COMPUTATIONAL TECHNIQUES FOR REAL LOGARITHMS OF MATRICES ~.

by

Luca Dieci, **

Benedetta Morini and Alessandra Papini. ***

AMS Subject Classification: 65F30, 65F35, 65F99

Key Words: real logarithm of a matrix, conditioning, Padé approximants, series expansions, eigendecompo-
sition approaches, error analysis, implementations.

ABSTRACT.

In this work, we consider computing the real logarithm of a real matrix. We pay attention to general
conditioning issues, provide careful implementation for several techniques including scaling issues, and finally
test and compare the techniques on a number of problems. All things considered, our recommendation for
a general purpose method goes to the Schur decomposition approach with eigenvalue grouping, followed
by square roots and diagonal Padé approximants of the diagonal blocks. Nonetheless, in some cases, a
well implemented series expansion technique outperformed the other methods. We have also analyzed and
implemented a novel method to estimate the Frechét derivative of the log, which proved very successful for

condition estimation.

-I 0
called symplectic if TTJT = J; equivalently, T-! = —JTTJ. A(T) = {X(T), i = 1,...,n} will indicate

Some Notation. M € IR?*?" ig called Hamiltonian if MTJ + JM = 0, where J = (0 I). T is

the spectrum of T, and p(T') the spectral radius of 7. The notation px = O(z) means that £ — ¢ # 0 as

z

z — 0, and c is a constant. A® B = (a;; B)};_; € R™ " is the Kronecker product of A and B. We

write ||A|| = ||A||2 for the 2-norm of a matrix A4, and ||4||r for its Frobenius norm. Analogously, for a linear
operator L(A) A= IRnxn N L(A)Z € IRnxn, we write ||L(A)|| — ”I;l?,}(||L(A)Z|| for the operator norm
:1

induced by the 2-norm of matrices, and ||L(4)||; = nllax [|L(A)Z||F for that induced by the Frobenius
Z||lrp=1

121l =
norm.

1. INTRODUCTION

In this work, we address the issue of finding a real logarithm of a real matrix. This problem has a precise and

complete answer from the theoretical point of view, but from the computational point of view much work is

* Work supported in part under NSF Grant DMS-9306412, and MURST and CNR Grants (Italy). The
work was initiated while the first author was visiting the Univ. of Florence; the kind hospitality provided
by Prof.s Maria Macconi and Aldo Pasquali is gratefully acknowledged.

** School of Math.s, Georgia Tech, Atlanta, GA 30332 U.S.A. (dieci@math.gatech.edu)
*** Dep. Energetica, Univ. of Florence, via C. Lombroso 6-17, 50134 Florence, Italy (ande@vm.idg.fi.cnr.it).

1

still needed. A main motivation for carrying out the present work has been to provide careful implementation
for, and assess performance of, the most promising techniques to compute real logarithms of matrices. We

focus on real matrices, but much of what we say in this work can be adapted to the complex arithmetic case.

Undoubtedly, in comparison with other branches of scientific computation, linear algebra software is
placed on very solid ground, the LAPACK and LINPACK/EISPACK libraries being the measure of excellence
on which to assess quality software. The high quality Matlab system also has in these computational linear
algebra components its work-horse. However, there are some linear algebra problems which have not yet
found their way into proper implementation and high quality software. We believe that finding the logarithm
of a matrix is one of these instances. In fact, more generally, computing functions of a matrix requires more
work. (Interestingly, this is one of the very rare instances in which the Matlab implementation can give rather
inaccurate answers.) The general lack of good software for functions of a matrix is all the more bothersome
since computing functions of a matrix is a common engineering requirement (for the logarithm, see [LS1-2],
[SS]). We think that a source of trouble is caused by looking at the computational task as a general task,
rather than addressing it in a case by case way, depending on the function at hand. Not surprisingly, the
exp-function, which has been singled out for its importance for a long time, enjoys more personalized and
robust implementations. We hope that our work will lead towards more robust implementations for the log

function.

In the remainder of this Section we briefly review some of the theoretical results we need. In Section
2 we address the sensitivity (or conditioning) issue for the log-function. The key ingredient is naturally the
Frechét derivative of the log, and all across this work we try to characterize its norm. In Section 3 we give
an algorithmic description of the methods we have chosen to implement, and discuss some of the error’s
issues for them. In Section 4 we discuss finite precision aspects of the methods, and also the general issue
of ameliorating convergence and rescaling. We also present a new technique for estimating the condition
number of the log problem, which has proven very reliable, and somewhat efficient. In Section 5 we give
details of appropriate implementations for the methods, including cost estimates. Finally, Section 6 contains
Examples, and Section 7 Conclusions.

Given a matrix T € R™*", any n X n matrix X such that eX¥ = T, with e¥ the matrix exponential
of X, is a logarithm of T, and one writes X = log(7T'). As it is well known (e.g., see [He] and [Wo]), every
invertible matrix has a logarithm (not necessarily real). Amongst the logarithms of T, in this work we are
only interested in those which are primary matriz functions of T ([HJ], [G], [GVL], [Hil]). As usual, these
can be characterized from the Jordan decomposition of T' (e.g., see [GvL, Section 1.11.1-2]).

Of course, to guarantee that X = log(T') is real (assuming T is), one needs further restriction than mere

invertibility. The most complete result is the following.

THEOREM 1.1. ([C], [H]]). Let T € R™™"™ be nonsingular. Then, there exists a real X = log(T) if

and only if T has an even number of Jordan blocks of each size for every negative eigenvalue. If T has any

2

eigenvalue on the negative real axis, then no real logarithm of T can be a primary matrix function of T. O

We will henceforth assume that we have a real logarithm of T', and that it is a primary matrix function
of T. Finally, it has to be appreciated that a logarithm can be uniquely characterized once we specify which
branch of the log function (acting on complex numbers) we take. For example, there is a unique X = log(T)
such that all of its eigenvalues z satisfy —m < Im(z) < m: this is known as the principel logerithm, and we
will restrict to this case from now on.

In many applications, there is extra structure that one is interested in exploiting. For example, different
techniques can be devised for the cases when A(I — T) is inside the unit circle, and/or when Re(A(T)) > 0.
Inter alia, the latter case arises for symmetric positive definite T', a situation in which T has a unique
symmetric logarithm ([HJ]). Also (see [Si] and [YS)), if T' is symplectic (orthogonal), then there exists a real
Hamiltonian (skew-symmetric) logarithm. Of course, in these cases we would want approximation techniques
which guarantee that we can recover the desired structure. This question was recently addressed in [D]; in
the present work, we will use and extend some of the results in [D].

Not much work has been done on computing logarithms of matrices in comparison to its inverse function,
computing matrix exponentials. The references [KL1], [KL2], [LS1], [LS2], [V], are a representative sample
of works on computation of logarithms of matrices. With the exception of [KL1-2], finite precision issues are
not considered in these works. To our knowledge, our work is the first attempt to consider finite precision

behavior of several techniques, and to implement and compare them.

2. SENSITIVITY OF THE PROBLEM.

Naturally, before computing the logarithm of a matrix, it is appropriate trying to understand the intrinsic
sensitivity of this function. The works of Kenney and Laub ([KL2]) and Mathias ([M]) are important sources
of information on the general topic of conditioning of matrix functions. Our presentation is explicitly geared
toward the log function, and it is partly different than these works.

Given a matrix function F(T), where F : R™*™ — IR™*", the basic issue is to understand how the
value of the function changes as the argument 7" does. This leads to relying on the Frechét derivative as a
measure of sensitivity. From here on, unless otherwise stated, we use the 2-norm; with minimal changes (if

at all), all results hold true for different norms.

DEFINITION 2.1. Given a matrix function G : T € R™*"™ — G(T) € R™*", a linear mapping G'(T) :
Z e R — G'(T)Z € R™™" is the Frechét derivative of G at T if for any Z € R™*" we have

tim | ST =D _ iy g1 = 0. (2.1

The norm of the Frechét derivative is given by ||G'(T)|| = ”ml?x ||G'(T)Z||. If G has a Frechét derivative, we
Z||=1

say that G is differentiable. O

With this definition, one has a general way to assess sensitivity for matrix functions. This is a general
procedure, and can be found (essentially identical) in the works [KL2], [Hil], [MvL], and references there, in
special cases.

Let X #0: G(T) = X, and consider the perturbed input T+ AT with corresponding perturbed output
X+AX: X+ AX = G(T + AT). For G(T) = log(T), from the relation AX = G(T + AT) — G(T), upon

using (2.1) we can obtain

lAX]| sy IT1 AT 2
< |\GU(T)| =7 7= + O(|AT||). 2.2
S SISOl gy Ty OUATI) (22)
The quantity 7|
T

acts as a relative error magnification factor, and it is therefore natural to call it the condition number of the
matrix function G at T. (Notice that, strictly speaking, we still have to justify the O(||AT||?) term in (2.2);

this we will do in Section 3.)

REMARKS 2.2.

(i) It is clear that cond(G(T)) depends both on G and 7T, and on X. A measure of conditioning which
neglects any of these components may be faulty.

(ii) Of course, different functions G might allow for more specialized ways to characterize cond(G(T)), as
it is clearly evidenced in the work on the matrix exponential (see [vL], [MvL]). One of our tasks in
the remainder of this work is to better characterize the Frechét derivative of the log function, hence
cond(log(T)).

(iii) If X = 0, it is of course more sensible to assess absolute errors, and thus to replace (2.2) with
lax|| < |lG" (D) |AT]| + o(|AT|]?).

We begin with the following elementary result, already in [KL2, Lemma B2], which is just the Chain
Rule.

LEMMA 2.3. Let F and G be matrix functions such that G(T) is in the domain of F. Consider the
composite function H(T) := F(G(T)). Let G'(T) and F'(G(T)) be the Frechét derivatives of the functions
G and F, at T and G(T) respectively. Then, the Frechét derivative of the composite function is characterized

as the linear mapping

H'(T): Z ¢ R™" = F(G(T))G'(T)Z € R™*". D
As a consequence of Lemma 2.3, we have (essentially, [KL2, Lemma B1])

COROLLARY 2.4. Let F and G be inverse functions of each other, that is F(G(T)) = T, VT in the
domain of G, and G(T') in the domain of F, and let F and G be differentiable, as in Lemma 2.3. Also, let
F'(G(T)) be invertible. Then we have

G'(T)Z = (F'(G(T)))"'Z, (2.4)

and therefore also

IG(T)|] = I(F"(G(T))) "] (2.5)

Proof. Apply the chain rule of Lemma 2.3 to the relation F(G(T)) = T. O
LEMMA 2.5. Let G(T) = log(T) and F(Y) = ¢¥. Then we have

1G" (D> 1T, (2.6)

and therefore

cond(G(T)) > cond()

> where cond(T) = ||T||||T7Y| .
|| log(T)|| *

Proof. From [vL, formula (1.3) and p. 972] we have
1
FI(Y)Z = / ¥ (1=9)ze¥2ds (2.7)
0

and therefore with ¥ = log(T) from Corollary 2.4 we have (take Z = I below)

1
6T = a1 [e 0-9ze ds))| >
0

Z]=1
'y Y
||(/ e’ds) M| =le” | = 1T,
0
where we have used the identity —log(T) = log(T~?') (see [HJ]). O

REMARKS 2.6.
(i) From (2.7) we can get implicit representations for G'(T) in the case G(T) = log(T), and F(Y) = e¥;
for example,

1
Z = / T *G'(T)ZT*ds.
0
(ii) In Section 3, we prove that, for positive definite matrices, in (2.6) we have equality.

In [KL2], Kenney and Laub consider matrix functions admitting a series representation such as

= f: anX™, (2.8)
n=0

with associated scalar series absolutely convergent. In this case, they can represent the Frechét derivative

as the infinite series

Z kz ZX" kL (2.9)

Next, they unroll the Frechét derivative by column ordering, call D(X) € R™ "™ the resulting matrix acting

on the unrolled Z:

Juny

n—

X)=) a) (X xk, (2.10)

=0

ol

n=1

ot

and then focus on the 2-norm of D(X) : ||D(X)||2. To proceed with their analysis, one must realize that
[[D(X)]||2 is the same as ||F'(X)||; (see the Notation at the beginning of this work). They have some general
results giving a lower bound for this norm, and then show that this lower bound is achieved when X is normal.
We highly recommend careful reading of their work for details. Notice, however, that the assumption on
being able to represent F(X) as the series (2.8) rules out a direct application of their theory to the log
function. To deal with the Frechét derivative of the function G(T') = log(T'), they rely on (2.5), and are
thus able to estimate ||G'(T)||; via estimates on the norm of the inverse of the Frechét derivative of the
exponential function. Their approach can be profitably used to get some more information on the norm of
the Frechét derivative of the log. Although what follows is not explicitly given in [KL2], it can be deduced
from their approach.

Consider the case of G(T') and F(Y') inverse functions of each other, so that F(G(T)) = T. Moreover,
let F(Y) be a matrix function for which (2.8)-(2.10) hold. For example, this is true for G(T') = log(T), and
F(Y) = e¥. Let F/(G(T)) be invertible, and let D(G(T)) be the unrolled Frechét derivative of F(Y) at
G(T). Then, we have

I = IEGTN Iy = IDETN) s

Let A; be the eigenvalues of D(G(T)), and let |A1] > ... > |A,z|. One always has the inequality

i < IDE@) s,

and if we assume that D(G(T)) be diagonalizable by the matrix § : S™*D(G(T))S = diag();), then also

the following inequality is well known

1
I(D(G(T)) 7]2 < Condz(s)m-
Now, let T be diagonalizable by V, T = VAV =1, and so also G(T) = VG(A)V~!. Hence for D(G(T)) one
has (use [HJ, Problem 3 p.249])

D)=V TaV)) a X_:(G(A))”_l_k ® G (VT gV)?

With § = V-7 @ V, putting it all together, we get that for diagonalizable matrices T the following holds:

|A_11| < ID@ET)) s = I(D)]l; < condz(S)M—lﬂ- (2.11)

To complete this discussion, we now recall that normal matrices can be brought to diagonal form (almost
diagonal, i.e., diagonal with possibly 2 x 2 blocks along the diagonal to allow for complex conjugate pairs of
eigenvalues, if we insist on real arithmetic) with a unitary (orthogonal) matrix. So, let V' be unitary above.
Moreover, if T is normal then so is G(T') ([HJ, Problem 2 p.439]). Finally, if V is unitary, so is V=7 and so

also S = V~T ® V is unitary [HJ, p.249]. So, for normal matrices, one has the precise characterization
1

1G'(T)ly = min Da(D(GIN))]

(2.12)

In fact, to have cond;(S) = 1 in (2.11) we must have all singular values of S equal 1, and thus (2.12) holds,

for the class of diagonalizable matrices, only if T is normal.

6

REMARKS 2.7.

(i) In particular, all of the above holds for the function G(T") = log(T"). But the above reasoning also holds
for many other matrix functions G(T') not satisfying (2.8), but for which their inverse function satisfies
(2.8); amongst others, G(T) = TP, p=2,....

(ii) Characterization of the eigenvalues of D(G(T)) in terms of those of G(T') is done in [KL2, Lemma 2.1].

To obtain a relation between ||G'(T)||; and the operator norm ||G'(T)||, reason as follows. Let G'(T)Z =
B(Z) € R™*", and let 0y(Z), 0;(B(Z)), be the (ordered) singular values of Z, B(Z), respectively. Then
G'(T)|| = max o1(B(Z)), ||G'(T)|;= max o2(B(2)) + ...+ d2(B(2)))'/?,
6D = max (B2, (D= max (GHEE) + .+ oA(B2)

and the following inequalities are then simple to obtain:
IG' (DI NG (D) < v lIG(T)]]- (2.13)

Notice that (2.13) are the usual inequalities between the Frobenius and spectral norms of matrices.

Of course, in order for a measure of conditioning of the G(T') problem to be an effective computational
tool, one should be able to estimate ||G'(T")|| (perhaps in some norm other than the 2-norm) without drasti-
cally increasing the expense needed for the computation of G(T'). This seems to be a tall task. Nonetheless,
some interesting ideas are in [KL2] and [M], and some other possibilities are discussed in the next two

Sections.

3. SOME METHODS. MORE ON CONDITIONING.

Here we present some methods: (i) two series expansion techniques ([GvL], [LS1-2], [D]), (ii) Padé approx-
imation methods ([KL1-2], [D]), (iii) the Schur decomposition approach ([GvL], [Matlab]), and a (iv) ODE
reformulation approach.

Series Expansions. Under appropriate restrictions on the spectrum of 7', the principal logarithm of T
can be expressed as a series. In particular, two such series have frequently appeared in the literature.
Computational procedures arise upon truncating these series.

Series 1. Let A = I — T, and assume p(A4) < 1. Then,
G(T) := log(T) = log(I — A) = =) - (3.1)

=1

Subject to obvious restrictions on spectral radii, from (3.1) we get
log(T +Y) = log(T) + (log(T))'Y + E(Y),

and ||E(Y)|| < O(]|Y||?). From this, we obtain an expression for the Frechét derivative:

o) n—1
G'(T) : YHZEZA’“YA”_P’“, A=I1-T, (3.2)
n
k=0

n=1

7

and if ||4]] < 1:

NS 1 1
IG'(T — D At = = :
nz::lnkz:: 1-[lAll 1=l =T
From the above, we get that for positive definite matrices ||G'(T)|| < m, that is ||G'(T)|| < ||T7Y,
AEA(T)

which justifies Remark 2.6(ii), for positive definite matrices for which (3.1) holds.
Series 2. This is obtained from the series expansion (3.1) for log(I+X)—log(I—X) = log((I+X)(I-X)~1),
via the conformal transformation T' = (X — I)(X + I)~!, thereby obtaining

log(T 2; 2k (T I)(T+1)" 1)2E+1, (3.3)

Notice that the restriction p(A4) < 1 needed for (3.1) now has become Re(A(T)) > 0. Reasoning as before,
if also Re(A(T +Y)) > 0, we obtain another expression for the Frechét derivative of log(T):

(log(T)) : ¥ — Z T ik:Bf 2CYC)B*~7 C:=(X+I)7!, B:=(X - I)C. (3.4)

Padé Approximants. Under the assumption p(I — T) < 1, these consist in approximating the function
log(I — A), A = I — T with the rational matrix polynomial R, m(4) = Pn(A)(Qm(A))~!, where P,(A) and
Qm(A) are polynomials in A of degree n and m respectively, in such a way that R, ,.(A) agrees with n+m
terms in the series expansion (3.1) of log(I — A). This is a universal and powerful tool [BG-M], well examined
in the context of log(T) in the works [KL1-2]. It is easy, with the help of tools such as Maple, to obtain the
coefficients of the matrix polynomials P,(A4) and Q,.(A). Based on the error estimates in [KL1], we have
only considered diagonal Padé approximants.

To assess the conditioning of the Padé approximants we can reason as follows. For given n,m, let

R(A) = Rpm(4) = P(A)(Q ZakAk Zb A®)~1. Suppose that rather than T we have T + Y,

that is A — Y, instead of 4, and ||Y]| << 1 Then 1t is easy to obtain

R(A-Y)— R(A) = —(E(Y) - R(A)F(Y))(Q(4))" + H(Y), (3.5)
where ||H(Y)|| < O(||[Y]|?), and E(Y zn:akZAJYAk 1-7 and FY ibkkz:lAjYAk_l_j, are the

k=1 j=0 = j=0
first order perturbation terms for P(A) and Q(4). From (3.5) we obtain

IR(4-Y) = RA)| < (IE@)|+ IF@)] IRAIDIQA)) ™I + oY),

or in a relative error sense (if ||R(A)|| # 0)

[1R(A-Y) - R(A)[| _ [[EQ)] cond(Q(4))
1E(A)Il 1E(A)Il 1Q(A)]]

Therefore, we see that for the conditioning of the Padé problem the most important factor is the conditioning

<(+IFX@)ID O([Y[). (3.6)

of the denominator problem. In [KL1], this issue is investigated in the case ||4|| < 1, in particular see [KL1,

Lemma 3].

To understand better the term (E(Y)—R(A)F(Y))(Q(A))~! in (3.5), we can use first order perturbation

arguments for the matrix function R(A4), to obtain

We also have the following general result

LEMMA 3.1. Let F(A) = chAk, and let R(A) be a Padé approximant agreeing with the series of F(A)
k=0
n+m j—1 '
up to the power A"*™ included. Then R'(A)Y agrees with F'(A)Y up to the term Z chAlYAJ_l_l.
j=1 I=0

Proof. Write F(A) = R(A) + M(A), so that M(A) has a power series with terms beginning with A¥+m+1,
Now, since F/(A)Y = R'(A)Y + M'(A)Y, the result follows. O

REMARK 3.2. For the case of the log, since F(4A —Y) = log(T +Y), Lemma 3.1 tells us that the
conditioning of the Padé problem (hence also of the truncated series (3.1)), is close to the conditioning of

log(T) (essentially the same if ||A|| < 1, for high enough n+m). No extra pathological behavior is introduced.

Schur Decomposition Approach. When properly implemented, this is an extremely effective and reliable
technique. The basic principles of the technique are general (see [GvL]), but our adaptation to log(T') seems to

be new. Let @ be orthogonal such that QTQT := R be in real Schur form (upper quasi-triangular). Moreover,
Ryy -+ Rim

let R be partitioned as R := , where we assume that A(R;;) NA(R;;) =0, ¢ # j (this

0 Rom
can be done in standard ways). To obtain L := log(R), one realizes that L has the same block-structure as

R, and (see [GVL, Section 11.1]) can get L from the relation LR = RL. The following recursion can be used
to get L ([P]):
For:=1,2,...,m

L“’ = log(Rii) (37)
Endfor

Forp=1,2,....m—1
Fori=1,2,...,m — p, with j = i 4 p, solve for the L;;:

j—1
LijRj; — Ri;Lij = RijLj; — Lii Rij + Z (RirLikj — Lix Rij) (3.8)
k=i+1

Endfor ¢
Endfor p.

In general, the R;; can be the 1 X 1 or 2 X 2 blocks of eigenvalues, or also much larger quasi-triangular
blocks. If T is normal, then @ brings T to block diagonal form with either (1,1) or (2,2) diagonal blocks,

and only (3.7) is required. Otherwise, to solve the Sylvester equation (3.8) is standard (see [GvL, [.387], and

9

notice that (3.8) is uniquely solvable, since A(R;;) NA(R;;) = 0). To obtain L;; from (3.7) is just a function
call if R;; is (1 x 1), and also if R;; € IR?*? with complex conjugate eigenvalues a direct evaluation is possible
(see Lemma 3.3 below), while in all other cases we need some approximation method, e.g. by truncating the

previous series or using Padé approximants (if applicable).

a b

LEMMA 3.3. Let A= (c) with complex conjugate eigenvalues 8 &+ iy (1 # 0). Then

d
2u a—d 2b

log(d) =al - ——F7——

Og() (8 'B4bc—|—(a,—d)2(%2 —a,—I—d)’
where o = log(p), p? = 62 + u?, and B = cos_l(%), 0<B<m.
Proof. The proof is just a simple calculation. O
COROLLARY 3.4. Let B € IR**? be normal, that is B = (_ab z) With notation of Lemma 3.3, we
have log(B) = (_aﬂ 'g) Moreover, if B is orthogonal, then a = 0. O

REMARKS 3.5.

(i) Corollary 3.4, coupled with prior real Schur reduction, guarantees that the computation of a real loga-
rithm of a normal matrix T can be done in such a way that the end result is a real, normal, matrix. In
particular, this fact makes such an algorithm interesting for computing the skew-symmetric logarithm
of an orthogonal matrix, an approach not considered in [D].

_ab can be identified with the complex number 2z = @ + ¢b, which makes Corollary 3.4

obvious (log z = log|z| + iarg z). This observation renders more transparent also the first part of Lemma

(ii) Of course,

3.8 below.

ODE Approach. This will be a very useful tool to better characterize both log(7T') and its Frechét derivative.
The starting point is to embed the problem into a continuous model, similar in spirit to a “homotopy” path.

Let the time dependent matrix X (¢) be implicitly defined as
X(@): X =(T-It+I, 0<t<1. (3.9)

Notice that X (1) defines log(T), and that X (t) is well defined, and real, V¢ € [0, 1], because for (T — I}t + I
Theorem 1.1 holds, since it holds for T'. Since TeX(*) = ¢X(!)T, then we also have that X (¢) satisfies the
ODE ,

X=(T-De*®, 0<t<1,

(3.10)

X(0)=0.
By construction, (3.10) defines the principal log of (T'— I)¢ + I. Upon using (3.9), we have the explicit
solution of (3.10)

X(t):/Ot(T—I)((T—I)s—I—I)‘lds, 0<t<1, (3.11)

10

and therefore we find this expression for log(T')

1

log(T) = X(1) :/0 (T-D((T-D)t+I)"'dt. (3.12)

REMARKS 3.6.
(i) Formula (3.12) is also derived in the works by Helton and Wouk ([He], [Wo]). Their interest was in
showing that every invertible matrix had a logarithm.
(ii) Computational procedures for log(T') can be obtained by using integration formulas for the ODE (3.10),
or quadrature rules on (3.12). We have experimented with explicit Runge-Kutta integrators for the ODE
(3.10), and several quadrature rules for (3.12). We found that quadrature rules were consistently less costly.

Notice that the midpoint rule on (3.12) gives the (1,1) Padé approximant; see also Theorem 4.3.

Formula (3.12) can also be used to obtain a new formula for the Frechét derivative of G(T') = log(T).
In fact, upon considering (3.12) for log(T + Z), using first order perturbation arguments, and some algebra,

yields the following:
1
G'(T)Z :/ (T-Dt+D) ' Z(T-It+1)tdt. (3.13)
0

We also notice that using (3.12) for log(T'+ AT), and expanding the inverse there in powers of AT, justifies
the O(||AT||?) term in (2.2).
Now, from (3.13) with Z = I, since
1
J @ -nesn e =@ -nE@ - pee =1
0
we obtain ||T~1|| < ||G/(T)||, and so:
1
177 < lla" (D))l < /0 1((T — Iyt +I)~Y|*dt. (3.14)
Moreover, (3.13) and (3.14) can be profitably exploited to gain further insight into ||G'(T)||.

LEMMA 3.7. If T is positive definite, then

&' = 1T~

Proof. Diagonalize T with orthogonal @ on the right-hand side of (3.14), and perform the integration. O

LEMMA 3.8. If T € R**? is normal with complex conjugate eigenvalues a + ib, then
1 6

p sin(f)

where —m < 0 < 7 is the argument of the eigenvalues of T', and p their modulus. If T' is normal of dimension

1G(T)I =

n, then

1 7]
|G"(T)|| > max — —*

> |71t 3.15
ax o 21T (3.15)

where 6}, ’s are the arguments of the eigenvalues of T (if 6), = 0, replace sine(—kek) by 1), and py,’s their modulus.

11

a b
—b
(and let b # 0, otherwise T is positive definite). Then A(t) = ((a & ib — 1)t + 1)~! are the eigenvalues of

(T — It +1)~'. Now, if we take Z = (0 é) in (3.13), we get that

Proof. In the (2 x 2) case T is of the form T = with complex conjugate eigenvalues a + b

1

Il > [A

For @ # 0, with some algebra, this integral equals % 3y tan” % = %Sifﬁ, where 6 belongs to (0,7/2),
(—m,—7/2), (—7/2,0), (7/2,7) depending on whether b/a > 0, and b > 0 or b < 0, or b/a < 0, and
b<0orb>0. Now, one always has ||G'(T)|| < / II((T — I)t 4+ I)"!||*dt, and, because of normality, the

norm of ((T'— I)t + I)~! equals the square root of |A(¢)|. Therefore, as before, we get the reverse inequality

0

16D < 5 o

subject to same restriction on the argument. Therefore, the result for 7' normal and (2 x 2) follows. If a = 0,

one gets simply ||G'(T)|| =

1z
P2’
For general T € IR™*", normal, let Q@ bring T to the almost diagonal form QT Q7. Next, consider

1
0) block

all matrices Z given by all zeros, except that on the diagonal they have just one 1 or one (1

according to the eigenvalue structure of QTQT, and then (3.15) follows from the previous (2 x 2) case. O

REMARK 3.9. The bound (3.15) indicates that there are two key factors determining the condition of
the log problem: one is, as usual, nearness to singularity, as evidenced by the % factor, the other is nearness
to the negative real axis, as evidenced by the sin(6) factor in the denominator. This second fact detects ill

conditioning based on the restrictions imposed by the choice of real arithmetic.

Finally, (3.13) can also be used to estimate ||G'(T)||; directly. We reason similarly to [KL2], but stress
that (3.13) is a representation for G'(T)Z which does not need a power series representation, nor to go

through the inverse function (the exponential). We have

1
THEOREM 3.10. Let A(t) := ((T — I)t+ I)~%, and let D(T) := / (AT (t) ® A(t))dt. Then, we have
0

IG'(D)lly = 1D(T)]l2 - (3.16)

Proof. Let vec(Z) be the vector obtained by writing the columns of Z one after another, and so ||G'(T)||; =

max vec(G'(T)Z)||5. But by (3.13
||VeC(Z)||2=1|| (&) 22 y (3.13)

vec(G'(T)Z):/O vec(A(t)ZA(t))dt:/ (AT(t)®A(t))vec(Z)dt

0
1
= / (AT (t) ® A(t))dt vecZ ,
0
and the result follows. O

12

REMARK 3.11. The above result can be used, in the same spirit as in [KL2, p.192], as a starting point
for a procedure to estimate ||G'(T)||;. In fact, since ||[D(T)||z = (Amax(DT (T)D(T)))*/?, a power method
approach to get the dominant eigenvalue is suitable. By noticing that DT (T) = D(TT), with A(¢) given
in Theorem 3.10, a cycle of this power method can be compactly written as: “ Given Zg : || Zo||r = 1, let
7 = /1A(t)Z0A(t)dt, and then Z, = /1AT(t)Z1AT(t)dt, so that (||Z2||F)1/2 is an estimate for ||G'(T)||y.
If moreoaccuracy is required, repeat thisocycle with Zg := szﬁ”' In practice, of course, the integral has to
be replaced by a quadrature rule, and we experimented with composite trapezoidal and Simpson rules, and
Gauss-Legendre rules. For the initial Zy, we used what we would have got after one cycle of the procedure
had we started with %I; that is, one first would get Z; = ——T"!, and then a quadrature rule for the next

7n
integral would give some Z; (e.g., Z; = ﬁ(T‘TT_lT_T +16(T —)"TT-YT — I)"T + T~1), if we use
Simpson rule). Thus, we used Zg := Z3/||Z2||- This choice of Z; gave consistently better results than starting
with a random matrix. We have experimented with this way to estimate ||G'(T)||s, by using at most 10
equally spaced subdivisions for the quadrature rules. This approach was very inexpensive, of course, but not
entirely reliable. Often, it overestimated the true value (interestingly, almost never underestimated it); so, it
revealed itself as a good indicator of ill-conditioning, but did not a give a good measure of achieved accuracy.
On the other hand, we cannot expect that for arbitrary 7', hence A(t) in Theorem 3.10, a quadrature rule
with few points will be accurate; naturally, when we raised the number of quadrature points, the estimate got

better, but this became too expensive. For these reasons, we turned our attention to a different technique,

explained in the next Section.

4. FINITE PRECISION, RESCALING, DISCRETIZATIONS.

Finite Precision. For the two series (3.1) and (3.3), the asymptotic rates of convergence are determined
by p(A), A:=1—T, and p(B), B := (I — T)(I + T)~1, respectively. However, the finite precision behavior
of a truncated expansion is influenced by progressively taking powers: A* for (3.1), and B%*+! for (3.3).
Moreover, for (3.3) there is also the inverse of I + T to contend with. A worst case analysis tells that
roundoff might be magnified by powers of ||A|| or ||B||, respectively. If || 4| < 1, then (3.1) leads to a safe
computation. Also, when ||A|| < 1, for (3.3) we would have ||B|| < ||[(I + T)~!||, and this can be easily

bounded since I + T = 2(I — %), and so (I + 7)1 = %(I — A/2)~ 1. Then,

1
(I +T)7Y < 1.

1
<s——<
2 1—l4ll/2

So, under the assumption ||4|| = [|[I — T|| < 1, the two series (3.1) and (3.3) lead to a safe computation. Also
for the Padé€ approximants, the assumption on ||4|| < 1 seems essential in order to make progress. Under
this assumption, the finite precision behavior of Padé approximants is well analyzed in [KL1]. In particular,

see Lemma 3 of [KL1].

13

Because the transformation to Schur form is a stable process, the finite precision behavior of the Schur
method is chiefly determined by two factors: finding L;; = log(R;;) in (3.7) in case in which Lemma 3.3 does
not apply, and solving (3.8). The former factor is the usual one. The second factor is carefully analyzed in

[Hi2]. One has to solve the following Sylvester equation for Z:
Ry;Z - ZR;; =C

where the spectra of R;; and R;; are disjoint. Ideally, we would like to select the block partitioning of the
matrix R in such a way that all Sylvester equations to be solved are well conditioned, so that no eventual
loss of precision in the computation is introduced. But, of course, to assess the conditioning of a Sylvester
equation requires the equation and its solution, whereas —for efficiency sake— we would like to have a criterion
to determine the partitioning of R before hand. We reasoned as follows. If we call ¢ the Sylvester equation
operator, ¢ : Z — Ry Z — ZR;;, then ||¢~!|| is an upper bound for a relative error magnification factor

(see [Hi2]). It is also known that ||¢~1|| > where A € A(Ry), p € A(R;;) (see [GVL, p.389]), and

this lower bound we can easily control, by making sure that A(R;;) and A(R;;) are sufficiently separated.
Of course, this does not suffice to make the Sylvester equation well conditioned. Still, after extensive
computational experiments, we decided to cluster the eigenvalues so that |A(R;;) — A(Rj;)| > 1/10, and we
have never encountered a problem where a system (3.8) was ill conditioned, but the log was well conditioned.

For this reason, we think the method should be regarded as stable.
For the ODE approach, a quadrature rule must replace the integral in (3.12). That is,

log(T) = /Ol(T ~D((T-I)t+I) tdt:= /01 F(t)dt, (4.1)

must be approximated by a rule of the type
N
Q=) ckF(ts). (4.2)
k=1

For example, consider a composite Simpson rule (identical reasoning applies to different quadratures) to
approximate (4.1). Let F(t) = (T —)((T — Dt + I)~! =: (T — I)A(%), with A(¢) = (T — I)t + I)~!. The

composite Simpson rule with equal spacing h = 1/N (N even) is

cs :=

w| >

(F(0)+ 4(h)+2F(2h) + 4F(3R) + --- + 2F((N — 2)h) + 4F((N — 1)h) + F(1)).

It is easy to bound the error as:

4

nh .
— < — w . .
I1og(T) - O8] < 355 max 7= (+3)

We can verify that F(k)(t) = (=1)*k!N((T — I)A())**?, from which
F™(t) = 24[(T — DA®))®, (4.4)

14

which can be used in (4.3) to get error estimates. In case |I —T'|| = w < 1, the error bound can be sharpened.

In fact, we easily get |A()]| < 1, so that ||[F™(t)|| < 24(11’—‘”)5, and therefore

1-wt?

4n w 5
lnog(r) - 05| < g 1 (125) (45)
REMARK 4.1. A direct computational procedure based on a composite quadrature rule discretization
of (3.12) can eventually be very accurate, but in general it will be expensive, unless T is not far from the
identity. Still, for low accuracy, a formula like (4.2) can be profitably used. For example, a modification of

the above proved very useful to estimate the norm of the Frechét derivative of log(T'), see later.

To complete the discussion on quadrature rules, we now give a new equivalence result about Gauss-
Legendre quadratures on (4.1), and diagonal Padé approximants. Aside from its theoretical interest, this

fact allows for a new representation of the error for diagonal Padé approximants.

LEMMA 4.2. Any quadrature rule of the type (4.2) is equivalent to a rational approximation of log(T).
N

Proof. We have Q := Y cxF(t), and F(t) = (T—I)((T —I)t+I)~". Since F(t:;)F(t;) = F(t;)F(t:), V4, 4,

k=1
then we can rewrite) as

N N N
Q=T-DD_a [(T-nt:+DI[[J(T-Dt:+ 1),
k=1 1=1,i#k =1
from which the claim follows. O

THEOREM 4.3. Let p(I —T) < 1, and let Q in (4.2) be the N-point Gauss-Legendre quadrature rule for
log(T). Then, Q is the (N, N) diagonal Padé approximant to log(T).

Proof. With previous notation, and under the stated assumptions, we have
o0
F(t)=(T-1)Y (-1)"T - D",
k=0
where the series converges. Therefore,

log(T) = Y (T - 1)/0 (=1)(T — I)*tdt.

1

Since N-points Gauss-Legendre rules are exact for polynomials of degree up to t2V—!

, we immediately
realize that @ agrees with log(T) up to the term (T' — I)?¥*! excluded. From Lemma 4.2, @ is a rational

approximation to log(7'), and thus it must be the (N, N) diagonal Padé approximant. O

COROLLARY 4.4. Under the assumptions of Theorem 4.3, we have the following error estimate for the
(N, N) diagonal Padé approximants @ to log(T):

SO
(2N + 1)((2N)!)? 4

log(T) — Q = (2N + k) (k+ 1)A2N+k+177k,

=0

where 0 <np<1l,and A=1-T.

Proof. From standard quadrature errors for Gauss-Legendre rules (e.g., see [AS]), and differentiating under

the series of Theorem 4.3, the result follows at once. O

REMARK 4.5. The previous results hint that a possible way to use quadrature rules is to first pass to
their rational form equivalent. On the other hand, for diagonal Padé approximants, it might be instead more
desirable to pass to their quadrature formula equivalent (4.2), to avoid ill-conditioning in the denominator
of the rational function. Moreover, from Theorem 4.3 we see that Gauss formulas are an excellent candidate

for a parallel implementation of Padé approximants.

From the preceding discussion, it has become clear that it would be generally desirable to have T close

to I. This would make the finite precision behavior of the above techniques much better.

Scaling. An ideal scaling strategy, in the context of computing log(T), is to precondition the problem
so that (for a modified matrix T) T ~ I. In any case, a reasonable scaling ought to give a T for which
[|1I-T| < 1.

One approach is to find, inexpensively, some X; approximating log(T) such that X;T = TX;, and then
consider e %17, find its logarithm, and finally recover log(T) = X; +log(e %*T). Some ideas on this are in
[D]. Also (3.12) can be used in this light, since any quadrature rule of the type (4.2) gives X; : X1 T =TX;.

A more systematic approach results from the inverse scaling and squaring procedure of Kenney and
Laub [KL2]. The basic idea of this approach is to “flatten out” the matrix T'. It is based upon the identity
log(T) = log((Tl/zk)zk) =2k log(Tl/zk), and the realization that, eventually, TY2" _, 1. With respect to
this scaling procedure, we need to consider some aspects: (i) how to take square roots and which square
roots should we take, (ii) when should we take square roots, (iii) what is the conditioning of the overall
procedure, and (iv) if there are risks involved with this scaling strategy.

With respect to the first issue, we have adopted the choice made by Higham (see [Hil], and also [BH]),
thereby relying on a real Schur approach. Under the assumptions of Theorem 1.1, there are many square
roots of T, see [Hil, Theorems 5 and 7]. However, in our context, to eventually find the principal branch of
log(T), there is only one choice. We must select the square root(s) according to the Lemma below (see also

[KL2, Lemma Al]).

LEMMA 4.6. Let B € R™*™ be invertible with no eigenvalues on the negative real axis. Then, B has a
unique 2*-th root S, i.e. 52" — B, which is a primary matrix function of B, and such that if v € A(S), then
(a) 3% < arg(v) < g%, and

(b) Re(v) >0, fork=1,2,...

Proof. A constructive proof can be based upon the method of Higham (see [Hil, p.417] for details). O

When to take square roots? Ultimately, it all depends on what algorithm we use to approximate
log(T). For algorithms fully based on truncated series or Padé approximants, then square roots of the full

matrix T have to be taken in order to ensure numerical stability and rapid convergence. When using a

16

Schur decomposition approach, the procedure is only needed to obtain L;; in (3.7), in those cases for which
approximation techniques are required for the L;;. One thing to keep in mind is that, asymptotically, taking
square roots gives a decrease in norm by a factor of 2. Therefore, how many square roots to take depends
on which algorithm we eventually use for computing the log of the scaled matrix.

To examine the conditioning of the inverse scaling and squaring procedure, we must look at the Frechét
derivative of M(T) := 2F log(Tl/zk). Let T; = TY? ,3J=0,1,...,k (so To = T), and let G and F be the

log and square root functions, respectively. Then, upon repeated use of Lemma 2.3, we have
M'(T)Z = 2*G'(Ty)F'(T._1) - - - F'(T0)Z .

In other words, unavoidably, the better value for the norm of the Frechét derivative of the log (because
Ty = I) is being paid by the Frechét derivatives of the square roots. The problem of estimating the Frechét
derivative of the square root function can be based on Corollary 2.4, by considering S(X) := X?2, and the
identity S(F(T)) = T. Therefore, we have the equalities

F'(To)Z = (S'(F(To))) "2, F'(TW)(F'(To)Z) = (S'(F(T1))) ' F(To)Z ,... ,

F'(To1)(F'(Te-2) - F'(To) Z) = (8'(F(Ti-1))) " (S'(F(Tk-2))) ' - (8'(F (o)) ™" 2,

and thus we have

G'(T)Z = 2°G'(Te) {(S'(F(Te-1)) ™" -+ (S'(F(Tv))) "' 2} - (4.6)

Formula (4.6) forms the basis of the following algorithm to estimate ||G'(T)Zs||, for a given Zo, and
hence to estimate cond(G(T")). This procedure gave us much better results (both in terms of accuracy and
expense) than one directly based on Theorem 3.10.

Let To, =T,T; = Tl/zj, j=1,...,k where the index k must be chosen so that ||I — T;|| = w < 1, and
let Zp be given.

(a) Solve
F(T))Zj41 + Z; 1 F(T3) = Z;, j=0,1,....k—1 (4.7)

(notice that the F(T;) stay quasi-triangular if Tp is such; also, one might already have the T; from

scaling via taking square roots, but only if square roots of all of T had been taken);
(b) since G'(T)Zo = 2*G'(T})Zx, we approximate G'(T})Z; by using a quadrature rule on (3.13).

It is obvious that the algorithm is well defined, since the Sylvester equations (4.7) are uniquely solvable.
In terms of computational cost, by using a composite quadrature rule with N points, at leading order one
needs %(k + N)n® flops, plus the cost of computing the 7}’s if they are not available, which might amount
to another %kn?’ flops, plus the initial cost of the Schur reduction of T

Next, we show that the above eventually provides a good estimate of ||G'(T') Zo||. We show this for the

composite Simpson rule, but the reasoning applies to any other quadrature rule.

17

THEOREM 4.7. Let T € R™™" be given such that ||[I — T|| = w < 1, and let G(T) = log(T). Let Z be
given, and let G'(T)Z be given by (3.13). Let C'S be the composite Simpson rule with N points (N even)

approximating (3.13), so that h = 1/N below. Then we have

2 h4 4
6" (T)7 - cs|| < 2 2

s (48)

Proof. We have
1 1
G'(T)Z = / AR)Z A(t)dt = / F(t,Z)dt,
0 0
where we have set A(t) = (T — I)t+ 1)1, and F(¢,Z) = A(t)ZA(t). From standard quadrature errors, we

have
nh*

1G'(T)Z — CS]| < max || F)(¢, Z)]|.

180 o<t<1
Now, we can verify that AU)(t) = (—=1)7j1A(t)((T — I)A(t))’, and that

PO, 2) = 3 (4) A0 2400 = (1) Y AT - DAG 24O - DABY

from which it is easy to get
4

w
m”zﬂ,

and the result follows. O

|1F% (8, Z)|| < 120

THEOREM 4.8. Let T € R™*", G(T) = log(T), and E(T) = eT. Let Zy of norm 1 be given, and let k be
such that [|[I-Ti|| =w < 1, with T := T?" | Let Zy be obtained from (4.7), so that G'(T)Zo = 2*G' (T},) Zs.-
Let CS be the composite Simpson rule with N points (N even) approximating G'(Ty)Z, from (3.13), so
that h = 1/N below, and let G'(T}) be invertible. Then, we have

IG'(T)Z — 2*CS|| _ nh*w*(1+w)

E@z = 9 (1w (49)

Proof. From Theorem 4.7, we have

ht Wt

2n
|G'(T)Zo — 2*CS|| < Tmllf%ll :

On the other hand, from G'(T)Zo = 2¥G'(T) Z, we also have ||2¥Z;|| < ||G'(T)Zo|| ||(G'(T%)) ||, and from
Corollary 2.4 we get ||(G'(T%))~1|| = ||E'(G(T%))||- Therefore, we have

|G(T)Zo — 2¥CS|| _ 2nh* w*
oDzl < 3 -wpl” G (410
Now, using (2.7) we have
! 1 1+w
E'(G(tr))|| = Tp(1—)Y Ty sds|| < <[|Tk|| < .
1Bl =, mase | [20— ¥ Tsdo] < g7l <
Using this in (4.10) gives the result. O

18

EXAMPLE 4.9. If b1 (n)l/4, then w = .25 gives 3 digits accuracy , and w = .35 gives 2 digits. More

than acceptable for condition estimation. O

REMARK 4.10. Use of (4.9) to achieve a good estimate of ||G'(T)|| requires an appropriate choice of Zq.
We have found that selecting Zy according to Remark 3.11 always gave excellent results, and no need arose
to further iterate the process. For our experiments in Section 6, we always used this choice of Zy along with
(4.9), to estimate cond(G(T')). This strategy seems to be both very reliable and efficient in comparison with
existing alternatives ([KL2]).

To complete this Section, we ought to warn against some possible risks involved with the “inverse scaling
and squaring” procedure. Its main limitation is exactly its power: one progressively flattens out the spectrum
of the matrices T; = TY/? . This may lead to unwanted loss of numerical significance in those cases in which
the original T has close eigenvalues (but not identical) and several square roots are required in order to
obtain a T; : ||[I — Tj|| < 1. The risk is that, after many square roots, all eigenvalues have numerically
converged to 1, and are no longer distinct. Our experience has shown that this might occasionally happen,

but only for ill conditioned problems, for which ||T1/2j|| increases with j, before decreasing.

5. IMPLEMENTATION & EXPENSE.

In our implementations to approximate log(T"), we have always first reduced the matrix T to ordered quasi-
triangular form via a real Schur reduction. The ordered Schur reduction is standard, and we used routines
from EISPACK and from [St], thereby ordering eigenvalues according to their modulus. Unless more infor-
mation is available on T, we always recommend a Schur reduction prior an approximation technique; inter
alia, it allows for an immediate solution of the problem if T' is normal (see Corollary 3.4), and it renders
transparent whether or not some methods are suitable for the given problem. In what follows, we will
therefore assume that T is quasi-triangular, and not normal. In tune with our discussion on scaling, we will
also assume hereafter that T has been scaled so that ||A4|| < 1, where A = I — T. Typically, this has been
achieved by progressively taking square roots of T'. To assess the computational expense, we give the leading
order flops’ count of the algorithms; a flop is the combined expense of one floating point multiplication and
one floating point addition.

Both for truncated expansions of the two series, and for diagonal Padé approximants, one needs to
evaluate matrix polynomials. Ignoring finite precision considerations, let us first discuss what degree is
needed in order to obtain a desired accuracy, for a given ||A||. We fixed the accuracy to 10712,

Figure 1 is a graph showing which degrees ¢ are needed as functions of ||4||, in order to be guaranteed

an absolute error less than 10~'8 for approximation resulting from:

(i) truncating the series (3.1)

2 4k
Sy = Z % (5.1)

(ii) truncating the series (3.3)

S, i 2§: B2k+1

= __ B=(T-D(T+D? =2 1; 5.2
Dogpyr BE@-DEADT, g=ame; (5.2)

(iii) considering the diagonal Padé approximant R, ,(A4).
To obtain the degrees ¢, we have made sure that the remainders contributed less than the desired
accuracy. This is easy enough to do for (5.1) and (5.2), and for the Padé approximants we used the explicit

form of the remainder from [KL1, Theorem 5].

180

[N

@

=]
T

+ Series1

-

N

=}
T

* Series 2

-

IN)

=}
T

O diagonal Pade’

degree of the approximant
el '5
o o
T T

@
=)
T

N
=}
T

1 M

.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1Al

Figure 1.

As an example, for ||4]| < 0.35, 0.3, we need ¢ = 36, 31, for S1, ¢ = 25, 21, for Sy, and ¢ = 10, 9, for
Ry . (If ||A]| = 0.35, the (9,9) Pade’ guarantees an error of 1.152 x 10718.)

Naturally, for Padé one also needs to be aware of the condition number of the denominator Q(A4), since
this matrix needs to be inverted. Borrowing from [KL1, Lemma 3], an upper bound on cond(Q@(A4)) is given
by Q(—||A|)/Q(||4l]). Figure 2 shows this upper bound on cond(Q(A4)) for the case of ¢ = 9, for [|4]] € (0, 1).
For example, for ||A4|| = 0.35, 0.3, one has that cond(Q(4)) < 25.34, 15.66.

10°

=
S
T

conditioning estimate

10'F

. .
0.4 0.5 0.7 0.8 0.9
lIAll

Figure 2.

20

Next, we need to consider the expense associated with evaluating polynomials of degree ¢ and the ¢ X ¢
diagonal Padé. As usual, let T' be quasi-triangular of dimension n. The algorithm we used to evaluate the
polynomials is taken from [GvL, Section 11.2], and it requires the explicit computation of 42, A3,..., A%,
where s is a given integer satisfying 1 < s < ,/g. Let r = |g/s]; then, following [GvL], it is easy to show
that, at leading order, the evaluation of S requires (r + s — 2)%71,3 flops if sr = ¢, and (r + s — 1)%71,3 flops
otherwise. The choice s = |,/g| ensures the minimal flop count.

The cost associated with S; can be obtained in a similar way, taking into account the cost of the
evaluation of B = (T —I)(T +1)~! (about %n?’ flops) and observing that only odd powers of B are required.
With ¢ = 2m + 1 now we have s = [/m], r = |m/s] and a leading cost of (r + s + 1)%71,3 flops if sr = m,
and (r+ s+ 2)%71,3 flops otherwise.

Finally, the cost associated with R, ,(A) can be obtained observing that A%, A3, ..., A° must be computed
only once for the two polynomials P(A) and Q(A), and adding the cost of the evaluation of P(4)(Q(4))~ 1.
With the above notation, we have a leading cost of (2r + s — 2)%71,3 flops if sr = ¢, and (27 + s)%n:” flops
otherwise. In this case, a better compromise for s is s = [,/g], which permit to gain something in the flop
count, with respect to taking s = [,/q].

Figure 3 shows the asymptotic cost associated with S, S3 and R, ;(A) to have an error less than 1078
in function of || 4||. For example, if || 4]| < 0.35, 0.3, S requires about 10 %n?’ flops, S7 needs 8 %n?’ flops, and
R, ;(A) needs ¢ = 10 and 8%71,3 flops for ||A|| = 0.35, whereas ¢ = 9 and 7%71,3 flops suffice when ||A4|| = 0.3.

It is interesting to observe that also using a (12,12) Padé gives leading flop count of about 8%71,3 flops.

+ Series 1

* Series 2

20 o Pade’)

flop count
=
o
T

Al
Figure 3.

Finally, there is to consider the cost of the real Schur decomposition, and of taking square roots. The
cost of solving (3.8) is a complicated function of the block sizes; for distinct eigenvalues, i.e., the triangular
case, it amounts to %n?’ flops. In any case, the bulk of the expense is the ordered real Schur decomposition,

which costs about 1513 flops. Then, one square root costs about %n?’ flops (see [Hil]). Since taking square

21

roots, asymptotically, decreases the norm by 1/2, then we see that it makes better sense, from the point of
view of the cost, to take square roots rather than to use a high degree approximant. We found that a good

compromise is to take square roots up to having ||4|| < 0.35, followed by the (9,9) Padé or S;.

6. EXAMPLES.

In this Section we report on some of the problems we have solved numerically. All computations have been
done on a Sparcl0 in double precision (EPS ~ 2.2 % 10716).

We mainly report on results obtained by the methods which have proven robust enough to handle the
largest portion of all problems considered; for example, we do not report on results obtained by using (5.1),
nor by using the ODE approach in either formulation (3.10) or (3.12) (but see Theorem 4.3). Thus, unless
otherwise noted, all problems below have been solved by the following general strategy:

(i) Schur reduction with eigenvalues’ clustering according to increasing modulus. We have used the software
in [St] (with minimal modifications) to do this step. The tolerance for the QR algorithm was set to

2% EPS.

(ii-a) Scaling of diagonal blocks by taking square roots, up to obtaining ||A4|| < 0.35, followed by the 9 x 9
diagonal Padé approximant for these blocks, inverse scaling, and use of (3.8). Diagonal blocks in the
real Schur form have been considered distinct if the minimum distance between their eigenvalues was
greater than 1/10. Needless to say, if —after grouping— all diagonal blocks are either 1 x 1 or 2 x 2 of
complex conjugate eigenvalues, then we used Lemma 3.3 instead of scaling and Padé approximants.

(ii-b) Truncated expansion (5.2) on the whole matrix in lieu of scaling by square roots and Padé approximants,
if convergence criteria for such series were met.

(iii) Back transformation.

As measure of accuracy for the computed logarithms, we have considered err := elosﬁg”)_T , Where
log.(T) is our computed approximation to the log. This essentially boils down to assessing the absolute
error in the log itself. To approximate the exponential function, we have used both Matlab functions expm
and expm?2, that is a Schur based technique and a series expansion technique. Typically, expm performed
better, but on occasions expm2 was needed. We have also used our own implementation of the method of
scaling and squaring followed by a diagonal Padé approximant to the exponential, following [GvL, Algorithm
11.3.1 p. 558]. In the examples below, we also report the estimates “cond” of the condition number (3.2).
This is done according to Theorem 4.8.

Many tests have been done on random matrices. These were generated by exponentiating the matri-
ces obtained with the randn function of Matlab, which returns entries in [—1, 1] according to the normal
distribution. If a particular structure was desired (e.g., orthogonal) these random matrices were further
manipulated (e.g., taking their QR factorization).

In the tables below, for the computed logarithm log, T, we report: L= ||log, T||, cond, nbl/nrad (the

number of diagonal blocks, and the most square roots taken on any of these blocks), err, ¢ (the number of

22

terms taken for (5.2) directly on T, if applicable), errz (the error for (5.2)), and err,, (the error obtained
by using the Matlab function logm to approximate logT). Exponential notation is used throughout; e.g.,
2.3 x 107 is written as 2.3E7. All results are given for the Frobenius norm, to conform to previously published

results.

EXAMPLE 6.1. “Easy” Problems. A set of randomly generated positive definite and orthogonal matrices
was considered just to test the technique based on Corollary 3.4. In all cases, accuracy to machine precision
was obtained. We also generated more than 60 general random matrices, of dimension between 5 and 100.

Also in these cases we obtained accuracy to full machine precision.

EXAMPLE 6.2. Symplectic T. We generated a dozen random symplectic matrices by exponentiating
(via diagonal Padé approximants) randomly generated Hamiltonian matrices. For some of these matrices we
got a very large condition number (3.2). Nonetheless, we obtained very accurate answers for the computed
logarithms. However, the end result was often far from being a Hamiltonian matrix, that is the relevant
structure got lost. For these problems, when applicable, using (5.2) directly was also an effective way to
proceed; even though some of the linear algebra (such as matrix inversion) was done by non-symplectic

methods, the end result was much more nearly a Hamiltonian matrix than with the Schur method (see [D]).

EXAMPLE 6.3. “Harder” Problems. These problems have been chosen to illustrate some of the dangers
in using the logm function of Matlab. In Table 1, Tests 1-3 refer to a triangular matrix of dimension 20,
with all 1’s above the diagonal, and 1/4, 1, and 4 on the diagonal, respectively. Of course, for these matrices,

no Schur reduction or grouping occurred. Test 4, instead, has been chosen to illustrate the potential danger
1+ 10-7 10° 10*
of taking too many square roots. It is the matrix 0 1 10% |. In this case, (5.2) has clearly to
0 0 1
be preferred.

Table 1.

Test L cond nrad err q eITy err,,
1 6.98E7 4.75E10 28 1.2E-8 238 1.1E-8 82.54
2 5.32 5.0865 4 0 19 0 9E-3
3 6.56 0.9511 5 2.7E-15 129 3.7E-16 1.7E-2
4 5E9 5.67TE14 34 5.9E-4 2 5E-13 1.4E15

EXAMPLE 6.4. Ezamples from the literature. These problems have previously appeared in the literature,
see [Wa] and [KL2]. We tested our method to independently confirm the results of [KL2] about conditioning.
In Table 2, Tests 1-6 refer to the Examples 1-6 of [KL2]. We notice that our estimates for cond are in perfect
agreement with the results in [KL2]. For Tests 1,2, and 3, we also used scaling by square roots and the 9 x 9
diagonal Padé approximant on the whole matrix; this required 5, 8, and 11 square roots, respectively, for

the same accuracy.

23

Table 2.
Test L cond nbl/nrad err q eITy err,,
1 7.48 5.08 2/4 3.5E-15 7949 1.7E-13 1.1E-15
2 53.85 9E6 3/0 9.E-15 - - 7.1E-15
3 575.95 6.44E9 3/0 6.2E-14 - - 5.2E-13
4 2.9997 3.76 1/4 2.5E-15 19 1.5E-16 6.7E-9
5 1E6 3.33E11 1/22 0 1 0 6.2E-6
6 172.68 5.94E6 1/9 3.7E-13 229 2.3E-10 6.4E-10

7. CONCLUSIONS.

In this work, we have provided analysis and implementation of techniques for computing the principal branch
of a real logarithm of a matrix T, log(T). Some of the techniques considered had been around for a while,
like Padé approximants and series expansion. Some other techniques had not been previously analyzed or
even introduced. In particular, the Schur method with eigenvalue grouping followed by a back recursion, and
integral based representations for both the logarithm and its Frechét derivative. This latter aspect is related
to the conditioning of the problem, an issue we have addressed in details, and on which we have given many
new results that better characterize it. In fact, from the theoretical point of view, our main contributions
are the results about conditioning, and those related to the integral representation of log(T').

From the computational point of view, all things considered, we think that the most reliable and efficient
general-purpose method is one based on the real Schur decomposition with eigenvalues’ grouping, scaling of
the diagonal blocks via square roots, and diagonal Padé approximants. Also using S; (see (5.2)), instead of
the Padé approximant, is a sound choice. Moreover, using S; was definitely the most appealing choice for
poorly conditioned problems. Although all of the programs we have written are of an experimental nature,
we believe they are robust enough to be indicative of the typical behavior. We hope that our work will prove
valuable to people interested in mathematical software, the more so since the only existing software tool
which computes the logarithm of a matrix ([Matlab]) does not use a foolproof algorithm to do so. Moreover,
the implementation of Matlab nearly always produces complex matrices for answers, because it uses unitary
reduction to complex Schur form.

The problem of reliably estimating the Frechét derivative of log(T'), at a fraction of the cost of computing
log(T), or at least without a drastic increase in cost, is truly an outstanding difficulty. None of the methods
of which we are aware succeeds in this. One technique we have considered, based on Theorem 3.10 and
Remark 3.11, is usually very inexpensive, but not always reliable. The other technique we introduced, based
on Theorem 4.8, has at least proven very reliable, but, in general, it is at least as expensive as computing
the log itself.

Finally, in this work we have focused on the problem of computing one logarithm of one matrix. Dif-
ferent conclusions are reached if one is interested in computing a branch of logarithms of slowly varying

matrices. In such cases, of course, one should favor an approach which uses the previously computed loga-

24

rithms, and thus more carefully consider iterative techniques and different scaling strategies. We anticipate

some work in this direction.

Acknowledgments. We thank N. Higham, A. Iserles, and C. Kenney for insightful comments on this work.

Also, thanks are due to N. Higham for pointing out to us references [C], [He], [SS], and [Wo].

8. REFERENCES.

[AS]

[BG-M]

[HJ]
[KL1]

[KL2]

[LS1]

[LS2]

M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Math-
ematical Tables, 10th edition, J. Wiley & Sons (1972).

G.A. Baker, P. Graves-Morris, Padé Approximants, Part I & Part II, Encyclopedia of Mathematics vol.s
13-14, Addison-Wesley (1981).

A. Bjorck, S. Hammarling, “A Schur Method for the Square Root of a Matrix”, Linear Algebra & Its
Applic., 52/53 (1983), pp. 127-140.

W.J. Culver, “On the Existence and Uniqueness of the Real Logarithm of Matrix”, Proc. Amer. Math.
Soc., 17 (1966), pp. 1146-1151.

L. Dieci,“Considerations on Computing Real Logarithms of Matrices, Hamiltonian Logarithms, and
Skew-Symmetric Logarithms,” to appear in Linear Algebra & Its Applic. (1994).

F.R. Gantmacher, Théorie des Matrices 1&2, Dunod, Paris (1966).

G.H. Golub, C.F. Van Loan, Matrix Computations, 2nd edition, The Johns Hopkins University Press
(1989).

B.W. Helton, “Logarithms of matrices”, sl Proc. Amer. Math. Soc., 19 (1968), pp. 733-738.

N.J. Higham, “Computing real Square Roots of a Real Matrix”, Linear Alg. and Its Applic., 88 /89
(1987), pp. 405-430.

N.J. Higham, “Perturbation Theory and backward Error for AX — XB = C”, BIT, 33 (1993), pp.
124-136.

R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press (1991).

C. Kenney and A.J. Laub, “Padé Error Estimates for the Logarithm of a Matrix”, International Journal
of Control, 50-3 (1989), pp. 707-730.

C. Kenney and A.J. Laub, “Condition Estimates for Matrix Functions”, SIAM J. Matrix Analysis &
Applications, 10 (1989), pp. 191-209.

G.J. Lastman and N.K. Sinha, “Transformation Algorithm for Identification of Continuous-Time Mul-
tivariable Systems from Discrete Data”, Electronics Letters, 17, (1981), pp. 779-780.

G.J. Lastman and N.K. Sinha, “Infinite Series for Logarithm of Matrix, Applied to Identification of
Linear Continuous-Time Multivariable Systems from Discrete-Time Models”, Electronics Letters, 27-
16, (1991), pp. 1468-1470.

R. Mathias, “Condition Estimation for Matrix Functions via the Schur Decomposition”, SITAM J. Matrix
Anal. and Applic., 16-2 (1995), pp. 565-578.

25

[Matlab]
[MvL]

[P]

[Si]

[Wa]

[Wo]

Matlab Reference Guide, The MathWorks, Inc. (1992).

C.B. Moler and C. Van Loan, “Nineteen Dubious Ways to Compute the Exponential of a Matrix”, Siam
Review, 20 (1978), pp. 801-836.

B.N. Parlett, “A Recurrence Among the Elements of Functions of Triangular Matrices”, Linear Alg.
and Its Applic., 14 (1976), pp. 117-121.

Y. Sibuya, “Note on Real Matrices and Linear Dynamical Systems with Periodic Coefficients”, J. Math-
ematical Analysis and Applications, 1 (1960), pp. 363-372.

B. Singer and S. Spilerman, “The Representation of Social Processes by Markov Models”, Amer. J.
Sociology, 82-1 (1976), pp. 1-54.

G.W. Stewart, “HQR3 and EXCHNG: Fortran Subroutines for Calculating and Ordering the Eigenvalues
of a Real Upper Hessenberg Matrix”, ACM Trans. Math. Software 2 (1970), pp. 275-280.

C. Van Loan, “The sensitivity of the matrix exponential”, Siam J. Numer. Analysis, 14 (1977), pp.
971-981.

E.I. Verriest, “The Matrix Logarithm and the Continuization of a Discrete Process”, Proc.s 1991 Amer-
ican Control Conference (1991), pp.184-189.

V.A. Yakubovich and V.M. Starzhinskii, Linear Differential Equations with Periodic Coefficients 1&2,
John-Wiley, New York (1975).

R. C. Ward, “Numerical Computation of the Matrix Exponential with Accuracy Estimates”, SIAM J.
Numer. Anal. 14 (1977), pp. 600-610.

A. Wouk, “Integral Representation of the Logarithm of Matrices and Operators”, 11 (1965), pp. 131-138.

26

