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A NEW MODEL FOR REALISTIC RANDOM PERTURBATIONS
OF STOCHASTIC OSCILLATORS

LUCA DIECI, WUCHEN LI, HAOMIN ZHOU

ABSTRACT. Classical theories predict that solutions of differential equations will
leave any neighborhood of a stable limit cycle, if white noise is added to the
system. In reality, many engineering systems modeled by second order differential
equations, like the van der Pol oscillator, show incredible robustness against noise
perturbations, and the perturbed trajectories remain in the neighborhood of a
stable limit cycle for all times of practical interest. In this paper, we propose
a new model of noise to bridge this apparent discrepancy between theory and
practice. Restricting to perturbations from within this new class of noise, we
consider stochastic perturbations of second order differential systems that —in the
unperturbed case— admit asymptotically stable limit cycles. We show that the
perturbed solutions are globally bounded and remain in a tubular neighborhood
of the underlying deterministic periodic orbit. We also define stochastic Poincaré
map(s), and further derive partial differential equations for the transition density
function.

1. INTRODUCTION

It is well understood that many engineering and physical systems, like oscilla-
tors, can be modeled by deterministic dynamical systems having stable limit cycles
(periodic orbits) as attractors.

A prototypical example is the van der Pol oscillator, that is governed by the
second order differential equation:

i—a(l—2®)i+z = 0. (1)

It is well known that, for positive «, every solution of (1), except the origin, is
attracted to the unique orbitally stable limit cycle, and that the strength of the
damping, «, is intimately related to the rate at which trajectories approach this
limit cycle (see [12]).

However, in practice, noise is inevitable, and this motivates including random
perturbation effects in the differential equations models. Among the many ways in
which this has been done, we will focus on the case when the randomness takes the
form of a forcing term. For example, when we add random noise to (1), we will
obtain the following equation:

e —a(l —2d)i. 4. +e£=0, (2)
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where & represents the random perturbation, and ¢ is a small (positive) value. In (2),
and hereafter, x. will denote the “solution” when (1) has been subject to random
perturbations as in (2). (For later reference, note that noise has been added to the

original second order problem, prior to converting it into a first order system; see
below).

A commonly used model of random perturbation £ is white noise; i.e., £ = dW,
where W is the standard 1-dimensional Brownian motion. In this case, (2) becomes
the classical stochastic van der Pol oscillator (weakly perturbed, for e small). Other
models of noise have been studied in [3], [4], [19], [20], and [10].

The presence of noise in a differential equation brings in several new challenges
that require different approaches from those of deterministic dynamics. Of course,
the key fact is that the dynamics will depend on the noise, not on the initial con-
ditions. One of the most dramatic impacts of this fact is that (for any model of
noise of which we are aware) the stable limit cycle gets destroyed. Finally, it is
also worth realizing that noise causes changes in both phase and amplitude of the
solutions. The impact on the phase is usually termed phase noise, or time jitter in
the engineering literature [11, 17], and considerable progress has been made, both in
mathematics and engineering, toward understanding phase noise. For example, it is
well appreciated that phase noise can become arbitrarily large even for perturbations
that remain small [6, 7, 16]. Moreover, for white noise, a fundamentally important
and striking result (see [2, 9]) states that —with probability arbitrarily close to 1-
trajectories asymptotically escape from any neighborhood of the deterministic limit
cycle!

However, in real life, things do not appear to be nearly as bad. We give three ex-
amples to support this statement. First, consider the circuits (oscillators) commonly
used in cellular phones: these have a base frequency of around 1GHz, oscillating in
excess of 10° times per second. While being subject to unavoidable random ambi-
ent disturbances, a cell phone oscillator typically works continuously for days, even
months or years, without experiencing any break down. Second, in laboratory stud-
ies! on a cantilevered piezoelectric energy harvester, which is a electroelastic system
converting ambient vibrations generated by stochastic perturbations into electricity
through the direct piezoelectric effect [8], no breakdown caused by random perturba-
tion was actually ever observed. Finally, the reports in [5] indicate that trajectories
of a weakly perturbed van der Pol oscillator remain bounded and linger near the de-
terministic limit cycle. In fact, the results of this cited numerical study are consistent
with our own numerical simulations of equation (2), with white noise perturbations,
over long times; see Figure 1. Clearly, trajectories appear to remain in a tubular
neighborhood of the deterministic limit cycle, and do not become arbitrarily large.

This discrepancy between existing theoretical predictions and practical observa-
tions is likely due to two factors: (i) the asymptotic nature of the theoretical results,
which typically require an extremely long time to be observable (if at all), and/or (ii)
the inadequate modeling of the noise, meaning that practical random perturbations
must have bounded strength (there is no noise perturbation with infinite energy),
which is different from the white noise assumption commonly used in theoretical
studies. [To explain the numerical results summarized in Figure 1, we note that
—although we do not force any restriction on the random number generator used to

1We thank Prof. Erturk, of the ECE department at Georgia Tech, for sharing with us the results
of the experiments carried out in his laboratory
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FIGURE 1. Long time behavior of (2) in numerical experiments.

mimic white noise— the pseudo random number generator used in our computation
does not (and cannot) produce infinitely large perturbations.]

The above state of affairs provided us with the main motivation to carry out the
present study. In particular, the above point (ii) is our key concern in this work.

We will focus on second order dissipative systems (oscillators) that posses an
orbitally stable limit cycle surrounding a unique unstable equilibrium (at the origin),
and we will study the impact of noise on these systems. Our main goals are: (1)
to provide a new mathematical model for realistic random perturbations so that
the trajectories of the stochastic oscillators resemble the phenomena observed in
practice; and, (2) to study the behavior of solutions of these stochastic oscillators.

1.1. A new model of noise. Accounting for the possibility that standard white
noise can generate infinitely large perturbations (albeit with arbitrarily small prob-
ability), while a realistic model of noise should never inject infinitely large energy
into the system, here we propose a new model of noise that we believe serve as an
appropriate model for random perturbations arising in practice.

Namely, we will require that the random perturbations £ belong to the event set
B defined as:
B = {w: sup [Wy(w)-Ww)|<M}. (3)
[t—s|<T
In (3), T and M are two given positive constants, t and s are any two instants of
time at most T-apart, and w is the event of a Brownian path.

Note that B, a subset of all Brownian paths, is the collection of those Brownian
motions that have bounded finite time increments. However, note that a path in
B can still diverge to infinity as ¢ — oo. Now, if one is interested in the finite
time behavior of the system, then the probability of a Brownian path not in B can
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be made arbitrarily small by taking M large enough, because of Holder continuity
of the Brownian motion path. However, if infinite time is considered, we observe
that B has measure zero in the set of all Brownian paths defined for t € [0, 00).
Nevertheless, this does not imply there are not sufficiently many paths in B for
t € [0,00): in fact, B contains un-countably many paths for ¢ € [0, 00), maintaining

key characteristics of Brownian motion, including the general order of continuity of
1

5
1.2. Our results. We shall show that selecting random perturbations ¢ from B for
perturbing a deterministic oscillator with attracting limit cycle, and whose right-
hand-side satisfies a local Lipschitz condition?, will give well defined solution trajec-
tories that remain bounded for all times. With reference to (1) and (2), it is worth
emphasizing that this does not mean that, for all ¢, (x.(t),y.(t))” will stay close to
its deterministic counterpart (z(t),y(t))”. In fact, because of the phase differences,
supy |[(ze(t) —z(t), y=(t) —y(t))T || will become arbitrarily large for ¢ € [0,00). On the
other hand, we will show that (z.(t),y-(¢))? remains close to the deterministic limit
cycle for all ¢, and we will further show several desirable properties of the stochastic
trajectories relative to our new model of noise.

To witness, if we take a short segment transversal to the limit cycle (a “section”),
we will show that the stochastic trajectories will return to this section, under ap-
proprate conditions. As a consequence, we will set forth a proposal for defining the
Poincaré return map relative to the stochastic oscillators. This is very different from
the scenario obtained when one uses standard white noise, in which case there is no
guarantee that a trajectory will return to a given section (see [14]).

In comparison to the Poincaré map for deterministic systems, our proposal of
Poincaré map for the stochastic systems has some new features that have not been
studied before. Namely, unlike the deterministic case, there is no longer just a first
return point for a trajectory “going around the origin once.” In fact, a solution
path can (and does) intersect the given section repeatedly, and it could do so infin-
itely many times, while the trajectory goes around the origin just one time. As a
consequence of this observation, our proposal will be to relate to each given section
a return interval and an associated distribution for the return points; both return
interval and distribution will depend on the section. An important outcome of the
above proposal is that we will have at least three different Poincaré maps: (i) that
associated to the first return points distribution, (ii) that associated to the average
of the return points distribution, and (iii) that associated to the last return points
distribution.

Finally, we will also investigate the evolution of the probability density function
of the stochastic oscillator with noise in B. In the present case, the processes are
no longer Markovian, because the random perturbations depend on their past in
an interval of length 7', and not only on their current values. This inhibits the
possibility to write a standard Fokker-Planck equation (see below). What we shall
show is that, under appropriate conditions, the probability density function can
be given by rational functions depending on solutions of a pair of diffusive partial
differential equations (PDEs) with vanishing boundary conditions on finite intervals.

The paper is arranged as follows. In section 2, we consider a dissipative oscillator
subject to random perturbations from B, and we show local (in time) boundedness

2The local Lipschitz condition becomes a global Lipschitz condition if the solutions remain
bounded.
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of trajectories. In section 3, we introduce our proposal of stochastic Poincaré map,
and show the main result of this paper, the global boundedness of solutions. Lastly,
in section 4, we study the evolution of the probability density function in terms of
the solutions of some associated PDEs.

Notation: Throughout this work, the vector norm is always the 2-norm, which
will be indicated simply as || - ||

1.3. Relation to previous results. A lot of effort has been devoted to study the
changes that solutions undergo under the effect of white noise perturbations. But,
unfortunately, the existing results, require modeling assumptions which make them
inapplicable to our problem. We justify this claim below.

For a planar system of differential equations, the basic model considered is the
stochastic differential equations (SDE)

dX = g(X)dt + f(X)dW; , (4)

where X (t) = (x(t),y(t))T, the term W; comprises two independent 1-dimensional
Brownian motions, and the diffusion coefficient f is such that the matrix ff7 is full
rank. The latter property is often referred to as “uniform ellipticity.” We refer to
the excellent expositions in [1, 2, 9, 15, 25], for details and further references. But,
it is worth pointing out that the system(s) of interest to us, such as (2), do not fit
into the model (4). This can be readily seen if we convert the second order equation
(2) into a first order system, say

{d$£ = yedt,

5
dye = [a(1 — 22)y. — x|dt + edW; . 5)

It is very important to observe that random noise is only added to the second equa-
tion in (5). Mathematically, this is easily explained as having added the perturbation
to the original second order equation (1), prior to converting it into first order sys-
tem. But, a more intrinsic and deep reason is that x and y are related to the current
and voltage, respectively, which have a fixed relationship for a given circuit. So, it
is not physically justified to add independent noise to both equations in (5).

2. LOCAL BOUNDEDNESS OF SOLUTIONS

In this section, we introduce our model of stochastically perturbed system with
noise set B, and show local (in time) boundedness of trajectories.
We consider a second order system

where f is a smooth function of its arguments. We rewrite (6) as the first order

system
i(g) = <f(agij,y)> ., orsimplyas X = b(X), X:<:§> , (7)

and we will always work under the following assumptions on (7):

(i) the origin is the only equilibrium of (7), b(0) = 0, and it is unstable;
(ii) the system possesses a globally orbitally stable limit cycle I', corresponding
to a periodic solution of period 0 < Tp;
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(iii) for X: ||X|| < C, where C is any (arbitrary, but finite) positive constant,
the function b is smooth and locally Lipschitz, with Lipschitz constant L
(usually, L will depend on C).

Finally, the solution of (7) with initial condition X (0) = u, will be written as ¢'(u).

Of course, as a consequence of the above assumptions, all orbits of (7) (except the
origin) will approach I". In Section 3, we will quantify better the rate of approach to
I'. Finally, note that, in general, the function f may depend on a parameter «, as in
(1), or even on several parameters, and it must be tacitly understood that the above
assumptions must hold for all allowed values of the parameter(s); in particular, the
period Ty (which usually will depend on the problem’s parameters) must remain
finite as the parameter(s) varies (vary).

Our specific interest in this work is in the following perturbation of (7):

dre. = ydt
dya‘ - f(‘raaya)dt+€dwt7

where ¢ is a (small) positive parameter, and W is a 1-dimensional Wiener process
so that £ = dW; is in the event set B given in (3). An initial condition of (8) is
written as X.(0), and its solution as X.(¢,w), or simply X.(¢), if no confusion can
arise.

(8)

As already remarked, there are good modeling reasons for considering the noise
model given by the set B. The key reason, for us, has been to adopt a model of
noise more in tune with what is typically observed in practice, whereby realistic
ambient noise is bounded within a finite time interval (unlike, say, white noise).
Indeed, on intervals of length T, noise realizations from B are locally bounded,
which is meaningful since, in real world scenarios, energy is always bounded, and no
perturbation can become unbounded in finite time. (Still, note that noise realizations
from the set B can still become eventually unbounded, since the total increment is
not constrained to remain bounded.)

As added benefit, restricting to the event set B, we will be able to show important
mathematical properties of the model (8). Most notably, we will be able to propose
a definition of Poincaré map, see Section 3. But, first, below we show that stochastic
trajectories remain bounded in a finite time interval.

Theorem 1. Let B be the set defined in (3), and let w be any event from B. Then,
for e > 0 sufficiently small, solutions of (8) are locally bounded:

sup [|X.(t,w)]| < oo,
0<t<T

where T' is the interval width appearing in (3).

Proof. We will argue by contradiction. So, suppose that supy<;<r || Xc(t,w)|| = oo.

Let C; be the maximum of ||¢!(u)||, for 0 < ¢ < T, along the deterministic limit
cycle:
C1 = max ¢ (u)l| , uel.
Then, there must exist a constant C' > 2C', for which the stopping time
T(w) =inf{t: [ Xc(t,w)[| = C},

must satisfy
T(wo) < T,
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for some wy € B. In other words, for such wgy, we have

sup || Xe(s,wo)|| = C. 9)
0<s<7(wo)

Consider this event wp. From [18], we know that there exists a strong solution
Xc(t,wp) up to time 7(wp) (see [22] for the definition of strong solution). Let L be
the local Lipschitz constant of b when || X || < C. Hence, for ¢t < 7(wp), we have

| X (t,w0) — X(8)] = | /0 b(Xe(5,w0)) = b(X(s))ds + e (Wt?w@) .

< L/o | Xc(s,w0) — X (8)||ds + | Wi (wo)]| -

From Gronwall’s Lemma, and since wy € B, we obtain

sup || Xc(s) — X(s)]| < ") sup  [Wi(wo)]
0<s<7(wo) 0<s<7(wo) (10)

< gelmwol pr
Also, since 7(wp) < T, using the triangular inequality in (10) we get

sup || Xo(s)| < sup || X(s)|| +ee” @0

0<s<7(wo) 0<s<7(wo
<C)+ eelTM .
Therefore, if € < 2697%]\/[, then

3
sup | X:(s)] < §C1 <C,

0<s<7(wo)

contradicting equation (9). O

Theorem 1 establishes closeness, for short time, between stochastic and deter-
ministic solutions (see (10)), and it gives a lead on how to define the return map
(Poincaré map) in stochastic systems. We do this next.

3. STOCHASTIC POINCARE MAP AND GLOBAL BOUNDEDNESS

In this section, we introduce our proposal of stochastic Poincaré map, for (8).
Then, using the notation resulting from the definition of Poincaré map, we will
show our main theorem: global boundedness of solutions of (8).

3.1. Poincaré map. First, recall the definition of Poincaré map in the deterministic
setting. We do this in the plane, since we are interested in the model (7), though of
course the definition can be easily given in RY, d > 2.

Consider the general differential equation for X € R?

dx
= =bX), X(0)=u, (11)

where b is a locally Lipschitz smooth vector field. Let ¢'(u) be the flow associated
to (11) and suppose that (11) has a periodic solution of period T, and let T be the
orbit corresponding to this periodic solution. Therefore, ¢'*70(p) = ¢'(p), t € R,
pel.

The Poincaré map provides a useful tool for studying periodic orbits, whereby a
periodic orbit becomes a fixed point of the Poincaré map.
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Definition 2. Let p be a point on I' and S be a local cross section at p: a smooth
1-dimensional arc, intersecting T' (only) at p, transversally. Given an open and

connected neighborhood U of p, U C S, for every point uw € U, define the first return
time 7(u) as

7(u) = inf{t>0: ¢'(u) € S} .
Then, the Poincaré map P: U — S is defined by

Pu) = ¢" (), uel.

FIGURE 2. Poincaré map

Clearly P(p) = p and 7(p) = Tp.

With the help of the above definition, we can finally clarify assumption (ii), that
we made in Section 2 relative to system (7). We say that I is attractive, with rate
ap, 0 < ap < 1, if:

|P(w) = pll < aollu—pl| , for all u e U. (12)

As before, in case (7) depends on parameters, it has to be understood that the
inequality ag < 1 must hold uniformly with respect to parameters variation.

3.2. Stochastic Poincaré map. Consider now the general SDE associated to (11):
0
X0 =X+ = (1,0 )L X0 = 13

where X.(-),u € R? and W, is a standard Wiener process in R'. In this case, it is
known (see [22]) that a unique strong solution exists locally, that is for times before
the stochastic solution blows up to infinity.

If we try to define a (stochastic) Poincaré map for (13), we face some intrinsic
challenges.
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(1) With nonzero probability, the stochastic trajectory will not return “after one
loop” to a given section, even though the unperturbed trajectory is periodic.

(2) Even if the stochastic trajectory returns to a given section, the first return
point doesn’t represent all return points to that section. In fact, the trajec-
tory can intersect a given section several times, even infinitely many times.
[There is no monotonicity of motion with respect to a given section].

Selecting random perturbations from B in (3), and relative to the model (8),
allows us to solve the above difficulties. In fact, the following two facts hold as a
consequence of Theorem 1 and of (the proof of) Theorem 4 below.

(1) First, for all events in B, the stochastic trajectory of (8) will return to a given
section.

(2) Second, although the stochastic trajectory may repeatedly enter and exit (or
even stay for a while in) a certain section, it will have to leave such section
within a finite time. See Figure 3 for an illustration of this fact.

Note that a stochastic path can (and does) intersect a given section repeatedly,
and it could do so even infinitely many times, before leaving the section.

By virtue of points (1) and (2), and this last observation above, our proposal is to

Associate to a given section both a return interval and a distribution for the return
points; both return interval and distribution will depend on the section.

| Www ' V i 1

FIGURE 3. Return points of stochastic trajectory: the first return
interval (solid segment)

Let us set forth our proposal more precisely.

Consider a section S and a neighborhood U of p € T" as in Definition 2. For w € B,
and u € U, let X, be the the stochastic trajectory of (8), such that X.(0) = u.

To begin with, we introduce the first return time

1 3
Tg(u,u)) = lnf{t : Xe(t) S S, t e [§TO, §T0]} s (14)
and the last return time
1 3
oe(u,w) =sup{t: X.(t) € S, t € [iTO’ §T0]} . (15)

(Both of these values are well defined, for sufficiently small €, because of Theorems
1 and 4.)
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Then, we define the return “interval” E(u,w) or simply E:
E={X.(t): X.(t)e S, te€[r,o]}. (16)
(Again, Theorems 1 and 4 ensure that E is well defined.)

Our proposal is to associate to E in (16) a “ return distribution” function P, .,
by which we can solve for the sample average of the set E. Since the distribution
conveys all information on the return points, the Poincaré map (call it P.) should
be constructed as a point-to-distribution map, for each stochastic path:

P.oiucU— Py, .

At the same time, from the foregoing, it is natural to define three different point-
to-point maps, all of which can be computed in a numerical simulation: first return
map, last return map and average return map.

Definition 3. Let the cross section S, neighborhood U, and Poincaré map P, be
defined as in Definition 2, for the unperturbed system (7).

Let w € B, and X. be the solution of (8). Then, we define stochastic Poincaré
maps P., P. : U — S, as follows.

o Fore=0, Ph=P.
e Fore#0, and any v € U, then we define:
— the first return map

P.(u,w) = X (7 (u,w)) , (17)

where 7. is defined in (14);
— the last return map

P.(u,w) = X (0(u,w)) , (18)

where o, is defined in (15);
— and the average return map

P.(u,w) = /EydPu’w(y) , (19)

where E is defined in (16) and P, is the return distribution function
associated to E.

Remark 1. In the recent work [14], the authors proposed a Poincaré map definition
for the van der Pol oscillator, subject to standard white noise perturbation on edW;.
Assuming that trajectories return to a given section (although there is a positive
probability that they will not return), the authors further looked at the first return
map and for sufficient small e, argued that this map can be viewed as a Gaussian
perturbation of the deterministic map. By comparison, restricting to noise from
within B, we actually proved that trajectories always return (for e sufficiently small)
to a given section. Furthermore, our proposal of Poincare map takes into account
all return points, and it gives a more detailed description relative to a given section,
description which is not availably by a simple Gaussian process.

3.3. Global boundedness. By exploiting the Poincaré map, we will show our main
theorem, which we state next.

Theorem 4. Consider the system (8), where w is in B defined by (3). Assume that
(12) holds, and that the assumptions of Lemmata 5 and 6 below hold (in particular,
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(24)). Then, for ¢ > 0 sufficiently small, the stochastic trajectories of (8) are
globally bounded:

sup || X. (t,w) | < oo .
t>0

To prove this result, we will proceed according to the following steps.

(1) We define the Poincaré section S as a line section, and show closeness be-
tween unperturbed and stochastic solutions during the first return time; see
Lemma 5.

(2) We construct the first return map P. (see Definition 3), and sharpen the
result of Lemma 5 about closeness of the stochastic trajectory and the un-
perturbed Poincaré map for the first return to the given section; see Lemma
6.

(3) Combining the above closeness results, and asymptotic stability of the deter-
ministic limit cycle, we show that there exists a neighborhood (an interval) U,
of pe ', U. C S, invariant under the stochastic Poincaré map: P.(U.) C U..
This will complete the proof.

First of all, we define the Poincaré section. Through the polar representation
of points in the plane, we take the section to be a line segment placed at a given
angular value 6g:

S = {(z,y) € R? : x=r(y)cos(fy) ,y=r(f)sin(d)} , (20)

where a(6y) < r(6p) < b(y), and a and b are chosen sufficiently small so that the line
segment S intersects I' transversally at just one point. With this, we can identify
points of the stochastic trajectory that returns to this section:

0.(t) = 0.(0) = 0, .

Naturally, the neighborhood U C S as in Definition 3, now becomes an open subin-
terval of S containing the intersection with I'. This way of proceeding will be
validated in Lemma 5.

To illustrate, in Figure 4, we show a typical stochastic trajectory of (2) starting
from the section S, and traveling around the origin once before returning to S.

U

Detail at section

FIGURE 4. One realization for the stochastic van der Pol oscillator:
on the section are all return points
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With this, we can be more specific about the meaning of first return time with
respect to the section (cfr. with (17)):

7} = inf{t : 0.(t) = 0.(0) — 27} . (21)

Without loss of generality, here below we will also make a simplification in the
definition of B:
“we require 7" = 2T} in (3), where T > 0 is the period of the periodic solution of

(7)77 i
This choice is legitimate, since we can always modify M to ensure that Theorem 1
holds for T' = 2Tj. So, to reiterate, the event set B is henceforth given by

B = {w: sup |[Wi(w)—Ws(w)| <M, and T =2Tp} . (22)
|t—s|<T

Finally, let L be the local Lipschitz constant of b(X) in (7) for || X || < supg<i<r [ Xc(t,w)].

We further consider the annular neighborhood of radius ee“” M around the peri-
odic trajectory I'; see Figure 5. Finally, we let times ¢; and t5 be defined as follows
(again, see Figure 5):

1

tr=inf{t > oT0 « | X(8) - X(To)|| = eelTMY
(23)

3

ty = sup{t < 3T X (t) — X(Tp)|| = ee*T M} .

Note that ¢;, t2 depend on ¢, and that by continuity of the strong solution X.(¢),
7} € (t1,t2). Also, note that for € > 0 sufficiently small, with #1, £ as in (23), then
for i = 1,2, we have:

/1b(X(ti +s(Ty — ;) ds # 0. (24)
0

We are now ready to show closeness after the first return time.

Lemma 5. Let B be as in (22), w € B, and let L, Ty, and 7 be as above. Then,
for e > 0 sufficiently small, we have:

7—51 < 2Ty

and

sup || Xe(t,w) — X(8)]| < Coe
0<t<r}

where Cy = LT M.

Proof. Proceeding as in the derivation of (10), we have

sup || Xo(s) — X(s)|| < eelTM . (25)
0<s<T
Consider the deterministic system (7). For either i = 1 or ¢ = 2, we have
To 1
X(Ty) — X(t) = / b(X(s))ds = / b(X (1 + 5(To — 1)) ds (Ty — ).
t; 0

Since (24) holds, we can solve for [Ty — ¢;| from this last equation:
_ 1 X (To) — X ()]
T .
I fo b(X(ti + s(To — ti))) ds||

Ty — ti (26)
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Now, recall that 71 € (¢1,t2). Thus, by choosing e:

= i [Tl (X (8 + s(To — ) ds
i=1,2 4elT M ’

and using this bound in (26), we get 7! < T = 2Tj.

Hence, for w € B, and for ¢ sufficiently small, inequality (25) holds up to time
1
T, . O

t1 to

FI1GURE 5. The middle circle represents I'. The stochastic trajecto-
ries Xc(w,t), w € B, are inside the annulus.

Next, let P. denote the first return map as in (17), corresponding to the section
S defined as in (20). We show the closeness on the section S.

Lemma 6. With same notation and assumptions as in Lemma 5, let X (w,t), be
the solution of (8) for 0 <t < 71, with initial value X.(0) in U, a sufficiently small
open interval of S.

Then, for e > 0 sufficiently small,
1 X (7)) — Po(X(0))]| < 5Coe.

Proof. From Lemma 5, taking t = 7517 (25) becomes
Tl
1X(72) — ¢ (X(0))]| < Coe

Also, we have both
97 (Xe(0)), Po(X=(0)) € Urefry a1 BX (), Coe),

where t; and t2 are defined in (23), and B(X(t), Coe) are circles with center X ()
and radius Cpe. Therefore, we have

1X(72) = Po(X=(0))]| < 4Coe
and so
1X(r2) = Po(Xc(0)]| < 1Xe(7) = X(72)|| + 1X (7)) = Po(X<(0))[| < 5Coe -
O
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Finally, we show global boundedness and complete the proof of Theorem 4, by
using the stability of the deterministic limit cycle, as epxressed by (12), and local
boundedness of X;.

In the proof below, we will need to compare the stochastic and deterministic
solutions. For this reason, we will use the following notation. For all k = 1,2,...,

we write

k

k .

PRe X5< g 7';’) , where A]g = Tf“ — Tf ,
i=1

for the solution of the deterministic equation (7) at time 7+1

77, which started at time
7% with initial condition X.(3F_, 77). Above, we have recursively defined the values

€ i=1"¢€
7F as the k-th “first return” times:

™ =inf{t > 71 . 0.(t) =60.(0)— 27}, k=1,2,..., 0=0. (27)

3

These values 7¥ will be shown to be well defined in the proof below.

Proof of Theorem 4. First, let us show that
k

sup IX:O )l < o0,
=1

by showing that there exists an interval U. C S,
Us ={X :|| X —p| < Ro}, such that P.(U;) C U, .

We show this last fact by induction, in the process showing that the times 7%’s are

€
well defined.
If k =1, from Lemma 5, 7} exists, and 7} € (t1,t2) with ¢; and t3 given in (23),
in particular 71 € (%To, %T 0). From Lemma 6, we have
[Xe(72) = Po(Xe(0)[| < Rie
where Ry = 5Cy, and Cy = e“T' M with L the Lipschitz constant of b for X: || X|| <
Supg<t<ar, || Xe(t, w)||-

Also, since X.(0) € Ug, denoting with p € S the fixed point of Py and using (12),
we have

1 Xe(r2) = pll < [ Xe(72) = Po(X(0))]| + [[Po(Xc(0)) — pl|
< Rie+apRy .
So, if e < (1_%%, then X (7}) € U..

By induction, suppose that for j = 1,..., N, the times 7/ are well defined, that
satisfy

1 . 3
Tj—1+ §T0 < Tg <71+ 5TD7

where we have set
j—1
o i
=
i=0

N-1

1X.(r) = pll < 3 abRie + aoRo .
k=0

and that
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: N-1_k o k_ 1 :
Note that, since 0 < ag < 1, then >, af < > o o8 = Therefore, choosing

l—ag”
£ < % will give X (7n) € U..

Now, when k£ = N + 1, consider equation (7) with initial condition X.(7n). By
Gronwall inequality, we have

sup[[Xe(s) — 6B (Xsmv)) | < Coe,

TNSs<TN+T

hence Tn + %To <N <7y + %TO. Also, since

1Xe(ran) — 627 <X5<m>) I < Coe

similarly to the proof of Lemma 6, then
X (74 = Po(Xo (7)) < Rue - (28)

Using contractility of the Poincaré map as expressed by (12), and X (1Y) € U., we
have

1Po(X=(72)) = pll < aol| Xe(72Y) = pll - (29)
Combining inequalities (28) and (29), we obtain

X (P = pl| <X (P = Po(Xe (72 + [[Po(Xe (7)) — pll
N
<Rie + aol| Xo(7Y) = pl D afRie + aoRo -
k=0

)2 . . .
In particular, if ¢ < %7 then X (7n41) € Ue, and this completes the induction
process.

Finally, since for all k, 7.1+ %To < TEk < Tp_1-+ %Tg, then Tf must be in between
two consecutive multiples of the period Ty. As a consequence of this, for any time ¢
we can write t = TEk + s, for some k, and with 0 < s < Tj. Using again Theorem 1,
we then obtain

sup [| X ()] < oo,
>0
which completes the proof. [l

Remark 2. The main implication of Theorem 4 is that, although random perturba-
tion in B will not be bounded for all times, the stochastic trajectories will remain
within a tubular neighborhood of the deterministic limit cycle.

Remark 3. To illustrate the situation, consider a system (7) which is unambiguously
representable in polar coordinates (for example, the van der Pol oscillator), use
polar coordinates (p,#) for the deterministic problem, and (p:(t),60-(t)) to model
amplitude and phase in the stochastically perturbed version. Theorem 4 implies
that -as long as the perturbation is selected from within the set B— the amplitude
pe remains bounded:

sup |p-(t) = plt)] < o0 .
t>0, weB

In turns, this helps explaining why we observe no catastrophic breakdown in cell-
phone service, in agreement with practical experience.

At the same time, we must emphasize that the phase perturbation does become
unbounded:

sup |0:(t) — 6(t)| = o0 .
>0, weB
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In turns, this helps explaining why we may (and do) lose cell phone connection
during lengthy conversations; see details in [6].

To sum up, although perturbations occur in both amplitude and phase, there is
a clear distinction among the two: in particular, the strong stability property of the
deterministic limit cycle ensures that the amplitude perturbations remain bounded.

4. CONNECTION WITH PARTIAL DIFFERENTIAL EQUATIONS

In this section, we attempt deriving PDEs for the transition density function
associated to the trajectories of (8), with w € B. First, we review some known
results and give needed notations.

4.1. Diffusion process and partial differential equations. For completeness,
here we review the standard derivation of PDEs for diffusion processes; for details,
see [22].

Consider a d-dimensional Markov family {X;, 7;}, which is a diffusion process
with drift vector b = (b1,...,bq) and diffusion matrix a = {a }1<ik<d-

This means that for any f € C2, one has
lim S[B £(Xi|Xo = 2) ~ f(@)] = (Lf)(x), Vo € RY
where the inﬁmtesnnal operator L is given by

d
of (x

zlkl

Suppose that the Markov family of X; has a transition density function
P(X; € dy|Xo = z) = p(t,z,y)dy; Ve e RY, t>0.
Then, p(t, z,y) satisfies the forward Kolmogorov (Fokker-Planck) equation, for fixed
r € R%:
pt(tvx,y) = L*p(t,ﬂj,y), (tay) € (0700) X Rd )
and the backward Kolmogorov equation, for fixed y € R%:
pi(t,x,y) = Lp(t,z,y); (t,2) € (0,00) x R,

where the adjoint operator L* is given by

0%(ain(2)f(2)) <= O(bi(z)f(2))
ZZ axlaavk _;%, vz e RY .

zlkl !

4.2. Killed diffusions. Let us also introduce the killed diffusion PDE, by consid-
ering the one dimensional diffusion process

dXt = b(Xt)dt + O'(Xt)th, XO =T, (30)

where b, o are Lipschitz functions, and W} is a standard Wiener process. Consider
events set C":

C={w: sup |X,| < Mo} .
0<s<t

Define the first exit time 7 = inf{¢ : | X;| = My}. The killed diffusion is defined as

X if ¢ ;
Xtc’ _ [2) 1 <TC ) (31>
X, ift>1c.
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(A) X'rc = Mo (B) X"’c =—Mo

F1GURE 6. Killed diffusion

Consider the transition density function p(t,z,y) of X :
p(t,z,y)dy = P(X{ € dy|Xo = 2) .

In Lemma 7, we give the Fokker-Planck equation for the killed diffusion X,
which is a PDE with vanishing boundary conditions on a finite interval. For the
proof of Lemma 7, we refer to [13] and [24].

Lemma 7. For fized x, p(t,x,y) solves

pe=—(bp)y + 5(0%p)yy . Iyl < My ,
p(t,2,y) =0, |yl = Mo,
p(0,z,y) = do(z —y) .
O

4.3. Derivation of PDE. However, there are difficulties in following the above
standard steps to derive the evolution conditioned on B, because:

e X.(t) is not a Markov process, since it depends both on values in the past
and in the future; in fact, X.(¢) depends on the full set of values in the time
interval (t —T,t+T).

Because of the above difficulty, we restrict to a subset of B which allows us to
restart the process at certain times, and which is more amenable to analysis. As in
(22), take T' = 2Tj, where Ty is the period of the deterministic limit cycle. Then,
we consider the events set

1
By ={w: sup |Witrr, — Win,| < §M} : (32)
0<t<Ty
Clearly, By in (32) is a subset of B in (22). With respect to B, By has the advantage
that, on each time interval of width Tp, the Wiener process increments are indepen-
dent of that previous time interval of width 7. Moreover, for first time interval, by
introducing the absolute running maximum
M, = sup ’Wt| ’ tSTOa
0<s<t

(Xc(t), Wy, M) forms a Markov process, since condition By is nothing but the re-
striction to those events for which M; is bounded.
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Motivated by the above, we will restrict to By. Then, on the first time interval,
(Xc(t), Wy, M) will be analyzed on separated subintervals (0,¢) and (¢,7p), where
the first subinterval can be analyzed as a killed diffusion process and the second one
can be analyzed by a standard PDE approach.

To be more precise, we will solve for the transition density function conditioned
on events By:

p(t, X, Xc(0) | Bo)dX = P(Xc(t) € dX | By, Xc(0)) , (33)
where P represents probability function.

We divide our approach in three steps.

(i) From 0 to ¢t < Ty, we introduce the new process z; = W;, and solve for the
density function of (X.(t), z) at (X, 2):

1
P(X.(t) € dX, 2 € dz, My < 5M | X(0)) . (34)

As in killed diffusions, the corresponding equation is a PDE with vanishing
boundary conditions.
(ii) For the remaining time from t to Tp, we will solve for the probability function

P( sup W < M| W, =2) .
t<s<Tp 2
By the Markov property of (X (), Wy, M), we will then form the transition
density function on (0, Tp).
(iii) Finally, for any time ¢, by the Markov property, we will derive the transition
density function by connecting to the value obtained at the right-end point
of the previous time interval.

We are now ready to give details of our approach. For our basic model (8), with
dW, from By in (32), introduce the new process z; = zg + Wi, so that equation (8)
becomes

dxe = y.dt ,
dy. = f(xsays)dt +edWy (35)
dZt::dM@.

For a test function g(x,y,2) € C?(R?), the infinitesimal operator corresponding to
the process (X.(t),z) is

1
(Lg)(x,y,2) = ygz + f(z,y)gy + 5(629% + 2egy: + g22) - (36)

Now we begin the derivation on each time interval. Let

. 1
T, = inf{t: |z| = iM} , My = sup |z,

O<s<t
and consider events up to N time intervals

1
BY ={w: sup |Wiirr, — Win,| < 5M , k< N}.
0<t<Top

We first derive transition density for X.(t) conditioned on B{:
un(t, X, X.(0)dX = P(X.(t) € dX | X.(0),B}’) , for N =1,2,... (37)
As discussed above, this derivation goes through three steps.

Step one. We begin with transition density function on (0,¢), which plays a
core role in this derivation. Since (X.(t),z2:) is also a diffusion process, condition
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transition density for (X.(t),z) with event {M, < M} is the same as a killed
diffusion process, where we only cut off on the z; part. To be more precisely, we
define following killed diffusion by

) (Xe(2), 2), ift<r,;
(X2 (0),=") = {(XE(TZ),ZTZ), 1>, (38)

The transition density of (XM (t), z}) is the same as (34).

In details, consider BY. For 7, > t and fixed X.(0), we derive the transition
density function u of process (Xc(t), z;) with events {M; < $M}:

1
u(t, X, z, X.(0)dXdz =P(X(t) € dX,z € dz, M; < §M | X-(0),2z0 =0)
=P(XM(t) € dX,2M € dz | X.(0),20 =0) .
For fixed (X:(0), z0), we also denote u(t, X, z, X;) = u(t, X, z). The corresponding
Fokker-Planck equation becomes
9u = L*u, (X,z) €D,
U(t,X, Z) = 07 ‘Z| = %M ) (39)
U(Ova Z) = 6(0,0,0) (X - (:L“E(O), ya(o))v z — ZO) )
where

1 1
D=RxRx(—=M,-M) .
272
Remark 4. This degenerate equation is similar to that in [21].

We delay justification of equation (39) until the end.

Step two. Here we discuss the event on (¢,7p). At time ¢, restricting to the
events in B(l) is equivalent to requiring that the process z; remains bounded up to
time Tp.

Consider the probability of z; remaining bounded until time ¢ while starting at
point z:

v(t,z) =P, >t |20=2) .
Here v represents probability of the events {supg<,<; |[Ws + 2| < $M}. Then (see
[22]), v(t, z) satisfies the following PDE:

Vp =30y —EM <2< IM ,t>0),

o(t,sM) =v(t,—iM)=0,t>0, (40)
v(0,2) =1, —%M <z< %M .
Here, (40) can be solved. The remaining probability becomes
1
v(Top —t,z) = P( sup |Ws| < -M|W;=z2),
t<s<Tp 2
and probability of Bé is
v(Ty,0) = P(By) .

Combining step one and two: Since (X.(t), 2, M;) forms a Markov process, we
obtain the joint transition density function for (X.(t), z;) with B}:

p(t, X, 2, X:(0), B})dXdz = P(X.(t) € dX, 2 € dz, By | X-(0),2 = 0) ,
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which satisfies

1
p(t, X, 2,X.(0), BY) = u(t, X,2)P( sup |Ws| <M |W;=2).
t<s<Tp 2

And the marginal density becomes
1 M 1
p(t, X, X:(0), By) :/ p(t, X, z, X:(0), By)dz .

1
—iMm

The derivation becomes as following: for the first time interval (0,7p), recall u;
defined in (37) represents transition density function for X.(¢) conditioned on B,
which statisfies
t, X, X(0),B})

P(Byg)

wi(t, X, X-(0)) _n

77Mu(t, X, z)v(Ty — t, z)dz

V)

U(T(), 0) ’

where u satisfies equation (39) with X.(0), zop = 0 and v is the solution of equation
(40).

Step three. “Refreshing”. X; under By can be seen as a refreshed process at each
time kTp. And by applying the Markov property, we can derive general transition
density function for X,(t).

Consider the events set Bév 1. We denote w as the transition density function for
(Xe(t), z¢) with events By:

w(t, X, z, X:(0),20)dXdz = P(X.(t) € dX, z(t) € dz, B: | Xc(0), 20) ,

where

By ={w: sup |Wer — Wir,| < M} .
0<s<Tp
s+kTo<t

Again, for fixed Xy, we denote w = w(t, X, z), and by Chapman—Kolmogorov equa-
tion
N-1
w(t, X, 2) :/ / ult, X, Xy) T u(To, Kirr, X)dX1d %o ... d X |
R2 R2 i=0
where we used the notation X; = (X;, z;), and X = (X-(0),0). Combining events
from time ¢ to (N + 1)1, we have

1
ffin U}(t,X, Z)U((N + 1)T[) - t, z)dz
2
P(By*)

uNJrl(t’ X, XE(O)) =

1
S0 w(t, X, 2)o(N + 1Ty — t, 2)d=
_ 2
o(Tp, 0N

Arbitrary t. From the independent increments property of By for each time in-
terval, we can derive the transition density function for X.(¢) conditioned on By.
Indeed, for any ¢, there exists N = 0,1,..., such that t € [NTy, (N + 1)Tp]. Then,
we simply have

p(t, )(7 X5<0) ‘ Bo) = uN_H(t,X, XE(O)) .

Finally, we justfy equation (39).
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Proof of (39). The basic approach we use is standard; e.g., see [13] and [23].

The boundary conditions can be given as u(0,,y,2) = d(,0,0)(7 — 2(0),y —
y=(0), 2 — 2(0)) and u(t,z,y, £3M) = 0. Next, we follow the same steps used to
derive the Fokker-Planck equation for the diffusion process.

To simplify notation, denote Y = (x,y, 2) and Y; = (z(t), y=(t), 2(¢)). Consider
any test function h(z,y,z) = h(Y) € C? with compact support. Then,

ou(t,Y) u(t+ALY) —u(t,Y)
/D h(Y) =Y = /D A(Y) lim N ay , (41

where D = RxRx (—3M, $M). Again, consider the process (Y3, M;). Since (Y, M)
is a Markov process, if we denote its density function with p, which is defined by

1
p(t,Y,Y(0))dY = P(Y; € dY, M; < §M\Y(O)) )

Therefore the Chapman—Kolmogorov equation implies
u(t+ At,Y) =p(t + At, Y, Y (0))

- / u(t, Z)p(AL Y, Z)dZ .
D

Above, the last equality comes from the Markov property. Hence, equation (41)

becomes
/ ) 2UEY) oy
D

ot
= / h(y) lim d0MbZPALY, Z)dZ —ult,Y) .
D At—0 At
_ i Jp o MUt 2)p(AL Y, Z)dZdY - [ MY)ut, Y)dY o)
At—0 At
[y Jph(V)ult, Z)P(ALY, 2)dY dZ — [, h(Z)ult, Z)dZ
= A i
_ / i A POPALY. Z2)AY —0(2)
D At—0 At

where the second and last equalities are justified by the dominated convergence
theorem, and the third equality comes from Fubini’s theorem. Since E(1{; <a¢}) =
o(At) and h is a bounded function, then

i dpPYIBALY, Z)dY —h(Z) . EhYa) i oan — h(Z)

A0 At At—0 At
. Eh(Ya) —hZ) Eh(Ya)li<an
— 1 — — = L Z
Jim == A T

where L is the infinitesimal operator defined by (36). Hence (42) becomes

ou(t,Y) ,
/Dh(Y)atdy_/DLh(Z)u(t,Z)dZ.

Integrating by parts, using u(¢, Z) = 0 on the boundary and letting Z =Y on the
right-hand-side, we then obtain
ou(t,Y)

/Dh(Y)&dY:/Dh(Y)L*u(t,Y)dY,

which gives the equation (39). O
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5. CONCLUSIONS

In this work, motivated by practical observations (real world phenomena, labora-
tory experiments, and numerical simulations) on typical engineering circuitries, we
reconsidered what model of noise is appropriate for the mathematical modeling of
stochastic perturbation of second order systems of differential equations that admit
stable limit cycles. Whereas classical models consider stochastic DEs where per-
turbations come from standard Brownian motion paths, we restricted the class of
allowed disturbances, to avoid pumping infinite energy into the system through the
noise. In essence, our new model consists in selecting those Brownian paths that
have bounded increments in finite time.

Of course, there are new challenges when one gives up familiar ground, such
as white noise perturbations, and indeed we have encountered technical difficulties
especially insofar as obtaining viable expression for the transition density function.
However, by selecting the allowed perturbations from within our proposed event
set, we were able to adopt many classical tools from dynamical systems, and show
some interesting mathematical results, that further appear to be more in tune with
practically observed circuitry behaviors.

Relative to our set of allowed stochastic perturbations, our main results have been
the following.

(i) We proved global boundedness of the stochastic trajectories, and we showed
that they remain (for small values of the parameter € appearing in front of
the perturbation term) in the neighborhood of the deterministic limit cycle.

(ii) We proposed, and ensured the existence, of stochastic Poincaré map(s) as
a point-to-distribution map, and further introduced three point-to-point
Poincaré maps: first, last, and average return maps.

(iii) We associated the study of transition densities to a pair of PDEs.

In the future, we plan to further explore selected aspects of the present work.
In particular, we plan to study (at least experimentally) the statistical properties
of the return distribution associated to the Poincaré map, and to further perform
numerical exploration of the approach based on the system of PDEs herein derived.
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