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Abstract

The algorithms behind a toolbox for approximating Lyapunov exponents of nonlinear

differential systems by QR methods are described. The basic solvers perform integration

of the trajectory and approximation of the Lyapunov exponents simultaneously. That

is, they integrate for the trajectory at the same time, and with the same underlying

schemes, as integration for the Lyapunov exponents is carried out. Separate computa-

tional procedures solve small systems for which the Jacobian matrix can be computed

and stored, and for large systems for which the Jacobian cannot be stored, and may not

even be explicitly known. If it is known, the user has the option to provide the action

of the Jacobian on a vector. An alternative strategy is also presented in which one
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may want to approximate the trajectory with a specialized solver, linearize around the

computed trajectory, and then carry out the approximation of the Lyapunov exponents

using techniques for linear problems.

INTRODUCTION

Lyapunov exponents are concerned with the asymptotic growth behavior of solutions of the

linearized dynamics about a specific trajectory.Consider the m-dimensional nonlinear system

ẋ = f(x) , x(0) = x0 , (1)

to be integrated for t ≥ 0 (of course, it may also be that we need to integrate backward in

time, t ≤ 0). Here, f is assumed to be a smooth function. Let assume that the solution of

(1) exists for all t ≥ 0, and is bounded; call φt(x0) the solution . Lyapunov exponents are

associated with the linearized problem

ẏ = fx(φ
t(x0))y , (2)

and the formal definitions of the linear case now apply. That is, set A(t) = fx(φ
t(x0)), and

write (2) as the m-dimensional linear system

ẏ = A(t)y , t ≥ 0 , (3)

where A is a bounded and continuous function, taking values in IRm×m. At this point, the

definitions of upper and lower Lyapunov exponents (LEs for short), and the concepts of

regularity and integral separation, are exactly the same as for linear problems (see [1, 18,

17, 21] for details). Define the numbers µj, j = 1, . . . , m, as

µj = lim sup
t→∞

1

t
log ‖Y (t)ej‖ , (4)
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where the ej ’s are the standard unit vectors and Y (t) is the solution of

Ẏ = A(t)Y , Y (0) = Y0 invertible .

When the sum of these numbers µj is minimized as we vary over all possible ICs (initial

conditions) Y0, the numbers are called the upper LEs of the system, and the columns of the

optimal ICs are said to form a normal basis. We will write λs
j , j = 1, . . . , m, for the ordered

upper LEs of (3). By working with the adjoint system

Ż = −AT (t)Z ,

we analogously can define (lower) LEs, λi
j, j = 1, . . . , m, which again we consider ordered.

The λi
j and λs

j then make up the endpoints of the so-called Lyapunov spectral intervals. In

case in which λi
j = λs

j = λj, for all j = 1, . . . , m, and

lim
t→∞

1

t
log

(

det(Y (t))
)

=

m
∑

j=1

λj ,

then the system is called regular, and in this case the exponents are found as limits. A most

important consequence of regularity is (already in [29]): “If we have a regular system with

upper triangular coefficient matrix B(t) : ẏ = B(t)y , then, for j = 1, . . . , m, its Lyapunov

exponents are given by

λj = lim
t→∞

1

t

∫ t

0

Bjj(s)ds . ” (5)

The prevalence of regularity, and the dependence of the spectrum of (2) on the initial con-

dition x0 is addressed in the work of Oseledec, [32].

The aim of this paper is to explain how a toolbox comprised of procedures for small

systems, LESNLS, and large systems, LESNLL, can be used to approximate Lyapunov
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exponents. In particular, in this paper we describe the algorithms that are implemented in

these robust, reliable computational procedures. The need for reliable codes to approximate

Lyapunov exponents and related quantities is apparent in many application areas. In [42]

Lyapunov exponents are computed for two traffic models to determine the level of chaos in

the models. In [12] Lyapunov exponents are compared with the so-called periodicity ratio

which is useful in distinguishing between chaotic, regular, and irregular behavior in nonlinear

dynamical systems, while in [2] Lyapunov exponents are employed as a metric for character-

izing dynamic patterns to differentiate between noise and order or chaos. The applications

of Lyapunov exponents mentioned above are routinely encountered in engineering studies.

In addition, in [3] Lyapunov exponents are used to study vibration localization phenomena

in the context of structural dynamics, in [5] they are used to study the bifurcations of the

global bubble dynamics in a fluid in function of the frequency of rising bubbles, and in

[25] they are used to study complexity of reaction/diffusion and hydrodynamic processes of

chemical/biological engineering relevance.

Besides giving a measure on the asymptotic growth behavior of solutions of the linearized

system, for nonlinear systems Lyapunov exponents provide also other interesting informa-

tion, which is routinely used in practical experiments of engineering relevance. For the

concepts below, we refer to [33] for physical insight and development. For example, the most

commonly used criterion for chaotic dynamics in dissipative systems is the existence of a

positive Lyapunov exponent. Also, a widely adopted approximation for the dimension of an

attractor is the so-called Kaplan-Yorke dimension, dimKY, also called Lyapunov dimension.

Recall that this is defined for dissipative dynamical systems (1), and when the linearized
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problem is regular, as follows:

Let k :
k

∑

i=1

λi ≥ 0 , but
k+1
∑

i=1

λi < 0 , then dimKY = k +

∑k

i=1 λi

|λk+1|
, (6)

where as usual the Lyapunov exponents are ordered: λ1 ≥ λ2 ≥ · · · ≥ λm. Another widely

adopted use of Lyapunov exponents for nonlinear systems is in estimating the Kolmogorov

(or metric) entropy of a systems, h(µ) (see [33] for a definition). In fact, for this entropy

one has

h(µ) ≤
∑

λi>0

λi , (7)

where µ refers to the invariant measure on the attractor, and the summation is with respect

to the positive Lyapunov exponents.

Remark. Observe that in the applications above it is sufficient to approximate only a subset

of the LEs, namely only the largest (to detect chaos), or all the positive ones (to estimate

the entropy), or all those giving a positive sum (to estimate the dimension). In other words,

only the n largest Lyapunov exponents, n ≤ m, need to be approximated.

QR APPROACHES

There are two broad classes of methods for approximating Lyapunov exponents by a change

of variables to triangular form: discrete and continuous QR methods. These are essentially

identical for the linear and nonlinear cases, using (3) and (2), respecively. However, there are

important practical algorithmic aspects in the nonlinear case, especially related to avoiding

explicitly forming the Jacobian fx, and of course the original differential equation (1) must

be integrated along with equation (10) or (16) below. Subsequently, we will comment on

these aspects.
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The basic idea is to transform the coefficient matrix, fx(φ
t(x0)) or A(t), to upper tri-

angular form, B(t), using an orthogonal time-varying change of variables. Once we have

transformed the problem to triangular form, stable upper Lyapunov exponents (and simi-

larly for the lower exponents) may be extracted from the diagonal elements of the triangular

coefficient matrix B(t) (see Theorem 6.1 in [21]) as

λs
i = lim sup

t→∞

1

t

∫ t

0

Bii(s)ds . (8)

In [21] (see Theorems 6.1 and 6.2) it was shown that stability spectra, in particular stable

Lyapunov exponents and the Sacker-Sell spectrum ΣED, may be extracted from the diagonal

of the transformed, upper triangular coefficient matrix. In particular, for a triangular system

with coefficient matrix B(t), ΣED = ∪i[αi, βi] where

αi = inf
t0

lim inf
t→∞

1

t

∫ t0+t

t0

Bii(s)ds , βi = sup
t0

lim sup
t→∞

1

t

∫ t0+t

t0

Bii(s)ds .

Historically, it has been known since Perron [37] and Diliberto [24] that there exists a

Lyapunov (bounded with bounded inverse and bounded derivative, see [1]), and orthogonal,

change of variables that brings A to upper triangular form. Lyapunov [29] showed in his

thesis that for regular systems the Lyapunov exponents may be extracted as the limit of

the time average of the diagonal elements of the upper triangular coefficient matrix. More

recently these QR type methods have reemerged as numerical techniques (see [4] and [41]).

Nearly all numerical works of which we are aware (see references at the end) assume

that the system is regular. Although a convenient and quite reasonable assumption in many

practical situations, see [32], regularity is not sufficient to guarantee stability of the Lyapunov

exponents, which is what we need to have in order to pursue computational procedures for

their approximation. Stability for the LEs means that small perturbations in the function
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of coefficients, A, produce small changes in the LEs. Millionschikov (see [31, 30]) and Bylov

and Izobov (see [7]) gave conditions under which the LEs are stable, and further proved that

these conditions are generic, see [34, p. 21], in the class of linear systems with continuous

bounded coefficients. The key assumption needed is integral separation: “A fundamental

matrix solution (written columnwise) Y (t) = [Y1(t), . . . , Ym(t)] is integrally separated if for

j = 1, . . . , m − 1, there exist a > 0 and d > 0 such that

||Yj(t)||
||Yj(s)||

· ||Yj+1(s)||
||Yj+1(t)||

≥ dea(t−s) , (9)

for all t, s : t ≥ s”. In the cited works, it is proved that “If the system (3) has different

characteristic exponents λ1 > · · · > λm, then they are stable if and only if there exists a

fundamental matrix solution with integrally separated columns”. For a good introduction

to integral separation and some of its consequences see [1] and the references therein, and

the complementary works of Palmer [35, 36],

Integral separation also plays a central role in quantifying the error in the stability spectra

when using QR techniques. The results in [19] provide a so-called backward error analysis

where it is shown that with respect to the exact orthogonal factor, one is computing a per-

turbed triangular problem. In [20], [22], and [40] this backward error analysis is used as a

starting point to provide a quantitative perturbation theory or error analysis for approxima-

tion of stability spectra by QR methods. These bounds depend on the local error tolerance

used to integrate for Q, and on structural properties of the problem itself (essentially the

strength of the integral separation as compared with the size of the off diagonal terms in the

upper triangular factor). An extension to some infinite dimensional problems was obtained

in [13] by in essense combining a C1 inertial manifold result, shadowing, and perturbation
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theory.

As we previously observed, often only the n most dominant (outermost to the right)

spectral intervals are needed (and n can be much smaller than m). In these cases, the

matrix Y0 of initial conditions is made up by just n columns and thus Y : t ∈ IR → IRm×n.

With this in mind, we will henceforth restrict to the case in which n LEs are desired for an

m-dimensional linear system, m ≥ n. Although often it suffices to take Y0 =









In

0









, for the

success of the QR methods it is important that the initial condition matrix Y0 ∈ IRm×n be

chosen at random. In essence, this is needed to guarantee that all possible growth behavior is

represented in the growth of the columns of Y (t), and that the n most dominant exponents

will emerge, ordered, during integration. A more mathematical justification for choosing

random initial condition is in [4]. In particular, almost every initial condition Y0 will result

in a fundamental matrix solution such that λ1 ≥ · · · ≥ λn.

Remark. There has been interest recently in techniques for preserving the orthogonality

of approximate solutions to matrix differential equations with orthogonal solutions, such as

in the case of QR factorization of a matrix solution of (3). Preserving orthogonality is im-

portant when finding Lyapunov exponents since an orthogonal transformation preserves the

sum of the Lyapunov exponents. Techniques based on a continuous version of the Gram-

Schmidt process are a natural idea, but they have not proven to be reliable numerically

due to the loss of orthogonality when the differential equations that describe the continuous

Gram-Schmidt process are approximated numerically. Still, a host of successful techniques

have emerged in the last 10-15 years. Some parallel the algorithmic development of sym-

plectic techniques for Hamiltonian systems, and maintain automatically orthogonality of the
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computed solution: among these are Gauss Runge-Kutta methods (see [14, 8]), as well as

several others which automatically maintain orthogonality, see [9, 15, 16]. However, our

extensive practical experience with orthogonality-preserving methods has lead us to favor

so-called projection techniques, whereby a possibly non orthogonal solution is projected onto

an orthogonal one, without loss of accuracy. The toolbox described here builds upon this

algorithmic development and includes local error estimates which make our computational

procedures more efficient. We want to stress the importance of estimating, and controlling,

the local errors during integration, and choose the stepsizes adaptively based upon the local

error estimate. Not only this is needed for efficiency (as it is generally the case), but it also

puts us on safe ground insofar as the validity of the previously mentioned backward error

analysis results; these tell us that we are finding the LEs of a problem close to the original

one, and the measure of closeness depends on the local errors committed during integration

for the orthogonal factor Q. The result of our theoretical effort, and also of extensive test-

ing of different algorithmic choices, has lead us to the creation of our codes, LESNLS and

LESNLL. These codes are the naturaly outcome of a 10 year experience on computation of

LEs, and the codes respresent a stable and efficient mean to approximate Lyapunov expo-

nents. It is our hope that they will be of use to the audience of this journal, particularly to

those readers interested in engineering applications where stability information is required.

Discrete QR method

The method requires the QR factorization of Y (tk+1) ∈ IRm×n, a matrix solution of (3)

with linearly independent columns. Let t0 = 0, and Y0 = Q0R0. Then, for j = 0, . . . , k,
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progressively define Zj+1(t) = Y (t, tj)Qj , where Y (tj , tj) = I and Y (t, tj) is a solution to (3)

for t ≥ tj , and Zj+1 : t ∈ [tj, tj+1] → IRm×n is the solution of















Ẏj+1 = fx(φ
t(x0))Zj+1 , tj ≤ t ≤ tj+1

Zj+1(tj) = Qj ,

(10)

and update the QR factorization as

Zj+1(tj+1) = Qj+1Rj+1 , (11)

so that

Y (tk+1) = Qk+1 [Rk+1Rk · · ·R1R0] (12)

is the QR factorization of Y (tk+1): Qk+1 ∈ IRm×n and
∏0

j=k+1 Rj ∈ IRn×n, the so-called

reduced QR decomposition of Y (tk+1). The LEs are obtained from the relation

lim sup
k→∞

1

k

k
∑

j=0

log(Rj)ii , i = 1, . . . , n , (13)

which is equivalent to the definition (8) since Ṙ = BR.

Continuous QR method

Here one derives –and integrates– the differential equations governing the evolution of the

Q and R factors in the QR factorization of Y . Differentiating the relation Y = QR one gets

Q̇R + QṘ = fx(φ
t(x0))QR, and multiplying by QT on the left, one gets the equation for R:

Ṙ = B(t)R , R(0) = R0 , B(t) := QT fx(φ
t(x0))Q − S , (14)

where S := QT Q̇. Since QT Q = I, S is skew-symmetric, and since B is upper triangular,

from (14) we have that the strict lower triangular part of S and QT fx(φ
t(x0))Q agree. Thus,
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since S is skew-symmetric,

Sij =































(QT (t)fx(φ
t(x0))Q(t))ij , i > j,

0, i = j,

−Sji, i < j.

(15)

Next, multiply Q̇R + QṘ = fx(φ
t(x0))QR on the right by R−1 (R−1 exists since R is a

fundamental matrix solution of Ṙ = BR), and use (14) to obtain the differential equation

for Q:

Q̇ = (I − QQT )fx(φ
t(x0))Q + QS , Q(0) = Q0 . (16)

Note that if m = n, then QQT = I and the equation for Q reduces to Q̇ = QS. To

approximate the exponents, from (14), one uses (cfr. (13))

lim sup
t→∞

1

t

∫ t

0

(QT (s)fx(x(s))Q(s))iids , i = 1, . . . , n , (17)

since Bii = (QT (s)fx(x(s))Q(s))ii the diagonal of the upper triangular coefficient matrix

function. In practice, a quadrature rule is used to approximate the integral in (17).

Remark. We remark here that in exact arithmetic if no approximations are made when

approximating the differential equations, then the discrete and continuous QR methods are

equivalent. The numerical performance will depend on the particular problem, but in general

one expects the continuous QR method to be more efficient since it does not rely directly on

resolving exponential functions.

IMPLEMENTATIONS

The implementation of the QR methods for nonlinear systems is similar to what is done for

linear systems (see [23]). In the nonlinear context, the new issue is that integration for the
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trajectory must be also carried out in order to be able to obtain the linearized system (2) and

hence to be able to integrate the relevant equations of discrete or continuous QR methods;

see (10) and (16-17). There are two ways in which this can be done: the all at once strategy

of LESNLS and LESNLL which is reviewed next, and the three steps strategy discussed

later in this paper.

The overall goal is to compute approximations –for given values of t– to the quantities

λi(t), i = 1, . . . , n, herein defined as

λi(t) =
1

t
νi(t) , i = 1, . . . , n, (18)

where the νi’s are defined as, see (13),

νi(t) = log Rii(t) , i = 1, . . . , n , (19)

or equivalently as, see (17),

νi(t) =

∫ t

0

Bii(s)ds =

∫ t

0

(QT (s)fx(x(s))Q(s))iids , i = 1, . . . , n . (20)

Integration of the Nonlinear Problem

For nonlinear problems, the system

ẋ = f(x) , x(0) = x0 ,

must also be integrated to generate the linearized dynamics as in (10) or (16). Suppose that

this has been carried out so that a sequence xj ≈ x(tj) of approximate values to the solution

is known, and moreover, there is access to the vector field f . There are two basic points of

view one may adopt.
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(i) One can use any code which does the 1-step integration for x and returns the starting

value xj , the obtained approximation xj+1 at the new value tj+1 = tj +hj , and possibly

the vector fields fj and fj+1 evaluated at these approximations. At this point, x (and

fx) may be approximated locally by interpolation, and the linear procedures LESLIS-

LESLIL used. This three-step strategy is examined later in this paper.

- The obvious advantage of this strategy is that one can integrate as desired (or

appropriate) for the nonlinear system. For example, if the problem has Hamilto-

nian character, one might consider a symplectic integrator. The disadvantage is

that this approach requires more user intervention.

(ii) The nonlinear system and the equations for the QR methods may be integrated to-

gether. This is what the computational procedures LESNLS and LESNLL do; they

use the same Runge-Kutta (RK) scheme for the trajectory as used for the QR methods.

The advantage is the overall simplicity. The remainder of this section reviews the basic

schemes upon which these are based and discuss some aspects of their implementation.

Basic RK schemes of LESNLS-LESNLL

The m-dimensional differential system (1) is integrated with one of the two embedded explicit

RK schemes used for the linear codes, the Dormand-Prince pair and the pair based on the

RK 3/8th rule; again, see Sections 3.1, 3.2, and 3.3 of [23]. As there, these pairs are referred

to as DP and RK38, which are RK pairs of order (5,4) and (4,3), respectively. For the values

of the RK coefficients in DP and RK38 we refer to Chapter 7 of [23].

At this point it is possible to perform error control on the trajectory to choose the next
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stepsize (an option in LESNLS-LESNLL). The next stepsize may be chosen according to

several measures of error: that on the trajectory, as well as the error on the step for the

approximate exponents and/or the orthogonal factor Q. We exemplify how the error on the

trajectory is monitored, errors in the approximate exponents and/or the orthogonal factor

are handled similarly (and see [23]). Monitoring of the error on the trajectory is done in the

way explained in [26], with a mixed error control with respect to a scalar tolerance in the

sup-norm.

Let h be the current stepsize, and hnew the new stepsize to be chosen. Choose hnew as

follows.

- Estimate the worse error componentwise with respect to the desired tolerance:

err = max
1≤i≤m

(

|x(i)
j+1 − x̂

(i)
j+1|/

[(

1 + max(|(x(i)
j |, |(x(i)

j+1|)
)

TOLT
]

)

. (21)

- Now estimate

hnew = safe |h (1/err)l| (22)

where safe is a safety factor usually set at 0.8, and l = 1/5 for DP5 and l = 1/4 for

RK38.

- Subject to the restrictions that h/5 ≤ hnew ≤ 5h, if err ≤ 1 the step is successful and

accepted, otherwise is rejected.

All of the stage values are saved so that after the step for the trajectory is completed inte-

gration of the equations of the QR methods can be performed. Finally, there are important

options linked to the use (or lack thereof) of the Jacobian.

Dieci, Jolly, and Van Vleck Paper Number 14



For problems of small size, and if the Jacobian is easy to obtain, the user should use

LESNLS, whereby the Jacobian is explicitly formed as a (m, m) matrix in the subroutine

indicated in [23]. This way, the integration for the exponents conceptually proceed precisely

as in the linear code LESLIS, with the Jacobian playing the role of the coefficients’ function

A(t). On the other hand, whenever one of the following (not exclusive) situations holds true:

• the Jacobian is not easy to write down conveniently, or

• we need to approximate n ≪ m Lyapunov exponents, or

• storage is at a premium and we cannot afford memory for a (m, m) matrix,

then one should (must) use LESNLL, described next.

What’s in a name? LESNLS refers to: Lyapunov ExponentS NonLinear Small. The

name reflects the task of approximating Lyapunov exponents of a nonlinear system whose

Jacobian matrix fx is known and is small enough that it can be stored. LESNLL refers to:

Lyapunov ExponentS NonLinear Large, in that it is concerned with approximating Lya-

punov exponents of a nonlinear system whose Jacobian matrix fx is not explicitly required,

as is often desirable for large systems.

It should be said that whenever an approximation of the full set of m Lyapunov exponents

is desired, and it is possible to compute (possibly, symbolically) and store the Jacobian, then

it is usually preferable to use LESNLS.

The major difference between LESNLS and LESNLL is the way the Jacobian fx is

provided by the user. In LESNLS, the user must provide a subroutine to compute fx at

any t. In LESNLL, the user can provide a subroutine where the action fx(·)v, is given

(here, v is a generic vector), or can bypass explicitly providing this routine letting LESNLL
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generate the approximation internally. In any case, the difference in the way the Jacobian

is specified is the only difference that the user will see between LESNLS and LESNLL.

LESNLL: Bypassing the Jacobian

The crux of LESNLL is to proceed using direct matrix vector products, the action of the

Jacobian on a certain vector. This way of proceeding is especially effective when only a few

exponents are needed, that is when n ≪ m.

To illustrate, consider a typical explicit RK step needed for the discrete QR method. On

the step between tj and tj+1, the linear system to integrate is

Ẏ = fx(φ
t(x0))Y , Y (tj) = Qj .

The stage values of the trajectory gives the approximation

Yj+1 = Qj + hj

s
∑

l=1

blKl , Kl = fx(xj,l)Yj,l ,

Yj,l = Qj + hj

l−1
∑

p=1

ajpKp , l = 1, 2, . . . , s .

Observe that the Jacobian is needed only through the actions fx(xj,l)Yj,l, that is only the

action of the Jacobian (evaluated at some value x̄) on several vectors; say, the action fx(x̄)v

is required. In LESNLL there are two options for the user to approximate this action.

(i) If the coding “Jacobian×vector” is easy to do, then the user should define this action

explicitly in a subroutine. For example, in evolving Burgers equation

ut = uyy − uuy , u(t, y) = u(t, y + 2π)

by a spectral method, the term uuy is represented by a bilinear function B(x, x) where
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the vector x consists of Fourier coefficients. The contribution of B to fx(φ
t(x0))v is

B(φt(x0), v) + B(v, φt(x0)) ,

and this is easy to code. Incidentially, this type of nonlinear term occurs also when

dealing with several important PDEs, such as the Kuramoto-Sivashinsky equation (see

(24)) and the Navier-Stokes equations.

(ii) If the action “Jacobian×vector” is not easily available, then this action is approximated

internally by the package using discrete directional derivatives (this is done internally

in LESNLL, and requires no user intervention).

What LESNLL does is the following (standard) approximation:

fx(x̄)v ≈
[

f(x̄ + ηv) − f(x̄)
]

/η ,

where LESNLL chooses

η = max(1, ‖f(x̄)‖2)
√
EPS ,

and EPS is the machine precision. It should be understood that this way of proceeding

now gives an inexact Jacobian action, and one cannot get a better accuracy than O(η)

for this evaluation. This is fine, if η is (less than or equal to) the order of the required

error tolerances on the exponents, otherwise there is a limitation on the obtainable

accuracy which practically is of O(
√
EPS).

The situation for the continuous QR method is very similar, and LESNLL proceeds in

a similar way. This is because in this case (see (16)) the Jacobian is needed only through

actions of the form

fx(x̄)Q , Q ∈ IRm×n ,
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and thus again one need only to evaluate terms like fx(x̄)v. These are handled as above.

Remark. The Jacobian free methods are a considerable help insofar as the evaluation of

the various right-hand-sides in the equations of the QR methods. However, the outstanding

computational expense of these methods remains that of the QR factorizations, which is

O(mn2) flops per step. This limits all approaches to medium sized problems, or to very

small values of n. The largest experiments we have performed have been on a problem with

(m, n) ≈ (1000, 100), and these were very demanding computations.

Three step method: Using a nonlinear solver and LESLIS-

LESLIL

As previously mentioned, an alternative to the all at once strategy of LESNLS-LESNLL,

is a three-step-strategy. On a step from tj to tj+1 = tj + hj , one does the following:

(1) Integrate for (1) with any desired scheme;

(2) Rebuild via Hermite interpolation an approximation to the trajectory on the step;

(3) Use the linear codes LESLIS or LESLIL with Jacobian evaluated at the interpolant.

The rationale for this strategy is that it may be convenient (or even necessary) to integrate

for the trajectory with a better suited code than an explicit RK code. For example, the solver

VODPK ([6]) can be highly effective for the integration of stiff problems. For Hamiltonian

systems the integration for the trajectory might be done with a symplectic integrator. Of

course, any nonlinear solver for (1) could be used as needed.
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Step 1 - Integration of the nonlinear DEs.

OUTPUT: Current time and approximation.

Step 2 - LESLIS or LESLIL

INPUT: Current time and approximation.

OUTPUT: Initial time and number of LEs, followed by current time step, integral of diag-

onal elements over the current step.

Step 3 - Obtain spectral information.

INPUT: Output of Step 2.

OUTPUT: Approximate LEs, Sacker-Sell spectrum, Lyapunov dimension, integral separa-

tion information, etc..

Basic idea: In Step 2 build globally defined approximation of trajectory.

• For example:

Given times tj < tj+1 and corresponding xj , xj+1 ∈ IRm and the vector field defined by

f(x) [basically the same as that used in Step 1], determine coefficients aj , bj, aj+1, bj+1 ∈ IRm

such that

x̃(t) = (aj · t + bj) · L2
0(t) + (aj+1 · t + bj+1) · L2

1(t),

the cubic Hermite interpolant such that x̃(tj) = xj , x̃(tj+1) = xj+1, x̃′(tj) = f(xj), and

x̃′(tj+1) = f(xj+1). Here L0(t), L1(t) are linear scalar functions, the Lagrange interpolants

corresponding to tj, tj+1.

Remark. For stiff problems, the benefits of a potentially less expensive integration of (1)

are often wiped out in the context of approximation of the exponents. In part this is because
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the dominant expense is still that associated with the various QR factorizations, but there is

more. In fact, often the stepsize sequence chosen by the stiff solver is inadequate to resolve

the approximation of the exponents. The reason for this is not yet clear.

Examples

Several examples are available at the web sites

www.math.gatech.edu/∼dieci/software-les.html

and

www.math.ku.edu/∼evanvleck/software-les.html

Various drivers and test problems are available including examples of the all at once

strategy and the three step strategy with both stiff and symplectic integrators.

Example 1. The first example is a model of atmospheric variability [27, 28] with values xj

of m points equally spaced around a circle of constant latitude:

ẋk = (xk+1 − xk−2)xk−1 − xk + 8 , k = 0, 1, . . . , m − 1 , (mod m) . (23)

In the results reported in [27, 28] for m = 40 there are 13 positive LEs, the Kaplan-Yorke

dimension dimKY ≈ 27, and λ14 = 0. As a concrete example we considered the initial

condition x(0) = e2, the second unit basis vector, and solved for all LEs using LESNLS and

LESNLL. We employed error tolerances on the trajectory, orthogonal factor, and Lyapunov

exponents of size 10−4 and the RK38 scheme. Over integration times up to 104 we found

the computational procedure for large problems LESNLL to be approximately twice as

fast as that for small problems LESNLS when computing all Lyapunov exponents. In

addition, we obtained values of the Kaplan-Yorke dimension dimKY ≈ 27.06 and found that
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Figure 1: First seven approximate Lyapunov exponents versus time for the model of atmo-

spheric variability (23).

the approximate values of the Lyapunov exponents quickly converge to relatively uniform

values. We plot here the approximate LEs as a function of time for the first seven LEs in

Fig. 1.

Example 2. As a second example consider the Kuramoto-Sivashinsky equation in the form

∂ũ

∂τ
+ 4

∂4ũ

∂y4
+ ϑ

[∂2ũ

∂y2
+ ũ

∂ũ

∂y

]

= 0 , (24)

with ũ(y, t) = ũ(y + 2π, t), and ũ(y, t) = −ũ(−y, t). With the change of variables

−2w(s, y) = ũ(ξs/4, y), ξ =
4

ϑ
.
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(24) can be written as

ws = (w2)y − wyy − ξwyyyy . (25)

This allows us to compare to the Lyapunov exponents reported in [11] and [13]. All computa-

tions were performed for ξ = 0.02991, ϑ = 133.73454, one of the parameter values considered

in [11, 13, 39].

We consider a spatial discretization using standard Galerkin truncation with 16 or 32

modes (see [13] for more details). We employ LESNLL using the DP integrator for both the

discrete (Table 1) and the continuous QR (Table 2) and the three step strategy (Table 3)

using LESLIL (with the DP integrator and the continuous QR method) and the stiff solver

VODPK [6] to approximate the solution of (1).

We report on numerical experiments to solve for the first four Lyapunov exponents over

intervals of length 10 and 100. In Table 1-3, T denote the final time, M the number of

modes, N the number of exponents approximated, and TOL is the value of the tolerances

that were employed. We report on the approximate Lyapunov exponents obtained and record

normalized CPU times. The values of the LEs obtained are consistent across the different

methods and with previous results [11, 13]. For M=16 modes, the discrete and continuous

QR approach take essentially the same amount of CPU time, and are considerably faster

than the three step strategy. For M=32, the discrete QR method is faster than all others.

DISCUSSION

We have developed a toolbox for approximation of Lyapunov exponents for nonlinear dif-

ferential equations. Among the benefits of the techniques described is the ability to use
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T M N TOL λ1 λ2 λ3 λ4

∑4
j=1 λj CPU

10 16 4 1.E-5 87.715079 0.10104269 -762.91721 -1139.7821 -1814.88 1

100 16 4 1.E-5 84.543528 -0.0036706406 -760.01825 -1136.9618 -1812.44 10.0

10 16 4 1.E-8 84.186532 0.0062248129 -759.54664 -1136.8065 -1812.16 2.8

100 16 4 1.E-8 83.917786 -0.0048723886 -759.47680 -1136.2823 -1811.85 28.2

10 32 4 1.E-5 85.075006 -0.28543797 -757.78116 -1128.0010 -1801.00 63.2

Table 1: The discrete QR method applied to the Kuramoto-Sivashinsky equation using the

Dormand-Prince pair.

T M N TOL λ1 λ2 λ3 λ4

∑4
j=1 λj CPU

10 16 4 1.E-5 80.787364 -0.0811046 -756.33708 -1136.1482 -1811.77 1.03

100 16 4 1.E-5 83.655799 -0.0002499180 -759.12671 -1136.8852 -1812.36 10.2

10 16 4 1.E-8 84.057142 -0.110254327 -759.33644 -1136.8114 -1812.20 2.9

100 16 4 1.E-8 83.982066 -0.0019134863 -759.46494 -1136.7057 -1812.19 28.4

10 32 4 1.E-5 84.961902 0.32904663 -758.65851 -1124.8598 -1798.23 72.9

Table 2: The continuous QR method applied to the Kuramoto-Sivashinsky equation using

the Dormand-Prince pair and the projected method.
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T M N TOL λ1 λ2 λ3 λ4

∑4
j=1 λj CPU

10 16 4 1.E-5 85.132041 0.1193929 -760.43735 -1141.4009 -1816.59 1.8

100 16 4 1.E-5 83.030609 -0.045702566 -758.47894 -1137.2718 -1812.67 18.5

10 16 4 1.E-8 83.555912 -0.07864597 -759.21634 -1137.0916 -1812.83 4.8

100 16 4 1.E-8 84.244061 0.0069730059 -759.69436 -1137.0974 -1812.54 48.8

10 32 4 1.E-5 88.068104 -0.16851648 -760.07970 -1129.7976 -1801.98 77.2

Table 3: The three step strategy applied to the Kuramoto-Sivashinsky equation with VODPK

used to the approximate the original nonlinear equation and the Dormand-Prince pair and

the projected method to approximate the orthogonal factor.

explicit Jacobians, the action of the Jacobian, or a finite difference approximation of the

Jacobian depending on the information available and on whether the problem is of large or

small dimension. The differential equations to be approximated are solved with techniques

that preserve the orthogonal structure of the factor Q which guarantees that the sum of the

Lyapunov exponents is preserved. Further avenues of research include coupling the toolbox

with a recently developed error analysis as well as application to problems of interest in

science and engineering.
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