) =

= −(V T
+ ∇g)T (Λ+)−1(V T

+ ∇g) < 0 .

Therefore, the existence of a unit vector v giving us the sought decrease is established, and
there exists a scalar α, positive, such that both G(x0+αv) < G(x0) and g(x0+αv) < g(x0).
Further, if H(x0) is hyperbolic, then ν(H(x0)) = {n+, n−}. Therefore, there is an open
ball centered at x0 and of radius r > 0, Br(x0), such that ν(H(x)) = ν(H(x0)) for any
x ∈ Br(x0). Thus, we can choose τ > 0 such that ν(H(x0 + τv)) = ν(H(x0)). �

Remark 10. The direction v = −(H+(x0))
†∇g(x0) of Theorem 9 is effectively the New-

ton’s direction restricted to the subspace associated to the positive eigenvalues.

Summary 11. To sum up, as long as the point x0 is in a region where the Hessian
has at least one positive eigenvalue, and ∇g has a non-trivial component in the subspace
spanned by the eigenvectors corresponding to the positive eigenvalues, we can always find
a direction v which is of descent for both G and g. If H(x0) has no 0 eigenvalue, we can
also maintain the inertia of H by taking a step in the direction v; however, this may be
counterproductive (as our computations showed), since it may unduly restrict the step τ ,
and it is much more desirable to let the iterate enter and exit regions of different Hessian’s
inertia while decreasing the potentials g and G.

Remark 12. One more comment is needed about the condition V T
+ (x)∇g(x) 6= 0.

The dimension of the subspace span(V+) is n+, while ∇g is a vector in R
n. Therefore, in

general, the requirement V T
+ ∇g = 0 would define a set of n+ equations in the n variables

x ∈ R
n. Generally, these define an n−n+ dimensional manifold immersed in R

n. There-
fore, we should expect that, at any x, the vector ∇g will have a nontrivial component in
V+. This is the truer the larger is n+. In the limiting case of n+ = n, Lemma 6 already
told us that. At the same time, if n+ = 0, then obviously there is no direction v+ to begin
with. In this case, there is no double descent direction to begin with, and our method (see
below) will revert to using the gradient direction.
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4. Double-descent colored-diffusion method

The main idea of our technique is to take advantage of the knowledge of the Hessian
inertia, in order to explore the landscape going from a saddle point to a minimum and
vice versa, avoiding being trapped in the basins of attraction of the critical points while
following an educated path.

There are two types of processes we use: “local zoom-in,” and “basin escaping” methods.

4.1. Reaching a critical point: local search. This part is based on the developments
of Section 3. We distinguish between the cases of searching for a minimum or a saddle. In
the former case, we have a host of possibilities: the double descent algorithm, gradient-
descent, Newton’s method (damped); in the latter, we use a (damped) Newton’s method.
Still, we must make some careful implementation choices.
For example, when searching for a minimum, beside the usual concerns on how to choose
the step-length (see [5]), we also accounted for these aspects when implementing the double
descent method.

(i) When using the double-descent direction, we demand that both g and G have
appreciably decreased.

(ii) To declare that ∇g has no meaningful component in the subspace spanned by V+,
we used the criterion ‖V T

+ (xk)∇g(xk)/‖∇g(xk)‖‖ ≤ √
n/10. When this happens,

we reverted to the direction v given by the simpler gradient-descent direction, and
kept this descent strategy for 5 steps before retrying the double descent direction.
Likewise, we reverted to the gradient descent direction when too many damping
steps are taken with the double descent direction.

(iii) Another important consideration is about the stopping criterion (both when search-
ing for a minimum or a saddle). In our implementation we chose the following
stopping criterion (always within the maximum allowed number of iterations). We
iterate as long as:

‖∇g(xk)‖ ≥ atol+ ‖∇g(x0)‖rtol and ‖xk − xk−1‖ ≥ atol+ ‖x0‖rtol .

4.2. Basin escaping by Color Diffusion. Here we adopt (some of) the ideas in Section
2.1 in order to leave the basin of attraction (for Newton’s method) of a critical point.
In particular, compare (4), (5), and (6), with (3); naturally, just as (3) can be viewed
as a discretization of the SDE (1), also our equations (4), (5), and (6), can be thought
as discretizations of an underlying SDE, in regions where the Hessian inertia and the
dominant (respectively, smallest) eigenvalue are not changing.

As seen in Section 3, the double-descent method is designed to lead to a minimum
when the Hessian at the starting point is either positive definite or indefinite, and -when
properly implemented- it will really be Newton’s method close to a minimum. Instead,
when the initial value lies in a region in which both n+(H) and n−(H) are nonzero, we
will presume that (damped) Newton method will converge to a saddle point (or perhaps
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to a maximum); this expectation has effectively been borne out in practice for the vast
majority of our experiments.

Regardless, if we are at either a minimum or at a saddle, we need to leave the respective
basins of attraction for (damped) Newton method. To do this, we implemented a colored
intermittent diffusion method as follows, by reflecting the choices made above to look for
either a saddle or a minimum, and the discussion in Section 2.1.

(a) From a min x0, trying to go to a saddle. Let us first assume that, λ1 > λ2 ≥ · · · ≥
λn along our iterates. There are three basic steps.
(i) Select α (usually, α = 1) and generate

x1 = x0 + αv1(x0)v
T
1 (x0)W , W ∈ N(0, 1)n .

(ii) Find h such that |G(x̂k+1)| < |G(xk)|, with x̂k+1 = xk − h
(

H†(xk)∇g(xk)
)

,
and then

xk+1 = xk − h
(

H†(xk)∇g(xk)
)

+ α
√

hσ(xk)W ,where

σ(xk) = −v1(xk)v1(xk)
T , and W ∈ N(0, 1)n .

(4)

(iii) Continue with the diffused damped Newton’s above until the Hessian has some
negative eigenvalues or the maximum number of diffusive iteration has been
exceeded. At that point, use (damped) Newton’s method. Hence, select the
Newton direction v and the step length h to decrease the auxiliary potential
G; say, G(xk + hv) < G(xk). If gm denotes the value of the potential g at the
minimum from which we started, we observed that consistently g(xk + hv) >
gm which betrays that we are not going back to the starting minimum.

The rationale for the colored noise diffusive step is to move away as quickly as
possible from the basin of attraction of the minimum. If x0 is a minimum, the
standard quadratic approximation in a ǫ-ball around x0 will give:

g(x0 + ǫy) = g(x0) + ǫ∇g(x0)
T y +

1

2
ǫ2yT H(x0)y + . . .

and therefore, with ‖y‖ = 1, the fastest increase is for y = v1. In the (very
unlikely) case that the dominant eigenvalue has multiplicity greater than 1, we
select a random vector in the span of the dominant eigenvectors.

(b) From a saddle x0, trying to go to a min. Let us first assume that λ1 ≥ · · · ≥
λn−1 > λn. Even here there are two basic steps, getting out of the saddle and
going to a minimum. The second step, see below, can be carried out with the
double descent method, or with gradient descent, or possibly with a (damped)
Newton approach. In all cases, first we use colored diffusion steps to move out of
the saddle.
(i) Select α (usually, α = 1) and generate

x1 = x0 + αvn(x0)v
T
n (x0)W , W ∈ N(0, 1)n .

As before, the choice of the colored noise diffusive step is to move away as
quickly as possible from the basin of attraction of the saddle, while decreasing
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the potential g. If x0 is a saddle, in a ǫ-ball around x0 we have:

g(x0 + ǫy) = g(x0) + ǫ∇g(x0)
T y +

1

2
ǫ2yT H(x0)y + . . .

and therefore, with ‖y‖ = 1, the fastest decrease is for y = vn.
(ii) Double descent. If ∇g(xk) has a meaningful component in the direction of

V+(xk), do (i-a), otherwise do (i-b).
(ii-a) Find h such that both |G(x̂k+1)| < |G(xk)|, and |g(x̂k+1)| < |g(xk)|,

with x̂k+1 = xk − h
(

H†
+(xk)∇g(xk)

)

, and then

xk+1 = xk − h
(

H†
+(xk)∇g(xk)

)

+ α
√

hσ(xk)W ,where

σ(xk) = −vn(xk)vn(xk)
T , and W ∈ N(0, 1)n .

(5)

(ii-b) Find h such that |g(x̂k+1)| < |g(xk)|, with x̂k+1 = xk − h ∇g(xk), and
then

xk+1 = xk − h ∇g(xk) + α
√

hσ(xk)W ,where

σ(xk) = −vn(xk)vn(xk)
T , and W ∈ N(0, 1)n .

(6)

(iii) Continue with the diffused Double Descent above until the Hessian has all
positive eigenvalues or the maximum number of diffusive iteration has been
exceeded. At that point, use Double Descent method. Hence, select the
direction v and the step length h to decrease the potential g auxiliary potential
G; say, g(xk + hv) < g(xk) and G(xk + hv) < G(xk).

Again, in the (very unlikely) event that the smallest eigenvalue has multiplicity
greater than 1, we select a random unit vector in the corresponding subspace.

5. The method at a glance

In the previous sections, we presented only the two key components of the method,
namely, the local search and the basin escaping. Here, we give a broader idea of the
method.

(0) The very first initial datum x0 is randomly chosen (within a region of interest). A
local search for a minimum starts with the double descent method, and the point
found is stored in a Table of critical points.

(1) A point from the Table is randomly selected. Colored diffusion to escape the basin
of this critical point is performed (see Figure 2), followed by a local search for the
next critical point. The new point is stored in the Table3, and step (1) is thus
repeated until a predefined number of critical points is found.

3The same point can thus appear multiple times in the Table.
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(a) (b)
Figure 2. Basin escaping main idea. Consider the function of Example 6.1.1,
which has two minima and a saddle point. To escape the basin of attraction of a
minimum, the idea is to move towards a saddle point, as in Figure 2a. Starting
from a saddle point, instead, the goal is to find a direction to move as quick as
possible to a minimum, as illustrated in Figure 2b.

5.1. Sketch of the algorithm.

(1) Choose a random point x0 in the search region.
(2) Look for a minimum xmin by using the double-descent method.
(3) Store xmin in the list of critical points.
(4) LOOP BEGINS - to be repeated for a preassigned number of iterations.

(a) Randomly choose a point x from the list.
(b) If x is a minimum, start diffusion according to (4) until n−(H) 6= 0 (see Figure

3a) or maximim number of diffusive steps is exceeded.
Apply (damped) Newton method to find a saddle point.
Store the saddle in the list of critical points.

(c) If x is a saddle point, take diffusive steps according to (5) (or (6)), until
n−(H) = 0 (see Figure 3b) or the maximum number of diffusive steps is
exceeded. Apply double descent to find a minimizer.
Store the minimum in the list of critical points.

LOOP ENDS

5.2. Computational considerations. A main drawback of Newton’s type technique,
hence also of the double descent method, is the need to form, evaluate, and decompose,
the Hessian. Except for problems where the Hessian is simple to evaluate, and very
structured (e.g., tridiagonal), this can be very expensive and it restricts applicability of
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(a) (b)

Figure 3. Switch timing for colored diffusion. The blue region represents the
set of points at which the Hessian is positive definite, while the white region has
an indefinite Hessian. Suppose we need to escape the basin of attraction of a
minimum (Figure 3a), the diffusion process is triggered until reaching the white
region, where a local search starts. Conversely, starting from a saddle point, as
in Figure 3b, the diffusion process stops when the blue region is reached, and the
local search begins.

Hessian based techniques to small dimension (say, up to a few hundred variables on a
typical laptop). We also note that for some problems evaluating the Hessian is itself an
expensive task; e.g., this is the case for interatomic potentials, such as the Morse and
Lennard-Jones potentials (see Section 6). Although our purpose in this work has not been
to deal specifically with efficient implementations, but rather to give ways to explore the
phase space (the landscape), for large (possibly sparse) problems we have experimented
with Lanczos techniques, and a subspace version of Newton’s method, whereby we project
the Hessian in the direction of the most dominant eigenvalues (positive and negative). We
will report on these apects in other works.

An important consideration pertains to the colored noise diffusion. To perform this
diffusion, and to monitor when to stop it, it is straightforward to bypass the Hessian
factorization. In fact, to form the color noise, and to decide when to stop diffusion, we
only need the two eigen-directions v1 and vn. These are inexpensive to obtain with a well
designed Lanczos technique (e.g., eigs in Matlab), by asking for (respectively) the largest
and smallest eigenvalues. This feature is particularly useful when using just a damped
Newton’s method with color noise (as in our basic intermittent diffusion method from
a min to a saddle), since the linear systems arising during the iteration are then solved
without resorting to a full eigen-decomposition. To elucidate, and to account for the
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possibility of singular Hessian, we first form the QR factorization with column pivoting of
the Hessian: HP = QR with diagonal of R ordered in decreasing magnitude. Then solve
the resulting triangular system, possibly for the minimum norm solution (if the Hessian
was singular, which is betrayed by Rnn = 0).

Finally, as seen in Section 4.2, we use a variable stepsize controlled through the re-
quirement of moving in the descent direction(s). The initial stepsize is set to 1, and the
stepsize is always required to remain in [2−26, 25], where 2−26 =

√
eps, the square root of

the machine precision. When one step is taken in the desired direction, and the computa-
tion is immediately accepted, then the stepsize is doubled; if the computation is rejected,
the stesize is halved. If we reach the minimum allowed stepsize, the algorithm halts and
restarts from a different critical point in the Table (or a different random point, the very
first time).

6. Applications and examples

In this section, we show performance of our method on several problems, both standard
model problems, with an illustrative purpose and to validate the method on different
landscape features, and those arising from chemical potentials.

6.1. Test Problems.

6.1.1. An illustrative example. Consider the following elementary potential:

(7) g(x, y) = (x2 − 1)2 + (x2 + y − 1)2.

It has 2 minimizers, located at (−1, 0) and (1, 0), and a saddle point at (0, 1). Starting from
a random point x0, the Double Descent technique quickly leads to a minimizer, and the
diffusion combined with Newton method allows to find the saddle point, from which the
algorithm looks again for a minimizer. By using our technique, and asking the algorithm
for at most 4 critical points, we were able to find, in a single run, the two minimizers and
the saddle point. Indeed, the method is behaving exactly like we were hoping: first, it
converges to (−1, 0), then it goes through the saddle point and from there localizes the
other minimum at (1, 0), and then it goes back to the saddle point. On average we counted
3 diffusive steps and 8.25 local search iterations.

6.1.2. Shubert Function. The Shubert function is a highly multimodal potential: it has
several local minima and many global ones. Naturally, the function presents many saddle
points and maxima. Moreover, the global minima and the global maxima are extremely
close, and this is one of the reason why it may be difficult to find the global minimizers.
Although our algorithm is designed to find minima and saddles, it could end up finding

maxima as well, due to the Newton’s basins of attractions, which are nontrivial. Schubert’s
potential,

(8) g(x, y) =

(

5
∑

i=1

i cos
[

(i + 1)x + i
]

)(

5
∑

i=1

i cos
[

(i + 1) y + i
]

)

,
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(a) (b)

Figure 4. Shubert Function

is represented in Figure 4a. Figure 4b is a zoom of the contour plot around the global
minimizer, and the points are the minimizers found by just applying the double descent
technique, starting from random initial values. While finding the global minimizer by
applying a deterministic technique requires a starting point in its neighborhood, the ability
to explore the landscape eliminates this necessity. One single run of our technique, asking
for 100 possible critical points, gave us 45 minima, 3 of which were global, at different
locations. On average, for attempt, we counted one diffusive step and 5.9 local search
iterations.

6.1.3. Biggs Function. Let us consider the following function:

(9) g(X) =
10
∑

i=1

(

e−ti x1 − 5e−ti x2 − yi

)2

where ti = 0.1 i, yi = e−ti − 5e10 ti .
There are two critical points: a minimum at (1, 10) and a saddle at (16.7047, 16.7047), as
shown in figure 5.
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Figure 5. Biggs function’s critical points: (global) minimum in black and saddle
point in magenta.

The challenges in this problem are the flat landscape of the potential and the presence
of narrow regions in which the Hessian is positive (negative) definite, but that do not
contain a minimum (maximum), as shown in Figure 6. Asking for 2 critical points, we

-20 -10 0 10 20 30 40
-20

-10

0

10

20

30

40

Figure 6. Biggs function: in blue the regions of the plane in which the Hessian
is positive-definite, in red the one in which H is negative-definite; elsewhere H is
indefinite.

were able to find, in a single run, both the minimimum and the saddle point. On average,
we performed 2.5 diffusive steps and 18 local search iterations.

6.1.4. Camel Function. Let us consider the following function:

(10) g(x, y) =

(

4 − 2.1 x2 +
x4

3

)

x2 + xy + 4(y2 − 1)y2
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This function is a standard test function for global optimization, but it is also useful as a
test for the mountain passes’ search (see [12]). In fact, our algorithm can be also used to
compute mountain passes. As in [12], these are characterized as critical points that satisfy
the Palais-Smale condition and whose Hessian has exactly one negative eigenvalue, that
is n−(H) = 1.

Consider the region [−2, 2] × [−1, 1]. Here, there are 14 critical points: 6 mountain
passes, 6 minima and 2 maxima. Our method has no difficulty in computing all of these
points in one single execution. Results are summarized in Figure 7 and in Table 1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 7. Camel Function’s critical points. In the region of interest, represented
in this figure, there are 6 minima (in black), 2 maxima (in red), and 6 mountain
passes (in magenta).

6.1.5. Rosenbrock Function. This function is given by

(11) g(x) =

N−1
∑

i=1

[

100 (xi+1 − x2
i )

2 + (xi − 1)2
]

,

and it has a global minimum value of 0 at at (1, 1, ..., 1), for any value of N . The Hessian is
very inexpensive to compute and factor, being tridiagonal. The global minimum lies inside
a long, narrow, parabolic shaped flat valley; while finding the valley is trivial, detecting
the global minimizer is not.

We take N = 50. A Monte-Carlo gradient-descent technique using 20 random initial
guesses did not find the global minimizer. A single implementation of our technique with
the possibility to find at most 20 critical points, found 16 minimizers, 9 of which were
global. On average, per attempt to find a critical point, we counted 1.8 diffusive steps and
136 local search steps. For comparison sake, the Matlab routine GlobalSearch found the
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x y f(x, y) spectrum of H
0.0898 -0.7127 -1.0316 7.6822 16.4932
-0.0898 0.7127 -1.0316 7.6823 16.4932
1.6071 0.5687 2.1043 7.1215 10.0216
-1.6071 -0.5687 2.1043 7.1215 10.0216
1.7036 -0.7961 -0.2155 18.8171 22.6975
-1.7036 0.7961 -0.2155 18.8171 22.6975
1.2302 0.1623 2.4963 -8.0149 -5.9537
-1.2302 -0.1623 2.4963 -8.0149 -5.9537

0 0 0 -8.0623 8.0623
1.1092 -0.7683 0.5437 -7.9026 20.3667
-1.1092 0.7683 0.5437 -7.9026 20.3667
1.2961 0.6051 2.2295 -6.1772 9.6376
-1.2961 -0.6051 2.2295 -6.1772 9.6376
1.6381 0.2287 2.2294 -5.5458 12.4367

Table 1. Camel critical points

global minimizer, whereas the Matlab simulated annealing routine simulannealbnd gave
a best value for the minimum of 40.7188.

6.2. Chemical Potentials. An interesting application of global optimization is protein
folding. Mathematically, this consists in finding the equilibrium configuration of d atoms,
assuming that the forces between the atoms are known. In the end, one has to find the
minimizer of a potential energy function depending on 3d variables.
The Lennard-Jones and Morse clusters are two well-known systems of this kind and they
have been extensively studied, and the minima tabulated. For example, the (currently
best) global minima for Lennard-Jones and Morse potential can be found at the database
[4]. These results were obtained with the methods presented in [6] and [11]. Both are
“basin-hopping” techniques; they exploit the funneling structure of the potentials (that is,
the global minimizer lies at the bottom of a monotonically descending sequence of mini-
mizers), and make a number of choices explicitly based on the specific problem at hand.
For example, the authors perform a continuation based upon an optimal configuration
reached with d atoms to initiate the search for (d + 1) atoms.
With no pretense of comparing to these other results, below we present some of the results
we obtained applying our general technique on both Morse and Lennard-Jones potentials.
These potentials depend on the mutual distances (in R

3) between the atoms, namely
rij = ‖Pj − Pi‖, with 1 ≤ i < j ≤ d and Pk = (xk, yk, zk), for all k = 1, ..., d.
Given obvious symmetries in the problem, we imposed the following location constraints:
we fix one atom at the origin (P1 = (0, 0, 0)), another one on the x axis (P2 = (x2, 0, 0)),
and a third one in the xy-plane (P3 = (x3, y3, 0)). All other atoms are unconstrained.
With this setup, each configuration will be identified by the vector of coordinates

X = (x2, x3, y3, x4, y4, z4, . . . , xd, yd, zd),
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and the dimension of the problem becomes N = 3d − 6.
In our experiments we compute the gradient analytically, and the Hessian numerically, by
forward finite differences.

6.2.1. Lennard-Jones Potential. This is defined as follows:

(12) V (r) = 4 ε

d
∑

i<j

[

(

σ

rij

)12

−
(

σ

rij

)6
]

,

where ε and 21/6σ are the pair equilibrium well depth and separation respectively. We
take ε = σ = 1.
This is a problem where a simple gradient descent technique, coupled with a Monte-Carlo
randomization, performs reasonably well; as a matter of fact, our own double-descent
method quite often automatically reverts to gradient descent. That said, there are specific
configurations where the problem is much more difficult with our method than with a
simple gradient descent (for example, d = 38, a value where the optimal configuration
does not have a regular (Mackay) hycosahedral structure). On this problem, the basin-
hopping techniques of [11] is a more effective way to find the global minima, since the
knowledge of the potential landscape is exploited in the algorithm itself; our method is
really a landscape exploration approach, and our method failed, for example, for d = 38.
Nevertheless, the method worked well for smaller values of d, as reported in Table 2.

d N global minima

2 1 -1
3 3 -3
4 6 -6
5 9 -9.104
6 12 -12.712
7 15 -16.505
8 18 -19.821
9 21 -24.113
10 24 -28.422
11 27 -32.766
12 30 -37.968
13 33 -44.327
14 36 -47.845

Table 2. Lennard Jones global minima

6.2.2. Morse Potential. The Morse potential is defined as follows:

(13) Vρ(r) =

d
∑

i<j

[

eρ(1−rij )
(

eρ(1−rij) − 2
)]
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where ρ is a parameter which determines the width of the well. We treat this problem as
truly unconstrained, and this may create difficulties to descent techniques, since descent
directions may well identify points “at infinity” (i.e., some coordinates grow unbounded);
e.g., this happens to the Matlab code GlobalSearch. A further difficulty is that global
minima become harder to locate when ρ increases. In Table 3, we report the results of our
method for 11 atoms and ρ = 3, 6, 10, 14; our minima match those of [4]. For the sake of

ρ global minima
3 -37.930817
6 -31.521880
10 -30.265230
14 -29.596054

Table 3. Morse global minima (d = 11, N = 27)

comparison, we remark that neither Matlab function GlobalSearch nor simulannealbnd
gave acceptable results. Namely, they produced the results in Table 4.

ρ GlobalSearch simulannealbnd

3 -22.0429 -11.1367
6 -16.2076 -3.1483
10 -9 -1
14 -9 -1

Table 4. Results obtained using Matlab global optimization toolbox

(GlobalSearch and simulannealbnd) on Morse Potential (d = 11, N = 27).

6.3. Nonlinear Systems. Our technique can also be used to solve nonlinear systems.
Indeed, a nonlinear system

(14) S(x) = 0, with x ∈ R
n,

can be reformulated as an optimization problem, simply by considering the objective
function given by

(15) g(x) =
1

2
S(x)T S(x)

In this case, ∇g(x) = JS(x)T S(x), where JS indicates the Jacobian of S. Therefore, the
critical points of the objective function g, correspond to both the zeros of S(x), and the
points for which S(x) is in the left null space of the Jacobian.

6.3.1. Boggs system. Given the nonlinear system

(16)

[

x2 − y + 1
x − cos

(

π
2 y
)

]

= 0,
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we construct the objective function according to (15).

The solutions of the problem are (−1, 2), (0, 1) and (−
√

2/2, 3/2), illustrated in Figure 8a.

(a) (b)

Figure 8. Boggs system. (A): contour plot of the potential (15), and solutions
of the nonlinear system. (B): critical points of (15) found by our method; the
green dots correspond to diffusion steps.

Numerical results from a single run of the algorithm, asking for at most 20 critical
points, are shown in Table 5 and illustrated in Figure 8.

7. Conclusions

In this work, we presented a method apt at exploring the landscape of a smooth (at
least C2) potential, in order to locate global minima. The new components of our method
are a double-descent technique (to locate minima) and a colored intermittent diffusion (to
escape basin of attraction of minima and other critical points). The idea of the technique is
to use Hessian information in order to bias the exploration of the landscape. We illustrated
performance of our technique on several problems from the literature, observing that our
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x y g(x, y) id
0 1 0
-1 2 0 global minima

-0.7071 1.5 0
-2.1530 5.9055 0.7139
0.1301 -0.3768 1.2161 local minima
0.1890 -0.3663 1.1941
-0.8898 1.7671 0.0013
-0.3319 1.1830 0.0038 saddle points
0.4555 2.4926 1.5111
-0.3277 4.3927 6.0502

Table 5. Critical points - Boggs system

method is able, in most cases, to adapt to different features of the potential. We believe
that our method can be easily taught in an optimization course, along with other well
established techniques.
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