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1. Introduction

Exponential dichotomy is at the heart of the fundamental perturbation results for linear systems of
Coppel and Palmer ([10,11] and [24–26,28]), of the spectral theory of Sacker and Sell [31,32], of the
geometric theory of Fenichel [19], of shadowing results [29,30], of perturbation results for invariant
manifolds [18], of the fundamental perturbation results for connecting orbits of Beyn and Sandstede
([6–8] and [34]), and it has proven also a formidable ally to justify and gain insight into the behavior
of various algorithmic approaches for solving boundary value problems, for approximating invariant
surfaces and for computing traveling waves, among other uses (see [3,9,14,21]). Indeed, the property
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of exponential dichotomy is so ubiquitous and relevant that one would expect that there are several
practical techniques to ascertain whether or not a given system enjoys exponential dichotomy on
the real line. However, as far as we know, there are no reliable techniques allowing us to do that
in general. The cases in which one is able to ascertain exponential dichotomy for a given system
are perturbative in nature: slow varying systems (close to constant or periodic systems), roughness
results (that is, systems close to systems having exponential dichotomy), L1 perturbation results; e.g.,
see [11], [8], [26] and [33].

Analysis and implementation of methods for approximating Lyapunov exponents of differential
equations, and more generally also Exponential Dichotomy spectrum, henceforth ΣL and ΣED respec-
tively, on the half-line t � 0 (or t � 0), are rather well established. Our goal in this work is to lay down
the theoretical ground work for the development of methods to ascertain if a system has exponential
dichotomy (henceforth ED) on the entire real line. Our techniques will rest on the same methodolo-
gies which have proven valuable to approximate spectra on the half-line. As a matter of fact, we will
use the same assumptions needed in that context, ultimately some measure of integral separation in
the system. As a result, our criteria to ascertain ED will not be of perturbation nature (for a system
close to one which has or not have ED, such a constant coefficient problem), but will be resting on
structural (and generic) properties of the underlying system.

We begin by reviewing the concepts of spectra on R
+ (or R

−) and lay down notation for later
use.

1.1. Spectra of dynamical systems

Consider the n-dimensional dynamical system

ẏ = f (y), y(0) = y0, (1)

with solution y(t, y0). Consider the linearized problem

ẋ = D f
(

y(t, y0)
)
x, (2)

or simply

ẋ = A(t)x, (3)

where we suppose that A is continuous and bounded. With X(·), we will indicate a fundamental ma-
trix solution of the system. The principal matrix solution will be written as Φ(·), so that Φ̇ = A(t)Φ ,
Φ(0) = I .

Spectra are defined for the linear problem (3), and in general they will depend on the solution
trajectory of (1), that is on the initial condition y0. [There are important situations when this depen-
dency on y0 can be removed, in a measure theoretical sense: [2,4,5,22,23].]

Two spectra associated to (3) are of interest to us: The Lyapunov spectrum, ΣL, and the Exponen-
tial Dichotomy (or Sacker–Sell) spectrum, ΣED.

The Lyapunov spectrum: ΣL . This is defined in terms of upper and lower Lyapunov exponents (LEs for
short). Given a fundamental matrix X for (3), define μ j , j = 1, . . . ,n, as

μ j = lim sup
t→∞

1

t
log

∥∥X(t)e j
∥∥, (4)

where the e j ’s are the standard unit vectors. When the sum of the numbers μ j is minimized as we
vary over all possible ICs (initial conditions) X(0), the numbers are called (upper) Lyapunov exponents
of the system, and the ICs are said to form a normal basis. We will write λs

j , j = 1, . . . ,n, for the
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
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ordered upper LEs of (3). By working with the adjoint system, ż = −AT (t)z, one analogously defines
its upper LEs which are called lower LEs of the original system (3), call them λi

j , j = 1, . . . ,n, which
again are considered ordered. The Lyapunov spectral intervals can now be defined:

ΣL :=
n⋃

j=1

[
λi

j, λ
s
j

]
. (5)

In case in which λi
j = λs

j = λ j , for all j = 1, . . . ,n, the system is called regular.

The Exponential Dichotomy, or Sacker–Sell, spectrum: ΣED . This is defined in terms of exponential di-
chotomy (see [11]). Recall that (3) has Exponential Dichotomy on the half-line (i.e., t, s � 0 below) if
there exist constants K � 1, α > 0, and a projection P such that

∥∥X(t)P X−1(s)
∥∥� K e−α(t−s), t � s,∥∥X(t)(I − P )X−1(s)

∥∥� K eα(t−s), t � s, (6)

where X is a fundamental matrix solution. ΣED is defined to be the set of values λ ∈ R for which the
shifted systems ẏ = [A(t) − λI]y do not have exponential dichotomy. For some k � n, ΣED is given by
(see [31]) a collection of disjoint subintervals

ΣED := [a1,b1] ∪ · · · ∪ [ak,bk]. (7)

We make the simple, but fundamental, observation that (3) has ED on the half-line t � 0, iff 0 /∈ ΣED.

Remark 1. By virtue of the roughness theorem for exponential dichotomies (see [10]), ΣED is stable,
that is it is continuous with respect to perturbation in the coefficients A(·) of (3). Stability theory
for ΣL is more complicated (and restrictive), and one needs that the system enjoys the property of
integral separation in some form (see [1,17]).

Directions: Growth subspaces. Associated to the spectral intervals, both ΣL and ΣED, there is very im-
portant geometric information on the subspaces of solutions (i.e., of initial conditions) which achieve
a certain asymptotic exponential growth; e.g., whose asymptotic growth is in the intervals of ΣED.
As it turns out, this geometric information will be key for establishing ED on the real line, but it is
typically neglected in algorithmic studies on approximation of spectra of dynamical systems.

Let us define the forward stable subspace S + to be the set of initial conditions leading to decreas-
ing solutions in forward time:

S + = {
x ∈ R

n:
∥∥Φ(t)x

∥∥→ 0 as t → +∞}
. (8)

Let us also define the backward stable subspace S − (this is called unstable subspace by Sacker and
Sell [31]) be the set of initial conditions leading to decreasing solutions in backward time:

S − = {
x ∈ R

n:
∥∥Φ(t)x

∥∥→ 0 as t → −∞}
. (9)
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
Equations (2009), doi:10.1016/j.jde.2009.07.004
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ED on the real line. The problem (3) enjoys ED on the entire real line, when (6) holds with t, s ∈ R.
The following characterization of ED on the entire real line (see [10,11]) is the one which we will
adopt in order to device techniques to verify ED:

System (3) has ED in R if and only if it has ED in R
+ and R

− , and R
n = S + ⊕ S − .

As a consequence, to check if system (3) has ED in R, we will check that:

(ED-1) It has ED in R
+ and R

− .
(ED-2) The stable and the unstable subspaces of (8) and (9) are complementary. [That is, they form a

basis for R
n .]

[Notice that if there is ED in R
+ and R

− , then convergence to 0 as t → ±∞ in (8) and (9) is expo-
nentially fast.]

We are now ready to look at the two techniques which we propose to use to detect ED on the
real line. As it turns out, these are the same techniques which have been used to approximate ΣL and
ΣED on the half-line. The first technique is based on the SVD of a fundamental matrix X : X = UΣ V T .
The second technique, which rests on the most popular approach to approximate ΣL and ΣED on
the half-line, is based on the QR factorization of a (normal) fundamental matrix solution X , that is
X = Q R .

Notation. For a positive, non-vanishing function f , we will use the shorthand notation χ s( f ), χ i( f )
and χ( f ) to mean respectively lim supt→+∞ 1

t log( f ), lim inft→+∞ 1
t log( f ) and limt→∞ 1

t log| f (t)|.
Similar notation will be used for the limit as t → −∞.

2. SVD method

In order to approximate ΣL and ΣED on the half-line, SVD techniques use the information emerg-
ing from the smooth SVD (if this is possible) of a fundamental solution X . That is, for t � 0, one seeks
the decomposition X(t) = U (t)Σ(t)V T (t), with all factors being as smooth as X , Σ = diag(σ1, . . . , σn),
and U and V orthogonal. To find this SVD, one can integrate the differential equations governing the
evolution of the U , V , and Σ factors in the SVD of X . In [12], see also [16], we have shown that if the
system (3) has stable and distinct Lyapunov exponents (a generic situation), then the decomposition
X = UΣ V T with smooth factors is valid, differential equations for U and V can be given, and the
evolution of the singular values is given by

σ̇ j = C jj(t)σ j, j = 1, . . . ,n, C(t) := U T (t)A(t)U (t). (10)

Moreover, we have shown how, given any fundamental matrix solution X (i.e., any initial condition
X(0) for it), both ΣL and ΣED can be recovered from knowledge of the diagonal of C . Finally, we have
also shown, and this will be important soon, that—for systems with stable and distinct exponents—the
orthogonal function V in the SVD converges exponentially fast to a constant matrix V̄ and that the
columns of X(0)V̄ span the growth subspaces associated to (ΣL and) ΣED. It must be stressed that,
with SVD techniques, we are able to obtain ΣL and ΣED without the need to require the fundamental
matrix solution X to be normal, any initial condition X(0) will do (as long as the system has stable
and distinct Lyapunov exponents). It comes natural then, to use the principal matrix solution Φ to
characterize the desired quantities. Clearly in this case the growth subspaces (which are those in (8)
and (9)) are given by the columns of V̄ . We refer to [13] for computational details on SVD techniques.

Perhaps surprisingly, we already have all the necessary ingredients in order to ascertain ED on R

by using the SVD method. In fact, it is sufficient to proceed as follows (see (ED-1)–(ED-2)):

(a) Relatively to (3) in forward and backward time, apply SVD techniques to the principal matrix
solution Φ , to verify ED on the two half-lines R

+ and R
− . This requires verifying that 0 /∈ ΣED
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
Equations (2009), doi:10.1016/j.jde.2009.07.004
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for both forward and backward problems. If 0 ∈ ΣED for either forward or backward problem,
then there is no ED. Otherwise, there is ED on the two half-lines. Also, recall that we expect (for
systems with stable and distinct Lyapunov exponents) that the factors V of the SVDs converge
(exponentially fast) to constant orthogonal matrices, in forward and backward time, call these V̄ +
and V̄ − respectively.

(b) Take the columns of V̄ + and V̄ − relative to the stable modes (those leading to intervals of ΣED
to the left, respectively right, of 0): V̄ +

s , V̄ −
s . The key observation here (see [12]) is that V̄ +

s spans
S + and V̄ −

s spans S − .
(c) Verify if [V̄ −

s V̄ +
s ] is a basis for R

n . If it is, then the system has ED on R, otherwise it does not.

To sum up, SVD techniques based on (a), (b) and (c) above can be used to verify ED on R. But,
our analytical results justifying this approach require the assumption of distinct and stable Lyapunov
exponents. Although the assumption of stable Lyapunov exponents is natural, the need to have distinct
Lyapunov exponents is violated in cases of practical interest (such as when the coefficient matrix A
assumes a constant limiting value Ā, and Ā has complex conjugate eigenvalues). In our practical
experience, the SVD method seems to work reliably also in these cases, but the lack of theoretical
justification in the case of stable and not distinct LEs is bothersome, and we cannot guarantee that this
technique will not encounter difficulties in the case of stable, but not distinct, Lyapunov exponents
(either forward or backward in time). To avoid these difficulties, we then turn our attention to the
next technique.

3. QR method

QR techniques are based on the (unique) decomposition of a normal fundamental matrix solution
X = Q R , where Q is orthogonal and R is upper triangular with positive diagonal. In practice, one
only finds Q and (the logarithm of the) diagonal of R . For example, in a continuous realization of the
QR method, we integrate differential equations for Q , so that R = Q T X would satisfy the triangular
system Ṙ = B(t)R with B(t) := Q T A Q − Q T Q̇ . As it is well understood, see [5,15,16] for details
on R

+ , one can approximate ΣL and ΣED by using only the diagonal of B; in other words, only Q is
needed and R is really never formed, since diag(B) = diag(Q T A Q ).

So, to check (ED-1), one can use QR techniques to find ΣED for both forward and backward prob-
lems and verify that there is ED on the two half-lines. The issue is how to verify (ED-2), that is how
to obtain information on the growth subspaces by the QR technique. It is our goal in this chapter to
show that—under certain assumptions—one can obtain the needed directional information from the
rescaled function Y = R−1diag(R). We will prove that Y “converges” to a matrix Ȳ for both forward
and backward problems, and that these limiting values can be used to verify (ED-2).

Remark 2. As we previously observed, when using the QR technique we need to require that the
fundamental matrix solution X be normal. But, we actually will need more: We will need that the
initial condition X(0) be chosen in such a way that conditions (12) and (13) below be verified in
forward time, with the similar conditions (14)–(15) to be verified in backward time. In general, this
request will imply that the initial conditions for the forward and backward integration will not be the
same. An easy example of this is the diagonal system ẋ = Ax, with A = diag(1,−2). Obviously, this
system enjoys Exponential Dichotomy, and the principal matrix solution Φ is a normal fundamental
matrix solution for this problem. However, by using Φ , condition (12) is verified, but (14) is not. If for
the backward time integration we choose X(0) = [e2, e1], then we will get Q = [e2, e1], and then for
t � 0 B = diag(−2,1) and (14) is verified. In other words, with respect to the notation of (8) and (9),
we have S + = e2 and S − = e1.

With the above remark in mind, our results can be summarized as follows: Given suitable initial
conditions, X+(0) and X−(0), for the forward and backward problems respectively, the corresponding
Y + and Y − will “converge” (for t → +∞ and t → −∞, respectively) and the required growth sub-
spaces can be extracted from these limiting Y ’s, for problems with stable Lyapunov exponents, though
not necessarily distinct. [To be precise, for the case of non-distinct Lyapunov exponents, we show
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
Equations (2009), doi:10.1016/j.jde.2009.07.004
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convergence of Y to subspaces associated to the equal exponents, though we will not have that each
column of Y converges.] We will also show that convergence is taking place exponentially fast. Once
these theoretical results will be at hand, the basic technique to verify (ED-2) will be similar to what
we did for the SVD:

Use the columns of X+(0)Ȳ + and X−(0)Ȳ − relative to the forward and backward stable modes, X+(0)Ȳ +
s

and X−(0)Ȳ −
s , and verify if [X−(0)Ȳ −

s X+(0)Ȳ +
s ] is a basis for R

n.

Remark 3. In our analysis below, we will focus only on the case t � 0, since, after rewriting assump-
tions (12) and (13) in backward time, see (14) and (15), the results for t � 0 are identical.

Assume now that a normal fundamental matrix solution X(t) has been chosen (that is, the initial
conditions X(0) have been chosen) so that for its unique QR factorization X(t) = Q (t)R(t), with Q
orthogonal and R with positive diagonal entries, we have

Ṙ = B(t)R,

and the Lyapunov exponents can be computed from the diagonal of B (that is, of R) and are stable.
Our purpose in this chapter is to show that—under these mild conditions—certain subspaces associ-
ated to R converge and can be used to detect exponential dichotomy on the real line. The result is
important, since we will only need to have stable Lyapunov exponents, though not necessarily stable
and distinct, as it was the case for the SVD.

So, we will consider the system

ẋ = B(t)x, (11)

with B continuous, bounded and upper triangular. In what follows, we will assume that the diagonal
elements of B satisfy one of the following assumptions:

(i) Bii and B jj are integrally separated, i.e. there exist a,d > 0 such that

t∫
s

(
Bii(τ ) − B jj(τ )

)
dτ � a(t − s) − d, t � s � 0, i < j, (12)

(ii) Bii and B jj are not integrally separated, but ∀ε > 0 there exists Mij(ε) > 0 such that

∣∣∣∣∣
t∫

s

(
Bii(τ ) − B jj(τ )

)
dτ

∣∣∣∣∣� Mij(ε) + ε(t − s), t � s � 0, i < j. (13)

Remark 4. For the sake of completeness, we remark that for the backward problem t � 0, one should
assume to have taken an initial condition X(0) so that for the QR factorization X(t) = Q (t)R(t), t � 0,
one obtains a triangular system Ṙ = B(t)R satisfying the following analogs of (12) and (13):

(i) Bii and B jj are integrally separated, i.e.

t∫
s

(
Bii(τ ) − B jj(τ )

)
dτ � −a(t − s) − d, t � s � 0, i < j, (14)
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
Equations (2009), doi:10.1016/j.jde.2009.07.004
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(ii) Bii and B jj are not integrally separated, but ∀ε > 0 there exists Mij(ε) > 0 such that

∣∣∣∣∣
t∫

s

(
Bii(τ ) − B jj(τ )

)
dτ

∣∣∣∣∣� Mij(ε) − ε(t − s), t � s � 0, i < j. (15)

Considering again only the case of t � 0, assume moreover that the Bii ’s are arranged in p, p � n,
subsets as follows. Let n1, . . . ,np be such that

∑n
i=1 ni = n, mi = ∑i

k=1 nk and denote with B(i)
j j the

(mi−1 + j)-th diagonal element of B . The set {B(i)
j j , j = 1, . . . ,ni} will be the i-th subset. Elements

belonging to the same subset satisfy assumption (13) while elements belonging to different subsets
satisfy (12) as follows

t∫
s

(
B(i)

j j (τ ) − B(i+1)

kk (τ )
)

dτ � a(t − s) − d, j = 1, . . . ,ni, k = 1, . . . ,ni+1.

In what follows we will use the notation B jj where there is no ambiguity, otherwise we will use the

subset-notation B(i)
j j . The same criteria will apply also to other quantities.

In [17], it was shown that the assumptions (12) and (13) guarantee that the Lyapunov spectrum
can be computed from the diagonal of B and that it is stable. In fact, in both cases (12) and (13), for
all j = 1, . . . ,n, the LEs are given by

lim sup
t→+∞

1

t
log

t∫
0

B jj(τ )dτ = χ s(R jj) = λs
j, lim inf

t→+∞
1

t
log

t∫
0

B jj(τ )dτ = χ i(R jj) = λi
j.

Remark 5. Denote with R the principal matrix solution of (11) and let

W j =
{

w ∈ R
n
∣∣∣ lim sup

t→+∞
1

t
log

∥∥R(t)w
∥∥� λs

j

}
,

i.e. W j is the subspace of initial conditions leading to upper LEs lesser or equal to λs
j . (The W j ’s are

called lineals in the classical theory of LEs.) Then conditions (12) and (13) guarantee that W j is also
the space of initial conditions leading to lower LEs lesser or equal to λi

j . Indeed, by [17, Theorem 4.2]
there exists a Lyapunov transformation T which reduces system (11) into block diagonal form. The
lineals for the new block system are the subspaces {em j−1+1, . . . , em j , . . . , en} so that the lineals for
system (11) are the spaces W j = span{Tm j−1+1(0), . . . , Tm j (0), . . . , Tn(0)}, where with e j and T j we
denoted respectively the j-th canonical vector of R

n and the j-th column of T . By [17, Theorem 5.1],
W j is also the set of initial conditions leading to lower LEs lesser than λi

j .

Now, let Y = R−1diag(R), so that Y satisfies the following ODE

Ẏ = −Y C(t), (16)

where C is strictly upper triangular with entries

Cij(t) = Bij(t)
R jj(t)

Rii(t)
= Bij(t)e

∫ t
0 B jj(τ )−Bii(τ )dτ , j > i. (17)

Observe that Y is upper triangular with 1’s on the diagonal.
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
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Notation. We found it useful to adopt two different notations for the columns of Y . The standard Y j

for the j-th column, or the one inherited from the B jj ’s: Y (i)
j (t) for the (mi−1 + j)-th column of Y (t).

Lemma 6. The elements of C satisfy the following

(i) χ s(Cij) < −a, if Bii and B jj are integrally separated;
(ii) for all ε > 0, χ s,i(Bij) − ε � χ s,i(Cij) � ε if Bii and B jj satisfy (13).

Proof. Let M = supt�0 ‖B(t)‖. If Bii and B jj belong to different subsets, say the k-th and the l-th
respectively, k < l, then |Cij(t)| � (supt�0 ‖B(t)‖)e−a(l−k)t+d = Me−a(l−k)t+d . It follows easily that
χ s(Cij) < −(l − k)a < −a.

If instead Bii and B jj belong to the same subset then |Cij(t)| � MeMij(ε)+εt and |Cij(t)| �
|Bij(t)|e−Mij(ε)−εt for arbitrary ε . It follows that

χ s,i(Bij) − ε � χ s,i(Cij) � ε. �
Corollary 7. Let Y be the matrix in (16). If the system is integrally separated, i.e. if the Bii ’s are integrally
separated for all i = 1, . . . ,n, then Y → Ȳ , with Ȳ constant, upper triangular matrix with 1’s on the diagonal.

Proof. By Lemma 6 and integral separation of the Bii ’s it follows that χ s(Cij) < 0 for i 
= j, while
Cii(t) = 0, for all t and for all i = 1, . . . ,n. Then C →t→∞ 0 exponentially fast so that Y →t→∞ Ȳ . �
Lemma 8. Let Y be the matrix in (16). Then for all ε > 0 sufficiently small, and any j = 1, . . . ,ni , i = 1, . . . , p,
we have

χ s(Y (i)
j

)
� ( j − 1)ε � (ni − 1)ε.

Proof. Eq. (16) can be solved explicitly and the elements of Y are given by the following expression

Yij(t) = Yij(0) −
t∫

0

j−1∑
k=i

Y ik(τ )Ckj(τ )dτ , j > i,

Yii(t) = 1, ∀t � 0. (18)

The Y (i)
j column of Y satisfies the following

Y (i)
j (t) = Y (i)

j (0) −
mi−1∑
k=1

t∫
0

Ck,mi−1+ j(t1)Yk(t1)dt1 −
mi−1+ j−1∑
k=mi−1+1

t∫
0

Ck,mi−1+ j(t1)Yk(t1)dt1. (19)

Then

∥∥Y (i)
j (t)

∥∥�
∥∥Y (i)

j (0)
∥∥+

mi−1∑
k=1

t∫
0

∥∥Ck,mi−1+ j(t1)Yk(t1)
∥∥dt1 +

mi−1+ j−1∑
k=mi−1+1

t∫
0

∥∥Ck,mi−1(t1)+ j Yk(t1)
∥∥dt1.

(20)
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
Equations (2009), doi:10.1016/j.jde.2009.07.004
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Take first i = 1. We show through inductive reasoning that χ s(Y (1)
j ) � ( j − 1)ε . Clearly χ i(Y (1)

1 ) =
χ s(Y (1)

1 ) = 0. Notice that for i = 1, the first sum in (19) and in (20) is zero. As far as the second
sum is concerned, we have χ s(Ckj Yk) � χ s(Ckj) + χ s(Yk) � ε + (k − 1)ε for k = 1, . . . , j − 1. Then

χ s(
∫

Ckj Yk) � kε . It follows that χ s(Y (1)
j ) � maxk=1,..., j−1(χ

s(
∫

Ckj Yk)) � ( j − 1)ε . The proof for i > 1
is analogous and it follows upon noticing that the first sum goes to zero exponentially fast since for
k = 1, . . . ,mi−1 we have χ s(Ck,mi−1+ j Yk) � χ s(Ck,mi−1+ j) + χ s(Yk) � −a + maxl=1,...,i−1(nl − 1)ε < 0,
where in the last inequality we picked ε < maxl=1,...,i−1

a
(nl−1)

. �
Remark 9. Lemma 8 implies χ s(Y (i)

1 ) = χ(Y (i)
1 ) = 0 for all i = 1, . . . , p.

In the two limiting cases of Lemma 8 we have:

• p = n so that ni = 1 for all i = 1, . . . ,n and χ i(Y j) = χ s(Y j) = 0, j = 1, . . . ,n (this follows from
Corollary 7 as well);

• p = 1 so that n1 = n and 0 � χ i(Y j) � χ s(Y j) � ( j − 1)ε , j = 1, . . . ,n.

Next, let Si(t) = span(Y (i)
1 (t), . . . , Y (i)

ni
(t)), i = 1, . . . , p.

Theorem 10. The spaces Si converge for t → +∞: limt→+∞ Si(t) = S̄ i , i = 1, . . . , p.

Proof. Clearly the first n1 columns of Y always span the same space so that S1(t) = S̄1 =
span{e1, . . . , en1} for all t . Consider now, for all t , S2(t) = span{Y (2)

1 (t), . . . , Y (2)
n2 (t)}. Let T > 0 and

fix 0 < τ � 1. We will prove the statement for S2, the proof for the other subspaces being analogous.
Using (19) we have

Y (2)
1 (T + τ ) − Y (2)

1 (T ) = −
n1∑

k=1

T +τ∫
T

Ck,n1+1(t1)Y (1)

k (t1)dt1. (21)

Lemmas 6 and 8 imply χ s(Ck,n1+1Y (1)

k ) � χ s(Ck,n1+1) + χ s(Y (1)

k ) < −a + (n1 − 1)ε < 0, if we choose
ε < a

(n1−1)
. It follows that the integrals in (21) tend to zero for T → +∞, uniformly in τ . Hence

lim
T →∞

(
Y (2)

1 (T + τ ) − Y (2)
1 (T )

)= 0,

and Y (2)
1 (t) tends to a constant vector: Ȳ (2)

1 . We do two more steps. First we show that for T → ∞,

span(Ȳ (2)
1 , Y (2)

2 (T ), Y (2)
2 (T + τ )) is a two-dimensional subspace of R

n . We have

Y (2)
2 (T + τ ) − Y (2)

2 (T )

= −
n1∑

k=1

T +τ∫
T

Ck,n1+2(t1)Y (1)

k (t1)dt1 −
T +τ∫
T

Cn1+1,n1+2(t1)Y (2)
1 (t1)dt1. (22)

When T → +∞ the first sum in the right-hand side goes to zero. Moreover, Y (2)
1 → Ȳ (2)

1 , i.e. for all
δ > 0, there exists Tδ > 0 such that for all t > Tδ , and for j = 1, . . . ,n1 + 1,

Ȳ (2)
1 j − δ � Y (2)

1 j (t) � Ȳ (2)
1 j + δ.
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
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It follows that for j = 1, . . . ,n1 + 1,

lim
T →∞

T +τ∫
T

Cn1+1,n1+2(t1)Y (2)
1 j (t1)dt1 = lim

T →∞

T +τ∫
T

Cn1+1,n1+2(t1)dt1 Ȳ (2)
1 j ,

and therefore limT →∞(Y (2)
2 (T + τ ) − Y (2)

2 (T )) ∈ span(Ȳ (2)
1 ), since Y (2)

1 (t) converges to Ȳ (2)
1 exponen-

tially fast.
Given the triangular structure of Y , this implies that these vectors belong to the same two-

dimensional subspace. Denote with Ȳ (2)
1 and Ȳ (2)

2 a basis for this subspace. For the next step we
have

Y (2)
3 (T + τ ) − Y (2)

3 (T ) = −
n1∑

k=1

T +τ∫
T

Ck,n1+3(t1)Y (1)

k (t1)dt1 −
T +τ∫
T

Cn1+1,n1+3(t1)Y (2)
1 (t1)dt1

−
T +τ∫
T

Cn1+2,n1+3(t1)Y (2)
2 (t1)dt1. (23)

As before, when T → ∞, the first integral goes to 0. Moreover, reasoning as above, we obtain that

lim
T →∞

(
Y (2)

3 (T + τ ) − Y (2)
3 (T )

) ∈ span
(
Ȳ (2)

1 , Ȳ (2)
2

)
,

so that again, given the triangular structure of Y , these vectors belong to the same three-dimensional
subspace. The proof for the other Y (i)

j is analogous. �
Remark 11. From the proof of Theorem 10, we notice that the (vector) functions Y (i)

1 converge, as

t → ∞, for all i = 1, . . . , p. Instead, the remaining Y (i)
j ( j � 2) do not necessarily converge, though

they keep belonging to the same subspaces.

Our next goal is to show that by taking initial conditions in a direction identified by the subspaces
S̄ i we converge to solutions having growth given by the i-th Lyapunov exponents. The following
lemma will be useful.

Lemma 12. Let w 
= 0 be a constant vector in S̄i . Write w in the basis Y1(t), . . . , Yn(t), as
w =∑n

j=1 c j(t)Y j(t) =∑p
k=1

∑np

j=1 c(k)
j (t)Y (k)

j (t). Let c(i) = [c(i)
1 , . . . , c(i)

ni
]T . Then

χ s(c(i))= χ i(c(i))= 0.

Proof. By Theorem 10, c(k)
j → 0 for k 
= i and

∑ni
j=1 c(i)

j (t)Y (i)
j (t) → w . Assume by contradiction that

χ s(c(i)) = α > 0. Notice χ s(c(i)) � max j=1,...,ni χ
s(c(i)

j ). Adopt for w the same block notation we

adopted for c. If χ s(c(i)
ni

) = α then c(i)
ni

(t)Ynini (t) = c(i)
ni

(t) → w(i)
ni

and this is a constant quantity. So

it must be χ s(c(i)
ni

) = 0. Similarly c(i)
ni−1 (t) + c(i)

ni
(t)Y (i)

ni ,ni−1(t) → w(i)
ni−1 and this implies χ s(c(i)

ni−1 ) � 0.

Reasoning in this way, it must be χ s(c(i)
j ) = 0 for all j = 1, . . . ,n1 and this proves χ s(c(i)) = 0. We

still need to show χ i(c(i)) = 0. Clearly χ i(c(i)) � 0. Assume by contradiction that χ i(c(i)) = −α < 0.
Then there exists an increasing sequence (tk)k∈N , converging to ∞, such that
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
Equations (2009), doi:10.1016/j.jde.2009.07.004
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lim
tk→+∞

c(i)
1 (tk)

2 + · · · + c(i)
ni

(tk)
2

e(−α+ε)tk
= 0,

for all ε > 0. This means that limtk→∞
c(i)

j (tk)
2

e(−α+ε)tk
= 0, for all j = 1, . . . ,ni so that χ i(c(i)

j ) � −α. More-

over, we have that lim suptk→∞ 1
tk

log(|c(i)
j (tk)|‖Y (i)

j (tk)‖) < 0 for all j = 1, . . . ,ni , if we choose ε = α
n

in Lemma 8. But then, along this sequence, we would have

χ(w) = χ s(w) = lim sup
tk→∞

1

tk
log

(∥∥∥∥∥
ni∑

j=1

c(i)
j (tk)Y (i)

j (tk)

∥∥∥∥∥
)

< 0,

and this is a contradiction since w is a nonzero constant vector, and thus χ(w) = 0. �
Let Z(t) = Y (t)−1. Then Z(t) satisfies the following ODE

Ż = Z C, (24)

where C is the matrix whose elements are defined in (17). The elements of Z are given by

Zij(t) = Zij(0) +
j∑

k=i+1

t∫
0

Cik(s)Zkj(s)ds, i < j,

Zii(t) = 1, ∀t � 0.

Denote with zi(t)T the i-th row of Z so that Z =
⎛
⎝ z1(t)T

.

.

.
zn(t)T

⎞
⎠. Lemma 8 applies to the elements of Z as

well so that

χ s(z(i)
j

)
� ( j − 1)ε � (ni − 1)ε. (25)

Remark 13. If the system is integrally separated then χ s(zi) = χ(zi) = 0, for all i = 1, . . . ,n.

Remark 14. Eq. (25) implies χ s(z(i)
1 ) = χ(z(i)

1 ) = 0, for i = 1, . . . , p.

Denote with z(i)
j (t) the (mi + j)-th row vector of Z(t). Then, being Z the inverse of Y , we have that

zT
i Yi = 1 so zi is aligned with Yi and perpendicular to all other Y j ’s. Then span(z(i)

1 (t), . . . , z(i)
ni

(t)) =
span(Y (i)

1 (t), . . . , Y (i)
ni

(t)) → S̄ i .

Theorem 15. For all w 
= 0, w ∈ S̄ j , and all j = 1, . . . , p:

lim sup
t→+∞

1

t
log

∥∥R(t)w
∥∥= λs

j, lim inf
t→+∞

1

t
log

∥∥R(t)w
∥∥= λi

j,

with R(t) fundamental matrix solution of (11).
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
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Proof. We will first prove that χ s(R(t)w) � λs
j (similarly, χ i(R(t)w) � λi

j). Then the statement will
follow from some geometrical considerations.

Rewrite w in the basis {Y1(t), . . . , Yn(t)} as

w =
n∑

i=1

ci(t)Yi(t) =
p∑

k=1

np∑
i=1

c(k)
i (t)Y (k)

i (t) = w1 + · · · + w p, wk =
nk∑

i=1

c(k)
i Y (k)

i (t).

Notice that, by Lemma 12, we have χ(c( j)
i ) = 0, and also c(k)

i (t) →t→∞ 0, k 
= j.
We now look at the characteristic exponent of R(t)w . We have

∥∥R(t)w
∥∥= ∥∥diag

(
R(t)

)
Z(t)w

∥∥=
∥∥∥∥∥∥

R11(t)z1(t)T w
...

Rnn(t)zn(t)T w

∥∥∥∥∥∥=
∥∥∥∥∥∥

R11(t)c1(t)
...

Rnn(t)cn(t)

∥∥∥∥∥∥

�

∥∥∥∥∥∥∥
R( j)

11 (t)c( j)
1 (t)

...

R( j)
nini

(t)c( j)
n j

(t)

∥∥∥∥∥∥∥� R( j)
n jn j

(t)

∥∥∥∥∥∥∥
c( j)

1 (t)
...

c( j)
n j

(t)

∥∥∥∥∥∥∥ . (26)

This implies χ s(R(t)w) � λs
j , and χ i(R(t)w) � λi

j .

For w ∈ S̄1 we clearly have

lim sup
t→+∞

1

t
log

∥∥R(t)w
∥∥= λs

1 and lim inf
t→+∞

1

t
log

∥∥R(t)w
∥∥= λi

1.

Next, denote with W2 the space of initial conditions leading to exponential growth less than or
equal to λs

2, i.e. W2 = {v ∈ R
n s.t. lim supt→+∞ 1

t log‖R(t)v‖ � λs
2}. Then dim(W2) = n − n1 while

dim( S̄1 ⊕ S̄2) = n1 + n2 so that dim(( S̄1 ⊕ S̄2) ∩ W2) = n2. Let w ∈ S̄1 ⊕ S̄2. If w1 
= 0 then by simply
following the same reasoning as before we obtain χ(c(1)) = 0 and lim supt→+∞ 1

t log‖R(t)w‖ = λs
1.

But then this leaves the only possibility that S̄2 ⊂ W2 and lim supt→+∞ 1
t log‖R(t)w‖ = λs

2 for w ∈ S̄2.
The proof for the lower exponent is analogous. Notice that the results for the lower LEs follow from
Remark 5 as well. �
3.1. QR convergence speed

Our next goal is to show that there is exponential convergence to the subspaces S̄ i , i = 1, . . . , p.
We will do this following the approach used in [12] for the SVD, with appropriate modifications to
account for non-orthogonal factors and of dimension greater than 1.

Consider the unique smooth QL decomposition of Y : Y (t) = U (t)L(t) for all t , with U ∈ R
n×n

orthogonal and L ∈ R
n×n lower triangular with Lii > 0.

Notice that span{yi, . . . , yn} = span{ui, . . . , un} for all i = 1, . . . ,n.
Let M(t) = L(t)−1 and notice that Z(t) = Y (t)−1 = M(t)U T (t), so that M(t) = Z(t)U (t) and U MT

is the unique QR decomposition of Z T with positive diagonal elements.

Lemma 16. Use for the diagonal elements of M the same block notation as for B. Then

0 � χ i(M(i)
j j

)
� χ s(M(i)

j j

)
< ( j − 1)ε � (ni − 1)ε, χ s(Mij) � max

k=1,...,p
(nk − 1)ε.
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Proof. Obviously M(i)
j j (t) 
= 0. Moreover |M(i)

j j (t)| = |z(i)
j (t)T u j(t)| � ‖z(i)

j (t)‖, where with u j we de-

note the j-th column of U . By (25) it follows χ s(M(i)
j j ) � ( j − 1)ε � (ni − 1)ε . Similarly for Mij(t) =

zi(t)T u j(t). �
Remark 17. If system (11) is integrally separated, then Lemma 16 can be restated as follows:
χ s(Mij) = χ(Mij) = 0, for all i, j = 1, . . . ,n.

Remark 18. Lemma 16 implies in particular that χ s(Mni+1, j) = χ(Mni+1, j) = 0, for all i = 1, . . . , p,
and j = 1, . . . ,ni + 1.

Remark 19. Assumptions (12) and (13) imply that there exists T > 0 so that R(i)
j j (t) > R(i+1)

kk (t), for
t > T , i = 1, . . . , p − 1, j = 1, . . . ,ni , and k = 1, . . . ,ni−1.

Define Ui(t) = span(u(i)
1 (t), . . . , u(i)

ni
(t)) for i = 1, . . . , p. Theorem 10 insures Si(t) = span(y(i)

1 (t), . . . ,

y(i)
ni

(t)) → S̄ i . Then clearly U p(t) = S p(t) → S̄ p = Ū p . Moreover U p−1(t) ⊕ U p(t) = S p−1(t) ⊕ S p(t) →
S̄ p−1 ⊕ S̄ p and from the uniqueness of the orthogonal complement it follows U p−1(t) → Ū p−1. Rea-
soning in the same way, we can prove that Ui → Ū i for i = p − 2, . . . ,1. To determine speed of
convergence of Ui to Ū i , define W i(t) = Ui(t) ⊕ · · · ⊕ U p(t), W̄ i = Ū i ⊕ · · · ⊕ Ū p . Let e = (n1, . . . ,np)

and Fe(n) be the space of flags in R
n of type e, i.e., the set of all filtrations V = (V i)

p
i=1 such that

R
n = V 1 ⊃ · · · ⊃ V p . Given a filtration V ( j) = (V ( j)

i )
p
i=1, define the sets K ( j)

i such that K ( j)
p = V ( j)

p ,

V ( j)
i = K ( j)

i ⊕ V ( j)
i+1, and K ( j)

i ⊥ V ( j)
i+1, for i = p − 1, . . . ,1. The following quantity defines a metric in

Fe(n) (see [20])

d
(

V (1), V (2)
)= max

i 
= j
‖x‖=‖y‖=1

x∈K (1)
i , y∈K (2)

j

∣∣(x, y)
∣∣�/|λs

i −λs
j |, (27)

with � = mini 
= j |λs
j − λs

i |/(n − 1). Let P ( j)
i be the orthogonal projection into K ( j)

i . Then as in [12]

d
(

V (1), V (2)
)= max

i 
= j

∥∥P (1)
i P (2)

j

∥∥�/|λs
j−λs

i |. (28)

Notice that, for all t , W (t) = (W i(t))
p
i=1 ∈ Fe(n), and that for this filtration, Ui(t) = Ki , i = 1, . . . , p,

where the Ki ’s are the subspaces defined above. In the same way W̄ = (W̄ i)
p
i=1 ∈ Fe(n) and Ū i = Ki .

Let Pi(t) be the orthogonal projection into Ui(t). Then Pi(t) → P̄ i , with P̄ i orthogonal projection
into Ū i . Our aim is to prove that the convergence of Pi(t) to P̄ i is exponential. To do so, we will first
prove Theorem 20, and the sought result will follow from (30) together with (28).

Theorem 20. Assume the diagonal elements of B satisfy either (12) or (13). Let 0 � τ < 1 be fixed and define
βi j(t) = ‖Pi(t + τ )P j(t)‖, i, j = 1, . . . , p, where

Pi(t) = [
u(i)

1 (t), . . . , u(i)
ni

(t)
][

u(i)
1 (t), . . . , u(i)

ni
(t)

]T
(29)

is the orthogonal projection onto Ui(t). Then, for arbitrary ε0 > 0 sufficiently small we have

χ s(βi j) � min
(
λs

j − λi
i,−a( j − i)

)+ ε0, j > i,

χ s(βi j) � min
(
λs

i − λi
j,−a(i − j)

)+ ε0, i > j. (30)
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Proof. To prove (30) it suffices to show that for all x ∈ U j(t),

χ s(∥∥Pi(t + τ )P j(t)x
∥∥)� min

(
λs

j − λs
i ,−a( j − i)

)+ ε0.

Let us consider the case of j > i.
Take x ∈ U j(t), x = ∑n j

k=1 c( j)
k (t)u( j)

k (t). Let c( j)(t) = [0, . . . ,0, c( j)
1 (t), . . . , c( j)

n j
(t),0, . . . ,0]T and

D(t) = diag(R(t)). Notice that the vector D(t)M(t)c( j)(t) has first m j−1 components equal to zero.
Then by Remark 19, for t > T we have

∥∥R(t)x
∥∥=

∥∥∥∥∥D(t)M(t)U T (t)

n j∑
k=1

c( j)
k (t)u( j)

k (t)

∥∥∥∥∥= ∥∥D(t)M(t)c( j)(t)
∥∥� R̃ j j(t)

∥∥M(t)
∥∥‖x‖, (31)

with R̃ j j(t) = maxk=1,...,n j R( j)
kk .

Rewrite x in the basis u1(t + τ ), . . . , un(t + τ ), as x = ∑p
k=1

∑nk
l=1 b(k)

l (t)u(k)

l (t + τ ). In particu-

lar let y = ∑ni
l=1 b(i)

l (t)u(i)
l (t + τ ) be the orthogonal projection of x onto Ui(t + τ ) so that ‖y‖ =

‖Pi(t + τ )P j(t)x‖. Let N−1 = supt�0 ‖R(t + τ , t)‖, with R(t + τ , t) being the solution at time t + τ of
Ṙ = B(t)R , R(t, t) = I . Then R(t) = R(t + τ , t)−1 R(t + τ ) and

∥∥R(t)x
∥∥� N

∥∥R(t + τ )x
∥∥= N

∥∥∥∥∥∥∥D(t + τ )M(t + τ )

⎡
⎢⎣

b1(t + τ )
...

bn(t + τ )

⎤
⎥⎦
∥∥∥∥∥∥∥ . (32)

Take first i = 1, l = 1. We want to estimate the exponential behavior of b(i)
l = b(1)

1 . Then (31) and
(32) together with M being lower triangular imply

∣∣M11(t)b
(1)
1 (t)

∣∣� R̃ j j(t)

R11(t)

∥∥M(t)
∥∥‖x‖,

and this together with (13) and Remark 18 imply

χ s(b(1)
1

)= χ s(M11b(1)
1

)
� min

(
λs

j − λi
1,−a( j − 1)

)
.

Consider now i = 1, l = 2. Then as above

∣∣M21(t)b
(1)
1 (t) + M22(t)b

(1)
2 (t)

∣∣� R̃ j j(t)

R22(t)

∥∥M(t)
∥∥‖x‖.

χ s(|M21b(1)
1 + M22b(1)

2 |) � max(χ s(M21b(1)
1 ),χ s(M22b(1)

2 )) and it is equal to the maximum if it is
unique. So we have the following possibilities:

(i) χ s(M22b(1)
2 ) > χ s(M21b(1)

1 ),

(ii) χ s(M22b(1)
2 ) < χ s(M21b(1)

1 ),

(iii) χ s(M22b(1)
2 ) = χ s(M21b(1)

1 ).

Cases (i) and (ii) both imply

χ s(b(1)
2

)
� min

(
λs

j − λi
1,−a( j − 1)

)
.
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For case (iii) we get

χ s(b(1)
2

)
� χ i(M22) + χ s(b(1)

2

)
� χ s(M22b(1)

2

)
� χ s(M21) + χ s(b(1)

1

)
< ε + min

(
λs

j − λi
1,−a( j − 1)

)
,

where the last inequality follows from Lemma 16. The proof for i = 1 and l = 3 is analogous. In this
case we have again three different possibilities:

(i) χ s(M33b(1)
3 ) > χ s(M31b(1)

1 ), χ s(M32b(1)
2 ),

(ii) χ s(M33b(1)
3 ) < χ s(M31b(1)

1 ), or χ s(M33b(1)
3 ) < χ s(M32b(1)

2 ),

(iii) χ s(M33b(1)
3 ) = χ s(M3 jb

(1)
j ) > χ s(M3kb(1)

k ), with j = 1,2, k = 2,1.

Again cases (i) and (ii) are easy. For case (iii) (when χ s(M33b(1)
3 ) is not the only maximum), we

examine the equality with j = 2, k = 1, which gives rise to the bound χ s(M33b(1)
3 ) = χ s(M32b(1)

2 ) �
χ s(M32) + χ s(b(1)

2 ) < 2ε + min(λs
j − λi

1,−a( j − 1)), where the 2ε term comes from the estimate in

Lemma 16 together with the bound for χ s(b(1)
2 ). The proof for i = 1 and l = 4, . . . ,n1 is analogous,

and we will get the following estimate: χ s(b(1)

l ) < (l − 1)ε + min(λs
j − λi

1,−a( j − 1)).

Finally, we have χ s(‖y‖) = 1
2 χ s(

∑n1
k=1(b

(1)

k )2) � maxk=1,...,n1 χ s(b(1)

k ) � min(λs
j − λi

1,−a( j − 1)) +
(n1 − 1)ε and (30) is proved for i = 1 and j > 1. Here ε0 = (n1 − 1)ε . Notice that if we choose
ε < a

(n1−1)
, then min(λs

j − λi
1,−a( j − 1)) + (n1 − 1)ε � min(λs

j − λi
2,−a( j − 2)). This follows upon

noticing that min(λs
j − λi

1,−a( j − 1)) + a � min(λs
j − λi

2,−a( j − 2)).
Take now i = 2, l = 1. Then (32) and (31) imply

R̃ j j(t)
∥∥M(t)

∥∥‖x‖ �
∥∥R(t)x

∥∥� R(2)
11 (t)

∣∣∣∣∣
n1∑

k=1

Mn1+1,k(t)b
(1)

k (t) + Mn1+1,n1+1(t)b
(2)
1 (t)

∣∣∣∣∣,
so that

χ s

( n1∑
k=1

Mn1+1,kb(1)

k + Mn1+1,n1+1b(2)
1

)
� min

(
λs

j − λi
2,−a( j − 2)

)
.

And again we have three possibilities:

(i) χ s(Mn1+1,n1+1b(2)
1 ) > χ s(

∑n1
k=1 Mn1+1,kb(1)

k ),

(ii) χ s(Mn1+1,n1+1b(2)
1 ) < χ s(

∑n1
k=1 Mn1+1,kb(1)

k ),

(iii) χ s(Mn1+1,n1+1b(2)
1 ) = χ s(

∑n1
k=1 Mn1+1,kb(1)

k ).

Cases (i) and (ii) imply χ s(b(2)
1 ) � min(λs

j − λi
2,−a( j − 2)). Case (iii) implies χ s(b(2)

1 ) �
maxk=1,...,n1 χ s(Mn1+1,kb(1)

k ) � min(−a( j − 1), λs
j − λi

1) + (n1 − 1)ε � min(λs
j − λi

2,−a( j − 2)).
For i = 2, l = 2, . . . ,n2 the proof is analogous to the one for i = 1. Reasoning in the same way we

will obtain χ s(b(2)

l ) � (n2 − 1)ε + min(λs
j − λi

2,−a( j − 2)).
The statement of the theorem follows by choosing ε0 = (ni − 1)ε < a, for i = 1, . . . , j − 1.
The proof for i > j is analogous. �

Corollary 21. Assume system (11) to be integrally separated and let βi j(t) = ‖Pi(t + τ )P j(t)‖, where Pi(t) is
the orthogonal projection onto Ui(t) defined in (29). Then
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χ s(βi j) � min
(
λs

j − λi
i,−a( j − i)

)
, j > i,

χ s(βi j) � min
(
λs

i − λi
j,−a(i − j)

)
, i > j.

Finally, we are ready to estimate the rate of convergence of the orthogonal projections Pi(t) to P̄ i ,
i = 1, . . . , p. Let αi j(t) = ‖Pi(t) P̄ j‖, i, j = 1, . . . , p.

Theorem 22. Let the diagonal elements of B satisfy assumption (13) or (12). Then for all i, j = 1, . . . , p,

χ s(αi j) � A
∣∣λs

i − λs
j

∣∣, i 
= j, χ s(1 − αii) � max
j 
=i

χ s(αi j), (33)

where A = maxk 
=l(χ
s(βkl)/|λs

k − λs
l |).

Proof. The proof for i 
= j is much the same as that of [12, Theorem 5.4]. We omit the details here,
and we just point out that the result follows from (30) together with (28).

In what follows, we prove the result for i = j. Since P1(t) + P2(t) + · · · + P p(t) = I , with I the
identity matrix in R

n×n , we can rewrite P̄ i = ∑p
j=1 P j(t) P̄ i . Then 1 = ‖ P̄ i‖ �

∑p
j=1 ‖P j(t) P̄ i‖ so

that (1 − ‖ P̄ i P i(t)‖) �
∑

j 
=i ‖P j(t) P̄ i‖ and this rewrites as (1 − αii(t)) �
∑

j 
=i αi j(t). It follows that
χ s(1 − αii) � χ s(

∑
j 
=i αi j) � max j 
=i χ

s(αi j). �
Remark 23. The importance of exponential convergence to the relevant subspaces cannot be stressed
enough. For example, in a numerical implementation of methods to ascertain ED, it implies that one
can truncate the real line to a finite (large) interval, ascertain ED on this finite interval, and then
invoke perturbation results to conclude that the original problem had ED on the infinite interval.
It is also important to stress that the assumptions we have needed in order to infer exponential
convergence of the subspaces are structural assumptions on the system, namely some form of integral
separation on the two half-lines (a generic assumption, see [24]), or more precisely we assumed
that the system has stable Lyapunov exponents in forward and backward time. This is in contrast to
existing results to infer ED, which require strong assumptions on the type of system at hand, e.g. slow
varying systems, or systems for which roughness and L1 perturbation results can be applied; again,
see [8,11,19,21,26,33,34].

4. Exponential dichotomy from Q R on RRR

In Sections 2 and 3, we have used the equivalence to having ED given by the conditions (ED-1)
and (ED-2), to see how the forward and backward stable subspaces can be obtained from the SVD or
QR of appropriate fundamental matrix solutions. In this section we consider an alternative strategy,
namely we give sufficient conditions that guarantee that the Sacker–Sell spectrum (on the whole line)
is bounded away from the origin.

Consider the linear inhomogeneous problem

ẏ = A(t)y + g(t), (34)

where A and g are uniformly bounded and A is piecewise continuous. Recall (see [11, p. 67]) that
the homogeneous system (that is (3)) has exponential dichotomy on R, that (6) holds with t, s ∈ R, if
and only if (34) has a unique bounded solution for any bounded and continuous function g .

First of all, we envision performing a global time dependent orthogonal change of variables (x(t) =
Q T (t)y(t) and f (t) = Q T (t)g(t)) which brings the system in upper triangular form B . We write this
system in block form

ẋ = B(t)x + f (t), B(t) =
(

B11(t) B12(t)
0 B22(t)

)
. (35)

Below, let ‖x‖ = supt‖x(t)‖2, ‖ f ‖ = supt‖ f (t)‖2, and ‖A‖ = supt‖A(t)‖F .
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
Equations (2009), doi:10.1016/j.jde.2009.07.004
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Next, we make the following assumptions on a fundamental matrix solution R associated to B:
Ṙ = B(t)R (these are effectively assumptions on the existence of a transformation Q leading to a
triangular problem for which these assumptions are satisfied). There exist constants α1 > 0, α2 > 0
and K1 � 1, K2 � 1 such that

∥∥R11(t)R−1
11 (s)

∥∥� K1e−α1(s−t), s � t, (36)∥∥R22(t)R−1
22 (s)

∥∥� K2e−α2(t−s), t � s. (37)

Theorem 24. If (36) and (37) hold, then (11) has ED on R; that is, (6) holds with t, s ∈ R, X(t) = R(t) =(
R11(t) R12(t)

0 R22(t)

)
, with

R12(t) = −R11(t)

∞∫
t

R−1
11 (τ )B12(τ )R22(τ )dτ (38)

and P =
(

0 0
0 I

)
. Indeed, with this R, there exists a bounded solution x of (35) such that

‖x‖ � ‖ f ‖ ·
{

K2

α2

√
1 + κ2

K 2
1

(α1 + α2)2
+ K1

α1

√
1 + κ2

K 2
2

(α1 + α2)2

}
, (39)

where κ = ‖B12‖.

Proof. We write by the variation of parameters formula

x(t) =
t∫

−∞
R(t)P R−1(s) f (s)ds −

∞∫
t

R(t)(I − P )R−1(s) f (s)ds. (40)

We employ the upper triangular fundamental matrix solution R(t) (see [16, Lemma 7.4]) where R12(t)
is given by (38). Then

R(t)P R−1(s) =
(

0 R12(t)R−1
22 (s)

0 R22(t)R−1
22 (s)

)
,

R(t)(I − P )R−1(s) =
(

R11(t)R−1
11 (s) R11(t)(R−1(s))12

0 0

)
,

where

(
R−1(s)

)
12 =

[ ∞∫
s

R−1
11 (τ )B12(τ )R22(τ )dτ

]
R−1

22 (s).

Because of (36) and (37), to verify (6) we need to get (exponentially decreasing) bounds for
‖R12(t)R−1

22 (s)‖ when t � s and for ‖R11(t)(R−1(s))12‖ when t � s. We have

t∫ ∥∥R22(t)R−1
22 (s)

∥∥ds �
t∫

K2e−α2(t−s) ds � K2

α2
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
Equations (2009), doi:10.1016/j.jde.2009.07.004
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and

∞∫
t

∥∥R11(t)R−1
11 (s)

∥∥ds �
∞∫

t

K1e−α1(s−t) ds � K1

α1
.

Next

t∫
−∞

R12(t)R−1
22 (s)ds = −

t∫
−∞

R11(t)

∞∫
t

R−1
11 (τ )B12(τ )R22(τ )dτ R−1

22 (s)ds

and for t � s,

∥∥R12(t)R−1
22 (s)

∥∥� κ

∞∫
t

K1e−α1(τ−t)K2e−α2(τ−s) dτ � κ
K1 K2

(α1 + α2)
e−α2(t−s). (41)

Moreover,

t∫
−∞

∥∥R12(t)R−1
22 (s)

∥∥ds � κ
K1 K2

(α1 + α2)

t∫
−∞

e−α2(t−s) ds

� κ
K1 K2

α2(α1 + α2)
. (42)

Similarly,

∞∫
t

R11(t)
(

R−1(s)
)

12 ds =
∞∫

t

[ ∞∫
s

R−1
11 (τ )B12(τ )R22(τ )dτ

]
R−1

22 (s)ds

and for s � t ,

∥∥R11(t)R−1
12 (s)

∥∥� κ

∞∫
s

K1e−α1(τ−t)K2e−α2(τ−s) dτ � κ
K1 K2

(α1 + α2)
e−α1(s−t). (43)

Moreover,

∞∫
t

∥∥R11(t)
(

R−1(s)
)

12

∥∥ds � κ
K1 K2

(α1 + α2)

∞∫
t

e−α1(s−t) ds

� κ
K1 K2

α1(α1 + α2)
.

Thus,
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
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t∫
−∞

∥∥R(t)P R−1(s)
∥∥ds � K2

α2

√
1 + κ2

K 2
1

(α1 + α2)2
,

and

∞∫
t

∥∥R(t)(I − P )R−1(s)
∥∥ds � K1

α1

√
1 + κ2

K 2
2

(α1 + α2)2
. (44)

Now, from (41) and (43), we obtain (6) on R. Moreover, using (42) and (44) in (40), we obtain
(39). �
Remark 25. If there exist α > 0, K � 1 such that

∥∥R22(t)R−1
22 (s)

∥∥ · ∥∥R11(s)R−1
11 (t)

∥∥� K e−α(t−s), t � s, (45)

where R11(t0) = I and R22(t0) = I for some t0, then the system is exponentially separated [25]. The
exponential separation condition (45) implies having integral separation between arbitrary diagonal
elements of R11 and R22. Clearly, (36) and (37) imply (45). In addition, (45) implies

∥∥R12(t)
∥∥� κ

∞∫
t

K e−α(τ−t) dτ · ∥∥R22(t)
∥∥� κ

K

α
· ∥∥R22(t)R−1

22 (t0)
∥∥→ 0, as t → +∞ (46)

using (37). This means that we are employing a fundamental matrix solution R(t) such that
R11(t0) = I , R22(t0) = I , and limt→∞ R12(t) = 0. If (45) holds and there exist L1 > 0 and β1 > 0 such
that α > β1 and

∥∥R11(s)R−1
11 (t)

∥∥� L1e−β1(t−s), t � s,

then (37) holds. Similarly, if (45) holds and there exist L2 > 0 and β2 > 0 such that α > β2 and

∥∥R22(t)R−1
22 (s)

∥∥� L2e−β2(t−s), t � s,

then (36) holds.

Remark 26. For the triangular problem of which in Theorem 24, we can explicitly give the forward
and backward stable subspaces. In fact, from the proof of Theorem 24, we have that

S + = span

(
R12(0)

I2

)
, S − = span

(
I1
0

)
,

where I1 and I2 are identity matrices of the same size as the blocks R11 and R22, respectively, and
R12(0) is defined from (38).
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
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5. Examples

In this section we elucidate the previous theoretical results with examples of two-dimensional
upper triangular systems.

1. First, consider the following problem

Ṙ = B(t)R =
(

arctan(t) + t
1+t2 ε f (t)

0 − 1
2 (arctan(t) + t

1+t2 )

)
R, (47)

with ε � 0 and f bounded and continuous in R. Notice that the diagonal elements B11 and B22 of the
coefficient matrix in (47) satisfy conditions (12) and (14) so that the scalar problems Ṙ ii = Bii(t)Rii ,
for i = 1,2, do not admit ED on R. This implies that, for ε = 0, the system (47) does not admit ED on
R either. Then, we consider the case of ε > 0 and try to establish if (47) has or not ED on R. Observe
that (36)–(37) do not hold (regardless of ε) and Theorem 24 cannot be used to establish ED on R.

The principal matrix solution Φ of (47) is given by

Φ11(t) = et arctan(t);

Φ12(t) = εet arctan(t)

t∫
0

(
e−3/2s arctan(s) f (s)

)
ds;

Φ21 = 0, Φ22(t) = e− t arctan(t)
2 .

Hence, (ED-1) is satisfied, and in order to verify whether or not there is ED on the whole line we
need to check whether or not (ED-2) is satisfied. The forward and backward stable subspaces are
one-dimensional and can be computed explicitly. We are looking for two vectors v = (v1, v2)

T and
w = (w1, w2)

T such that

lim
t→+∞

∥∥Φ(t)v
∥∥= 0, lim

t→−∞
∥∥Φ(t)w

∥∥= 0. (48)

The first of (48) rewrites as

Φ11(t)v1 + Φ12(t)v2 → 0, Φ22(t)v2 → 0,

and clearly the second requirement is verified for any v2. For v1, we need to take it so that

Φ11(t)v1 + Φ12(t)v2 = et arctan(t)

(
v1 + ε

t∫
0

(
e− 3

2 s arctan(s) f (s)
)

ds v2

)
→ 0. (49)

So, we must choose (except for normalization of v2):

v1 = − lim
t→+∞ε

t∫
0

(
e− 3

2 s arctan(s) f (s)
)

ds, v2 = 1.

With this choice of v1, the expression in (49) goes to zero and S + = Span(v).
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
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If we repeat the same reasoning for the second limit in (48), we obtain

w1 = − lim
t→−∞ε

t∫
0

(
e− 3

2 s arctan(s) f (s)
)

ds, w2 = 1.

Observe that e− 3
2 s arctan(s) is an even function. We distinguish two cases.

(a) If f is odd, w1 = v1 and S + = S − so that (47) does not admit ED on R.
(b) If f is even, w1 = −v1, S + ∩ S − = {0} and (47) admits ED on R.

Remark 27. Example (47) can be easily extended to the case of B11 = −B22, and B11 such that

t∫
s

B11(τ )dτ � a(t − s), t � s � 0,

t∫
s

B11(τ )dτ � −a(t − s), t � s � 0,

where a > 0. For example, this can be verified for a function B11 which is odd, like the coefficient B11
in (47). In this class of problems, B11 is always leading to the unstable Lyapunov exponent (positive
in forward time, negative in backward time), so that the principal matrix solution is a suitable initial
condition both in forward and backward time (see Remark 2). Again, if f is even and ε 
= 0, there is
ED on R, while if f is odd there is no ED for any ε . Notice that (36)–(37) do not hold; in fact, for
this problem having or not ED depends in a subtle way on the term B12.

2. This is generalization of the example in Remark 2 and should be compared with the case in the last
remark above. Consider B11(t) = −B22(t), and assume that there is integral separation on the whole
line so that

t∫
s

(
B11(τ ) − B22(τ )

)
dτ = 2

t∫
s

B11(τ )dτ � a(t − s) − d

for a > 0, d � 0, and t � s. Then, the scalar problems Ṙ ii = Bii(t)Rii , i = 1,2, have ED on the whole
line, (36) and (37) hold and the problem has ED on R for any ε and f (t). If we want to compute
the stable subspaces (forward and backward), then to obtain S + we may use the principal matrix
solution. To obtain S − , we cannot use the principal matrix solution and a different fundamental
matrix must be employed, though in this example we actually have S − = Span(e1), see Remark 26.

6. Conclusion

In this paper we have shown how techniques based on the SVD or QR decomposition of a funda-
mental matrix solution can be used to determine whether or not a system has exponential dichotomy
on the real line. An important consequence of our results is that for a large class of problems, namely
those with integral separation on both lines or more generally with stable Lyapunov exponents on
both half-lines, the existence of exponential dichotomy may be determined from information on finite
intervals up to exponentially small perturbations. This enlarges the class of problems for which finite
interval computations are sufficient to determine exponential dichotomy from those that are asymp-
totically constant, asymptotically periodic, or almost periodic [27]. Another important benefit of our
Please cite this article in press as: L. Dieci et al., Exponential Dichotomy on the real line: SVD and QR methods, J. Differential
Equations (2009), doi:10.1016/j.jde.2009.07.004
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theoretical results is that they lend themselves to practical algorithmic procedures to verify whether
or not a system has exponential dichotomy, as it will be reported elsewhere.
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