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Abstract In this paper we propose and implement numerical methods to detect ex-
ponential dichotomy on the real line. Our algorihtms are based on the singular value
decomposition and the QR factorization of a fundamental matrix solution. The theo-
retical justification for our methods was laid down in the companion paper [15].
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1 Introduction
Consider the n-dimensional linear system of ODEs
i = At V), (1)

where A : R x C — C™*" is continuous and bounded in ¢, and smooth in the complex
parameter A (often, A depends analytically on ).

The work of the first two authors was supported in part under INDAM GNCS, and the work
of the third author under NSF Grants DMS-0513438 and DMS-0812800.

L. Dieci

School of Mathematics

Georgia Institute of Technology
Atlanta, GA 30332 U.S.A.
E-mail: dieci@math.gatech.edu

C. Elia

Dip. di Matematica, Universita di Bari
Via Orabona 4, 70125 Italy

E-mail: elia@dm.uniba.it

E. Van Vleck

Department of Mathematics

University of Kansas, Lawrence, Kansas 66045 U.S.A.
E-mail: evanvleck@math.ku.edu



2 Dieci, Elia, Van Vleck

Typically, (1) arises as the variational equation associated to a nonlinear system
with vector field depending on a parameter A:

= f(z;A). (2)

To study stability of a solution of (2) with respect to (variations of) the parameter,
we are lead to investigate whether or not (1) possesses exponential dichotomy. Fur-
thermore, systems like (1) arise also when studying orbital stability of traveling waves
([42]) and more in general when studying the spectrum of a linear differential operator
L: Lz = @& — A(t)z ([36]). Indeed, the property of exponential dichotomy (hyperbol-
icity) is ubiquituous in dynamical systems studies; e.g., see [37,38] for its importance
in the shadowing of dynamical systems and [9,23,24,41] for the central role it plays in
invariant manifold theory. But, in spite of its theoretical relevance, general numerical
methods to ascertain whether or not a certain system possesses exponential dichotomy
are still lacking, with the exception of stability studies for traveling waves, where an
extensive and sophisticated literature exist (e.g., see [6-8,27,28,42]).

Our contribution in this paper is to develop robust computational techniques for
the detection of exponential dichotomy (ED for short) on the real line for linear n-
dimensional systems that depend on a complex parameter. The underlying mathemat-
ical assumption which we need is that both two half lines problems (that is, ¢ < 0 and
t > 0) have Lyapunov exponents that are continuous with respect to perturbations.
This is a generic conditions for linear system, and it is much weaker than requiring con-
vergence of the coefficient matrix A to constant values as t — 400; the latter condition
is effectively the one required by studies on stability of connecting orbits. Indeed, our
work provides for the first time a computationally realizable technique for determin-
ing exponential dichotomy on the real line, under essentially generic conditions, using
information from a finite time interval. Moreover, we also show in this paper that our
technique is numerically stable and we also obtain approximations of both the stable
and the unstable subspaces.

To verify if (1) possesses exponential dichotomy (ED for short) in R, in this paper
we implement, and test, algorithms which follow the theoretical development we laid
down in [15]. In that work, we gave theoretical justification for two different techniques
to detect whether or not (1) admits ED in R. These techniques are based on the
singular value decomposition (SVD) and on the QR factorization of a fundamental
matrix solution of (1), respectively. Although in [15] we considered the case of real
valued coefficient matrix (in (1), A € R™*™), the extension to the complex case (which
is the case considered in this paper) is straightforward and appropriate comments will
be made here below as needed.

The fundamental result on which we developed our analysis in [15] is the following
one of Coppel (see [12]): “A given linear system possesses ED in R if and only if it
possesses ED in the two half-lines, and the forward stable subspace and the backward
stable subspace1 are complementary”. So, there are two different tasks: (i) To check
whether a system has ED in RT and R™, and for this task the techniques in [13],
[18], [21] can be used, and (ii) To check complementarity of the forward and backward
stable subspaces. This last topic we addressed in [15]. In line with this previous work
of ours, in the present paper we base our numerical algorithms on the SVD and QR
factorizations of a fundamental matrix solution. However, it should be appreciated that

L This is called the unstable subspace by Sacker and Sell in [39]
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in order to obtain numerically stable techniques, the QR and SVD factorization can-
not be implemented in the standard ways, as otherwise the necessary stable/unstable
subspaces will not be well approximated. See below for details. As far as we know, our
effort is the first general computational effort for detecting ED for continuous dynami-
cal systems. The recent work [26] addresses computation of the exponential dichotomy
spectrum for discrete dynamical systems by completely different techniques than those
we consider here.

A plan of the paper is as follows. In the remainder of this Introduction we review the
relevant spectral concepts and give a high level description of how to detect ED. The
key issue of how to detect complementarity of forward and backward stable subspaces
for parameter dependent systems is discussed at some length, and the tool of the Evans
function is reviewed as well. In Section 2, we discuss SVD and QR techniques and give
some new results related to smoothness in the case of parameter dependent systems.
In Section 3 we give algorithmic details, and in Section 4 we present results of some
numerical experiments.

Notation. Henceforth, we will typically omit writing explicitly the dependence on
Ain (1), and simply write A(t). The principal matrix solution of (1) will be written
as &(-,0), or simply &(-), so that & = A(t; \)® , #(0,0) = ¢(0) = I. Analogously, we
will employ the notation @(t;41,t;) to denote the transition matrix on Jt;,¢;41], that
is the solution at time ¢;41 of the problem

Lt 1)) = AL 1) , Blgoty) =T

The Hermitian of a complex valued matrix A will be denoted as A* (that is, A* = AT).

1.1 Spectra of dynamical systems.

The following concepts will be needed.

The Lyapunov spectrum: Y7,. The Lyapunov spectrum is typically defined on
the half-line, and we review it for the case of ¢ > 0. It is defined in terms of upper and
lower Lyapunov exponents (LEs for short). Given a fundamental matrix X, X = At)X
with X (0) invertible, one defines pj, j =1,...,n, as

, 1
pj = limsup = log | X (t)e; |, 3)
t——+o0

where the e;’s are the standard unit vectors. When the sum of the numbers p; is
minimized as we vary over all possible initial conditions X (0), the u;’s are called
(upper) Lyapunov exponents of the system, and the initial condition X (0) is called a
normal basis. We will write )\j, j =1,...,n, for the ordered upper LEs. By working
with the adjoint system, z = —AT (t)z, one analogously defines its ordered upper LEs,
which are also called lower LEs of the original system, call them )\;, j=1,...,n. The
Lyapunov spectral intervals can now be defined as

o= YW (4)
j=1
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In case in which )\é = )\; = \j, forall j = 1,...,n, the system is called regular. Similar
definitions hold for the case of ¢ < 0, and we write X} for the Lyapunov spectrum in
this case.

The Exponential Dichotomy, or Sacker-Sell, spectrum: Y'gp. This is defined
in terms of exponential dichotomy (see [12]). Recall that (1) has Exponential Dichotomy
on J, (J =R, RT, R7) if there exist constants K > 1, a > 0, and a projection P
such that

X PX (s)| < Ke %) ¢ >,

IX(6)(I - P)X~L(s)|| < Ke®t=9 i<, ®)

where X is a fundamental matrix solution, and ¢,s € J. Ygp is defined to be the set
of values p € R for which the shifted systems y = [A(¢) — uf]y do not have exponential
dichotomy.

Remark 1 We remark that by virtue of the roughness theorem for exponential di-
chotomies (see [11]), Xgp is stable, that is it is continuous with respect to perturbation
in the coefficient matrix A.

We also recall (see [39]) that, for some k < n, Ygp is given by a collection of
disjoint subintervals
YEp = [a1,b1] U - Ulag, bg] - (6)

Now, let us denote with Z%D the exponential dichotomy spectrum for J = RT and
J = R7, respectively, and with Xgp the ED spectrum for J = R. Clearly (1) has ED on
R iff 0 ¢ Ygp, and so —in principle- we should compute Ygp and verify that 0 ¢ Ypp.
However, direct approximation of Y'gp is not a very convenient approach and we rather
verify that 0 ¢ Ygp indirectly, based on the previously recalled result of Coppel ([12]),
which we reiterate once more: System (1) has ED in R if and only if it has ED in RT
and R™, and the forward and backward stable subspaces are complementary.

The forward stable subspace ST is the set of initial conditions leading to decreasing
solutions in forward time:

ST={zeR" : |[®(t)z]| — 0 as t — +o0} . (7)

The backward stable subspace S~ is the set of initial conditions leading to decreasing
solutions in backward time:

ST ={xeR" : ||&t)z|| - 0 as t — —oco}. (8)

Remark 2 If the system has ED on R then the solutions in ST will decrease expo-
nentially in forward time (and increase exponentially in backward time), while the
solutions in S~ will decrease exponentially in backward time (and increase exponen-
tially in forward time).

As a consequence, to verify if (1) has ED in R, we will check that (see [15])

(ED-1) It has ED in R* and R™. [That is, 0 ¢ £ ]
(ED-2) The stable and the unstable subspaces of (7) and (8) are complementary. [That is,
they form a basis for R™.]

The first task in our method will be to compute EgD and X as well as bases for
ST and S, respectively, for a given value of A in (1). Let us for the moment assume
that these bases are known.
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Algorithm 3 Detect ED in R, given EE)tD and bases for S*.

Step 1 First, we check whether or not (ED-1) is verified. If not, (i.e., 0 € EED or
0 € Xgp), then 0 € Zgp and (1) does not admit ED in R. If (ED-1) is veri-
fied, we proceed to Step 2.

Step 2 Let vf‘, . ,v;:, and vy ,..., v, be the computed bases for ST and for S, respec-
tively (of course, these bases will depend on A). If m # n — k, then (ED-2) is
violated and once again 0 € Ygp and there is no ED in R.

Step 3 If m + k = n, we need to verify whether ST and 8™ are complementary. To this
purpose, we introduce a tool analogous to the Evans function which is routinely
used in the analysis of orbital stability of traveling waves ([42]). It is convenient to
make explicit the dependence on A. We let

d(\) = det(v V), ..., 0 V), 01 (A, ..o, (N), AeC. 9)

(a) If for some value of A, say A = X d(X) =0, then 0 € Ygp (X) and (1) does not
have ED in R for A = A

(b) If d(X) # 0, then 0 ¢ Ypp(A) and (1) has ED in R for A = A.

Notice that Step 1 and Step 2 can be addressed solely with the information
coming from Z%D, for which existing algorithms can be used (e.g., see [13,18,21]).
However, new techniques are required for Step 3.

Remark 4 When A = A(t;\) in (1) is analytic in A, then a fundamental matrix
solution X (t; \) is also analytic in A, and analytic bases for ST(\) and S™()) exist as
well ([30]). It follows that the function d in (9) could be taken as analytic function of
A, and this would allow use of the Cauchy Theorem to detect zeros of d in the complex
plane. This issue has been extensively investigated in the context of computing the
Evans function to infer orbital stability of traveling waves (e.g., see [28]); for example,
in [28] (using a method different from ours) the authors recover an analytic Evans
function d, the caveat being that they need to know the dimensions of the stable
subspaces ahead of time. We favor different techniques, whereby the dimensions of the
stable subspaces ST()\) and ST (), as well as bases for them, are recovered at once
from the SVD or QR factorizations of a fundamental matrix solution X: X = UXV*
and X = QR, respectively, with U, V,Q unitary, R upper triangular and X' diagonal.
However —in general- we do not obtain analytic bases (in A) for these subspaces. This
is simply because with our algorithms we will obtain real valued (and generally non-
constant) diagonal entries for the triangular factor R in the QR factorization of X
and real valued X in the SVD. As a consequence, the Cauchy-Riemann conditions in
general will not hold and so there is no analyticity. Nevertheless, we will be able to
ascertain whether or not d(X) is zero by using two different approaches. As we will see
below, Proposition 1, with our methods d(X) will be a continuous function of A; when
A is restricted to be real, this will allow us to check for sign changes of d(\) to locate
its zeroes. Furthermore, we will introduce a modified function (see (13)), d(\), whose
real and imaginary parts turn out to be smooth in Real(\) and Im(\); therefore, we
will be able to apply Newton’s method to the 2-dimensional (real valued) nonlinear
systems in Real(\) and Im(X) to find its roots.
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2 SVD and QR techniques

The results summarized in Sections 2.1 and 2.2, unless otherwise specified, apply to
both forward and backward time. We will state them just in forward time.

2.1 SVD method

SVD techniques use the information emerging from the smooth SVD of a fundamental
matrix solution X. One seeks the smooth decomposition X (t) = U(t)X(t)V*(¢), with
Y = diag(o1,...,0n), the o;’s being the singular values of X, and U and V unitary.
Under the assumption of distinct singular values, U, V and X retain same degree of
regularity of X (with respect to time ¢) and the equations for the SVD can be written

as ([13])
U=UHU,ZX,t);
V =VK(U,ZX,t); (10)
3 = Real(C) %,

where C' = (U*AU). The matrix valued function H and K are skew-Hermitian with
entries specified by

Cij +Cji - o
Hij = Cij + 702/02 1 Hji = —Hij7 1<)
J 1
Cij +Cji  Cij +Cj _
Ko = i ji ij I K=Ky, i< 11
: 0]2/0?—1 0?/0?4—1 J K J (11)

I_[]H_}'(jj:hn(C'jj)7 j:l,...,n.

In our implementations, we resolved the n degrees of freedom in the last equation of
(11), imposing K;; = 0, H;; = Im(C};), for j = 1,...,n; see (SVD-3) below.

We now recall some results from [13,14, 18] which will be needed to understand our
techniques. Although the results in these cited works are given for real-valued A, they
easily extend to the complex case; some details will be given below as needed.

Below, the underlying standing assumption is that (1) has distinct and stable
Lyapunov exponents. [This is a generic property in the Banach space of continuous
matrix functions endowed with the sup norm ([36]).]

(SVD-1) (See [13, Proposition 4.1] and [18, Lemma 7.1].) After a finite time ¢ > 0, the
singular values of any fundamental matrix solution X are distinct so that the
differential equations for U, X' and V in (10) apply.

(SVD-2) (See [13, Theorem 4.2 and Theorem 4.6], [14] and [18, Theorem 8.4].) Given any
fundamental matrix solution X (i.e., any initial condition X (0) for it), Z’E' and
EED can be recovered from knowledge of the diagonal of C. Let

i e o1 . 1 .
Aé:%@ﬁ&fjbg”ﬁ(”’ Aﬁzlzzlilg)zloga'j(tL j=1,....,n,

and for S > 0 sufficiently large

S 1 t+S s 1 t+S
;= Inf = Real(C;(1))d = sup = Real(C,; (7))dr .
" tlgos/t el g gES/t eal(Cj; (1))dr

] S nS
Then: XF = U [\%, 5] and S = UG- [oF, 87 ).
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(SVD-3) (See [13, Theorem 5.4].) By using K;; =0in (11), j = 1,...,n, then, as t — +o0,
K — 0 exponentially fast and V — ‘A/Jr, with V1 constant unitary matrix. Further,
V converges to vt exponentially fast and the rate of convergence can be estimated
as follows. Let v; be the i-th column of V' and ﬁ;L the j-th column of YA/+7 then

. 1 .
l;miup 7 log [vi(?) DR DHEDN (12)
— T 00

with =1 < A < 0, and A = —1 for regular systems. The columns of X (0)V+

span the growth subspaces associated to E;{D. It follows that, if k is the number
of negative Lyapunov exponents, then the last k columns of X(O)‘7+ span ST.

Notice that with a different choice for the K;’s in the last equation of (11), the
new solution of (10) will not generally converge to a constant matrix, but would behave
for large ¢t as V(t)T ~ ‘7"'D(t)7 with D(t) = diag(ewl(t)7 ... ,ew"(t))7 where V7 is the
one in (SVD-3). (So, practically speaking, for large ¢ the columns of Vtand VT span
the same subspaces.)

It must be appreciated that, as long as the system has stable and distinct Lyapunov
exponents, with SVD techniques we can obtain E;]LD without requiring the fundamental
matrix solution X to be normal, and any initial condition X (0) will do. For this reason,
we will just use the principal matrix solution @ to characterize all desired quantities.
Clearly in this case the growth subspaces (which are those in (7) and (8)) are given by
the columns of V ([13, Theorem 5.8]).

Remark 5 Exponential convergence of V' to vt together with the bound (12) implies
that for € = eps, the machine accuracy, we can estimate the time 77 > 0 such that

V(AN =V <eps, t>TT,

as T = log(eps)/(A max;=1_. n-1(A] — Aj;11)). From the numerical point of view,
it is therefore reasonable to use the columns of V(TJr; A) to approximate ST, which is
what we will do.

Similar results to those above apply to the case of ¢ < 0, and to the limiting
behavior as t — —oo. In particular, by the SVD method we will obtain a matrix V-
and from its last m columns we can obtain a basis for S~ (as above, we will actually
use the last m columns of V(T ; \) to approximate S™).

2.1.1 A modified Fvans’ function

Now, let A = A(t; A\) in (1) be analytic in . As already pointed out in Remark 4, in
general X does not have an analytic SVD in A. Then, we do not expect Vi()\) to be
analytic functions of A, nor of course V(Ti; A). However, we can reason differently. Let
A = AR +i\1, and view the coefficient matrix as A(t; Ag, Af) : R2 — C™*™, for each
given t. Obviously this is differentiable in (Ag, A7), and so is a fundamental matrix
solution of (1), X (¢; Ar, Ar). Therefore, under the assumption of distinct singular val-
ues, also U(t; Ar, A1), X (t; Ar, A1) and V(¢; Ag, A1), are smooth functions with respect
to (AR, Ar), for any t. In particular, V(Ti; AR, Ar) are differentiable with respect to
(AR, A1), where T* are chosen as in Remark 5.

Now, let (ED-1) hold, and assume that dim(S1) = k, dim(S™) =m =n —k, so
that the function d in (9) is well defined. Denote with f)fﬂ RN 17: the last k£ columns of
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V(T"; AR, A;) and with 01, ..., U, the last m columns of V(T'™; A, A7) and observe
that these columns approximate to machine precision the corresponding columns of
V*. We then consider the function

d(AR, A1) = det( (AR, ALy« 0 (AR, AL, 91 ARy AL - - I (AR A1) 5 (13)

which is differentiable with respect to (Ag, Ay). This is the function we will use in our
numerical method. So doing, we will be able to use root finding techniques, such as
Newton’s method, to approximate the zeros of d (and hence of d).

We conclude this section with a result showing that we always have continuity of
V+ with respect to A.

Proposition 1 Assume system (1) has distinct and stable Lyapunov exponents. Then
VE are continuous functions of A. In particular, d in (9) is a continuous function of
A

Proof First consider the case of t > 0. Let p = 0,1,2,..., and consider the sequence
of functions Vp(A) = V(p; A). These are continuous functions of A. Moreover, by (12)
and the assumption of distinct Lyapunov exponents, there exists a(\) > 0 bounded
away from 0, such that for p sufficiently large ||Vp(A\) — V)| < e P Let a > 0
be such that a(\) > a > 0. Then, for all ¢ > 0 there exists N > 0 such that for all
p > N, e < € so that the sequence {V,} is uniformly convergent to V* implying
continuity of VT with respect to A. Similarly for ¢ < 0.

2.2 QR method

QR techniques are based on the (unique) decomposition of a normal fundamental
matrix solution X = QR, where @ is unitary and R is upper triangular with positive
diagonal. It is well known that X admits a smooth QR decomposition whose factors
obey the following differential equations

R =B(Q,H)R. (15)

Here, H is a skew-hermitian matrix whose entries are given by

H;; = (Q"AQ);j, Hj; =—H;;, 1>}, Hj; =Im(Q*AQ),j , (16)

and B is upper triangular with entries

Bij = (Q"AQ)ij + (Q*AQ);;, i<j,  Bjj =Real((Q"AQ)j;) -

We now recall some results from [15,18,21] which are needed to justify QR-based
techniques. Below, the standing assumption is that the diagonal elements of B
satisfy one of the conditions (i) or (ii) below:

(i) Bj; and Bj; are integrally separated, i.e. there exist a,d > 0 such that

/t(Bii(T)—Bjj(T))dea(t—S)—d, t>s>0, 1<j, (17)
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(i) By; and Bj; are not integrally separated, but Ve > 0 there exists M;;(e) > 0 such
that

t
/(Bii(r)—Bjj(r))dr < Mjj(e) + et — s), t>s>0, i<j. (18)

Note that condition (17) is equivalent to requiring that (1) has distinct and stable
Lyapunov exponents, [18, Theorem 3.4 and Corollary 5.1], while (18) implies that the
Lyapunov exponents of the system are stable but not necessarily distinct, [21].

The following properties hold (we state them for ¢ > 0, but the case of t < 0 is
analogous).

(QR-1) (See [21, Theorem 5.5], [18, Theorem 8.1].) The Lyapunov and exponential di-
chotomy spectra can be recovered from the diagonal elements of B as follows. Let

t
)\ =i f B; A =1i B;i(T)dT , 19
i [[ By 3=t [(oyeir 1
then EIJI = U [)\;7 Aj]. Also, for S sufficiently large, let
S ) 1 t+S S 1 t+S
a; = inf < Bj;(T)dr, B85 =sup < Bj;(T)dr, (20)
t>0 5 J; t>0 t

and one has EgD = U?Zl[af,ﬁjs].

(QR-2) (See [15, Theorems 10, 15, and 22].) Let k be the number of negative Lyapunov
exponents of (1) (for t > 0) and let Y = R~ !diag(R). Rewrite Y = (Y, Ys), where
Ys comprises the last k columns of Y. Then the subspace spanned by the columns
of Ys converges: if we let Y(t) := X(0)Ys(t), then Span(Y(t)) — Span(Y) as
t — 400, exponentially fast. To estimate the convergence speed, let P(t) be the
orthogonal projection onto Span()(t)), and Pt be the orthogonal projection onto

Span()A/+); then,
hmsup log || P(1)(I = PT)I| < G(N, k= Ah—ppa), —1<G <0,

and moreover Span(JA)Jr) =87 (and G = —1 for regular systems).

Remark 6 If in (QR-2) we assume that the Lyapunov exponents are distinct (that
is, (17) holds), then Y tends to a constant upper triangular matrix Y with 1’s on the
diagonal. Each column of X (0)37 will span the line of initial conditions leading to a
certain exponential growth or decay, given by the Lyapunov exponents. If instead (18)
holds, and the Lyapunov exponents are not distinct, then the subspaces spanned by
the columns of Y still converge to the subspaces associated to the different exponential
growths (different Lyapunov exponents) although Y will not converge (see [15, Theorem
15]). Notice that, in order to detect ED in R, we are just interested in the computation
of forward and backward stable spaces, so it does not really matter which one of (17)
r (18) hold.

Similar considerations and results hold for ¢ < 0, although in this case the diagonal
elements of B are required to satisfy the following variants of (17) and (18), respectively.

(i) The diagonal of B is integrally separated: fst (Bii(1) — Bjj(1))dr > —a(t — s) — d,
fort <s<0andi<j;or
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(i) By; and Bj; are not integrally separated, but Ve > 0 there exists M;;(e) > 0 such
that

t
/ (Bii(1) = Bjj(7))dr| < Mjj(e) — e(t — s), t<s<0,i<j. (21)

With these assumptions, then analogs of (QR~1) and (QR-~2) hold for ¢ < 0 as well.

Remark 7 The properties in (QR-~2) ensure exponential convergence of Span(X (0)Ys(t))
to the forward stable subspace. It follows that there is a finite time 7" > 0 such that
|P(t)(I — P)|| < eps, for all t > T, and TF = log(eps)/(G( ok — Ap_ga1))- Then

it is reasonable to approximate the forward stable subspace by Span(X(0)Ys(TT)),
which is what we do in our numerical computations. Similarly for ¢ < 0.

Remark 8 QR-based techniques need a normal initial condition X (0), for which con-
ditions (17) and (18) are verified, in forward time and in backward time respectively.
In general, this precludes us from taking X (0) = I, and further we may need different
initial conditions for the forward and backward integrations (see [15, Remark 2]). In
practice, we select random initial conditions, which has worked reliably in all of our
numerical experiments.

Similarly to what we observed for the SVD, when A is analytic in A, an analytic (in
A) QR factorization of X does not generally exist. However, using same reasoning as
in Section 2.1.1, we can view @ and R as differentiable functions of (Agr, Ay) for given
t, and in particular, y(Ti; AR, A1) are differentiable with respect to (A, Ar). Now,
assume (ED-1) is satisfied and that dim(S™1) = k and dim(S™) = m = n — k. Denote
with gji", e ,gj;:, the last k columns of X (0)Ys(TT) and with Ty s--->Um, the last m
columns of X (0)Ys(7T™). We will then approximate d in (9) as (see (13))

dAR, A1) = det(Fy sy Ti s T1 - Tm) s (22)

which is differentiable with respect to (Ag,A;) and it will be used in our numerical
experiments to approximate the zeros of d.

Remark 9 When computing Lyapunov exponents or exponential dichotomy spectrum
on the half line, we just need to compute the logarithms of the diagonal elements of R
and this allows to overcome underflow or overflow phenomena related to exponential
growth or decay. However, to compute also forward and backward stable subspaces,
we need to compute all of R. Some ingenuity is required to compute Y. Details will be
given in Section 3.

Remark 10 We note that the constants A and G which we have in Remark 5 and
Remark 7, respectively, are computable.

3 Algorithms

As usual, our algorithmic description is for ¢ > 0, the modifications needed for ¢t < 0
are self explanatory.

We first review the QR algorithms. These are quite well known in the context of
approximating Lyapunov exponents (e.g., see [5,17] and references there).
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3.1 Discrete QR

Let X(0) = Xo = QoRo, and let ty < t; < ta < ..., be the chosen gridpoints during
time integration. Denote with ®(t;41,t;) the transition matrix from ¢; to ¢;41, i.e. the
solution at t;41 of the problem

La(t,1;) = AW 1), Pltjoty) =T

In terms of transition matrices, the solution of (1) at time tj4q rewrites as
X(tks1) = Pltpgr, i) - - P(t2, 1) P(t1, to) Qo Ro -

Thus, to obtain the QR factorization of X (t;41) one can proceed as follows

D(t1,t0)Qo = Q1R1, P(t2,t1)Q1 = Q2Rz, ...,
so that
X(tgy1) = Qpe1Rpq1.-- R1Ro. (23)

At the same time we will need to compute Y to approximate forward and back-
ward stable subspaces. Instead of Y, we will actually compute Z = y—! = DflR,
D = diag(R); see below. Let D, = diag(Ry) so that Z(ty) rewrites as Z(tg) =
(Dg - .. DO)_l(Rk ... Rp). So, to update Z, we will write

Z(t5) = (D1 - Do)~ (D "Ri) (D1 .. Do) Z(t5—1) = T Z(t5 1) .

where T}, is the unit upper triangular matrix
k1 i
o R R

k = pu I
Rk 1=0 Rl

i<j. (24)

. ij
Remark 11 If the diagonal elements of B satisfy (17), then T;] < %ef‘ltk ed, and
k

Ry

R =T

tk_1), T,zj < 1 and the algorithm to compute Z(t) is stable. Instead, if the diagonal
ij

%eMij(e)eetk and there is
k

< eMEB—ti—1) where M = sup; > || B|l- So, for t;, > %4— %h, with h = ming (3 —

elements of B satisfy (18), then we can only ensure Tlij <

no guarantee that 7, ,zj < 1 for tj, sufficiently large. This is a difficulty related to the
particular problem, not to the algorithm.

To approximate the forward stable subspace from Z we proceed as follows. Let
T > 0 be sufficiently large (ideally, T = T™"), and let X(0)Y(T) = U(T)L(T) be the
unique QL factorization of X (0)Y(T"), with @ unitary and L lower triangular with
positive diagonal, so that Span(X(O) ;,..., Yn)) = Span(Uj,...,Un), where Y; and
U; are j-th columns of Y and U respectively (j = 1,...,n). To obtain U, we take
the unique QR factorization of (Z(T)X(0)™1)T, call it UL™T, where L has positive
diagonal elements. We next summarize the overall algorithm.

Algorithm 12 Discrete QR Method on the half-line.

- Let X be a random initial condition, Xg = Qo Rg be the unique @ R decomposition
of X where R has positive diagonal elements. Initialize Z = D 1R07 and initialize
S to the upper triangular matrix of all 1’s: S;; = 1, for j > 1.
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LY
R;:ci—l b
for 7 > 4. Update S as S = SeW, where o denotes the entrywise (Hadamard) prod-
uct of two matrices: (AeB);; = A;;B;;. Solve (1) on [t_1,tx], with initial condition
D(tg_1,t,_1) = I. Take the QR factorization of the product @(tg,tr_1)Qk_1 =
Qi Ry, let Tj, = (D, 'Ry,) o S, and update Z: Z = T}, Z.

- Approximate EE‘,FD similarly to (QR~1) with inf and sup replaced by min >sp+

- At the k-th step, form the upper triangular matrix W with elements W;; =

and max,>;>7+, where T is the final time of integration. Here, 7 > 0 is sufficiently
large so that transient behavior does not penalize the computation of EI:]i_D'

- To approximate the directions spanning ST, we form the QR factorization (Z(T+)X()_l)

ULiT; assuming that there are k negative Lyapunov exponents, then the last k
columns of U give the sought directions.

3.2 Continuous QR

In the continuous version of the QR algorithm, we solve differential equations for the
unknowns Q, Z = Y1, vj = Rj}%j{j“ for j =1,...,n — 1 and vn = log(Rnn). The
system of equations to solve is the fZ)llowing

Q= QH(Qvt)v

f/j = Real(GjJrLjJrl(t) - G’jj(t))l/j7 j = 17 s, — 17
vn = Real(Gnn(t)),

Z=0C(Q,vt)Z,

(25)

where G = (Q*AQ), C is strictly upper triangular with elements C;; = (G —l—éji) 2—27
for i < j, and H is shew-Hermitian with entries H;; = Gj;; for i« > j and Hj;; =
i Im(Gj;), for j = 1,...,n. Notice that at each step we recover I;—Ji from the v;’s:
7 =i v

To compute EIJEFD we proceed as in (QR-1), where B;; = Real(G};), approximating
the lim sup and lim inf as follows (see [18]), for 7 > 0 sufficiently large:

- .1 s . 1 t+s
a; = T;%%# 3 /; Bj;(s)ds, B = Tgntlgw 3 /; Bj;(s)ds . (26)

Finally, we observe that to update the v;’s at every step we need to approximate
ftt+h(Bj+17j+1 (s) — Bj;(s))ds, so we just need to add up the local contributions from
t to t+ S to approximate the integrals in (26). To approximate directions, instead, we
proceed just as we did for the discrete QR algorithm: at the last step, we take the QR
factorization of (Z(T+)X(;1)T = UL™T. The relevant columns of U give the sought

directions.

Remark 13 Assume the system has stable and distinct Lyapunov exponents. Then
the diagonal elements of B satisfy (17) and C;; < Bije_“t""d. It follows that for
t> %g(M% M = sup,; ||B(t)||, Ci; < 1 and so Z can be computed with no overflow
(see also Remark 13 in [15]). When instead the diagonal elements of B satisfy (18),
then as in the discrete algorithm, we can only insure Cj; < BijeMij(E)ed and we can
not guarantee Z to be bounded (see equation (25) in [15] for bounds on exponential
growth of Z). Clearly this is a difficulty related to the problem under exam, and not
to the algorithm chosen to solve the problem.

T
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3.3 Error Analysis

We next develop an error analysis for the approximation of subspaces. We assume that
either the integral separation condition (17) holds or the condition (18) holds that
implies the stability of Lyapunov exponents in the non-integrally separated case. In
addition, we assume that there exists p;; > 0 such that for all ¢ € [0, T7], the difference
between the exact Q(¢) and the computed Q(¢) is bounded as

Qi (t) — Qij (1| < pij. (27)

The existence of the bounds p;; follow from the work in [19,20,22,43]. Let Is denote
the index set such that for ¢ < j, (¢,7) € Ig if (17) holds and (3, j) ¢ Ig if (18) holds.

Let Z be the matrix in (25). We have then that for i < 7, Cy;(t) = Ri_z'l (t)B;j(t)R;; (),
ij(t) = 07 and

J
Zij = Z CikZyj, Zij(t) /0 Z Cir(8)Zy;(s)ds (28)

k=i+1 k=i+1

We want to compare Z;; (exact) with Z~ij (approximate). Let G = (Q*AQ) and G =
(Q*AQ) We can control the difference between Q and Q and hence the difference for
i < j between Bj;(t) = Gj; + éji and Bij ) = éij + éji. Similarly we can control
the difference between Bj;(t) = Real(Gy;) and Bj;(t) = Real(G; )

For ease of notation, let B;;(t) = 8(t), Bi;(t) = B(t) + (), Bj;(t) — Bi(t) = a(t),
and Bjj (t) — By;(t) = a(t) + €(t). Then for all ¢,

16(t)] < do, le(t)] < eo, [B(t)] < Mo

where these uniform bounds on §(¢) and €¢(t) follows from the uniform bounds on the
difference between Q(¢) and Q(¢).
We need a fundamental bound on

Oi_j(t) — Cij(t) — /OT[ﬂ( ) N 5( )] fg a(s)+e(s) dsdt / B a(s)dsdt

Under the assumption (17), we have @ > 0 and d > 0, fo s)ds < —at + d. Using
the triangle inequality we bound

t T d
)efo a(s)JrE(s)dsdt‘ < 50/ o~ (a—co)t+d gy < a5066 (1- e*(aféo)‘r) (29)
0 — €0

provided a — ¢y > 0, and

{ J§ a(s)+e(s)ds fo a(s) S}dt‘ < My fo‘l' e—attd {eéot _ 1} dt
—Moe { (1 — el-ate)T)y _ (a—eo)(l—e_’”)}.

= a(a—eo)

(30)

Under the assumption (18), we have for all € > 0 there exists M > 0 such that
fO s)ds < et + M. Again, using the triangle inequality we bound

eld a(s)-l-e(s)dsdt‘ < 50/ plereo)t+M g, o doe™ soe™ %0¢ ((lereo)r _y) (31)
0 e+ €
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and

{ I3 as)+e(s)ds _ef a(s) s}dt‘ < My fT ect+M {eéot 1}dt

< Q”H (el — 1) — (e + o) (e — 1)}

(32)

We have from (28) and the analogous formula for Zij (t) that

Euj(t) = Zi5(t) /0 S (Cou(5) 215 (5) — Co) g (9)]ds

k=i+1
and
Cin(8)Zj(s) — Cire(8) Z1j(s) = Cin(5)[Zrj () — Zij(s)] + [Cin(s) — Cin(s)] Z; ()
Thus,

J t t
01 Y sup [Calo)] [ Biy)lds+ sup 124 [ [Cals) — Canlo)lds
fmrtq 0<s<t 0 0<s<t 0

Lemma 1 If the assumptions (17), (18), and (27) hold, and fori < j, sup, |éij (9) <
wij and supg |Zij| < mij, then E;;(t) = Z;;(t) — Z;;(t) may be bounded recursively for
joi=1,2,..

Eij(T)] < Z nkr_]/ Sik(s)ds + Z wm/ |Eyj(s)|ds (33)

k=i+1 k=i+1
where bounds for fOT 0ij(s)ds, i < j, are obtained in (29) and (30) for (i,j) € Ig and
in (31) and (32) for (i,j) ¢ Is.
Proof We have

/ S (o) (5 Zag (9] + [Con(s) — Con () (51

0 k=i+1

and (33) is obtained in a straightforward way since Ey; (s) = Zij (s) — ij (s) and
E;;(s) = 0. Next, note that when j =i+ 1, (33) reduces to

T
|Esit1(T)| < / biji+1(s)ds
0
since we may take 7;; = 1.
In light of this Lemma, in the integrally separated case we have:

Theorem 14 Suppose assumptions (17) and (27) hold and let € > 0 be given. If
p = max; ; p;; s sufficiently small, then there exists a time T > 0 such that || Z°(T) —
Z¢(00)|| < € where Z°(T) is the computed Z at time T and Z°(00) is the exact, limiting
Z.

Proof Let T denote the time such that [|Z°(t) — Z°(o0)|| < €/2 for all t > T as in
Remark 7. Next choose p small enough so that the bounds obtained in Lemma 1
satisfy || Z°(T) — Z¢(T)|| < ¢/2.

Remark 15 To obtain a computable bound one can further bound || Z9(T) — Z¢(T)||
where Z9UT) is a quadrature approzimation of Z°(T) so that the difference Z<(T) —
Z¢(0) between what we can compute, Z9(T), and the eract solution in the infinite
time limit, Z€(c0), may be bounded.
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3.4 Continuous SVD
A continuous SVD algorithm for the approximation of Z’%D, together with the associ-
ated directions, have been developed in [13,14], to which we refer for details. Here we
just summarize the main steps.

The following differential equations are solved for the unknowns: U, V and v; =
Ué—j% for j=1,...,n—1, and vp = log(on):

U="UH,

ﬂj = ((Real(0j+17j+1) — Real(C’jj))l/j, j = 17 sy — 17
vn = Real(Chn(t)),

V =VK,

where C = (U*AU), and H and K are given in (11).

3.5 Exponential Dichotomy spectrum in R

Once we have computed E}J«JFD and ST, Xgp and S8 (see Sections 3.1, 3.2, 3.4), we will
proceed as in Algorithm 3 to ascertain ED in R for the shifted system & = (A(t) —pl)z.
Below, we summarize the technique.

Step 1 Compute EI-Ei_D and Y5 together with V(TT) and V(T ™) for SVD based tech-
niques, or Z(TT) and Z(T~) for QR based techniques. TF are the final times
reached (see Remarks 5 and 7). If p € EE‘,FD or p € Xy, then u € Ygp.

Step 2 If u ¢ Z%D, let k£ be the number of negative (stable) Lyapunov exponents in forward
time and m be the number of positive (stable) Lyapunov exponents in backward
time of & = (A(t) — pl)z. If m # n — k then p € Ygp.

Step 3 If m = n — k, form a basis of ST with last k columns of V(T'") for SVD based
techniques or last k columns of UT with U™ as in the last step of Algorithm 12
for QR based techniques, and a basis of S~ with last m columns of V(T ) or U™ .

Compute d as in (13). If d =0 then 1€ YED, else u ¢ Ypp.

Remark 16 If we just want to ascertain ED in R for (1) and the whole spectrum is
not needed, we can apply the algorithm just to p = 0.

Remark 17 As previously remarked, it is possible to check if J()\) = 0 by exploiting
the continuity of d, and its differentiablity with respect to (AR, A1) (see Remarks 5 and
7). For example, we used Newton’s method to locate X such that J(X) = 0, approxi-
mating the Jacobian of d by centered differences (with stepsize h = 1.E—5; exponential
notation is adopted to indicate constants used in the computations). Thus, for each
Newton iterate d is calculated at four additional values of  to form an approximation
of the Jacobian.

4 Numerical experiments

Below we give numerical results to illustrate performance of our techniques.



16 Dieci, Elia, Van Vleck

Example 18 This is a modification of [15, Example 1, Section 5] and is useful for
testing purposes, since we have explicit knowledge of when one has, or does not have,
ED. Consider the linear system

- _ [(atan(t) + # + da(t) (A —1—1)cos(t)
X=AWX = ( 0 ~ L(atan(t) + L —|—5a(t))> X, (%)

where 6 = 0.1 is chosen so that Ajj(t) and Aga(t) are integrally separated and
at) = sin(log(ﬁT"'l)) + ;g% cos(log(ﬁT""l)). The principal matrix solution @(t) can
be computed explicitly as

2
() = "D, (1) = t-atan(t) + bt sinflog(— ),

t 1
o) =(A—1— i)(pu(t)/ (e73/2() cos(s))ds, Baa(t) = e 29D, oy (t) = 0.
0

The diagonal elements of A are independent of X so by (20), EE‘,FD and X are in-
dependent of A as well. Moreover, EgD and Y5 are continuous spectra (i.e., they
are made up by non trivial intervals), because of the oscillatory nature of the func-
tion «, and 0 ¢ Z;:LDZED. So to ascertain ED in R, we execute Step 3 of Algo-
rithm 3. Following the same reasoning as in [15, Example 1, Section 5], the forward

stable subspace can be computed explicitly as ST = Span(v), with v = [+i] and
v = —(A—1—19)limp—4o0o fg(e_%ﬁ(s) cos(s))ds, vo = 1. Similarly, the backward
stable subspace is given by S~ = Span(w), with w = [pl] and w1 = —(A -1 —

1) lim¢— — oo fg (efgﬁ(s) cos(s))ds, wg = 1. It follows that for A = 1+ 4, the system does
not admit ED in R. Notice that wy # v1 for A # 1 44 so that the system admits ED
in R for A #1+41.

In our numerical implementations, to find the value of A\ for which the system does
not admit ED, which we know to be Aexact = 1 + ¢, we use Newton’s method with
starting value A9 = 0.5 4 0.5, to find the root of d in (13). We stop the Newton’s
iteration when the difference of successive iterated is below 1.E — 12. In Table 1 we
show the results obtained with the continuous QR (QRC) and the discrete QR (QRD)
methods. The relevant differential equations for both methods are solved with the
classic Runge Kutta method of order 4 and constant stepsize 1.E— 3. The same random
initial conditions were used in forward and backward time. In Table 2 we compare the
convergence and computational time for QRC, QRD, and the SVD method again using
the classical Runge Kutta method of order 4 but with constant stepsize 1.E — 1. In all
the computations for this example, the values of 77 and T~ were determined as in
Remark 5 with A = —1. In Table 2, a unit of time was approximately 160 seconds of
computation time on the laptop we employed for the computations (done in Matlab).
A comparison of Tables 1 and 2 illustrate the robustness of the results with respect to
stepsize and discretization error.

In Figure 1 we plot the basin of attraction of the Newton method using the discrete
QR method, although nearly identical results are obtained with any of the methods.
The plot is obtained by checking for convergence on a grid of points in the complex
plane.

In Figure 2, we plot the error in approximating the stable subspace of (35) for
A = 0, both for the discrete QR method and the continuous SVD method as a function
of the stepsize h for h = 1/10,1/20,1/40,1/80,1/160, 1/320. Notice that the plot shows
—log(error) vs. —log(h). Clearly, both methods have order 4.
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Table 1 Example 18: Newton method’s iterates with h = 1.E — 3.

METHOD | [Aexact — ML,k =0, 1, ... | [d(Mps1)]
7IE—1 7IE-1

5.2E — 1 5.9E — 1

1.3E—1 2.2E — 3

QRC 44E—9 5.6E— 9
4.0E — 15 1.5E — 15

2.9E — 15 3.8E — 16

7IE—1 THE—1

3.6E — 1 4.3E—1

3.8E — 2 4.8E — 2

QRD 45E—5 5.7E—5
2.9E — 11 3.1E — 11

4.4E — 16 6.5E — 15

4.8E — 15 1.4E — 15

Table 2 Example 18: Newton method’s iterates with h = 1.E — 1.

METHOD | TIME | |Aexact — Ak, k=0,1,... |[d(Ak4+1)]
7.1le—1 2.8¢—1
1.3e—1 5.5e — 2
1l.4e — 3 6.0e — 4
SVDC 5.5 l.le—17 4.2e — 8
1.7¢e =7 9.3e — 15
1.7¢e =7 2.0e — 16
7.le—1 7.4e — 1
4.5e — 1 5.3e — 1
8.4e — 2 l.le—1
QRC 6 4.7e — 4 6.0e — 4
2.7e — 7 6.7¢ — 10
2.7e — 7 0
7.le—1 7.5e — 1
3.6e — 1 4.3e —1
3.8e — 2 4.8¢ — 2
QRD 1 4.5e — 5 5.7e — 5
1.9¢ — 11 2.4e — 11
4.4e — 16 2.0e — 15

Finally, in Table 3 we show the results obtained when approximating Ygp for A = 0
using the discrete QR method. We show only the positive interval of Ygp ([ar1, 81]) and
E}J«ZFD ([oz;r Bf] U [a;r ﬂ;]), since due to the symmetry of the problem EED =-2p
and Ygp = [@1 f1]U[—B1 — a1]. In the Table, the values S and T refer to the values

used in (26).

Example 19 We now consider an upper triangular linear system in ]R47 which is chosen
to show how our techniques perform when the coefficient matrix is not asymptotically
constant. The diagonal elements of A in (1) are defined as follows

A1 (t) = g (cb(t) = A +3+1)
Aga(t) = 7o (6 — A + i + cos(t))

251
Ass(t) = t;gl 2-A+1)
Au(t) = g (T = A+ 1)

when t < —1;
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Fig. 1 Example 18: Basin of attraction of the Newton method.

2

15

0.5

Fig. 2 Example 18: error on approximation of stable direction.

log(err)
N
5

log(h)

Ap(t) = m5+—1> ((t+ 1)(ca(t) + X =3 —1) + (1 — £)(cb(t) — A+ 3 + 1))

Aoo(t) = wgil) (t+1)(5—A+1)+ (1 —1)(6 — A+ 1+ cos(t)) when |1 < 1
Asgs(t) = Q(tfﬂ) (E+ 1D (=5+A+1)+ (1 —1)(2 = A+1)) =
Aaa(t) = gy (E+1)(=2= A1) + (1= 6)(T = A+1))
Api(t) = pg_l (ca(t) + A —3 — 1)

Aga(t) = tzﬁgl( —A+1i) when > 1.
Asg(t) = t;}q (=5 +A+1)

Ag(t) = g (-2 - A +1)

Here a(t) = sin(log(t? + 1)) + ;% cos(log(t? + 1)), b(t) = a(t) + cos(log(t? + 1)) —
2
% sin(log(t? + 1)) and ¢ = 0.1.



Detecting Exponential Dichotomy On The Real Line 19

Table 3 Example 18: Y'gp and EED computed for different values of S and T, with constant
stepsize h = 0.05.

S T [o1 1] [of B7] o B8]
1.0E4+2 | 1.0E+ 3 0.7274 1.7924 1.4547 1.7924 —0.8962 — 0.7274
1.0E+4+2 | 1.0E+ 4 0.6736 1.7943 1.3473 1.7943 —0.8972 —0.6736
1.0E4+3 | 1.0E+ 4 0.6777 1.7924 1.3555 1.7924 —0.8962 — 0.6772
1.0E+3 | 1.0OE+5 0.6736 1.7940 1.3472 1.7940 —0.8970 — 0.6736
1.0OE+4 | 1.0OE+4+ 5 0.6744 1.7609 1.3488 1.7609 —0.8805 —0.6744

While A3s and Ayy converge quadratically at +o0o, Ay oscillates as t — +oo and
Ago oscillates as t — —oo. The precise form of the off-diagonal entries of A is not
important in what follows, and we chose them as bounded functions of ¢ and A, linear
in A. In this example, Z’:EtD depend on .

Upon inspecting the diagonal elements of A, it is easy to see that in backward time
(as t — —o00), the Lyapunov exponents are stable for every value of A, while in forward
time (as ¢ — 4o00) they are not always stable. For example, for Real(\) in a small
neighborhood of 4 and —0.5, the exponents are not stable. Instead, for Real(A) = 3.5
or 5 there are stable but not distinct Lyapunov exponents (in forward time). For these
last two values of A\, SVD techniques are not guaranteed to be reliable. Moreover, for QR
methods, in order to obtain proper ordering of the diagonal of B (both in forward and
backward time) and satisfy (18) and (21), we cannot select initial condition X (0) = I;
initial condition chosen randomly worked reliably.

Before reporting on the results of some experiments, we remark that, if for a given
value of A the computed spectra E:EtD are given by the union of 4 disjoint intervals,
stability of the Lyapunov exponents is guaranteed (use [21, Theorem 8.4] and [1, Lemma
5.4.1]). Of course, this is a sufficient condition for stability of the Lyapunov exponents.

The results in Table 4 were obtained with the discrete QR techniques. At every
step, we solved the differential equation for @(tg1, t;) with a 4-th order explicit Runge
Kutta method with constant stepsize h = 1.0E — 2. We approximated directions and
spectra up to final time 7' = 100 (this is enough for convergence of directions and
to ascertain 0 ¢ Z%D). We show the distance between two consecutive iterates and
the modulus of d. In Table 4 we show the results obtained when applying Newton’s
method with initial guess A9 = 4.8 + 0.5, and stopping criterion on the difference
of two successive iterates with tol = 1.0E — 15. Convergence occurs in 6 steps to
the root A = 4.1944 + 10.76940. For A = X the two computed half line spectra are
EED = [1.0552 1.3995] U [0.8046 0.8055] U [—0.8055 — 0.8046] U [—6.1936 — 6.1867]
and Yy = [-2.1959 —2.1900]U[—1.5058 —0.9910]U[1.7476 1.8593]U[2.8021 2.8052].

So, for A = /):, the system admits ED in the two half lines, the dimensions of stable
and unstable space sum up to 4, but they are not complementary: the system does not

have ED in R.

Example 20 In this problem, we study the orbital stability of a traveling impulse of
the “good” Boussinesq equation

Utt = Ugx — Uzzxx — (U2);E;E . (36)
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Table 4 Example 19: Newton method’s iterates.

‘)‘k+1 _)‘klvk:()?lv ‘d()‘k%l»l)l
4.6E—1 T.4E — 2
1.1IE—-1 8.2E—3
3.0E -3 5.8E—5
9.1E—-5 3.7TE—9
44E -9 1.2E - 13
9.8E — 14 5.5E — 16

To begin with, we rewrite this as a first order system for U = [ﬂ with v = uy,

Ut = [am —Oazm (1)} U= [(u20)m] ' (87)

Next, consider the traveling wave ansatz U(x — st,t) = U(z,t) which gives

0 1

U =
K |:8zz — 02222 0

} U+ sU, — {2 (0s)? ?r 2uuzz] . (38)

The traveling wave solution Q(z) is the solution of the steady-state problem, and

~

therefore it is given by the vector function Q(z) = { :17 ]7 where u solves
- z

azz - azzzz — Szazz - 2(172)2 - 2aazz =0. (39)
In this case, the exact solution is known:
(1- 32)sech2(§\/ 1—s2),

gives the system

u(z) =

N o

with |s| < 1. Linearization of (38

=

v+ suy } . (40)

U
|:'U:| + - |:Uzz — Uzzzz + SVz — 417271«,2 - 2auzz - 2uazz
From this, the search for solutions of the type e”tU(z) gives the eigenvalue problem

. v+ suz

u
K |:'U:| - [Uzz — Uzzzz + SVz — 4azuz - 217Uzz - 2'U«azz:| ’ (41)

and substituting v = pu — su, in the second equation gives the ODE

Uszzz = (1 — 8% — 20)uzs + (25 — 402 )uz — (02 + 20z2)u,

u
which we rewrite as the first order system (1) for the variable uuz , obtaining the
zz
Uzzz
0 1 0 0
. . 0 0 1 . .
coefficient matrix A(z,pu) = 0 0 0 NE It is relatively to
2

—p? = 2y 2us — 40, 1 —s2 =200
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this system that we search for values of pu for which the system does not admit ED
in R. For Real(s) > 0, the system admits ED in both half-lines and the dimensions
of forward stable and backward stable spaces sum up to n. It follows that to check
whether the system has ED in R, we will follow Step 3 in Algorithm 3. To compare
our results with the ones in [28], we compute the Evans function d(u) for p € [0, 0.2],
relatively to computations for the front wave of the (good) Boussinesq equation. The
results compare well with those in [28], and show that for a value of u somewhere in
(0.155,0.156) the linear system does not have ED in R.

Fig. 3 Example 20: Evans function computation for the Boussinesq equation.

det
!
~
T
L

L L L L L L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
A

5 Conclusions

In this paper, we have presented robust computational techniques for the detection of
ED on the real line. As far as we know, for the first time there are numerically stable
algorithms which detect ED on the real line using information from a finite time inter-
val. It is important to stress that our algorithms are justified under generic conditions
and do not require asymptotic convergence of the coefficients matrix. Moreover, by our
techniques we also obtain approximation of stable and unstable subspaces, and this
also appears to be a novelty.

The main tools of our methods are the QR and/or SVD factorizations of the un-
derlying fundamental matrix solution. The theoretical backing for the use of these
factorizations rests on our recent work [15]. We emphasize that it is because of these
recent theoretical developments (in particular, the subtle issue of convergence for the
stable/unstable subspaces) that we have been able to produce general algorithms to
detect ED on the real line.

References

1. L. Ya. Adrianova. Introduction to Linear Systems of Differential Equations, volume
Translations of Mathematical Monographs 146. AMS, Providence R.I., 1995.



22

Dieci, Elia, Van Vleck

w N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

. L. Arnold. Random Dynamical Systems, 2nd Edition. Springer-Verlag, Berlin, 2003.

. U. Ascher, R. M. Mattheij, and R. D. Russell. Solution of Boundary Value Problems for
ODEs. Prentice-Hall, Englewood Cliffs, N.J., 1988.

. L. Barreira and Y. Pesin. Lyapunov Exzponents and Smooth FErgodic Theory. AMS,
Providence, RI, 2001. University Lecture Series, v. 23.

. G. Benettin, G. Galgani, L. Giorgilli, and J. M. Strelcyn. Lyapunov exponents for smooth
dynamical systems and for Hamiltonian systems; a method for computing all of them.
Part I: Theory. ...Part II: Numerical applications. Meccanica, 15:9-20,21-30, 1980.

. W. Beyn. On well-posed problems for connecting orbits in dynamical systems. Cont.
Math., 172:131-168, 1994.

. W. J. Beyn. The numerical computation of connecting orbits in dynamical systems. IMA
J. Numer. Analysis, 10:379-405, 1990.

. W.J. Beyn and J. Lorenz. Stability of traveling waves: dichotomies and eigenvalue con-
ditions on finite intervals. Num. Func. Anal. and Opt., 20:201-244, 1999.

. H.W. Broer, H.M. Osinga, and G. Vegter. Algorithms for computing normally hyperbolic

invariant manifolds. Zeitschrift Angew. Math. Phys., 48:480-524, 1997.

A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N. K. Nichols. “Numerical computation

of an analytic singular value decomposition by a matrix valued function”, Numer. Math.,

60:1-40, 1991.

W. A. Coppel. Stability and Asymptotic Behavior of Differential Equations, volume

Heath Mathematical Monographs. Heath & Co., Boston, 1965.

W. A. Coppel. Dichotomies in Stability Theory. Springer-Verlag Lecture Notes in Math-

ematics Vol. 629, 1978.

L. Dieci and C. Elia. The singular value decomposition to approximate spectra of dy-

namical systems. Theoretical aspects. Journal of Differential Equations, 230-2:502-531,

2006.

L. Dieci and C. Elia. Singular value decomposition algorithms to approximate spectra of

dynamical systems. Mathematics and Computers in Simulation, 79-4:1235-1254, 2008.

L. Dieci, C. Elia and E. Van Vleck Exponential Dichotomy on the real line: SVD and

QR methods. J. Diff. Eqn., 248:287-308, 2010.

L. Dieci and J. Lorenz. Computation of invariant tori by the method of characteristics.

SIAM J. Numer. Anal., 32:1436-1474, 1995.

L. Dieci and E. Van Vleck. Lyapunov and other spectra: a survey. In D. Estep and

S. Tavener, editors, Preservation of Stability under Discretization. STAM, Philadelphia,

2002.

L. Dieci and E. Van Vleck. Lyapunov spectral intervals: theory and computation. SIAM

J. Numer. Anal., 40:516-542, 2003.

L. Dieci and E. Van Vleck. On the error in computing Lyapunov exponents by QR

methods. Numerische Mathematik, 101-4:619-642, 2005.

L. Dieci and E. Van Vleck. Perturbation theory for approximation of Lyapunov exponents

by QR methods. J. Dynam. Differential Equations, 18-3:815-840, 2006.

L. Dieci and E. Van Vleck. Lyapunov and Sacker-Sell spectral intervals. J. Dynam.

Differential Equations, 19-2:265—-293, 2007.

L. Dieci and E. Van Vleck. On the error in QR integration. SIAM J. Numer. Analysis,

46:1166-1189, 2008.

N. Fenichel. Persistence and smoothness of invariant manifolds for flows. Indiana Univ.

Math. J., 21:193-226, 1971.

N. Fenichel. Geometric singular perturbation theory for ordinary differential equations.

J. Diff. Eq., 31, 1979.

I. Ya. Gol’dsheid and G. A. Margulis. “Lyapunov indices of a product of random matri-

ces”, Uspekhi Mat. Nauk, 44:13-60, 1989.

T. Huels. Computing Sacker and Sell Spectra for discrete Dynamical systems. Preprint

J. Humpherys, B. Sandstede, and K. Zumbrun. Efficient computation of analytic bases

in Evans function analysis of large systems. Num. Mathematik, 103:631-642, 2006.

J. Humpherys and K. Zumbrun. An efficient shooting algorithm for Evans function

calculations in large systems. Physica D, 220:116-126, 2006.

R. A. Johnson, K. J. Palmer, and G. Sell. Ergodic properties of linear dynamical systems.

SIAM J. Mathem. Analysis, 18:1-33, 1987.

T. Kato. Perturbation Theory for Linear Operators. Springer Verlag, New York, Vol.

132, 1966.



Detecting Exponential Dichotomy On The Real Line 23

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

V. I. Oseledec. A multiplicative ergodic theorem. Lyapunov characteristic numbers for
dynamical systems. Trans. Moscow Mathem. Society, 19:197-231, 1968.

K. J. Palmer. The structurally stable linear systems on the half-line are those with
exponential dichotomy. J. of Diff. Equations, 33:16—25, 1979.

K. J. Palmer. Exponential separation, exponential dichotomy and spectral theory for
linear systems of ordinary differential equations. J. of Diff. Equations, 46:324-345, 1982.
K. J. Palmer. A perturbation theorem for exponential dichotomies. Proc. Roy. Soc.
Edinburgh, 103A, 1987.

K. J. Palmer. Exponential dichotomies for almost periodic equations. Proc. Amer. Math.
Soc., 101:293-298, 1987.

K. J. Palmer. Exponential dichotomies and Fredholm operators. Proc. AMS, 104:149—
156, 1988.

K. J. Palmer. Shadowing in dynamical systems: theory and applications. Kluwer Aca-
demic Publishers, Dordrecht-Boston, 2000. Mathematics and its applications v. 501.

S. Yu. Pilyugin. Shadowing in dynamical systems. Springer—Verlag, Berlin-Heidelberg,
1999. LN in Math. 1706.

R. J. Sacker and G. R. Sell. A spectral theory for linear differential systems. J. Diff.
Equations, 27:320-358, 1978.

R. J. Sacker and G. R. Sell. Dichotomies for linear evolutionary equations in Banach
spaces. J. Diff. Equations, 113:17-67, 1994.

Kunimochi Sakamoto. Estimates on the strength of exponential dichotomies and appli-
cation to integral manifolds. J. Differential Equations, 107-2: 259-279, 1994.

B. Sandstede. Stability of travelling waves. In Handbook of dynamical systems, Vol. 2,
pages 983—-1055. North-Holland, Amsterdam, 2002.

E. S. Van Vleck. On the error in the product QR decomposition. SIAM J. Matr. Anal.
Appl., 31: 1775-1791, 2010.



