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Abstract. In this work, we considered networks of piecewise- smooth (PWS)

differential equations of Filippov type, which we call PWS Filippov networks,

whose single agent has an asymptotically stable periodic orbit, that becomes
a synchronous periodic orbit for the network. We investigated the stability

of the synchronous periodic orbit by using both the master stability function

(MSF) tool and direct integration of the “regularized network”, that is the net-
work obtained by replacing the PWS differential agents by a suitable smooth

approximation. We present several new results on the class of Filippov PWS

networks that depend on several coupling matrices. (i) We studied an associ-
ated MSF that depends on several coupling strengths, and (ii) we employed

a one-parameter family of regularized networks, observed that it is equivalent

to a network of regularized agents, and showed that its solutions converge
to the solutions of the PWS network as the regularization parameter goes to

0. Furthermore, when the synchronous periodic orbit is asymptotically stable

and does not slide on the discontinuity surface, (iii) we showed that the reg-
ularized network has an asymptotically stable synchronous periodic orbit as

well. Finally, (iv) we performed detailed numerical experiments on two dif-
ferent problems, highlighting specific characteristics of PWS networks with a

synchronous periodic orbit. More specifically, (a) first, we considered the case

of a network of planar PWS oscillators, with the network depending on two
different coupling parameters and the synchronous periodic trajectory under-

going sliding regime; then, (b) we considered a network where the single agent

obeys 3D PWS dynamics with the synchronous periodic orbit undergoing re-
peated crossing of two distinct discontinuity planes. On our two problems, we

also showed how the convergence behavior to the synchronous subspace can be

used to obtain the same rates of attractivity predicted by the MSF.

1. Motivation, background, and notations. In this work, we consider net-
works of agents that, when uncoupled, satisfy identical piecewise smooth (PWS)
differential systems of Filippov type having a stable periodic orbit and that are
coupled together through linear anti-symmetric couplings. We call these piecewise
smooth (PWS) networks.
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In [13, Definition 23, Theorem 21 and Remark 22 ], we derived the expression
of the monodromy matrix along a synchronous periodic orbit of a PWS network
and generalized the master stability function (MSF) of Pecora and Carroll (see
[27]) to PWS networks. We also performed numerical experiments on a network
of PWS mechanical oscillators studied in [21, 20], by computing the MSF for a
network of N agents and for a prescribed interval of parameter values (see [13,
Figure 4]). Finally, in [13], we further verified the correctness of our results by direct
integration in forward time of a PWS network with 2 agents and we observed perfect
agreement in having synchronization, or lack thereof, of the numerical solution with
the parameter values predicted by the MSF.

The MSF for a PWS system of the type considered in this work was essentially
derived in the recent work [13] where two of us considered precisely the class of Fil-
ippov systems tackled in the present work, with solutions exhibiting a combination
of sliding and crossing behaviors. Earlier works of Coombes and coauthors [9, 8]
considered the MSF for piecewise linear systems, and the work [23] derived the MSF
for the class of impacting PWS networks, in which the state but not the vector field
changes at so-called reset points. Of course, in order to infer global asymptotic
stability of the synchronous solution, there are alternatives to the MSF, essentially
based on logarithmic norms arguments; see the works by Coraggio and coworkers
in [11, 10], where σ-QUADness of the single agent vector field was employed. An
advantage of using the MSF in our context is that it only necessitates knowledge
of the behavior of the periodic orbit of (4) and appropriate linearized analysis (see
below).

Unfortunately, direct integration of a PWS network with more than 2 agents is
at best cumbersome (if not plainly out of reach), since it requires the evaluation of

2N + 2
∑N

k=1

(
N
k

)
vector fields at the intersection of N discontinuity hyperplanes,

and one must take into account all these vector fields at each step when computing
the numerical solution. In the present paper, we avoid this issue by introducing a
one-parameter family of regularized vector fields, where these new vector fields
are suitable smooth approximations to the original PWS problem; we consider the
resulting regularized, smooth network. Our main theoretical results will show that
the solutions of this regularized network converge to solutions of the PWS network;
see Theorem 2.8. Moreover, for an asymptotically stable synchronous crossing pe-
riodic orbit xs(t) (see Section 2), we also show that the monodromy matrix along
the synchronous periodic orbit of the regularized network converges to the mon-
odromy matrix along xs(t). Finally, we also obtain new results for the class of
PWS networks considered, showing that the convergence behavior to the synchro-
nous subspace can be used to obtain the same rates of attractivity given by the
MSF.

A plan of our paper is as follows. Hereafter, we give the basic PWS model consid-
ered here, set up the notations, and discuss the MSF for smooth systems. In Section
2, we give details on the MSF for PWS networks, give and justify the regularized
system considered here, and show the aforementioned convergence results. Finally,
in Section 3, we discuss in detail two numerical examples to validate our theoretical
results and further give a new algorithm to show how the convergence behavior
to the synchronous subspace can be used to obtain the same rates of attractivity
predicted by the MSF.
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Notation 1. Boldface will be used for vectors throughout this work. We will write
x,y, z, for vectors in Rn, or in RN , or in RnN . Similarly, e1, e2, . . . , will indicate
the unit vectors in Rn, RN or RnN . The i-th component of a vector x is eTi x and
will be indicated with xi.

1.1. Our model. Our model is the following system

ẋi = f(xi) +

p∑
k=1

σk

N∑
j=1

aijEk(xj − xi), i = 1, . . . , N, (1)

where each xi ∈ Rn, A = (aij)i,j=1:N is the adjacency matrix of the network graph,
which we will assume to be connected, and Ek’s are coupling matrices in Rn×n with
respective coupling strengths σk > 0, k = 1, . . . , p. Recall that the negative of the
graph Laplacian is the matrix L = LT ∈ RN×N given by Lij = aij , for i ̸= j and
Lii = −

∑
j aij , i, j = 1, . . . , N . Obviously, 0 is an eigenvalue of L, and since the

graph is connected, 0 is a simple eigenvalue of L.

Let x =

x1

...
xN

 ∈ RnN , F (x) =

f(x1)
...

f(xN )

, L be the (negative of the) graph

Laplacian, and rewrite (1) as

ẋ = F (x) +

p∑
k=1

σkMkx, Mk = L⊗ Ek, k = 1, . . . , p . (2)

We note that if z : t ∈ R → z(t) ∈ Rn is a T -periodic solution for the single agent
equation ż = f(z), then (2) always has the T -periodic solution x1 = x2 = · · · =
xN = z. This is called synchronous solution and we denote it as xs. With

S = {x ∈ RnN : x1 = x2 = · · · = xN , xj ∈ Rn, j = 1, . . . , N} (3)

we indicate the synchronous subspace. We denote by Bd(xs) the d-tube of xs:

Bd(xs) := {x ∈ RnN : ∥x− xs(t)∥ < d, t ∈ [0, T ]}.
Therefore, if z is an asymptotically stable solution for the single agent, it follows
that there always exists a d > 0 such that all solutions in Bd(xs) ∩ S converge to
xs(t). Therefore, in order to ascertain the asymptotic stability of xs, one needs to
study the asymptotic behavior of solutions of (2) transversal to S.

Remark 1.1. The model (1) is similar to the so-called multiplex, or multilayer
networks, extensively studied in the literature on smooth networks: when the single
agent satisfies a smooth differential equation. For example, see [29, 12, 28, 26, 32,
6, 5, 7, 34] for a sample of relevant references, relative to just two-layer networks.
There are some differences, however, between our model and these other works.
Namely, in the cited works on multiplex networks, the authors typically consider
different Laplacian matrices, whereas we only consider one Laplacian matrix. If the
authors of these cited works want to achieve the standard dimensional reduction
afforded as when using the master stability function tool for a standard one-layer
network, then they need to restrict to commuting Laplacian matrices, which renders
all of them simultaneously diagonalizable (e.g., see [32]); an exception is [34], where
the author considers a directed graph, hence not necessarily symmetric Laplacian
matrices but restrict to the commuting case and, therefore, is able to simultane-
ously triangularize all of the Laplacian matrices. Our interest, on the other hand,
motivated by networks of second-order oscillators (see Example 1.2), is to have just
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one Laplacian matrix but several different coupling terms among the components
of each agent, hence the model (1). Moreover, we are interested in the case in
which the single agent obeys a PWS system of differential equations (see below).
To the best of our knowledge, this case has not been treated before in the multilayer
literature.

As previously remarked, in (1), we are interested in studying a network of N
agents xi ∈ Rn satisfying a PWS system of Filippov type (also called bimodal).
That is, each agent satisfies the system

ż = f(z) =

{
f+(z), if z ∈ R+ ≡ {z ∈ Rn : h(z) > 0},
f−(z), if z ∈ R− ≡ {z ∈ Rn : h(z) < 0}, (4)

with h : Rn → R defining the discontinuity surface. In this work, we restrict con-
sideration to the case when h(z) is a hyperplane, which (without loss of generality)
we will take to be eT1 z − b = 0, unless otherwise stated. We denote by Σ the zero
set of h(z) in Rn:

Σ = {z ∈ Rn : eT1 z − b = 0} and note that ∇h(·) = e1 . (5)

Obviously, the differential equation (4) is not defined when z ∈ Σ, and we consider
the extension of Filippov to points on Σ; see [19].

To recall, we say that a point ẑ ∈ Σ is a transversal crossing point if

(∇h(ẑ)Tf−(ẑ))(∇h(ẑ)Tf+(ẑ)) > 0, (6)

see point s1 in Figure 1, it is an attractive sliding point if

∇h(ẑ)Tf−(ẑ) > 0, ∇h(ẑ)T f+(ẑ) < 0, (7)

see point s2 in Figure 1, and a repulsive sliding point if

∇h(ẑ)Tf−(ẑ) < 0, ∇h(ẑ)T f+(ẑ) > 0.

The case of repulsive sliding is ill-posed since at a repulsive sliding point one can
either remain on Σ or leave it to enter in either R+ or R−; for this reason, hereafter
we will not consider repulsive sliding.

On Σ, sliding will be assumed to take place in the sense of Filippov. That is, on
Σ, sliding motion takes place with the vector field given by fΣ below:

ż = fΣ(z), fΣ(z) = (1−α)f−(z)+αf+(z) , α(z) =
∇hTf−(z)

∇hT (f− − f+)(z)
. (8)

Finally, a point ẑ ∈ Σ is called tangential exit point into R− if a trajectory z(t)

sliding on Σ reaches ẑ at some value t̂, that is ẑ = z(t̂), and there it holds that

∇h(ẑ)Tf−(ẑ) = 0, ∇h(ẑ)Tf+(ẑ) < 0,[
d

dt

(
∇h(z(t))Tf−(z(t))

)]
t=t̂

< 0,
(9)

see the point s3 in Figure 1, and similarly for a tangential exit point into R+. All
together, transversal crossings of Σ, transversal entries on Σ, and tangential exits
from Σ are called generic events or simply events. We will henceforth assume that
all points on Σ reached by a solution of (4) are either parts of an attractive sliding
trajectory or generic events.
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R+
<latexit sha1_base64="Xz+JOlDpfUfa+TDT5h603f/iEXU=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBAEIexGQY9BLx7jIw9I1jA76SRDZmeXmVkhLPkELx4U8eoXefNvnCR70MSChqKqm+6uIBZcG9f9dpaWV1bX1nMb+c2t7Z3dwt5+XUeJYlhjkYhUM6AaBZdYM9wIbMYKaRgIbATD64nfeEKleSQfzChGP6R9yXucUWOl+7vH006h6JbcKcgi8TJShAzVTuGr3Y1YEqI0TFCtW54bGz+lynAmcJxvJxpjyoa0jy1LJQ1R++n01DE5tkqX9CJlSxoyVX9PpDTUehQGtjOkZqDnvYn4n9dKTO/ST7mME4OSzRb1EkFMRCZ/ky5XyIwYWUKZ4vZWwgZUUWZsOnkbgjf/8iKpl0veWal8e16sXGVx5OAQjuAEPLiACtxAFWrAoA/P8ApvjnBenHfnY9a65GQzB/AHzucPyG6Ndw==</latexit>

R�
<latexit sha1_base64="Wwg8thw6ru3lZgOTGzwqO8/qQ4Q=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBC8GHajoMegF4/xkQcka5iddJIhs7PLzKwQlnyCFw+KePWLvPk3TpI9aGJBQ1HVTXdXEAuujet+O0vLK6tr67mN/ObW9s5uYW+/rqNEMayxSESqGVCNgkusGW4ENmOFNAwENoLh9cRvPKHSPJIPZhSjH9K+5D3OqLHS/d3jaadQdEvuFGSReBkpQoZqp/DV7kYsCVEaJqjWLc+NjZ9SZTgTOM63E40xZUPax5alkoao/XR66pgcW6VLepGyJQ2Zqr8nUhpqPQoD2xlSM9Dz3kT8z2slpnfpp1zGiUHJZot6iSAmIpO/SZcrZEaMLKFMcXsrYQOqKDM2nbwNwZt/eZHUyyXvrFS+PS9WrrI4cnAIR3ACHlxABW6gCjVg0IdneIU3RzgvzrvzMWtdcrKZA/gD5/MHy3aNeQ==</latexit>

⌃<latexit sha1_base64="BPJq+0/bflPPUVaVxn+aiuvMPUE=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hd0o6DHoxWNE84BkCbOT2WTMPJaZWSEs+QcvHhTx6v9482+cJHvQxIKGoqqb7q4o4cxY3//2VlbX1jc2C1vF7Z3dvf3SwWHTqFQT2iCKK92OsKGcSdqwzHLaTjTFIuK0FY1upn7riWrDlHyw44SGAg8kixnB1knN7j0bCNwrlf2KPwNaJkFOypCj3it9dfuKpIJKSzg2phP4iQ0zrC0jnE6K3dTQBJMRHtCOoxILasJsdu0EnTqlj2KlXUmLZurviQwLY8Yicp0C26FZ9Kbif14ntfFVmDGZpJZKMl8UpxxZhaavoz7TlFg+dgQTzdytiAyxxsS6gIouhGDx5WXSrFaC80r17qJcu87jKMAxnMAZBHAJNbiFOjSAwCM8wyu8ecp78d69j3nripfPHMEfeJ8/bK2PBw==</latexit>

s0
<latexit sha1_base64="yJM4Ai0EJPdL7iSoxZdGVSDE2fo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtuv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAD3I2e</latexit>

s1
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s2
<latexit sha1_base64="Qbt6d+csUNs49FGehjHzaQjR7/M=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPu1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAG5I2g</latexit>

s3
<latexit sha1_base64="vS1fIlZqBwUVR87eEehhmPFDepQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle92v98sVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXql69Wru7qDSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMIaI2h</latexit>

Figure 1. Model periodic orbit of (4) with generic events.

Example 1.2. The simplest (and most often studied) case of (2) is when p = 1,
meaning that there is only one coupling term E. However, we favor the writing
with several coupling terms to accommodate the distinct roles played by coupling
different components of the different agents. To exemplify our interest in the more
general model (1), consider a chain of identical second-order oscillators rewritten

in first-order form

[
x
ẋ

]
, coupled not just by position but also through a viscous

coupling term (e.g., this is the case considered in [18], [24], and [2]). That is, we
have 

ẋ1 = f(x1) +

[
σ1

(
0 0

1 0

)
+ σ2

(
0 0

0 1

)]
(x2 − x1)

ẋi = f(xi) +

[
σ1

(
0 0

1 0

)
+ σ2

(
0 0

0 1

)]
(xi+1 − 2xi + xi−1)

i = 2, . . . , N − 1

ẋN = f(xN ) +

[
σ1

(
0 0

1 0

)
+ σ2

(
0 0

0 1

)]
(xN−1 − xN ).

(10)

In (10), the graph has the standard nearest neighbor structure, which gives the
negative Laplacian

L =



−1 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −1


(11)

The coupling matrices E1, E2 are E1 =

(
0 0
1 0

)
, E2 =

(
0 0
0 1

)
.
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v

v

v

Figure 2. Stick slip coupled oscillators.

Furthermore, in this work, we will study the case of piecewise smooth oscillators
with dry friction term of the type studied in [13, 21, 20] (see Section 3.1). In (10),
we have

f(z) = f±(z) =

[
x2

−x1 ∓ 1
1±γ(x2−v)

]
(12)

where one takes f+ if x2 − v > 0 and f− if x2 − v < 0 (there is a sliding motion
when x2 = v). An illustration of the case of 3 coupled oscillators of the type in
(12), coupled through positions and velocity, is in Figure 2.

1.2. MSF for several coupling matrices: Smooth case. One of our goals in
this work is to study the stability of a synchronous periodic solution for a network
given by (10), via the master stability function tool. Ever since the work of Pecora
and Carroll, [27], this has been the most widely adopted tool to study the stability
of a synchronous solution of a network, with respect to perturbations transversal to
S. For completeness, below we give the MSF tool for the case of several coupling
matrices by a simple extension of the MSF for a single coupling matrix, in the case
where f and F in (2) are smooth. Then, in the next section, we will present it for
the PWS case.

Let z(t) be a periodic solution of period T of the single agent dynamics:

ż = f(z) −→ z(t+ T ) = z(t),

where f is a smooth vector field, and let xs(t) =


z(t)

...

z(t)

 be the synchronous T -

periodic solution of the network, with xs(t) ∈ RnN for all t. Since f in (1) is a
smooth function, we linearize (2) about xs and end up with the system for the first
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variation y =

y1
...

yN

:

ẏ =DF (xs(t))y +

p∑
k=1

σkMky ≡

Df(z(t))
. . .

Df(z(t))

y +

p∑
k=1

σkMky

=(IN ⊗Df(z(t)))y +

p∑
k=1

σkMky , Mk = L⊗ Ek .

Now, recall that L = LT and let U be the orthogonal matrix of eigenvectors of L:
L = UΛUT , where Λ is the diagonal matrix of eigenvalues ordered in decreasing
way: 0 = λ1 > λ2 ≥ · · · ≥ λN . Further, let V be either the identity In or a matrix
(if it exists) that diagonalizes all Ek’s, namely if all Ek’s commute and are diago-
nalizable, and set Jk = V −1EkV , k = 1, . . . , p. If the Ek’s are not simultaneously
diagonalizable, then V = In and Jk = Ek. With this, we can write

Mk = L⊗ Ek = UΛUT ⊗ V JkV
−1 = (U ⊗ V )(Λ⊗ Jk)(U ⊗ V )−1 .

Moreover (U ⊗ V )(I ⊗ Df(x))(U ⊗ V )−1 = (I ⊗ V Df(x)V −1). Let A(t) =
V Df(z(t))V −1, then by letting w = (U ⊗ V )−1y, we get

ẇ = (IN ⊗A(t))w +

p∑
k=1

σkΛ⊗ Jkw

=

A(t) + λ1

∑
k σkJk

. . .

A(t) + λN

∑
k σkJk

w, (13)

with Jk = Ek if the Ek’s are not simultaneously diagonalizable. Given that the
synchronous solution xs is periodic of period T , the coefficient matrix A(t) is T -
periodic, and so is the linear system (13), hence we can study the stability of the
synchronous solution via Floquet theory.

Definition 1.3. From (13), we define the MSF to be the largest Lyapunov exponent
(real part of the logarithms of the Floquet multipliers) of the N − 1 systems with
coefficient matrices A(t) + λj

∑p
k σkJk, j = 2, . . . , N . The synchronous orbit is

transversally stable for those values of σk, k = 1, . . . , p, (if any) for which the MSF
is negative.

Clearly, we can define the MSF directly from the multipliers, that is from the
eigenvalues of the monodromy matrices of theN−1 systems with coefficient matrices
A(t)+λj

∑p
k σkJk, j = 2, . . . , N . In this case, the synchronous orbit is transversally

stable for those values of σk, k = 1, . . . , p, (if any) for which the multipliers are less
than 1 (in absolute value).

Note that the Floquet multipliers, hence the MSF, depend on the p parameters
σ1, . . . , σp. This allows for treating different couplings at different strength. For
example, in an application like that of Example 1.2, the viscous coupling coefficients
might be an order of magnitude smaller than the elastic coupling strength.
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Example 1.4. Consider the case of (11) and recall Example 1.2. Then, for the
eigenvectors U and eigenvalues Λ of L, we have

λ1 = 0 , λj = −4 sin2
(
(j − 1)π

2N

)
= −2 + 2 cos

(
(j − 1)π

N

)
, j = 2, . . . , N ,

Ui1 =

√
1

N
, Uij =

√
2

N
cos

(
(i− 0.5)(j − 1)π

N

)
, i, j = 1, . . . , N .

Furthermore, since E1 =

(
0 0
1 0

)
, and E2 =

(
0 0
0 1

)
, we can take the matrix V = I

and keep J1 = E1 and J2 = E2.

2. Piecewise smooth agents, the MSF, and regularization. Our interest is
for when, in (1), the vector field f is piecewise smooth. That is, we study the
following network of N agents xi ∈ Rn satisfying PWS dynamics of Filippov type:

ẋ = F (x) +

p∑
k=1

σkMkx, F (x) =


f±(x1)

...

f±(xn)

 , (14)

and for each agent, the vector field is defined in (4), with h(xi) = 0 given by
eT1 x− b ≡ x1

i − b = 0.
Notation 2. Σ denotes the discontinuity plane in Rn for a single agent, that is the
set of z ∈ Rn such that h(z) = 0 with h(z) = eT1 z−b = 0. We let hi(x) : RnN → R
be defined as hi(x) = h(xi). We denote by Σi the plane in RnN defined as the zero
set of hi(x), that is Σi = {x ∈ RnN : x1

i − b = 0}. Also, Σ will indicate the
intersection of the Σi’s: Σ = ∩N

i=1Σi, while ΣC is the intersection of the Σi’s, for
i ∈ C and C is an index set (a subset of {1, 2, . . . , N}).

Thus, each Σi divides the phase space RnN in two half-spaces (with correspond-
ing vector fields), and altogether there will be 2N regions, which we represent using
a tree diagram with 2N branches. The regions and the corresponding vector fields
are numbered from 1 to 2N following the branches of the tree, and to each region
Rj , we assign the corresponding sequence of sign in the diagram tree.
Example. Below we illustrate with N = 3:

-

-

-

R1

+

R2

+

-

R3

+

R4

+

-

-

R5

+

R6

+

-

R7

+

R8

and we associate the sequence (−,+,−) to R3 .

In each region Rj , the vector field in (14) is F (x) = F j(x) =

f±(x1)
...

f±(xN )

 for

j = 1, . . . 2N , where the ± signs are chosen in agreement with the corresponding
signs of the hj ’s. To illustrate, for the case N = 3, the vector field in R3 is
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F 3(x) =


f−(x1)

f+(x2)

f−(x3)

. Finally, we define

Gj(x) = F j(x) +

p∑
k=1

σkMkx, j = 1, . . . , 2N . (15)

Again, we denote by z(t) an asymptotically stable periodic orbit of period T for
the single agent and we also assume that the trajectory z(t) has a finite number of
generic events and associated regimes of sliding; see Figure 1 for a typical situation.

Let xs(t) =

z...
z

 be the synchronous periodic orbit for the whole network. As for

the smooth case, the asymptotic stability of xs is not guaranteed in general. An
algorithm that generalizes the MSF tool to the case of PWS Filippov systems is
described in the next section.

2.1. Master stability function, MSF, for the PWS case. Assume (without
loss of generality) that the initial condition z0 for the single agent dynamics is in
one of the regions R− or R+. Call t0 = 0 and let tj , j = 1, 2, . . . ,M be the times
where a generic event of z(t) occurs, and finally let tM+1 = T . To reiterate, the
tj ’s are the times where the single agent trajectory zs(t) crosses Σ from one region
R± to the other, or enters Σ (transversally) to slide on it, or exits Σ (tangentially)
to enter in R+ or R−.

Extending the result of [13], and with the same arguments given there, the MSF
is given by the largest Lyapunov exponent of the (N − 1) monodromy matrices
Xi(T ) ∈ Rn×n given below, i = 2, . . . , N . With the notation ηk = σkλi, k =
1, . . . , p, and for each i = 2, . . . , N , these are given by (recall (4) and (8))

Xi(T ) =

M∏
j=0

Xi(tj+1, tj)Sj , where

{
∂
∂t
Xi(t, tj) = Ji(z(t))Xi(t, tj)

Xi(tj , tj) = In
, and

Ji(z(t)) =


Df−(z(t)) +

∑p
k=1 ηkEk, z(t) ∈ R−, t ∈ (tj , tj+1)

Df+(z(t)) +
∑p

k=1 ηkEk, z(t) ∈ R+, t ∈ (tj , tj+1)

DfΣ(z(t)) +
∑p

k=1 ηk
(
I +

(f+−f−)(z(t))eT
1

eT
1 (f−−f+)(z(t))

)
Ek, z(t) ∈ Σ, t ∈ (tj , tj+1)

(16)

and finally the so-called saltation matrices Sj ’s are given by

Sj =



I, tj = t0 or z(tj) tangential exit point

S+,− = In +
(f−−f+)eT

1

eT
1 f+ |z(tj), z(tj) crossing point from R+ to R−

S−,+ = In +
(f+−f−)eT

1

eT
1 f− |z(tj), z(tj) crossing point from R− to R+

S+,Σ = In +
(fΣ−f+)eT

1

eT
1 f+ |z(tj), z(tj) transversal entry point on Σ from R+

S−,Σ = In +
(fΣ−f−)eT

1

eT
1 f− |z(tj), z(tj) transversal entry point on Σ fromR−.

(17)

Remark 2.1. In the above expression for Ji(z(t)), as well as in formula (17), and
later below in (18) and thereafter, the term eT1 arises because we are taking the
discontinuity surface to be h(z) = eT1 z − b; see (5). For a different discontinuity



10 LUCA DIECI, CINZIA ELIA AND LUCIANO LOPEZ

manifold of the general form h(z) = 0, we would need to replace e1 with ∇h(·) in
all of these formulas.

Remark 2.2. Naturally, the synchronous periodic orbit xs is stable if all Floquet
multipliers of all the systems (2.1) (for i = 2, . . . , N) are less than 1 in modulus.
We note that the computation of the MSF is done with respect to the parameters
η1, . . . , ηp, in (16) (e.g., taking them in a certain range), and the eigenvalues of
the (negative) Laplacian do not play any role. Only after determining the region
of stability in the parameter space for η1, . . . , ηp we will assess whether or not
it is possible to have an asymptotically stable synchronous periodic orbit for a
prescribed network topology (hence for the eigenvalues associated to a specific choice
of Laplacian L). That is, we first employ the MSF to find the region of stability
N1 × N2 . . . × Np, j = 1, . . . , p, i.e, the set such that xs is asymptotically stable
(or stable in finite time), for ηj ∈ Nj , j = 1, . . . p. Then, for a given topology, and
hence a given L, we establish whether there are values of σ1, . . . , σp, in (14), such
that for all i = 2, . . . , N , σjλi ∈ Nj , where λi’s denote the eigenvalues of L. See
Section 3 for more details.

2.2. Sliding vector field. In order to compute the MSF, equations (16) and (17)
only require knowledge of the sliding vector field for a single agent z, fΣ(z). In
fact, in [13, Lemma 8, Remark 9], we derived the sliding vector field along Σ
at synchronous points and showed (see also Theorem 2.4 below), that FΣ(xs) =
e ⊗ fΣ(z), with e = (1, . . . , 1)T ∈ RN . We also derived the sliding vector field at
synchronous points along the Σi’s since this is needed to justify the form of the
saltation matrices in (17).

In the present paper, we wish to integrate the PWS network in forward time for
initial conditions in a neighborhood of the synchronous periodic orbit xs(t) in order
to i) ascertain results obtained with the MSF, i.e., integrate in forward time to verify
asymptotic stability or instability of xs(t); and ii) study the transient behavior of
solutions in a neighborhood of xs. Perturbations of xs in the synchronous subspace
S always converge to xs, hence we are interested in integrating the whole network
transversally to S. Now, while solutions in S can only belong to R1, R2N , and
Σ, perturbed solutions might belong to any of the Rj ’s and might cross or slide
along the Σi’s and/or the intersection of two or more of the Σi’s. In general, we
can define infinitely many Filippov sliding vector fields on the intersection of two
or more discontinuity surfaces. This is because the convex hull of the vector fields
defined in the neighborhood of such an intersection in general contains infinitely
many vectors tangent to the intersection. By Filippov construction, these tangent
vectors are all feasible sliding vector fields. However, see Theorem 2.4 below; for
(14), the sliding vector field on the intersection of two or more of the Σi’s is always
uniquely defined.

The following definitions will be handy. Let zs = (z, . . . ,z)T ∈ Σ be a synchro-
nous point on Σ. Then, we say that zs is a synchronous nodally attractive sliding
point if the following conditions are verified (see (7))

eT1 f
−(z) > 0, eT1 f

+(z) < 0, (18)

i.e., if z ∈ Rn is an attractive sliding point for the single agent. It follows that
F j(zs) points toward Σ for all j = 1, . . . , 2N , and solutions that reach zs cannot
leave Σ. Similarly, we say that zs is a synchronous crossing point if z ∈ Rn is
a transversal crossing point for the single agent; see (6). Solutions that reach zs

cross Σ into R1, (e
T
1 f

−(z) < 0), or into R2N , (eT1 f
−(z) > 0). We say that zs is



PWS NETWORKS 11

a tangential exit point into R1 (resp. R2N ) if z is a tangential exit point into R−

(resp. R+), see; (9).
Let C be a subset of {1, . . . , N}, and denote by ΣC the intersection of the

Σi’s, i ∈ C. Let y = (y1, . . . ,yN ) ∈ ΣC . Then, we say that y is a nodally
attractive sliding point if all vector fields in a neighborhood of y point towards
ΣC , Then, a solution that reaches ΣC cannot leave it and starts sliding along ΣC .
Of course, a sliding motion along ΣC might take place under weaker assumptions;
see Remark 2.5. However, in a neighborhood of a synchronous periodic orbit with
sliding portions on Σ, the sliding points on ΣC are nodally attractive; see Remark
2.3. We say that y is a crossing point if (eT1 f

−(yi))(e
T
1 f

+(yi)) > 0 for all i ∈ C.
As for tangential exit points, multiple scenarios are possible since solutions might
leave ΣC to slide along a lower co-dimension hyperplane or they might leave ΣC to
enter into one of the Rj ’s.

Remark 2.3. Let S be the synchronous subspace (3) and let zs ∈ Σ ∩ S be a
synchronous nodally attractive sliding point. Then, there is a d sufficiently small
such that for ∥y − zs∥ < d, all vector fields F j ’s, evaluated at y, point toward
Σ. In particular, if y ∈ ΣC\Σ, then y is a nodally attractive sliding point. Any
solution of (14) through y must slide along ΣC and, if ΣC ̸= Σ, the sliding motion
on ΣC must be toward Σ. If zs ∈ Σ is a synchronous crossing point, then in a
neighborhood of zs, all points y ∈ ΣC must be crossing points as well.

In general, the Filippov sliding vector field on the intersection of discontinuity
manifolds is ambiguous; see [19, Chapter 2, Section 4]. However, when y ∈ ΣC is
a nodally attractive point, below we show that for system (14), the intersection of
ΣC with the convex hull of the vector fields evaluated at y contains only one vector.

Theorem 2.4. Let y = (y1, . . . ,yN ) ∈ ΣC be a nodally attractive sliding point.
Then, there is a unique Filippov sliding vector field on ΣC . Moreover, if ΣC =
Σ and zs = (z, . . . ,z)T is synchronous, then FΣ(zs) = e ⊗ fΣ(z), where e =
(1, . . . , 1) ∈ RN and fΣ(z) is the sliding vector field of (4) along Σ.

Proof. For simplicity, we consider the case of a point y ∈ Σ, y not necessarily
synchronous. The case ΣC ̸= Σ is analogous, but the notation is cumbersome;
below, we note in parentheses the required modifications. Recalling (15), in order
to define the sliding vector field on Σ, we need to consider the convex combination
of all 2N vector fields Gj ’s and impose tangency conditions to Σ. (The proof for
ΣC requires instead the convex combination of the Gj ’s defined in a neighborhood
of ΣC .) The sliding vector field along Σ is given by

FΣ(y) =

2N∑
j=1

λjF j(y) +

p∑
k=1

σkMky, (19)

and we need to impose λj ≥ 0,
∑2N

j=1 λj = 1, and the N tangency conditions to
the Ri’s. In general, this gives an underdetermined system and we may expect an
ambiguous sliding vector field. However, for (14), the sliding vector field is uniquely
defined. Indeed, the convex combination of the F j ’ rewrites as

FΣ(y) =


(1− µ1)f

−(y1) + µ1f
+(y1)

(1− µ2)f
−(y2) + µ2f

+(y2)
...

(1− µN )f−(yN ) + µNf+(yN )

+

p∑
k=1

σkMky, (20)
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where the µi’s are the sum of 2N−1 of the λj ’s. In particular, µi =
∑

j λj with
j is chosen such that in the sign sequence assigned to Rj there is a + in the i-th
place. To illustrate, for N = 3, µ1 = λ5 + λ6 + λ7 + λ8, µ2 = λ3 + λ4 + λ7 + λ8,
µ3 = λ2 + λ4 + λ6 + λ8.

When we impose the tangency conditions, we obtain

µi(y) =
eT1 f

−(yi)

eT1 (f
+(yi)− f−(yi))

+
eT1
∑p

k=1 σk

∑N
l=1 ajlEk(yl − yi)

eT1 (f
+(yi)− f−(yi))

, (21)

i = 1, . . . N . (For y ∈ ΣC , instead, we need to impose tangency conditions to
the Σi’, with i ∈ C.) The second part of the Theorem, the expression for FΣ

at a synchronous point, is proven upon noticing that at a synchronous point (21),
rewrites as

µi(zs) =
eT1 f

−(z)

eT1 (f
+(z)− f−(z))

.

The result then follows from (8).

Remark 2.5. Let y ∈ ΣC be any point on ΣC . Consider the linear combination
of all the Gj ’s defined in a neighborhood of y and let µi(y), i ∈ C, be as in (21).
If µi(y) ∈ (0, 1), then the convex combination of the Gj ’s intersects ΣC in one
and only one vector and this allows one to define (with no ambiguity) a sliding
vector field along ΣC . It then makes sense to call y a sliding point. The algebraic
condition µi(y) ∈ (0, 1), i ∈ C, is weaker then the requirement that all Gj ’s in
a neighborhood of y point toward ΣC . Dynamically, we might have instances of
partial sliding along some, but not all, of the Σi’s, i ∈ C, toward ΣC . See [15] for
an overview of the possible dynamics in a neighborhood of ΣC in the case of an
attractive co-dimension 2 hyperplane.

2.3. Regularized vector field. Theorem 2.4 states that sliding vector fields of
(14) are uniquely defined and this in turn justifies numerical computations of solu-
tions of (14). However, unless we are integrating for synchronous solutions, crossing
or sliding along the intersection of k discontinuity manifolds requires to check more
than 2k conditions at each integration step for a k large, this becomes at the very
least cumbersome and computationally expensive. For this reason, we consider an
alternative approach for the numerical computation of solutions in a neighborhood
of the synchronous solution xs. We define (see below) a regularized network, show
that the solutions of this regularized network converge to solutions of (14), and
numerically integrate the regularized smooth problem instead of (14). Beware that
results on the regularized vector field are available in the literature only in the
neighborhood of discontunuity hyperplanes (see [16]), hence in this section h is an
hyperplane. Below, we consider a regularization of the whole network via a one-
parameter family of vector fields; in Remark 2.6, we clarify why we can use a single
parameter. We consider a convex combination of the 2N vector fields with a sig-
moidal function; this approach was introduced in [31] for a regularization around a
co-dimension 1 discontinuity hyperplane and later in [1, 25, 17] for a regularization
in the neighborhood of a co-dimension 2 discontinuity hyperplane. In the latter case,
the convergence of regularized solutions to solutions of the original discontinuous
system is guaranteed only under certain assumptions; see [25, 14]. Regularization
techniques in the neighborhood of co-dimension k hyperplanes, k > 2, are not avail-
able in the literature, probably because they require restrictive assumptions in order
to infer convergence, much in the same way as the difficulty to infer uniqueness of a
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sliding Filippov vector field on the intersection of k hyperplanes, for k > 2 (e.g., see
[17]). In this section, we show that it is possible to define a suitable regularization
of (14) and that its solutions converge to the solutions of (14).

We consider the following one-parameter family of smooth differential equations:

ẋϵ = F ϵ(xϵ) , F ϵ(xϵ) =

2N∑
j=1

λj,ϵ(xϵ)Fj(xϵ) +

p∑
k=1

σkMkxϵ, (22)

with
∑2N

j=1 λj,ϵ(xϵ) = 1 and λj,ϵ(xϵ) ≥ 0 smooth functions. Following the same

reasoning that allowed us to rewrite (19) as (20), we rewrite (22) as

ẋϵ = F ϵ(xϵ) =


(1− µ1,ϵ(xϵ))f

−(x1,ϵ) + µ1,ϵ(xϵ)f
+(x1,ϵ)

...
(1− µN,ϵ(xϵ))f

−(xN,ϵ) + µN,ϵ(xϵ)f
+(xN,ϵ)

+

p∑
k=1

σkMxxϵ,

(23)
where each µi,ϵ(xϵ), i = 1, . . . , N , is a linear combination of the λj,ϵ(xϵ)’s. To
illustrate, similarly to (20), for N = 3 we have

µ1,ϵ(xϵ) = (λ5,ϵ + λ6,ϵ + λ7,ϵ + λ8,ϵ)(xϵ),

µ2,ϵ(xϵ) = (λ3,ϵ + λ4,ϵ + λ7,ϵ + λ8,ϵ)(xϵ),

µ3,ϵ(xϵ) = (λ2,ϵ + λ4,ϵ + λ6,ϵ + λ8,ϵ)(xϵ).

Let xϵ = (x1,ϵ, . . . ,xN,ϵ)
T . Since each µi,ϵ appears only in the i-th equation, we

choose µi,ϵ(xϵ) = φ(
h(xi,ϵ)

ϵ ), with φ(z) ∈ C1(R) a sigmoidal function:

φ(z) =

{
1, z > 1

0, z < −1
,

and φ′(z) > 0 in (−1, 1). Then, µi,ϵ is just a function of xi,ϵ.

Remark 2.6. Notice that (1 − µi,ϵ(xi,ϵ))f
−(xi,ϵ) + µi,ϵ(xi,ϵ)f

+(xi,ϵ) in (23) is a
regularized vector field for the i-th single agent. Then, the regularized network (23)
is equivalent to a network of regularized agents with the equation of the single agent
being

żϵ = (1− µϵ(zϵ))f
−(zϵ) + µϵ(zϵ)f

+(zϵ). (24)

It follows that the use of a unique regularization parameter ϵ for each j = 1, . . . , N
is justified since all agents in the network obey the same differential equation. We
rewrite the differential equation for the i-th agent of (23) as ẋi,ϵ = gi(xϵ), with

gi(xϵ) = (1− µi,ϵ(xi,ϵ))f
−(xi,ϵ) + µi,ϵ(xi,ϵ)f

+(xi,ϵ) +

p∑
k=1

σk(e
T
i L)⊗ Ekxϵ. (25)

Remark 2.7. In the literature, it is known that under some generic assumptions
(e.g., see [16, Lemma 8 and 18]), solutions of (24) converge to solutions of (4).
However, unless we consider solutions in the synchronous subspace (3), this does
not guarantee convergence of solutions of (23) to solutions of (14). Theorem 2.8
below addresses this concern. Its proof is based on Tikhonov’s theorem (see [33]
and the Appendix).
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Theorem 2.8. Let z be an asymptotically stable periodic solution of period T of
the single agent and assume that z has a finite number of generic events. Let
xs(t) = (z(t), . . . ,z(t))T be the associate asymptotically stable synchronous periodic
solution of (14) of period T , that intersects Σ along sliding arcs and/or at generic
points. Let d > 0 and x̄ ∈ Bd(xs), i.e., x̄ such that ∥x̄ − xs(t)∥ < d, for some
t ∈ [0, T ). Denote by xϵ(t) and x(t) the solutions of (23) and (14), respectively,
with initial condition x̄. Then, for d sufficiently small,

lim
ϵ→0

xϵ(t) = x(t),

uniformly in t on every compact interval.

Proof. In the proof, we consider, together with the sets Σi, the boundary layers
Σϵ

i = {x ∈ RnN |d(x,Σi) < ϵ}, where ϵ is the regularization parameter used in
(23), and d(x,Σi) is the distance between x and Σi. Outside the boundary layers,
F ϵ(x) = Gj(x) for x ∈ Rj . It then suffices to study the limiting behavior of xϵ(t)
inside the boundary layers.

Neighborhood of crossing points. First, assume that xs(t) has only crossing
points in common with Σ. Then, portions of the solution given by xs(t) are inside
R1 and R2N , and there are also single points on Σ (the crossing points). Remark
2.3 implies that for d sufficiently small, the trajectory x(t) will either cross Σ or
it will cross more that one ΣC with C ⊂ {1, 2, . . . , N}, to eventually enter R1 or
R2N . Moreover, it is well known that x(t) is continuous with respect to x̄ (see [19,
Chapter 2, Section 8 ] for example). Convergence results in the neighborhood of
crossing points are simple to obtain. For ϵ sufficiently small, they follow from the
observation that xϵ(t) must cross Σi and Σϵ

i for all i ∈ C since xϵ(t) is continuous
with respect to x̄ and, for d sufficiently small, eT1 f

−(xi) and eT1 f
+(xi) have the

same sign for all i = 1, . . . , N . Hence, for ϵ and d sufficiently small, eT1 gi(xϵ) retains
the same sign, where gi(xϵ) is the vector field for the i-th agent defined in (25).
Finally, as ϵ → 0, the time spent by xϵ(t) in the boundary layer goes to zero as
well. For more details, see for example [16, Lemma 8].

Neighborhood of sliding arcs on Σ. Next, assume that xs(t) has also sliding
arcs on Σ. For d sufficiently small, we anticipate that the trajectory x(t) will slide
on some of the ΣC ’s (with C ̸= {1, 2, . . . , N}) before reaching Σ and start sliding
along it see Remark 2.3. In what follows, we prove convergence in a neighborhood
of a sliding arc on Σ, and the proof for a sliding arc on ΣC requires analogous
reasonings. We denote by [tin, tout] the time interval that the trajectory x(t) spends
on Σ, and b xin and xout, respectively, the entry point on Σ and the exit point
from Σ. Since outside the boundary layer F ϵ(x) in (23) is equal to Gj(x) in (15)
for x ∈ Rj , xϵ enters and exits the boundary layer as well, and we denote by xϵ,in

and xϵ,out the entry and exit points. Let tϵ,in and tϵ,out be the corresponding entry
and exit times. Then,

lim
ϵ→0

xϵ,in = xin, lim
ϵ→0

tϵ,in = tin. (26)

Now, we show uniform convergence of xϵ to x in [tin, tout] and we use Tikhonov’s
theorem for this purpose see [33, Chapter 10] and the Appendix below. Recall
that hi(x) = eT1 xi − b, and without loss of generality, take b = 0. Let xϵ =
(x1,ϵ, . . . ,xN,ϵ)

T and use the following notation x1
i,ϵ = eT1 xi,ϵ; then, in (23), µi,ϵ(xϵ) =

φ(
x1
i,ϵ

ϵ ), and since φ is a strictly increasing function of its argument, we can express

x1
i,ϵ in function of µi,ϵ and use µi,ϵ as dependent variable instead. Then,

dµi,ϵ

dt =
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dµi,ϵ

dx1
i,ϵ

dx1
i,ϵ

dt = 1
ϵφ

′(
x1
i,ϵ

ϵ )
dx1

i,ϵ

dt = 1
ϵ θ(µi,ϵ)

dx1
i,ϵ

dt , with θ(µϵ
i) = φ′(x

1
i

ϵ ) and θ(µi,ϵ) > 0. For

i = 1, . . . , N , let yi,ϵ = Zxi,ϵ, with Z ∈ Rn×n, Z =

(
0 0
0 In−1

)
and rewrite (23) in

the new variables (µi,ϵ,yi,ϵ), i = 1, . . . , N , asϵµ̇i,ϵ = θ(µi,ϵ)e
T
1 gi(xϵ),

ẏi,ϵ = Zgi(xϵ), i = 1, . . . , N,
(27)

where gi(xϵ) is defined in (25).
The initial conditions for (27) are given at time t = tin: (µi,ϵ(tin),yi,ϵ(tin))

and they can be obtained from xϵ(tin). In general, xϵ(tin) ̸= xϵ(tϵ,in) = xϵ,in.
Nonetheless, limϵ→0 tϵ,in = tin, together with boundedness of F ϵ for all ϵ ≥ 0,
implies limϵ→0 xϵ(tin) = xin. Setting to 0 the left-hand side in (27), we obtain the
reduced system (see (39) in the Appendix) 0 = θ(µi,0)e

T
1 gi(x0),

ẏi,0 = Zgi(x0), i = 1, . . . , N,
(28)

where x0 = (x1
1,0(µ1,0),y1,0, . . . , x

1
N,0(µN,0),yN,0)

T . Since θ(µi,0) > 0, the solution

of (28) must satisfy eT1 gi(x0) = 0 with gi defined in (25). Then, the values of
the µi,0’s, select the sliding vector field (20) on Σ. The initial conditions for yi,0

are given at t = tin and, due to (26), they are yi,0(tin) = Zxin,i, with xin =

(xin,1, . . . ,xin,N )T . As for µi,0(tin), this is given by the solution of the nonlinear
equation eT1 gi(xin) = 0, i.e., by (21), for i = 1, . . . , N . It follows that x0(t) in (28)
is equal to x(t), for t ∈ [tin, tout]. We then wish to show that, in the limit for ϵ → 0,
solutions of (27) converge to solutions of (28). Notice that the convergence is not
immediate since there is not continuous dependence of solutions of (27) on ϵ. Using
the time transformation τ = t

ϵ and then setting ϵ = 0 in (27), we obtain the reduced
fast system (see (40) in the Appendix)µ′

i = θ(µi)e
T
1 gi(x),

y′
i = 0, i = 1, . . . , N,

(29)

where ′ denotes derivative with respect to τ . Thus, yi is constant. Moreover, for
ϵ = 0, x1

i = 0, for i = 1, . . . , N , and the equilibria of (29) are the parameter values
µi in (21) that define the sliding vector field on Σ. If we show that the equilibrium
of (29) is asymptotically stable uniformly in yi, then, for d sufficiently small, the
hypothesis of Tikhonov’s theorem (see Theorem 4.1 in the Appendix) are satisfied,
and this implies convergence of solutions of (27) to solutions of (28).

To study stability, we just need to compute the eigenvalues of the Jacobian matrix
of (29) evaluated at the equilibrium. At the equilibrium, we have eT1 gi(x) = 0,
hence we only need to consider θ(µi)

d
dµi

eT1 gi(x) and the Jacobian is given by J =

DJ̃ , with

J̃ =

−eT1 (f
− − f+)(0,y1,0)

. . .

−eT1 (f
− − f+)(0,yN,0)

,
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and D =

θ(µ1(0,y1,0))
. . .

θ(µN (0,yN,0))

 is a diagonal matrix with positive

entries. We claim that the eigenvalues of J are negative. Remark 2.3 ensures that
in a neighborhood of a synchronous nodally attractive sliding point, all vector fields
must point toward Σ. Then, for d sufficiently small, the following inequalities are
satisfied for i = 1, . . . , N ,

(a) eT1 f
−(0,yi,0) + σeTi L⊗ (eT1

∑
σkEk)x > 0,

(b) eT1 f
+(0,yi,0) + σeTi L⊗ (eT1

∑
k

σkEk)x < 0,

where the terms e1 in (a) and (b) have e1 ∈ Rn, and all the terms arising from the ei,
i = 1, . . . , N , are in RN . Upon subtracting (b) from (a), we obtain eT1 (f

−(0,yi,0)−
f+(0,yi,0)) > 0, so that the diagonal elements of J̃ , and hence the eigenvalues of
J , are negative. Tikhonov’s theorem then insures that for d sufficiently small.

lim
ϵ→0

xϵ(t) = x(t), t ∈ [tin, tout].

Notice that, while the convergence of µi,ϵ to µi,0 is not uniform in [tin, tout] (see
Theorem 4.1), limϵ→0 x

1
i,ϵ = 0, and hence, the convergence of xϵ to x0 is uniform

in [tin, tout].
Neighborhood of sliding arcs on ΣC . The proof is analogous to the proof of

the former case. Assume that at time t = 0, x(t) is in R1 or R2N . Then, without
loss of generality, let C = {1} and Cp = {1, 2} and assume that x(t) enters Σ1 at
time t1in at xin and at time t2in it enters ΣCp at x2

in (see Remark 2.3). Then, we first
consider equations (27) for (µ1,ϵ,y1,ϵ) only, while adding the differential equations
for xi, i = 2, . . . , N . Reasoning as before, for d sufficiently small, xϵ(t) converges
to the sliding portion of x(t) along Σ1. xϵ(t) enters the boundary layer of ΣCp at
time t2in,ϵ at the point x2

in,ϵ. It does not leave the boundary layer of Σ1. Then, we
just need to consider (27) for i = 1, 2, and add the differential equations for xi,
i = 3, . . . , N . We keep augmenting (27) until x(t) enters Σ.

The statement of the theorem follows upon noticing that outside the boundary
layers, F ϵ(x) = Gj(x) for x ∈ Rj .

2.4. Regularized synchronous solutions. Theorem 2.8 gives convergence of so-
lutions of (23) to solutions of (14) in a neighborhood of an asymptotically stable
periodic orbit xs(t). In what follows, given a PWS network with an asymptotically
stable synchronous periodic orbit xs(t), we want to ascertain whether its regular-
ization (23) has an asymptotically stable periodic orbit xϵ,s(t) that converges to
xs(t). Below, we show that this is the case for crossing periodic orbits, i.e., for a
periodic orbit with crossing points only and no sliding. In this case, the crossing
synchronous solution xs(t) can only evolve in R1 and R2N and can only cross Σ
and at isolated points.

Remark 2.9. In [16, Theorem 6 and Remark 15] we showed that, if the single
agent (4) has an asymptotically stable crossing periodic orbit z(t) (t ∈ R), then,
for ϵ sufficiently small, the regularized agent (24) has an asymptotically stable
periodic orbit zϵ(t) that converges to z(t) as ϵ → 0. Now, if the single smooth
agent (24) has an asymptotically stable periodic orbit zϵ(t), then the regularized
network (23) has a synchronous periodic orbit xϵ,s(t) = (zϵ(t), . . . ,zϵ(t)). Further,
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the synchronous subspace S defined in (3) is invariant for (23) since it is contained
in the eigenspace of M associated to the 0 eigenvalue. This last observation together
with asymptotic stability of zϵ(t) for the single agent implies that solutions in S
converge to xϵ,s(t). We need to study the behavior of perturbed solutions with
initial conditions transversal to S.

In Theorem 2.10, we prove the asymptotic stability of xϵ,s(t) for ϵ sufficiently
small. We formulate the result assuming that xs(t) crosses Σ in just two points,
xs(τ) and xs(δ), but the result and proof generalize immediately to a finite number
of isolated crossing points.

Theorem 2.10. Assume that xs(t), t ∈ R, is a synchronous crossing periodic orbit
of (14) such that the periodic orbit xs(t) starts at xs(0) in R1, crosses Σ at time τ
at xs(τ) = (z(τ), . . . ,z(τ)) and enters R2N ; then, it crosses Σ again at time δ at
xs(δ) = (z(δ), . . . ,z(δ)) and enters in R1 and finally at time T , xs(T ) = xs(0).

If xs(t) is asymptotically stable, then there exists ϵ0 > 0 such that (23) admits a
synchronous periodic orbit xϵ,s(t) for ϵ < ϵ0 and such that limϵ→0 xϵ,s(t) = xs(t).
Moreover, xϵ,s(t) is asymptotically stable.

Proof. The first part of the proof is in Remark 2.9. We show that xϵ,s(t) is asymp-
totically stable. Let Tϵ be the period of xϵ,s(t). In order to study the stability
properties of xϵ,s(t), we linearize (23) along xϵ,s(t) and consider the monodromy
matrix Yϵ(Tϵ). Yϵ satisfies the following linearized equation

Ẏϵ =

(
IN ⊗Df ϵ(zϵ(t)) +

p∑
k=1

σkMk

)
Yϵ, Yϵ(0) = InN , (30)

where f ϵ(zϵ) is the regularized vector field for the single agent; see (24). The
monodromy matrix of (14) along xs(t) is denoted by Y (t) . Then, Y (t) is a piecewise
continuous function with jumps at the crossing points given by saltation matrices
at xs(τ) and xs(δ). That is, we can write

Y (T ) = Y3(T, δ)(IN ⊗ S+,−)Y2(δ, τ)(IN ⊗ S−,+)Y1(τ, 0), (31)

S−,+ and S+,− are the saltation matrices in (17), Ẏ1 = (IN ⊗Df−(z(t))
+
∑p

k=1 σkMk)Y1, Y1(0, 0) = InN , Ẏ2 = (IN ⊗Df+(z(t)) +
∑p

k=1 σkMk)Y2,

Y2(τ, τ) = InN , and Ẏ3 = (IN ⊗Df−(z(t)) +
∑p

k=1 σkMk)Y3, Y1,3(δ, δ) = InN .
The expression of the saltation matrices for the whole network as a Kronecker
product of the identity matrix with the saltation matrix of the single agent has
been derived in [13, Theorem 12].

Finally, we let

Σ− = {x ∈ RnN |hi(x) = −ϵ, i = 1, . . . , N},

Σ+ = {x ∈ RnN |hi(x) = ϵ, i = 1, . . . , N}.
For Yϵ(Tϵ), we have

Yϵ(Tϵ) = Yϵ(Tϵ, δ2,ϵ)Yϵ(δ2,ϵ, δ1,ϵ)Yϵ(δ1,ϵ, τ2,ϵ)Yϵ(τ2,ϵ, τ1,ϵ)Yϵ(τ1,ϵ, 0), (32)

where by τ1,ϵ we denote the time at which xϵ(t) reaches Σ
− from R1 and by τ2,ϵ the

time at which it reaches Σ+ to enter into R2N . Similarly, δ1,ϵ is the time at which

xϵ(t) reaches Σ
+ from R2N , and δ2,ϵ is the time at which it reaches Σ− to enter in

R1. The existence of these crossing times τ1,ϵ, . . . , δ2,ϵ, is ensured by convergence
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of xϵ,s to xs and by the following inequalities in the neighborhood of any crossing
point (recall (15)):

(∇hT
i G1(x))(∇hT

i G2N (x)) > 0, (∇hT
i F ϵ(x))(∇hT

i G1(x)) > 0, i = 1, . . . , N.

The validity of this last expression is justified by the fact that we are linearizing
along the synchronous solution, hence σMx = 0, and thus we just need to look at
the single agent.

In a neighborhood of a crossing point, we have
(
∇hi(z)

Tf−(z)
) (

∇hi(z)
Tf+(z)

)
> 0 and, hence, the inequality above. Below we show i) convergence of Yϵ(τ1,ϵ, 0)
to Y1(τ, 0), and ii) convergence of Yϵ(τ2,ϵ, τ1,ϵ) to (IN ⊗ S−,+). The convergence of
the other transition matrices can be shown in a similar way.

i) Notice that limϵ→0 τ1,ϵ = limϵ→0 τ2,ϵ = τ . Also, for ϵ sufficiently small τ1,ϵ <
τ . Let Vϵ(t) = Yϵ(t, 0)− Y1(t, 0) for t ∈ [0, τ1,ϵ]. Then

V̇ϵ = (IN ⊗Df−(z(t)) +
∑p

k=1 σkMk)V

+
[
IN ⊗Df ϵ(zϵ(t))− IN ⊗Df−(z(t))

]
Yϵ

Vϵ(0) = 0

.

Using the variation of constants formula and Vϵ(0) = 0, we obtain

Vϵ(t) =

∫ t

0

[
Y1(t, s)

(
IN ⊗Df ϵ(zϵ(s))− IN ⊗Df−(z(s))

)
Yϵ(s, 0)

]
ds,

for t ∈ [0, τ1,ϵ]. Since limϵ→0 Df ϵ(zϵ(s)) = Df−(z(s)) in [0, τ) and Yϵ

bounded in [0, τ1,ϵ], it follows

lim
ϵ→0

Vϵ(t) = lim
ϵ→0

(Yϵ(t, 0)− Y1(t, 0)) = 0, t ∈ [0, τ).

ii) Let

Żϵ = (IN ⊗Df ϵ(zϵ(t)))Zϵ.

Then Zϵ(t) = IN ⊗ Xϵ(t), where by Xϵ(t) we denote the monodromy ma-
trix for the linearized dynamics of the regularized single agent. Moreover,
limϵ→0 Zϵ(τ2,ϵ, τ1,ϵ) = IN ⊗ S−,+, see [16, Lemma 11]. Using the variation of
constants formula, we have

Yϵ(t, τ1,ϵ) = Zϵ(t, τ1,ϵ) +

∫ t

τ1,ϵ

Zϵ(t, s)

(
p∑

k=1

σkMk

)
Yϵ(s, τ1,ϵ)ds, t ∈ (τ1,ϵ, τ2,ϵ).

Gronwall’s Lemma applied to this equality insures that Yϵ is bounded. This
together with limϵ→0 τ2,ϵ − τ1,ϵ = 0 implies that

lim
ϵ→0

Yϵ(τ2,ϵ, τ1,ϵ) = lim
ϵ→0

Zϵ(τ2,ϵ, τ1,ϵ) = IN ⊗ S−,+.

Remark 2.11. If the PWS network has an asymptotically stable synchronous peri-
odic orbit xs(t) with sliding portions, we do not have a result analogous to Theorem
2.10. However, Theorem 2.8 guarantees that solutions of (23) remain in a neigh-
borhood Bd(xs) of xs(t) for d > 0 and ϵ > 0 sufficiently small.

Recap. Let us recap the main facts and results of this section.

• The regularized network (22) is equivalent to the network of regularized agents
(23). We choose only one parameter ϵ and hence we have a network of identical
regularized agents(Remark 2.6).
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• For ϵ sufficiently small, solutions of (23) with initial conditions in a neigh-
borhood of the synchronous periodic orbit xs(t) converge to solutions of (14)
with same initial condition (Theorem 2.8).

• If xs(t) is an asymptotically stable crossing periodic orbit, then, for ϵ suffi-
ciently small, (23) has a synchronous periodic orbit xϵ,s(t) that converges to
xs(t) as ϵ → 0(Remark 2.9).

• If xs(t) is an asymptotically stable crossing periodic orbit, then the mon-
odromy matrix along xϵ,s(t) converges to the monodromy matrix along xs(t),
(Theorem 2.10). It follows that for ϵ sufficiently small, xϵ,s is asymptotically
stable as well.

3. Two examples: MSF, limit of regularized problem, convergence to
the synchronous set. We present numerical results on two examples of PWS
networks; the first is with planar agent’s dynamics given by (12), for which there is
an attracting periodic solution with sliding regions, and the second is a modification
of a problem in [22], with agent’s dynamics defined in R3, and for which there is an
attracting periodic solution with only crossing discontinuities. Relative to the two
problems we consider, we have the following goals:

(i) to use the MSF to infer stability of the synchronous periodic orbits of the
PWS networks, and

(ii) to confirm the results obtained via the MSF, by direct integration of the
network equations in forward time.

As for point (ii), we do not integrate directly the discontinuous network for N large.
This is because solutions in a neighborhood of a synchronous solution cross or slide
along the intersection of k ≤ N discontinuity hyperplanes, and we would need to
evaluate more than 2k vector fields at the intersection, making the numerical in-
tegration particularly difficult. Instead, we integrate the regularized network (23)
in forward time. Theorem 2.8 guarantees that for ϵ sufficiently small, solutions of
(23) remain in a neighborhood of solutions of (14). This in turn implies that if
xs(t) is asymptotically stable, then solutions of (23) with initial conditions in a
neighborhood of xs(t) must remain sufficiently close to it for ϵ sufficiently small.
Moreover, for crossing periodic orbits, Theorem 2.10 states that, if xs is asymptot-
ically stable, then (23) has an asymptotically stable synchronous periodic orbit in
a neighborhood of xs(t) for ϵ sufficiently small.

3.1. Coupled PWS oscillators with sliding. The first problem we consider is
with agents given by (12) (see [21]):

ẋ1 = x2

ẋ2 = −x1 ∓
1

1 + γ|x2 − v|
,

with the minus sign if x2−v > 0 and the plus sign if x2−v < 0. In our computations,
we will fix once and for all γ = 3 and v = 0.15, which are the values used in
[21, 20, 13].
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The dynamics of this single agent
exhibit an asymptotically stable pe-
riodic orbit with a sliding segment
on the discontinuity plane Σ :=
{(x2 − v = 0}. Below, we have
∇h = e2. See the Figure on the
right, and note that the orbit has
one entry point on Σ and one tan-
gential exit point from Σ, and these
are the only two generic events, the
remaining motion being either in
R− or on Σ.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

x
1

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

x
2

Denote the periodic solution of the single agent as z(t), so that the network (1)

has a synchronous periodic solution given by xs =

z...
z

. Our goal is to study the

stability of this periodic orbit for the system (1) with nearest neighbor coupling;
see (11) and Example 1.4.

We take two coupling matrices: E1 =

(
0 0
1 0

)
as in [20] to account for elastic

coupling, and E2 =

(
0 0
0 1

)
to account for viscous damping. With these, the

network equations are those in (10), repeated here for convenience with f± defined
in (12):

ẋ1 = f±(x1) +

[
σ1

(
0 0

1 0

)
+ σ2

(
0 0

0 1

)]
(x2 − x1),

ẋi = f±(xi) +

[
σ1

(
0 0

1 0

)
+ σ2

(
0 0

0 1

)]
(xi+1 − 2xi + xi−1),

i = 2, . . . , N − 1,

ẋN = f±(xN ) +

[
σ1

(
0 0

1 0

)
+ σ2

(
0 0

0 1

)]
(xN−1 − xN ).

(33)

Now, we use the notation η1 = −σ1λk > 0, η2 = −σ2λk > 0, k = 2, . . . , N , where
λk’s are the eigenvalues of L (recall that for us these are all negative). With this
notation, we compute the intervals in η1 and η2 for which the MSF is negative.

Remark 3.1. We stress that for the computation of the MSF, we do not need
to take into account the number of agents. We will instead compute the largest
eigenvalue in modulus of a (2× 2) fundamental matrix solution (i.e., the nontrivial
multiplier). When we need to find suitable values of σ1 and σ2 instead, we will need
to account for the size of the network (hence, the eigenvalues λk’s of L) to look for
the corresponding values of η1,2, which give stability (or lack thereof).

As streamlined in Section 2.1, e.g., Remark 2.2, we will need to compute the Flo-
quet multipliers relative to the linearized problem for the single agent. In the specific

situation, we recall (16) and realize that for (33), we have (In+
(f+−f−)∇hT

∇hT (f−−f+)
|z)Ek =

0, k = 1, 2. Then, we consider the following 2-dimensional linearized system (cfr.
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Figure 3. Equation (33). Stability region in function of η1 and
η2. Dark dots indicate stability.

with [13, Equation (26)])

δ̇ =

{
(Df±(z(t))− η1E1 − η2E2)δ, eT2 z(t) ≷ v,

DfΣ(z(t))δ, eT2 z(t) = v,
(34)

and we compute the Floquet multipliers µ1 and µ2 along the periodic orbit z(t) in
function of η1 and η2. Because of sliding, the saltation matrix is singular and hence,
the multiplier µ1 is always 0. When η1 = η2 = 0, (34) is the linearization along
the periodic orbit of the single agent, hence µ2 = 1. In order to infer stability of
the synchronous orbit xs of the network, we look for value of η1 and η2 for which
|µ2| < 1. In Figure 3, we show with dark circles the regions (in a portion of the
(η1, η2)-plane) where the MSF gives stability of the synchronous solution, i.e., the
values of η1 and η2 in (34) such that the corresponding µ2 is less than 1 in absolute
value. Quite clearly, the impact of viscous coupling is essential to obtain a stable
synchronization. Moreover, synchronization is achieved for small values of η2 when
just viscous coupling is considered. To witness, in Figure 4, we plot in logarithmic
scale the maximum distance between N = 32 oscillators, σ1 = 0, and σ2 = 1 for
the regularized network. For the simulation, we chose ϵ = 0.01 as regularization
parameter and integrated the regularized network with ode45 and RelTol= 10−12.
We also checked the behavior of the regularized network with both viscous and
position coupling and σ1 = σ2 = 1. In this case, the network did not synchronize.
This is in accordance with the synchronization region in Figure 3.

To further highlight the role of viscous damping, in Figure 5 we plot the second
multiplier µ2 in function of η1 and η2; on the left for elastic coupling only (matrix
E1), and on the right for viscous damping and elastic coupling with η1 = η2 = η.
Recall that we need |µ2| < 1 to infer stability. From the computations, the coupling
with E1 + E2 ensures synchronization for all values of η > 1.0101, but the results
are much more restrictive for E1 only.

In Table 1, we again consider coupling with E1 only, and we show to which inter-
vals η1 must belong in order to have stable synchronization. The coupling strength
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Figure 4. Regularization of equation (33), ϵ = 0.01.
Synchronization of 32 oscillators for viscous coupling.
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Figure 5. Synchronization intervals for (33) with E1 only on the
left (i.e., σ2 = 0) and for E1 + E2 on the right.

σ1 that insures synchronization of the N agents must be chosen so that σ1λk be-
longs to ∪i[α2i+1, α2(i+1)] for all k = 2, . . . , N . Using the exact eigenvalues from
(11), we obtain that for N = 2 agents, λ2 = −2, and hence there is synchroniza-
tion for σ ∈ ∪7

i=0[
α2i+1

2

α2(i+1)

2 ]. Similarly, for N = 3, there is synchronization for
σ ∈ [9.66 9.81], while for more than 3 agents and σ1λk in [0, 100], there are no
synchronization intervals. As a comparison, in the case E1+E2 (i.e., σ1 = σ2 = σ),
the value of the coupling parameter σ that insures synchronization must be such
that σλ2 = σ(−2+2 cos( π

N )) > 1.0101; see also the right plot in Figure 5. Although
this is surely feasible, for N large we would need to choose a very large coupling
strength σ; see Table 2.

Remark 3.2. The distinct synchronization results for the case E1 and the case
(E1 + E2) could be understood also by studying the behavior of the autonomous
linear systems with coefficient matrices M1 = L ⊗ E1 and M2 = L ⊗ (E1 + E2),
respectively The eigenvalues of the coupling matrix M1 are all equal to 0 and de-
fective. The corresponding linear system is then unstable. On the other hand, M2
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α2i+1 α2(i+1)

2.0521 2.2022

5.3053 5.5556

9.6096 9.9600

14.9650 15.4154

21.3714 21.9219

28.9289 29.5295

37.4875 38.1882

47.1972 47.9479

Table 1. Equation (33). Synchronization intervals for σ2 = 0.
Values of η1 must be in the intervals [α2i+1, α2(i+1)], i = 0, . . . , 7,
to ensure stability of synchronous periodic orbit for just elastic
coupling E1.

N σmin

4 1.7234

8 6.6349

16 26.2845

32 104.8850

Table 2. σmin is the minimum value of σ required in order to
stably synchronize N agents coupled with matrix E1 + E2.

has (N + 1) eigenvalues at 0 plus the (N − 1) eigenvalues 0 > λ2 > . . . > λN of the
negative Laplacian matrix L. In this case, 0 is semi-simple and the linear system
is dissipative. For this reason, a coupling that involves velocity (friction) is more
suitable for synchronization than a coupling that involves just position.

We also investigated the behavior of two oscillators coupled by their positions
only (E = E1) at the bifurcation values of the parameter σ1, for which we be-
lieve that σ1 ≃ 2.6561 is a candidate flip bifurcation value. To see whether the
two coupled oscillators undergo a period doubling bifurcation, we integrated the
Filippov system in forward time for σ1 = 2.6 and σ1 = 2.512. Integration for the
non-smooth mechanical system was done with an event location technique and a
constant stepsize Runge Kutta method of order 4. In this case, we just need to
check sliding/crossing/exiting on a codimension 2 discontinuity set; the number of
conditions one needs to verify in this case is a doable task, and we did not need to
use a regularized network. The left plot in Figure 6 is obtained for σ1 = 2.6. Af-
ter getting rid of transient, the numerical method has the invariant curve depicted
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Figure 6. Equation (33). Numerical investigation of flip bifurca-
tion. Left: invariant curve for two coupled oscillators and σ1 = 2.6.
The two agents are not synchronized but there is a phase shift be-
tween the two. Right: invariant curve for two coupled oscillators
and σ1 = 2.512.

in the figure, and the numerical solution is periodic of period T ≃ 26.39. The
synchronous periodic orbit of the single agent has period T ≃ 14.01. We should
point out that the numerical solution is not synchronous but there is a phase shift
between the two masses. In the right plot, we show the invariant curve obtained
for σ1 ≃ 2.512. The numerical solution is periodic with period T ≃ 50.61. These
numerical simulations suggest the existence of a second period doubling bifurcation
of the two oscillators.

3.2. A PWS network with crossings only. Our second example is one of a
network of piecewise linear (PWL) agents. The single agent dynamical system is
given by

ẋ = Bx , B =



 0 1 −1

−1 1 −1

1 0 0

 , |x1| < 1

 0 1 −1

−1 −3/2 −1

1 0 0

 , |x1| ≥ 1 .

(35)
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The problem (35)
has a periodic or-
bit z, displayed in
the figure on the
right. Except for
the origin and the

line

0t
t

, which are

invariant sets, this
periodic solution is
globally attracting in
R3. We observe that
the periodic orbit
crosses the disconti-
nuity planes x1 =
1,−1 in four differ-
ent locations, and
there is no sliding re-
gion.

:

Our interest is in studying the stability of the synchronous periodic orbit xs =z(t)...
z(t)

 for the network (1). Here, we take the following two coupling matrices:

E1 =

0 0 1
0 0 0
0 0 0

 , E2 =

0 0 0
0 0 1
0 0 0

 , (36)

for the Laplacian (graph) structure L given in (11). In Figure 7, we show the
region, in the (η1, η2)-plane, where there is stable synchronization or not. Unlike
the case considered in Section 3.1 (where, for sufficiently large values of the coupling
parameter σ2, the periodic orbit of (12) was always stable for the network), in
the present situation for L given by (11), the MSF predicts that the synchronous
solution is not going to be stable forN = 16, no matter the values of the two coupling
parameters σ1 and σ2. However, for N = 8, there are several intervals of stability
of the synchronous solution, for example for σ1 ∈ (1.94, 1.98) and σ2 ∈ [0, 0.04).
To confirm this result, direct integration of the PWS network for σ1 = 1.95 and
σ2 = 0.03, for ICs perturbed off the synchronous set by 10−2, produces rather
rapidly convergence to the synchronous periodic orbit; see Figure 8.

Following the same reasoning as in Remark 3.2, we also choose a second set of
coupling matrices such that 0 is not a defective eigenvalue ofM = L⊗(σ1E1+σ2E2):

E1 =

0 0 1
0 0 0
0 0 0

 , E2 =

0 0 0
0 1 0
0 0 0

 . (37)

Now the linear system with the coupling matrix is dissipative and we expect the
network synchronization to be easier to achieve. The numerical results confirm this
observation and are depicted in Figure 9.
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Figure 7. Equation (35). Synchronization region in the (η1, η2)-
plane. There is no synchronization in the white part of the figure.

3.3. Convergence rate to the synchronous subspace. Whenever convergence
to the synchronous subspace S of (3) is taking place, then we can measure the rate
of attractivity to S by a simple numerical algorithm. The idea is that the difference
between trajectories of different agents is approaching 0 at an exponential rate,
which (on our two examples) we relate to the Lyapunov exponents, hence to the
MSF.

For a genuine PWS system (say, like (14) with agent’s vector field given by (12)),
we actually apply the technique to its regularized version, so that the method below
is always used on a smooth network of differential equations; see (23).

We used Algorithm 3.1 (for more than 50 different realizations of random initial
conditions) on the two examples of this section, obtaining very consistent results.

• Example 3.1. We take N = 8, σ1 = σ2 = 7. The greatest Lyapunov exponent
computed via the MSF technique (and 5 digits of accuracy) gave us e−µ2T ≃
−0.0307. Integration of the regularized network (23) with ϵ = 10−3, error
tolerance of 10−10, and using Algorithm 3.1 to estimate the convergence rate
to the synchronous subspace S gave us ≃ −0.032#, where # ∈ {2, 3, 4},
which is consistent with the accuracy expected when using regularization with
ϵ = 10−3.

• Example 3.2. Here, we do not need to regularize the system, and integrate
(35) directly. We take N = 8, σ1 = 1.95, and σ2 = 0.03. Computation of the
largest Lyapunov exponent with the MSF technique gives e−µ2T ≃ −0.0168,
when ηj is equal to λNσj , j = 1, 2. Instead, computation of the convergence
rate via Algorithm 3.1 gave us ≃ −0.017#, with # ∈ {4, 5, 6, 7}. As it turns
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Figure 8. Equation (35). N = 8, σ1 = 1.95, σ2 = 0.03. Left:
Convergence to synchronous periodic orbit. Right: Transient be-
havior and convergence for the first agent.
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Algorithm 3.1: Estimate convergence rate to S

Input: A network differential system (2). A point z ∈ S, a value of d > 0 (e.g.,
d = 1/10), relative and absolute error tolerances Reltol, Abstol (e.g., both
equal to 10−10), and an interval [0, Tfin] (e.g., Tfin = 103).

Output: Convergence rate b to S of the trajectories of (14).

1. Integrate with an off-the-shelf integrator for the network of N agents to
obtain (tk,xk) where xk ≈ x(tk).

2. Form error from synchronization at each time tk:

Ek = max
1≤i≤n

max
1≤j≤N−1

|xk((j − 1)n+ i)− xk(jn+ i)| .

Discard data points (tk, Ek) as soon as they become of the same order of the
error tolerances.

3. Find a least square linear fit of the data (tk, ln(Ek)) to obtain coefficients
ln a and b in the exponential fit of the error aebt. The value of b is the rate of
convergence to S.
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Figure 10. Convergence rates and line of best fit for the errors.
Left: Example 3.1. Right: Example 3.2.

out, this rate is somewhere in between the values obtained from the MSF with
λN and λN−1.

We illustrate our results by showing in Figure 10 the line of best fit, superimposed
on a plot of the errors.

4. Conclusions. In this work, we considered networks of piecewise- smooth (PWS)
differential equations with several coupling matrices, whose single agent has an
asymptotically stable periodic orbit, and investigate stability of the underlying syn-
chronous periodic orbit of the network by using both the master stability func-
tion(MSF) tool and direct integration of the regularized network. We proved that
the solution of the regularized network converges to that of the PWS network as
the regularization parameter goes to 0, and that in the case of synchronous crossing
periodic orbit of the PWS network, the MSF of the regularized network converges
to the MSF of the PWS network. We complemented our theoretical results with
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numerical experiments on problems with synchronous periodic trajectory undergo-
ing sliding regime or only with crossing. We also proposed a new technique to show
how the convergence behavior to the synchronous subspace can be used to obtain
the same rates of attractivity predicted by the MSF.

Acknowledgments. This work has been partially supported by the GNCS-Indam
group and the PRIN2017, Prot. 2017E844SL research grant.

Appendix: Tikhonov theorem. Below we state Tikhonov’s Theorem, Theorem
4.1. Tikhonov studied qualitative aspects of singular perturbation systems in a
series of papers published in the 50’s. We follow the presentation of his work in [33,
Chapter 10] to state Theorem 4.1.

Consider the following Cauchy problem

ϵu̇ϵ =f1(uϵ,yϵ),

ẏϵ =f2(uϵ,yϵ),

uϵ(0) =ū,

yϵ(0) =ȳ.

(38)

with uϵ : R → Rm, yϵ : R → Rk and ϵ ≥ 0 a given parameter. We will refer to (38)
as the full problem. Assume f1,f2 ∈ C1(Ω), with Ω ∈ Rm+k open and (ū, ȳ) ∈ Ω.
Assume moreover that there exists a continuous function Φ : Rk → Rm such that
f1(Φ(y),y) = 0. We say that Φ(y) is a root of f1(u,y) and we assume that it is
isolated. Consider the following reduced problem, obtained setting ϵ = 0 in (38)

0 =f1(u0,y0),

ẏ0 =f2(u0,y0),

u0(0) =Φ(ȳ),

y0(0) =ȳ.

(39)

Notice that in (39), u0(t) = Φ(y0(t)) so that ẏ0 = f2(Φ(y0),y0). One would like
to prove that solutions of the full problem converge to solutions of the reduced
problem as ϵ goes to 0, but cannot rely on continuity of solutions with respect to
the parameter ϵ since the vector field in (38) is not defined for ϵ = 0. Tikhonov
technique uses singular perturbation theory.

Introduce the fast time τ = t
ϵ , and consider the derivative of uϵ and yϵ with

respect to τ : d
dτ = ϵ d

dt and denote it with ′. We then set ϵ to 0 and obtain the
following reduced fast system u′ =f1(u,y),

y′ =0,
(40)

with initial conditions u(0) = ū and y(0) = ȳ. For y(0) = ȳ, Φ(ȳ) is an isolated
equilibrium of (40). Assume that there is a compact subset K of Ω such that
for (Φ(y),y) ∈ K, Φ(y) is an asymptotically stable equilibrium of u′ = f1(u,y).
Under this assumption we are ready to state Tikhonov’s Theorem.
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Theorem 4.1. Assume that ū is in the basin of attraction of the asymptotically
stable equilibrium Φ(ȳ) in (40). Let T > 0 be such that: for every t ∈ [0, T ], if we
let ŷ = y0(t), then Φ(ŷ) is an asymptotically stable equilibrium of u′ = f1(u, ŷ).
Then solutions of (38) converge to solutions of (39) as ϵ goes to 0. More specifically

lim
ϵ→0

uϵ(t) = u0(t) = Φ(y0(t)), uniformly for t ∈ (0, T ]

lim
ϵ→0

yϵ(t) = y0(t), uniformly for t ∈ [0, T ].

We observe that the convergence of uϵ cannot be uniform in [0, T ] since uϵ(0) =
ū ̸= Φ(ȳ) = u0(0).
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[32] L. Tang, X. Wu, J. Lü, J.-a. Lu and R. M. D’Souza, Master stability functions for complete,
intralayer, and interlayer synchronization in multiplex networks of coupled Rössler oscillators,
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