
COMPUTATIONAL TECHNIQUES FOR REAL LOGARITHMS OF MATRICES �.byLuca Dieci, **Benedetta Morini and Alessandra Papini. ***AMS Subject Classi�cation: 65F30, 65F35, 65F99Key Words: real logarithm of a matrix, conditioning, Pad�e approximants, series expansions, eigendecompo-sition approaches, error analysis, implementations.ABSTRACT.In this work, we consider computing the real logarithm of a real matrix. We pay attention to generalconditioning issues, provide careful implementation for several techniques including scaling issues, and �nallytest and compare the techniques on a number of problems. All things considered, our recommendation fora general purpose method goes to the Schur decomposition approach with eigenvalue grouping, followedby square roots and diagonal Pad�e approximants of the diagonal blocks. Nonetheless, in some cases, awell implemented series expansion technique outperformed the other methods. We have also analyzed andimplemented a novel method to estimate the Frech�et derivative of the log, which proved very successful forcondition estimation.Some Notation. M 2 IR2n�2n is called Hamiltonian if MTJ + JM = 0, where J = � 0 I�I 0�. T iscalled symplectic if TTJT = J ; equivalently, T�1 = �JT TJ . �(T ) = f�i(T ); i = 1; : : : ; ng will indicatethe spectrum of T , and �(T ) the spectral radius of T . The notation � = O(x) means that �x ! c 6= 0 asx ! 0, and c is a constant. A 
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still needed. A main motivation for carrying out the present work has been to provide careful implementationfor, and assess performance of, the most promising techniques to compute real logarithms of matrices. Wefocus on real matrices, but much of what we say in this work can be adapted to the complex arithmetic case.Undoubtedly, in comparison with other branches of scienti�c computation, linear algebra software isplaced on very solid ground, the LAPACK and LINPACK/EISPACK libraries being the measure of excellenceon which to assess quality software. The high quality Matlab system also has in these computational linearalgebra components its work-horse. However, there are some linear algebra problems which have not yetfound their way into proper implementation and high quality software. We believe that �nding the logarithmof a matrix is one of these instances. In fact, more generally, computing functions of a matrix requires morework. (Interestingly, this is one of the very rare instances in which the Matlab implementation can give ratherinaccurate answers.) The general lack of good software for functions of a matrix is all the more bothersomesince computing functions of a matrix is a common engineering requirement (for the logarithm, see [LS1-2],[SS]). We think that a source of trouble is caused by looking at the computational task as a general task,rather than addressing it in a case by case way, depending on the function at hand. Not surprisingly, theexp-function, which has been singled out for its importance for a long time, enjoys more personalized androbust implementations. We hope that our work will lead towards more robust implementations for the logfunction.In the remainder of this Section we brie
y review some of the theoretical results we need. In Section2 we address the sensitivity (or conditioning) issue for the log-function. The key ingredient is naturally theFrech�et derivative of the log, and all across this work we try to characterize its norm. In Section 3 we givean algorithmic description of the methods we have chosen to implement, and discuss some of the error'sissues for them. In Section 4 we discuss �nite precision aspects of the methods, and also the general issueof ameliorating convergence and rescaling. We also present a new technique for estimating the conditionnumber of the log problem, which has proven very reliable, and somewhat e�cient. In Section 5 we givedetails of appropriate implementations for the methods, including cost estimates. Finally, Section 6 containsExamples, and Section 7 Conclusions.Given a matrix T 2 IRn�n, any n � n matrix X such that eX = T , with eX the matrix exponentialof X, is a logarithm of T , and one writes X = log(T ). As it is well known (e.g., see [He] and [Wo]), everyinvertible matrix has a logarithm (not necessarily real). Amongst the logarithms of T , in this work we areonly interested in those which are primary matrix functions of T ([HJ], [G], [GvL], [Hi1]). As usual, thesecan be characterized from the Jordan decomposition of T (e.g., see [GvL, Section 1.11.1-2]).Of course, to guarantee that X = log(T ) is real (assuming T is), one needs further restriction than mereinvertibility. The most complete result is the following.THEOREM 1.1. ([C], [HJ]). Let T 2 IRn�n be nonsingular. Then, there exists a real X = log(T ) ifand only if T has an even number of Jordan blocks of each size for every negative eigenvalue. If T has any2



eigenvalue on the negative real axis, then no real logarithm of T can be a primary matrix function of T .We will henceforth assume that we have a real logarithm of T , and that it is a primary matrix functionof T . Finally, it has to be appreciated that a logarithm can be uniquely characterized once we specify whichbranch of the log function (acting on complex numbers) we take. For example, there is a unique X = log(T )such that all of its eigenvalues z satisfy �� < Im(z) < �: this is known as the principal logarithm, and wewill restrict to this case from now on.In many applications, there is extra structure that one is interested in exploiting. For example, di�erenttechniques can be devised for the cases when �(I � T ) is inside the unit circle, and/or when <e(�(T )) > 0.Inter alia, the latter case arises for symmetric positive de�nite T , a situation in which T has a uniquesymmetric logarithm ([HJ]). Also (see [Si] and [YS]), if T is symplectic (orthogonal), then there exists a realHamiltonian (skew-symmetric) logarithm. Of course, in these cases we would want approximation techniqueswhich guarantee that we can recover the desired structure. This question was recently addressed in [D]; inthe present work, we will use and extend some of the results in [D].Not much work has been done on computing logarithms of matrices in comparison to its inverse function,computing matrix exponentials. The references [KL1], [KL2], [LS1], [LS2], [V], are a representative sampleof works on computation of logarithms of matrices. With the exception of [KL1-2], �nite precision issues arenot considered in these works. To our knowledge, our work is the �rst attempt to consider �nite precisionbehavior of several techniques, and to implement and compare them.2. SENSITIVITY OF THE PROBLEM.Naturally, before computing the logarithm of a matrix, it is appropriate trying to understand the intrinsicsensitivity of this function. The works of Kenney and Laub ([KL2]) and Mathias ([M]) are important sourcesof information on the general topic of conditioning of matrix functions. Our presentation is explicitly gearedtoward the log function, and it is partly di�erent than these works.Given a matrix function F (T ), where F : IRn�n ! IRn�n, the basic issue is to understand how thevalue of the function changes as the argument T does. This leads to relying on the Frech�et derivative as ameasure of sensitivity. From here on, unless otherwise stated, we use the 2-norm; with minimal changes (ifat all), all results hold true for di�erent norms.DEFINITION 2.1. Given a matrix function G : T 2 IRn�n ! G(T ) 2 IRn�n, a linear mapping G0(T ) :Z 2 IRn�n ! G0(T )Z 2 IRn�n is the Frech�et derivative of G at T if for any Z 2 IRn�n we havelim�!0kG(T + �Z) �G(T )� � G0(T )Zk = 0 : (2:1)The norm of the Frech�et derivative is given by kG0(T )k = maxkZk=1kG0(T )Zk. If G has a Frech�et derivative, wesay that G is di�erentiable. 3



With this de�nition, one has a general way to assess sensitivity for matrix functions. This is a generalprocedure, and can be found (essentially identical) in the works [KL2], [Hi1], [MvL], and references there, inspecial cases.Let X 6= 0 : G(T ) = X, and consider the perturbed input T +�T with corresponding perturbed outputX +�X : X +�X = G(T +�T ). For G(T ) = log(T ), from the relation �X = G(T +�T )� G(T ), uponusing (2.1) we can obtain k�XkkXk � kG0(T )k kTkkXk k�TkkTk + O(k�Tk2) : (2:2)The quantity cond(G(T )) := kG0(T )k kTkkXk (2:3)acts as a relative error magni�cation factor, and it is therefore natural to call it the condition number of thematrix function G at T . (Notice that, strictly speaking, we still have to justify the O(k�Tk2) term in (2.2);this we will do in Section 3.)REMARKS 2.2.(i) It is clear that cond(G(T )) depends both on G and T , and on X. A measure of conditioning whichneglects any of these components may be faulty.(ii) Of course, di�erent functions G might allow for more specialized ways to characterize cond(G(T )), asit is clearly evidenced in the work on the matrix exponential (see [vL], [MvL]). One of our tasks inthe remainder of this work is to better characterize the Frech�et derivative of the log function, hencecond(log(T )).(iii) If X � 0, it is of course more sensible to assess absolute errors, and thus to replace (2.2) withk�Xk � kG0(T )k k�Tk + O(k�Tk2) :We begin with the following elementary result, already in [KL2, Lemma B2], which is just the ChainRule.LEMMA 2.3. Let F and G be matrix functions such that G(T ) is in the domain of F . Consider thecomposite function H(T ) := F (G(T )). Let G0(T ) and F 0(G(T )) be the Frech�et derivatives of the functionsG and F , at T and G(T ) respectively. Then, the Frech�et derivative of the composite function is characterizedas the linear mapping H 0(T ) : Z 2 IRn�n ! F 0(G(T ))G0(T )Z 2 IRn�n :As a consequence of Lemma 2.3, we have (essentially, [KL2, Lemma B1])COROLLARY 2.4. Let F and G be inverse functions of each other, that is F (G(T )) = T; 8T in thedomain of G, and G(T ) in the domain of F , and let F and G be di�erentiable, as in Lemma 2.3. Also, letF 0(G(T )) be invertible. Then we have G0(T )Z = (F 0(G(T )))�1Z ; (2:4)4



and therefore also kG0(T )k = k(F 0(G(T )))�1k : (2:5)Proof. Apply the chain rule of Lemma 2.3 to the relation F (G(T )) = T .LEMMA 2.5. Let G(T ) = log(T ) and F (Y ) = eY . Then we havekG0(T )k � kT�1k ; (2:6)and therefore cond(G(T )) � cond(T )k log(T )k ; where cond(T ) = kTk kT�1k :Proof. From [vL, formula (1.3) and p. 972] we haveF 0(Y )Z = Z 10 eY (1�s)ZeY sds ; (2:7)and therefore with Y = log(T ) from Corollary 2.4 we have (take Z = I below)kG0(T )k = maxkZk=1 k(Z 10 eY (1�s)ZeY sds)�1k �k(Z 10 eY ds)�1k = ke�Y k = kT�1k ;where we have used the identity � log(T ) = log(T�1) (see [HJ]).REMARKS 2.6.(i) From (2.7) we can get implicit representations for G0(T ) in the case G(T ) = log(T ), and F (Y ) = eY ;for example, Z = Z 10 T 1�sG0(T )ZT sds :(ii) In Section 3, we prove that, for positive de�nite matrices, in (2.6) we have equality.In [KL2], Kenney and Laub consider matrix functions admitting a series representation such asF (X) := 1Xn=0 anXn ; (2:8)with associated scalar series absolutely convergent. In this case, they can represent the Frech�et derivativeas the in�nite series F 0(X) : Z ! 1Xn=1an n�1Xk=0XkZXn�k�1 : (2:9)Next, they unroll the Frech�et derivative by column ordering, callD(X) 2 IRn2�n2 the resulting matrix actingon the unrolled Z: D(X) = 1Xn=1 an n�1Xk=0(XT )n�1�k 
Xk ; (2:10)5



and then focus on the 2-norm of D(X) : kD(X)k2. To proceed with their analysis, one must realize thatkD(X)k2 is the same as kF 0(X)kf (see the Notation at the beginning of this work). They have some generalresults giving a lower bound for this norm, and then show that this lower bound is achieved when X is normal.We highly recommend careful reading of their work for details. Notice, however, that the assumption onbeing able to represent F (X) as the series (2.8) rules out a direct application of their theory to the logfunction. To deal with the Frech�et derivative of the function G(T ) = log(T ), they rely on (2.5), and arethus able to estimate kG0(T )kf via estimates on the norm of the inverse of the Frech�et derivative of theexponential function. Their approach can be pro�tably used to get some more information on the norm ofthe Frech�et derivative of the log. Although what follows is not explicitly given in [KL2], it can be deducedfrom their approach.Consider the case of G(T ) and F (Y ) inverse functions of each other, so that F (G(T )) = T . Moreover,let F (Y ) be a matrix function for which (2.8)-(2.10) hold. For example, this is true for G(T ) = log(T ), andF (Y ) = eY . Let F 0(G(T )) be invertible, and let D(G(T )) be the unrolled Frech�et derivative of F (Y ) atG(T ). Then, we have kG0(T )kf = k(F 0(G(T )))�1kf = k(D(G(T )))�1k2 :Let �i be the eigenvalues of D(G(T )), and let j�1j � : : : � j�n2 j. One always has the inequality1j�1j � k(D(G(T )))�1k2 ;and if we assume that D(G(T )) be diagonalizable by the matrix S : S�1D(G(T ))S = diag(�i), then alsothe following inequality is well knownk(D(G(T )))�1k2 � cond2(S) 1j�1j :Now, let T be diagonalizable by V , T = V �V �1, and so also G(T ) = V G(�)V �1. Hence for D(G(T )) onehas (use [HJ, Problem 3 p.249])D(G(T )) = (V �T 
 V )( 1Xn=1 an n�1Xk=0(G(�))n�1�k 
 G(�)k)(V �T 
 V )�1 :With S = V �T 
 V , putting it all together, we get that for diagonalizable matrices T the following holds:1j�1j � k(D(G(T )))�1k2 = kG0(T )kf � cond2(S) 1j�1j : (2:11)To complete this discussion, we now recall that normal matrices can be brought to diagonal form (almostdiagonal, i.e., diagonal with possibly 2� 2 blocks along the diagonal to allow for complex conjugate pairs ofeigenvalues, if we insist on real arithmetic) with a unitary (orthogonal) matrix. So, let V be unitary above.Moreover, if T is normal then so is G(T ) ([HJ, Problem 2 p.439]). Finally, if V is unitary, so is V �T and soalso S = V �T 
 V is unitary [HJ, p.249]. So, for normal matrices, one has the precise characterizationkG0(T )kf = 1min1�i�n2j�i(D(G(T )))j : (2:12)In fact, to have cond2(S) = 1 in (2.11) we must have all singular values of S equal 1, and thus (2.12) holds,for the class of diagonalizable matrices, only if T is normal.6



REMARKS 2.7.(i) In particular, all of the above holds for the function G(T ) = log(T ). But the above reasoning also holdsfor many other matrix functions G(T ) not satisfying (2.8), but for which their inverse function satis�es(2.8); amongst others, G(T ) = T 1=p; p = 2; : : :.(ii) Characterization of the eigenvalues of D(G(T )) in terms of those of G(T ) is done in [KL2, Lemma 2.1].To obtain a relation between kG0(T )kf and the operator norm kG0(T )k, reason as follows. Let G0(T )Z =B(Z) 2 IRn�n, and let �i(Z), �i(B(Z)), be the (ordered) singular values of Z, B(Z), respectively. ThenkG0(T )k = max�1(Z)=1�1(B(Z)) ; kG0(T )kf = max�21 (Z)+:::+�2n(Z)=1(�21(B(Z)) + : : :+ �2n(B(Z)))1=2 ;and the following inequalities are then simple to obtain:kG0(T )k � kG0(T ))kf � pn kG0(T )k : (2:13)Notice that (2.13) are the usual inequalities between the Frobenius and spectral norms of matrices.Of course, in order for a measure of conditioning of the G(T ) problem to be an e�ective computationaltool, one should be able to estimate kG0(T )k (perhaps in some norm other than the 2-norm) without drasti-cally increasing the expense needed for the computation of G(T ). This seems to be a tall task. Nonetheless,some interesting ideas are in [KL2] and [M], and some other possibilities are discussed in the next twoSections.3. SOME METHODS. MORE ON CONDITIONING.Here we present some methods: (i) two series expansion techniques ([GvL], [LS1-2], [D]), (ii) Pad�e approx-imation methods ([KL1-2], [D]), (iii) the Schur decomposition approach ([GvL], [Matlab]), and a (iv) ODEreformulation approach.Series Expansions. Under appropriate restrictions on the spectrum of T , the principal logarithm of Tcan be expressed as a series. In particular, two such series have frequently appeared in the literature.Computational procedures arise upon truncating these series.Series 1. Let A = I � T , and assume �(A) < 1. Then,G(T ) := log(T ) = log(I � A) = � 1Xk=1 Akk : (3:1)Subject to obvious restrictions on spectral radii, from (3.1) we getlog(T + Y ) = log(T ) + (log(T ))0Y +E(Y ) ;and kE(Y )k � O(kY k2). From this, we obtain an expression for the Frech�et derivative:G0(T ) : Y ! 1Xn=1 1n n�1Xk=0AkY An�1�k ; A = I � T ; (3:2)7



and if kAk < 1: kG0(T )k � 1Xn=1 1n n�1Xk=0 kAkn�1 = 11� kAk = 11� kI � Tk :From the above, we get that for positive de�nite matrices kG0(T )k � 1min�2�(T )j�j , that is kG0(T )k � kT�1k,which justi�es Remark 2.6(ii), for positive de�nite matrices for which (3.1) holds.Series 2. This is obtained from the series expansion (3.1) for log(I+X)�log(I�X) = log((I+X)(I�X)�1),via the conformal transformation T = (X � I)(X + I)�1, thereby obtaininglog(T ) = 2 1Xk=0 12k + 1[(T � I)(T + I)�1]2k+1 : (3:3)Notice that the restriction �(A) < 1 needed for (3.1) now has become <e(�(T )) > 0. Reasoning as before,if also <e(�(T + Y )) > 0, we obtain another expression for the Frech�et derivative of log(T ):(log(T ))0 : Y ! 2 1Xk=0 12k + 1 2kXj=0Bj(2CY C)B2k�j ; C := (X + I)�1 ; B := (X � I)C : (3:4)Pad�e Approximants. Under the assumption �(I � T ) < 1, these consist in approximating the functionlog(I �A); A = I � T with the rational matrix polynomial Rn;m(A) = Pn(A)(Qm(A))�1, where Pn(A) andQm(A) are polynomials in A of degree n and m respectively, in such a way that Rn;m(A) agrees with n+mterms in the series expansion (3.1) of log(I�A). This is a universal and powerful tool [BG-M], well examinedin the context of log(T ) in the works [KL1-2]. It is easy, with the help of tools such as Maple, to obtain thecoe�cients of the matrix polynomials Pn(A) and Qm(A). Based on the error estimates in [KL1], we haveonly considered diagonal Pad�e approximants.To assess the conditioning of the Pad�e approximants, we can reason as follows. For given n;m, letR(A) = Rn;m(A) = P (A)(Q(A))�1 = nXk=0akAk( mXk=0bkAk)�1. Suppose that rather than T we have T + Y ,that is A� Y , instead of A, and kY k � 1. Then it is easy to obtainR(A� Y ) �R(A) = �(E(Y )� R(A)F (Y ))(Q(A))�1 +H(Y ) ; (3:5)where kH(Y )k � O(kY k2), and E(Y ) = nXk=1akk�1Xj=0AjY Ak�1�j, and F (Y ) = mXk=1bkk�1Xj=0AjY Ak�1�j, are the�rst order perturbation terms for P (A) and Q(A). From (3.5) we obtainkR(A� Y ) �R(A)k � (kE(Y )k+ kF (Y )k kR(A)k)k(Q(A))�1k+O(kY k2) ;or in a relative error sense (if kR(A)k 6= 0)kR(A� Y )� R(A)kkR(A)k � (kE(Y )kkR(A)k + kF (Y )k)cond(Q(A))kQ(A)k + O(kY k2) : (3:6)Therefore, we see that for the conditioning of the Pad�e problem the most important factor is the conditioningof the denominator problem. In [KL1], this issue is investigated in the case kAk < 1, in particular see [KL1,Lemma 3]. 8



To understand better the term (E(Y )�R(A)F (Y ))(Q(A))�1 in (3.5), we can use �rst order perturbationarguments for the matrix function R(A), to obtain(E(Y )� R(A)F (Y ))(Q(A))�1 = R0(A)Y :We also have the following general resultLEMMA 3.1. Let F (A) = 1Xk=0ckAk, and let R(A) be a Pad�e approximant agreeing with the series of F (A)up to the power An+m included. Then R0(A)Y agrees with F 0(A)Y up to the term n+mXj=1 cjj�1Xl=0AlY Aj�1�l.Proof. Write F (A) = R(A) +M (A), so that M (A) has a power series with terms beginning with Ak+m+1.Now, since F 0(A)Y = R0(A)Y +M 0(A)Y , the result follows.REMARK 3.2. For the case of the log, since F (A � Y ) = log(T + Y ), Lemma 3.1 tells us that theconditioning of the Pad�e problem (hence also of the truncated series (3.1)), is close to the conditioning oflog(T ) (essentially the same if kAk < 1, for high enough n+m). No extra pathological behavior is introduced.Schur Decomposition Approach. When properly implemented, this is an extremely e�ective and reliabletechnique. The basic principles of the technique are general (see [GvL]), but our adaptation to log(T ) seems tobe new. Let Q be orthogonal such that QTQT := R be in real Schur form (upper quasi-triangular). Moreover,let R be partitioned as R := 0@R11 � � � R1m. . . ...0 Rmm1A, where we assume that �(Rii) \ �(Rjj) = ;; i 6= j (thiscan be done in standard ways). To obtain L := log(R), one realizes that L has the same block-structure asR, and (see [GvL, Section 11.1]) can get L from the relation LR = RL. The following recursion can be usedto get L ([P]):For i = 1; 2; : : : ;m Lii = log(Rii) (3:7)Endfor iFor p = 1; 2; : : :;m � 1For i = 1; 2; : : : ;m� p, with j = i + p, solve for the Lij :LijRjj � RiiLij = RijLjj � LiiRij + j�1Xk=i+1(RikLkj � LikRkj) (3:8)Endfor iEndfor p.In general, the Rii can be the 1� 1 or 2� 2 blocks of eigenvalues, or also much larger quasi-triangularblocks. If T is normal, then Q brings T to block diagonal form with either (1; 1) or (2; 2) diagonal blocks,and only (3.7) is required. Otherwise, to solve the Sylvester equation (3.8) is standard (see [GvL, [.387], and9



notice that (3.8) is uniquely solvable, since �(Rii)\�(Rjj) = ;). To obtain Lii from (3.7) is just a functioncall if Rii is (1�1), and also if Rii 2 IR2�2 with complex conjugate eigenvalues a direct evaluation is possible(see Lemma 3.3 below), while in all other cases we need some approximation method, e.g. by truncating theprevious series or using Pad�e approximants (if applicable).LEMMA 3.3. Let A = � a bc d� with complex conjugate eigenvalues � � i� (� 6= 0). Thenlog(A) = �I � � 2�4bc+ (a� d)2 �a� d 2b2c �a + d� ;where � = log(�); �2 = �2 + �2, and � = cos�1( �� ), 0 � � < �.Proof. The proof is just a simple calculation.COROLLARY 3.4. Let B 2 IR2�2 be normal, that is B = � a b�b a�. With notation of Lemma 3.3, wehave log(B) = � � ��� ��. Moreover, if B is orthogonal, then � = 0.REMARKS 3.5.(i) Corollary 3.4, coupled with prior real Schur reduction, guarantees that the computation of a real loga-rithm of a normal matrix T can be done in such a way that the end result is a real, normal, matrix. Inparticular, this fact makes such an algorithm interesting for computing the skew-symmetric logarithmof an orthogonal matrix, an approach not considered in [D].(ii) Of course, � a b�b a� can be identi�ed with the complex number z = a+ ib, which makes Corollary 3.4obvious (log z = log jzj+ i arg z). This observation renders more transparent also the �rst part of Lemma3.8 below.ODE Approach. This will be a very useful tool to better characterize both log(T ) and its Frech�et derivative.The starting point is to embed the problem into a continuous model, similar in spirit to a \homotopy" path.Let the time dependent matrix X(t) be implicitly de�ned asX(t) : eX(t) = (T � I)t + I ; 0 � t � 1 : (3:9)Notice that X(1) de�nes log(T ), and that X(t) is well de�ned, and real, 8t 2 [0; 1], because for (T � I)t+ ITheorem 1.1 holds, since it holds for T . Since TeX(t) = eX(t)T , then we also have that X(t) satis�es theODE _X = (T � I)e�X(t); 0 � t � 1 ;X(0) = 0 : (3:10)By construction, (3.10) de�nes the principal log of (T � I)t + I. Upon using (3.9), we have the explicitsolution of (3.10) X(t) = Z t0 (T � I)((T � I)s + I)�1ds ; 0 � t � 1 ; (3:11)10



and therefore we �nd this expression for log(T )log(T ) = X(1) = Z 10 (T � I)((T � I)t + I)�1dt : (3:12)REMARKS 3.6.(i) Formula (3.12) is also derived in the works by Helton and Wouk ([He], [Wo]). Their interest was inshowing that every invertible matrix had a logarithm.(ii) Computational procedures for log(T ) can be obtained by using integration formulas for the ODE (3.10),or quadrature rules on (3.12). We have experimented with explicit Runge-Kutta integrators for the ODE(3.10), and several quadrature rules for (3.12). We found that quadrature rules were consistently less costly.Notice that the midpoint rule on (3.12) gives the (1; 1) Pad�e approximant; see also Theorem 4.3.Formula (3.12) can also be used to obtain a new formula for the Frech�et derivative of G(T ) = log(T ).In fact, upon considering (3.12) for log(T + Z), using �rst order perturbation arguments, and some algebra,yields the following: G0(T )Z = Z 10 ((T � I)t + I)�1 Z ((T � I)t + I)�1 dt : (3:13)We also notice that using (3.12) for log(T +�T ), and expanding the inverse there in powers of �T , justi�esthe O(k�Tk2) term in (2.2).Now, from (3.13) with Z = I, sinceZ 10 ((T � I)t + I)�2dt = �(T � I)�1[((T � I)t + I)�1]10 = T�1 ;we obtain kT�1k � kG0(T )k, and so:kT�1k � kG0(T )k � Z 10 k((T � I)t + I)�1k2dt : (3:14)Moreover, (3.13) and (3.14) can be pro�tably exploited to gain further insight into kG0(T )k.LEMMA 3.7. If T is positive de�nite, thenkG0(T )k = kT�1k :Proof. Diagonalize T with orthogonal Q on the right-hand side of (3.14), and perform the integration.LEMMA 3.8. If T 2 IR2�2 is normal with complex conjugate eigenvalues a� ib, thenkG0(T )k = 1� �sin(�)where �� < � < � is the argument of the eigenvalues of T , and � their modulus. If T is normal of dimensionn, then kG0(T )k � maxk 1�k �ksin(�k) � kT�1k ; (3:15)where �k's are the arguments of the eigenvalues of T (if �k = 0, replace �ksin(�k) by 1), and �k's their modulus.11



Proof. In the (2 � 2) case T is of the form T = � a b�b a� with complex conjugate eigenvalues a � ib(and let b 6= 0, otherwise T is positive de�nite). Then �(t) = ((a � ib � 1)t + 1)�1 are the eigenvalues of((T � I)t + I)�1. Now, if we take Z = � 0 11 0� in (3.13), we get thatkG0(T )k � Z 10 j�(t)j2dt :For a 6= 0, with some algebra, this integral equals 1b tan�1 ba = 1� �sin(�) , where � belongs to (0; �=2),(��;��=2), (��=2; 0), (�=2; �) depending on whether b=a > 0, and b > 0 or b < 0, or b=a < 0, andb < 0 or b > 0. Now, one always has kG0(T )k � Z 10 k((T � I)t + I)�1k2dt, and, because of normality, thenorm of ((T � I)t+ I)�1 equals the square root of j�(t)j. Therefore, as before, we get the reverse inequalitykG0(T )k � 1� �sin(�)subject to same restriction on the argument. Therefore, the result for T normal and (2�2) follows. If a = 0,one gets simply kG0(T )k = 1� �2 .For general T 2 IRn�n, normal, let Q bring T to the almost diagonal form QTQT . Next, considerall matrices Z given by all zeros, except that on the diagonal they have just one 1 or one � 0 11 0� blockaccording to the eigenvalue structure of QTQT , and then (3.15) follows from the previous (2� 2) case.REMARK 3.9. The bound (3.15) indicates that there are two key factors determining the condition ofthe log problem: one is, as usual, nearness to singularity, as evidenced by the 1� factor, the other is nearnessto the negative real axis, as evidenced by the sin(�) factor in the denominator. This second fact detects illconditioning based on the restrictions imposed by the choice of real arithmetic.Finally, (3.13) can also be used to estimate kG0(T )kf directly. We reason similarly to [KL2], but stressthat (3.13) is a representation for G0(T )Z which does not need a power series representation, nor to gothrough the inverse function (the exponential). We haveTHEOREM 3.10. Let A(t) := ((T � I)t + I)�1, and let D(T ) := Z 10 (AT (t) 
A(t))dt. Then, we havekG0(T )kf = kD(T )k2 : (3:16)Proof. Let vec(Z) be the vector obtained by writing the columns of Z one after another, and so kG0(T )kf =maxkvec(Z)k2=1kvec(G0(T )Z)k2. But by (3.13)vec(G0(T )Z) = Z 10 vec(A(t)ZA(t))dt = Z 10 (AT (t)
 A(t))vec(Z)dt= Z 10 (AT (t)
 A(t))dt vecZ ;and the result follows. 12



REMARK 3.11. The above result can be used, in the same spirit as in [KL2, p.192], as a starting pointfor a procedure to estimate kG0(T )kf . In fact, since kD(T )k2 = (�max(DT (T )D(T )))1=2, a power methodapproach to get the dominant eigenvalue is suitable. By noticing that DT (T ) = D(TT ), with A(t) givenin Theorem 3.10, a cycle of this power method can be compactly written as: \ Given Z0 : kZ0kF = 1, letZ1 = Z 10 A(t)Z0A(t)dt, and then Z2 = Z 10 AT (t)Z1AT (t)dt, so that (kZ2kF )1=2 is an estimate for kG0(T )kf .If more accuracy is required, repeat this cycle with Z0 := Z2kZ2kF ". In practice, of course, the integral has tobe replaced by a quadrature rule, and we experimented with composite trapezoidal and Simpson rules, andGauss-Legendre rules. For the initial Z0, we used what we would have got after one cycle of the procedurehad we started with 1pnI; that is, one �rst would get Z1 = 1pnT�1, and then a quadrature rule for the nextintegral would give some Z2 (e.g., Z2 = 16pn (T�TT�1T�T + 16(T � I)�TT�1(T � I)�T + T�1), if we useSimpson rule). Thus, we used Z0 := Z2=kZ2k. This choice of Z0 gave consistently better results than startingwith a random matrix. We have experimented with this way to estimate kG0(T )kf , by using at most 10equally spaced subdivisions for the quadrature rules. This approach was very inexpensive, of course, but notentirely reliable. Often, it overestimated the true value (interestingly, almost never underestimated it); so, itrevealed itself as a good indicator of ill-conditioning, but did not a give a good measure of achieved accuracy.On the other hand, we cannot expect that for arbitrary T , hence A(t) in Theorem 3.10, a quadrature rulewith few points will be accurate; naturally, when we raised the number of quadrature points, the estimate gotbetter, but this became too expensive. For these reasons, we turned our attention to a di�erent technique,explained in the next Section.4. FINITE PRECISION, RESCALING, DISCRETIZATIONS.Finite Precision. For the two series (3.1) and (3.3), the asymptotic rates of convergence are determinedby �(A); A := I � T , and �(B); B := (I � T )(I + T )�1, respectively. However, the �nite precision behaviorof a truncated expansion is in
uenced by progressively taking powers: Ak for (3.1), and B2k+1 for (3.3).Moreover, for (3.3) there is also the inverse of I + T to contend with. A worst case analysis tells thatroundo� might be magni�ed by powers of kAk or kBk, respectively. If kAk < 1, then (3.1) leads to a safecomputation. Also, when kAk < 1, for (3.3) we would have kBk < k(I + T )�1k, and this can be easilybounded since I + T = 2(I � I�T2 ), and so (I + T )�1 = 12(I �A=2)�1. Then,k(I + T )�1k � 12 11� kAk=2 < 1 :So, under the assumption kAk = kI�Tk < 1, the two series (3.1) and (3.3) lead to a safe computation. Alsofor the Pad�e approximants, the assumption on kAk < 1 seems essential in order to make progress. Underthis assumption, the �nite precision behavior of Pad�e approximants is well analyzed in [KL1]. In particular,see Lemma 3 of [KL1]. 13



Because the transformation to Schur form is a stable process, the �nite precision behavior of the Schurmethod is chie
y determined by two factors: �nding Lii = log(Rii) in (3.7) in case in which Lemma 3.3 doesnot apply, and solving (3.8). The former factor is the usual one. The second factor is carefully analyzed in[Hi2]. One has to solve the following Sylvester equation for Z:RiiZ � ZRjj = C ;where the spectra of Rii and Rjj are disjoint. Ideally, we would like to select the block partitioning of thematrix R in such a way that all Sylvester equations to be solved are well conditioned, so that no eventualloss of precision in the computation is introduced. But, of course, to assess the conditioning of a Sylvesterequation requires the equation and its solution, whereas {for e�ciency sake{ we would like to have a criterionto determine the partitioning of R before hand. We reasoned as follows. If we call � the Sylvester equationoperator, � : Z ! RiiZ � ZRjj, then k��1k is an upper bound for a relative error magni�cation factor(see [Hi2]). It is also known that k��1k � 1min j���j , where � 2 �(Rii); � 2 �(Rjj) (see [GvL, p.389]), andthis lower bound we can easily control, by making sure that �(Rii) and �(Rjj) are su�ciently separated.Of course, this does not su�ce to make the Sylvester equation well conditioned. Still, after extensivecomputational experiments, we decided to cluster the eigenvalues so that j�(Rii) � �(Rjj)j � 1=10, and wehave never encountered a problem where a system (3.8) was ill conditioned, but the log was well conditioned.For this reason, we think the method should be regarded as stable.For the ODE approach, a quadrature rule must replace the integral in (3.12). That is,log(T ) = Z 10 (T � I)((T � I)t+ I)�1dt := Z 10 F (t)dt; (4:1)must be approximated by a rule of the type Q := NXk=1 ckF (tk): (4:2)For example, consider a composite Simpson rule (identical reasoning applies to di�erent quadratures) toapproximate (4.1). Let F (t) = (T � I)((T � I)t + I)�1 =: (T � I)A(t), with A(t) = ((T � I)t + I)�1. Thecomposite Simpson rule with equal spacing h = 1=N (N even) isCS := h3 (F (0) + 4(h) + 2F (2h) + 4F (3h) + � � �+ 2F ((N � 2)h) + 4F ((N � 1)h) + F (1)):It is easy to bound the error as: k log(T ) �CSk � nh4180 max0�t�1kF iv(t)k: (4:3)We can verify that F (k)(t) = (�1)kk!((T � I)A(t))k+1, from whichF iv(t) = 24[(T � I)A(t)]5 ; (4:4)14



which can be used in (4.3) to get error estimates. In case kI�Tk = ! < 1, the error bound can be sharpened.In fact, we easily get kA(t)k � 11�!t , so that kF iv(t)k � 24( !1�! )5, and thereforek log(T )� CSk � 4n45 h4� !1� !�5 : (4:5)REMARK 4.1. A direct computational procedure based on a composite quadrature rule discretizationof (3.12) can eventually be very accurate, but in general it will be expensive, unless T is not far from theidentity. Still, for low accuracy, a formula like (4.2) can be pro�tably used. For example, a modi�cation ofthe above proved very useful to estimate the norm of the Frech�et derivative of log(T ), see later.To complete the discussion on quadrature rules, we now give a new equivalence result about Gauss-Legendre quadratures on (4.1), and diagonal Pad�e approximants. Aside from its theoretical interest, thisfact allows for a new representation of the error for diagonal Pad�e approximants.LEMMA 4.2. Any quadrature rule of the type (4.2) is equivalent to a rational approximation of log(T ).Proof. We have Q := NXk=1ckF (tk), and F (t) = (T �I)((T �I)t+I)�1 . Since F (ti)F (tj) = F (tj)F (ti) ; 8i; j,then we can rewrite Q asQ = (T � I)[ NXk=1 ck NYi=1;i 6=k((T � I)ti + I)] [ NYi=1((T � I)ti + I)]�1 ;from which the claim follows.THEOREM 4.3. Let �(I � T ) < 1, and let Q in (4.2) be the N -point Gauss-Legendre quadrature rule forlog(T ). Then, Q is the (N;N ) diagonal Pad�e approximant to log(T ).Proof. With previous notation, and under the stated assumptions, we haveF (t) = (T � I) 1Xk=0(�1)k(T � I)ktk ;where the series converges. Therefore,log(T ) = 1Xk=1(T � I) Z 10 (�1)k(T � I)ktkdt :Since N -points Gauss-Legendre rules are exact for polynomials of degree up to t2N�1, we immediatelyrealize that Q agrees with log(T ) up to the term (T � I)2N+1 excluded. From Lemma 4.2, Q is a rationalapproximation to log(T ), and thus it must be the (N;N ) diagonal Pad�e approximant.COROLLARY 4.4. Under the assumptions of Theorem 4.3, we have the following error estimate for the(N;N ) diagonal Pad�e approximants Q to log(T ):log(T )� Q = (N !)4(2N + 1)((2N )!)3 1Xk=0(2N + k) � � � (k + 1)A2N+k+1�k ;where 0 � � � 1, and A = I � T . 15



Proof. From standard quadrature errors for Gauss-Legendre rules (e.g., see [AS]), and di�erentiating underthe series of Theorem 4.3, the result follows at once.REMARK 4.5. The previous results hint that a possible way to use quadrature rules is to �rst pass totheir rational form equivalent. On the other hand, for diagonal Pad�e approximants, it might be instead moredesirable to pass to their quadrature formula equivalent (4.2), to avoid ill-conditioning in the denominatorof the rational function. Moreover, from Theorem 4.3 we see that Gauss formulas are an excellent candidatefor a parallel implementation of Pad�e approximants.From the preceding discussion, it has become clear that it would be generally desirable to have T closeto I. This would make the �nite precision behavior of the above techniques much better.Scaling. An ideal scaling strategy, in the context of computing log(T ), is to precondition the problemso that (for a modi�ed matrix T ) T � I. In any case, a reasonable scaling ought to give a T for whichkI � Tk < 1.One approach is to �nd, inexpensively, some X1 approximating log(T ) such that X1T = TX1, and thenconsider e�X1T , �nd its logarithm, and �nally recover log(T ) = X1+ log(e�X1T ). Some ideas on this are in[D]. Also (3.12) can be used in this light, since any quadrature rule of the type (4.2) gives X1 : X1T = TX1.A more systematic approach results from the inverse scaling and squaring procedure of Kenney andLaub [KL2]. The basic idea of this approach is to \
atten out" the matrix T . It is based upon the identitylog(T ) = log((T 1=2k)2k) = 2k log(T 1=2k), and the realization that, eventually, T 1=2k ! I. With respect tothis scaling procedure, we need to consider some aspects: (i) how to take square roots and which squareroots should we take, (ii) when should we take square roots, (iii) what is the conditioning of the overallprocedure, and (iv) if there are risks involved with this scaling strategy.With respect to the �rst issue, we have adopted the choice made by Higham (see [Hi1], and also [BH]),thereby relying on a real Schur approach. Under the assumptions of Theorem 1.1, there are many squareroots of T , see [Hi1, Theorems 5 and 7]. However, in our context, to eventually �nd the principal branch oflog(T ), there is only one choice. Wemust select the square root(s) according to the Lemma below (see also[KL2, Lemma A1]).LEMMA 4.6. Let B 2 IRm�m be invertible with no eigenvalues on the negative real axis. Then, B has aunique 2k-th root S, i.e. S2k = B, which is a primary matrix function of B, and such that if � 2 �(S), then(a) ��2k < arg(�) < �2k , and(b) <e(�) > 0, for k = 1; 2; : : :.Proof. A constructive proof can be based upon the method of Higham (see [Hi1, p.417] for details).When to take square roots? Ultimately, it all depends on what algorithm we use to approximatelog(T ). For algorithms fully based on truncated series or Pad�e approximants, then square roots of the fullmatrix T have to be taken in order to ensure numerical stability and rapid convergence. When using a16



Schur decomposition approach, the procedure is only needed to obtain Lii in (3.7), in those cases for whichapproximation techniques are required for the Lii. One thing to keep in mind is that, asymptotically, takingsquare roots gives a decrease in norm by a factor of 2. Therefore, how many square roots to take dependson which algorithm we eventually use for computing the log of the scaled matrix.To examine the conditioning of the inverse scaling and squaring procedure, we must look at the Frech�etderivative of M (T ) := 2k log(T 1=2k). Let Tj = T 1=2j ; j = 0; 1; : : :; k (so T0 = T ), and let G and F be thelog and square root functions, respectively. Then, upon repeated use of Lemma 2.3, we haveM 0(T )Z = 2kG0(Tk)F 0(Tk�1) � � �F 0(T0)Z :In other words, unavoidably, the better value for the norm of the Frech�et derivative of the log (becauseTk � I) is being paid by the Frech�et derivatives of the square roots. The problem of estimating the Frech�etderivative of the square root function can be based on Corollary 2.4, by considering S(X) := X2, and theidentity S(F (T )) = T . Therefore, we have the equalitiesF 0(T0)Z = (S0(F (T0)))�1Z; F 0(T1)(F 0(T0)Z) = (S0(F (T1)))�1F 0(T0)Z ; : : : ;F 0(Tk�1)(F 0(Tk�2) � � �F 0(T0)Z) = (S0(F (Tk�1)))�1(S0(F (Tk�2)))�1 � � � (S0(F (T0)))�1Z ;and thus we have G0(T )Z = 2kG0(Tk)�(S0(F (Tk�1)))�1 � � � (S0(F (T0)))�1Z	 : (4:6)Formula (4.6) forms the basis of the following algorithm to estimate kG0(T )Z0k, for a given Z0, andhence to estimate cond(G(T )). This procedure gave us much better results (both in terms of accuracy andexpense) than one directly based on Theorem 3.10.Let T0 = T , Tj = T 1=2j , j = 1; : : : ; k where the index k must be chosen so that kI � Tkk = ! < 1, andlet Z0 be given.(a) Solve F (Tj)Zj+1 + Zj+1F (Tj) = Zj ; j = 0; 1; : : : ; k� 1 (4:7)(notice that the F (Tj) stay quasi-triangular if T0 is such; also, one might already have the Tj fromscaling via taking square roots, but only if square roots of all of T had been taken);(b) since G0(T )Z0 = 2kG0(Tk)Zk, we approximate G0(Tk)Zk by using a quadrature rule on (3.13).It is obvious that the algorithm is well de�ned, since the Sylvester equations (4.7) are uniquely solvable.In terms of computational cost, by using a composite quadrature rule with N points, at leading order oneneeds 16 (k + N )n3 
ops, plus the cost of computing the Tj 's if they are not available, which might amountto another 16kn3 
ops, plus the initial cost of the Schur reduction of T .Next, we show that the above eventually provides a good estimate of kG0(T )Z0k. We show this for thecomposite Simpson rule, but the reasoning applies to any other quadrature rule.17



THEOREM 4.7. Let T 2 IRn�n be given such that kI � Tk = ! < 1, and let G(T ) = log(T ). Let Z begiven, and let G0(T )Z be given by (3.13). Let CS be the composite Simpson rule with N points (N even)approximating (3.13), so that h = 1=N below. Then we havekG0(T )Z � CSk � 2nh43 !4(1� !)6 kZk : (4:8)Proof. We have G0(T )Z = Z 10 A(t)ZA(t)dt = Z 10 F (t; Z)dt ;where we have set A(t) = ((T � I)t+ I)�1, and F (t; Z) = A(t)ZA(t). From standard quadrature errors, wehave kG0(T )Z �CSk � nh4180 max0�t�1kF (iv)(t; Z)k:Now, we can verify that A(j)(t) = (�1)jj!A(t)((T � I)A(t))j , and thatF (k)(t; Z) = kXj=0� kj �A(k�j)(t)ZA(j)(t) = (�1)kk! kXj=0A(t)((T � I)A(t))k�jZA(t)((T � I)A(t))j ;from which it is easy to get kF iv(t; Z)k � 120 !4(1� !)6 kZk ;and the result follows.THEOREM 4.8. Let T 2 IRn�n, G(T ) = log(T ), and E(T ) = eT . Let Z0 of norm 1 be given, and let k besuch that kI�Tkk = ! < 1, with Tk := T 1=2k. Let Zk be obtained from (4.7), so that G0(T )Z0 = 2kG0(Tk)Zk.Let CS be the composite Simpson rule with N points (N even) approximating G0(Tk)Zk from (3.13), sothat h = 1=N below, and let G0(Tk) be invertible. Then, we havekG0(T )Z � 2kCSkkG0(T )Z0k � nh49 !4(1 + !)(1� !)6 : (4:9)Proof. From Theorem 4.7, we havekG0(T )Z0 � 2kCSk � 2nh43 !4(1� !)6 k2kZkk :On the other hand, from G0(T )Z0 = 2kG0(Tk)Zk, we also have k2kZkk � kG0(T )Z0k k(G0(Tk))�1k, and fromCorollary 2.4 we get k(G0(Tk))�1k = kE0(G(Tk))k. Therefore, we havekG0(T )Z0 � 2kCSkkG0(T )Z0k � 2nh43 !4(1� !)6 kE0(G(Tk))k : (4:10)Now, using (2.7) we havekE0(G(tk))k = maxY : kY k=1k Z 10 Tk(1� s)Y Tk s dsk � 16kTkk � 1 + !6 :Using this in (4.10) gives the result. 18



EXAMPLE 4.9. If h�1 � (n)1=4, then ! = :25 gives 3 digits accuracy , and ! = :35 gives 2 digits. Morethan acceptable for condition estimation.REMARK 4.10. Use of (4.9) to achieve a good estimate of kG0(T )k requires an appropriate choice of Z0.We have found that selecting Z0 according to Remark 3.11 always gave excellent results, and no need aroseto further iterate the process. For our experiments in Section 6, we always used this choice of Z0 along with(4.9), to estimate cond(G(T )). This strategy seems to be both very reliable and e�cient in comparison withexisting alternatives ([KL2]).To complete this Section, we ought to warn against some possible risks involved with the \inverse scalingand squaring" procedure. Its main limitation is exactly its power: one progressively 
attens out the spectrumof the matrices Tj = T 1=2j . This may lead to unwanted loss of numerical signi�cance in those cases in whichthe original T has close eigenvalues (but not identical) and several square roots are required in order toobtain a Tj : kI � Tjk < 1. The risk is that, after many square roots, all eigenvalues have numericallyconverged to 1, and are no longer distinct. Our experience has shown that this might occasionally happen,but only for ill conditioned problems, for which kT 1=2jk increases with j, before decreasing.5. IMPLEMENTATION & EXPENSE.In our implementations to approximate log(T ), we have always �rst reduced the matrix T to ordered quasi-triangular form via a real Schur reduction. The ordered Schur reduction is standard, and we used routinesfrom EISPACK and from [St], thereby ordering eigenvalues according to their modulus. Unless more infor-mation is available on T , we always recommend a Schur reduction prior an approximation technique; interalia, it allows for an immediate solution of the problem if T is normal (see Corollary 3.4), and it renderstransparent whether or not some methods are suitable for the given problem. In what follows, we willtherefore assume that T is quasi-triangular, and not normal. In tune with our discussion on scaling, we willalso assume hereafter that T has been scaled so that kAk < 1, where A = I � T . Typically, this has beenachieved by progressively taking square roots of T . To assess the computational expense, we give the leadingorder 
ops' count of the algorithms; a 
op is the combined expense of one 
oating point multiplication andone 
oating point addition.Both for truncated expansions of the two series, and for diagonal Pad�e approximants, one needs toevaluate matrix polynomials. Ignoring �nite precision considerations, let us �rst discuss what degree isneeded in order to obtain a desired accuracy, for a given kAk. We �xed the accuracy to 10�18.Figure 1 is a graph showing which degrees q are needed as functions of kAk, in order to be guaranteedan absolute error less than 10�18, for approximation resulting from:(i) truncating the series (3.1) S1 := qXk=1 Akk ; (5:1)19



(ii) truncating the series (3.3)S2 := 2 mXk=0 B2k+12k + 1 ; B = (T � I)(T + I)�1; q = 2m + 1 ; (5:2)(iii) considering the diagonal Pad�e approximant Rq;q(A).To obtain the degrees q, we have made sure that the remainders contributed less than the desiredaccuracy. This is easy enough to do for (5.1) and (5.2), and for the Pad�e approximants we used the explicitform of the remainder from [KL1, Theorem 5].
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Next, we need to consider the expense associated with evaluating polynomials of degree q and the q� qdiagonal Pad�e. As usual, let T be quasi-triangular of dimension n. The algorithm we used to evaluate thepolynomials is taken from [GvL, Section 11.2], and it requires the explicit computation of A2; A3; : : : ; As,where s is a given integer satisfying 1 � s � pq. Let r = bq=sc; then, following [GvL], it is easy to showthat, at leading order, the evaluation of S1 requires (r + s � 2)16n3 
ops if sr = q, and (r + s � 1)16n3 
opsotherwise. The choice s = bpqc ensures the minimal 
op count.The cost associated with S2 can be obtained in a similar way, taking into account the cost of theevaluation of B = (T � I)(T + I)�1 (about 16n3 
ops) and observing that only odd powers of B are required.With q = 2m + 1 now we have s = bpmc, r = bm=sc and a leading cost of (r + s + 1)16n3 
ops if sr = m,and (r + s + 2)16n3 
ops otherwise.Finally, the cost associated with Rq;q(A) can be obtained observing that A2; A3; :::; Asmust be computedonly once for the two polynomials P (A) and Q(A), and adding the cost of the evaluation of P (A)(Q(A))�1.With the above notation, we have a leading cost of (2r + s � 2)16n3 
ops if sr = q, and (2r + s)16n3 
opsotherwise. In this case, a better compromise for s is s = dpqe, which permit to gain something in the 
opcount, with respect to taking s = bpqc.Figure 3 shows the asymptotic cost associated with S1, S2 and Rq;q(A) to have an error less than 10�18in function of kAk. For example, if kAk � 0:35; 0:3, S1 requires about 10 16n3 
ops, S2 needs 8 16n3 
ops, andRq;q(A) needs q = 10 and 816n3 
ops for kAk = 0:35, whereas q = 9 and 716n3 
ops su�ce when kAk = 0:3.It is interesting to observe that also using a (12; 12) Pad�e gives leading 
op count of about 816n3 
ops.
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Figure 3.Finally, there is to consider the cost of the real Schur decomposition, and of taking square roots. Thecost of solving (3.8) is a complicated function of the block sizes; for distinct eigenvalues, i.e., the triangularcase, it amounts to 13n3 
ops. In any case, the bulk of the expense is the ordered real Schur decomposition,which costs about 15n3 
ops. Then, one square root costs about 16n3 
ops (see [Hi1]). Since taking square21



roots, asymptotically, decreases the norm by 1=2, then we see that it makes better sense, from the point ofview of the cost, to take square roots rather than to use a high degree approximant. We found that a goodcompromise is to take square roots up to having kAk � 0:35, followed by the (9; 9) Pad�e or S2.6. EXAMPLES.In this Section we report on some of the problems we have solved numerically. All computations have beendone on a Sparc10 in double precision (EPS � 2:2 � 10�16).We mainly report on results obtained by the methods which have proven robust enough to handle thelargest portion of all problems considered; for example, we do not report on results obtained by using (5.1),nor by using the ODE approach in either formulation (3.10) or (3.12) (but see Theorem 4.3). Thus, unlessotherwise noted, all problems below have been solved by the following general strategy:(i) Schur reduction with eigenvalues' clustering according to increasing modulus. We have used the softwarein [St] (with minimal modi�cations) to do this step. The tolerance for the QR algorithm was set to2 �EPS.(ii-a) Scaling of diagonal blocks by taking square roots, up to obtaining kAk � 0:35, followed by the 9 � 9diagonal Pad�e approximant for these blocks, inverse scaling, and use of (3.8). Diagonal blocks in thereal Schur form have been considered distinct if the minimum distance between their eigenvalues wasgreater than 1/10. Needless to say, if {after grouping{ all diagonal blocks are either 1 � 1 or 2 � 2 ofcomplex conjugate eigenvalues, then we used Lemma 3.3 instead of scaling and Pad�e approximants.(ii-b) Truncated expansion (5.2) on the whole matrix in lieu of scaling by square roots and Pad�e approximants,if convergence criteria for such series were met.(iii) Back transformation.As measure of accuracy for the computed logarithms, we have considered err := kelogc(T )�TkkTk , wherelogc(T ) is our computed approximation to the log. This essentially boils down to assessing the absoluteerror in the log itself. To approximate the exponential function, we have used both Matlab functions expmand expm2, that is a Schur based technique and a series expansion technique. Typically, expm performedbetter, but on occasions expm2 was needed. We have also used our own implementation of the method ofscaling and squaring followed by a diagonal Pad�e approximant to the exponential, following [GvL, Algorithm11.3.1 p. 558]. In the examples below, we also report the estimates \cond" of the condition number (3.2).This is done according to Theorem 4.8.Many tests have been done on random matrices. These were generated by exponentiating the matri-ces obtained with the randn function of Matlab, which returns entries in [�1; 1] according to the normaldistribution. If a particular structure was desired (e.g., orthogonal) these random matrices were furthermanipulated (e.g., taking their QR factorization).In the tables below, for the computed logarithm logc T , we report: L= k logc Tk, cond, nbl/nrad (thenumber of diagonal blocks, and the most square roots taken on any of these blocks), err, q (the number of22



terms taken for (5.2) directly on T , if applicable), err2 (the error for (5.2)), and errm (the error obtainedby using the Matlab function logm to approximate logT ). Exponential notation is used throughout; e.g.,2:3�107 is written as 2.3E7. All results are given for the Frobenius norm, to conform to previously publishedresults.EXAMPLE 6.1. \Easy" Problems. A set of randomly generated positive de�nite and orthogonal matriceswas considered just to test the technique based on Corollary 3.4. In all cases, accuracy to machine precisionwas obtained. We also generated more than 60 general random matrices, of dimension between 5 and 100.Also in these cases we obtained accuracy to full machine precision.EXAMPLE 6.2. Symplectic T . We generated a dozen random symplectic matrices by exponentiating(via diagonal Pad�e approximants) randomly generated Hamiltonian matrices. For some of these matrices wegot a very large condition number (3.2). Nonetheless, we obtained very accurate answers for the computedlogarithms. However, the end result was often far from being a Hamiltonian matrix, that is the relevantstructure got lost. For these problems, when applicable, using (5.2) directly was also an e�ective way toproceed; even though some of the linear algebra (such as matrix inversion) was done by non-symplecticmethods, the end result was much more nearly a Hamiltonian matrix than with the Schur method (see [D]).EXAMPLE 6.3. \Harder" Problems. These problems have been chosen to illustrate some of the dangersin using the logm function of Matlab. In Table 1, Tests 1-3 refer to a triangular matrix of dimension 20,with all 1's above the diagonal, and 1=4; 1, and 4 on the diagonal, respectively. Of course, for these matrices,no Schur reduction or grouping occurred. Test 4, instead, has been chosen to illustrate the potential dangerof taking too many square roots. It is the matrix 0@ 1 + 10�7 105 1040 1 1050 0 1 1A. In this case, (5.2) has clearly tobe preferred. Table 1.Test L cond nrad err q err2 errm1 6.98E7 4.75E10 28 1.2E-8 238 1.1E-8 82.542 5.32 5.0865 4 0 19 0 9E-33 6.56 0.9511 5 2.7E-15 129 3.7E-16 1.7E-24 5E9 5.67E14 34 5.9E-4 2 5E-13 1.4E15EXAMPLE 6.4. Examples from the literature. These problems have previously appeared in the literature,see [Wa] and [KL2]. We tested our method to independently con�rm the results of [KL2] about conditioning.In Table 2, Tests 1-6 refer to the Examples 1-6 of [KL2]. We notice that our estimates for cond are in perfectagreement with the results in [KL2]. For Tests 1,2, and 3, we also used scaling by square roots and the 9� 9diagonal Pad�e approximant on the whole matrix; this required 5; 8, and 11 square roots, respectively, forthe same accuracy. 23



Table 2.Test L cond nbl/nrad err q err2 errm1 7.48 5.08 2/4 3.5E-15 7949 1.7E-13 1.1E-152 53.85 9E6 3/0 9.E-15 { { 7.1E-153 575.95 6.44E9 3/0 6.2E-14 { { 5.2E-134 2.9997 3.76 1/4 2.5E-15 19 1.5E-16 6.7E-95 1E6 3.33E11 1/22 0 1 0 6.2E-66 172.68 5.94E6 1/9 3.7E-13 229 2.3E-10 6.4E-107. CONCLUSIONS.In this work, we have provided analysis and implementation of techniques for computing the principal branchof a real logarithm of a matrix T , log(T ). Some of the techniques considered had been around for a while,like Pad�e approximants and series expansion. Some other techniques had not been previously analyzed oreven introduced. In particular, the Schur method with eigenvalue grouping followed by a back recursion, andintegral based representations for both the logarithm and its Frech�et derivative. This latter aspect is relatedto the conditioning of the problem, an issue we have addressed in details, and on which we have given manynew results that better characterize it. In fact, from the theoretical point of view, our main contributionsare the results about conditioning, and those related to the integral representation of log(T ).From the computational point of view, all things considered, we think that the most reliable and e�cientgeneral-purpose method is one based on the real Schur decomposition with eigenvalues' grouping, scaling ofthe diagonal blocks via square roots, and diagonal Pad�e approximants. Also using S2 (see (5.2)), instead ofthe Pad�e approximant, is a sound choice. Moreover, using S2 was de�nitely the most appealing choice forpoorly conditioned problems. Although all of the programs we have written are of an experimental nature,we believe they are robust enough to be indicative of the typical behavior. We hope that our work will provevaluable to people interested in mathematical software, the more so since the only existing software toolwhich computes the logarithm of a matrix ([Matlab]) does not use a foolproof algorithm to do so. Moreover,the implementation of Matlab nearly always produces complex matrices for answers, because it uses unitaryreduction to complex Schur form.The problem of reliably estimating the Frech�et derivative of log(T ), at a fraction of the cost of computinglog(T ), or at least without a drastic increase in cost, is truly an outstanding di�culty. None of the methodsof which we are aware succeeds in this. One technique we have considered, based on Theorem 3.10 andRemark 3.11, is usually very inexpensive, but not always reliable. The other technique we introduced, basedon Theorem 4.8, has at least proven very reliable, but, in general, it is at least as expensive as computingthe log itself.Finally, in this work we have focused on the problem of computing one logarithm of one matrix. Dif-ferent conclusions are reached if one is interested in computing a branch of logarithms of slowly varyingmatrices. In such cases, of course, one should favor an approach which uses the previously computed loga-24
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