On real logarithms of nearby matrices and
structured matrix interpolation

Luca Dieci,

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30352,
U.S.A. E-mail: dieci@math.gatech.edu

Benedetta Morini, Alessandra Papini and Aldo Pasquali

Dep. Energetica S. Stecco, Univ. of Florence, via C. Lombroso 6-17, 5013/
Florence, Italy E-mail: papini@de.unifi.it

Abstract

Theoretical and algorithmic results are given for the numerical computation of real
logarithms of nearby matrices. As an application, and an original motivation for this
study, interpolation for sequences of invertible matrices is considered particularly
for matrices with a given structure (for example, orthogonal, symplectic, or positive
definite), so that the resulting interpolants share the structural properties of the
data. Error analysis, implementation details and examples are provided.

1 Introduction

A frequent computational problem is to integrate matrix differential equations.
Quite often, solutions of these matrix equations are matrices of a well defined
type, for example, orthogonal, symplectic, or positive definite matrices. (In
this work, a positive definite matrix is tacitly assumed symmetric.) Recall,

A € IR is Hamiltonian if ATJ + JA = 0, where J = <_OI é), and

is symplectic if ATJA = J. In practice, good choices exist for discretizing
these matrix equations, in particular guaranteeing that, at grid points, the
approximations share the structural properties of the exact solution, that is,
orthogonality, symplecticity, or positive definiteness. Thus, we consider a data

* Supported in part under NSF Grant DMS-9625813, NATO Grant CRG 950865,
and MURST and CNR Grants (Italy).

Preprint submitted to Elsevier Preprint 26 March 1998

set {t;,A;}, j =0,1,..., where A; € IR"*" are invertible. Typically, h; :=
tj+1 — t; is small. We can (and do) think of A; as A(¢;) for some smooth A.

An issue which has not received much attention is structured matriz interpo-
lation. For the above data set, we need a representation of the data valid for
all ¢ € [to,tn], and such that it reduces to A; at ¢;. Naturally, the resulting
interpolant, A, should be a smooth real function, and ||A(t) — A(t)|| should
be nicely bounded (unless otherwise stated, || - || refers to the 2-norm). This
is no different than interpolation for the entries of the matrices A;, and in
fact polynomial interpolation of matrices is common in engineering applica-
tions [1,10]. However, our interest is in interpolating so that fl(t) retains the
structure of the A;, that is that fl(t) is orthogonal, symplectic, or positive
definite, if the A;’s are such. As far as we know, this problem has not been
addressed in this generality. One possibility would be to simply interpolate,
polynomially, the given matrices to give P4(t). Now, usually P4(¢) does not
share the structure of the data, so we may need to modify it appropriately. In
the Frobenius norm, conceptually it is easy to find the closest positive semi-
definite matrix to a symmetric one, as well as the closest orthogonal matrix to
a given invertible matrix, so we could obtain (at each given ¢) a structurally
“correct” answer in these cases. However, this does not usually give a smooth
interpolant. Our idea for structured matrix interpolation is quite straightfor-
ward: (i) associate to the matrices Ay their real logarithms (which will be
clarified below), and call these Ly, (ii) perform polynomial interpolation on
the Ly, and call L(t) the resulting interpolant, and then (iii) let A(t) = e=®.
Clearly, there are non-trivial issues to resolve: lack of uniqueness, computa-
tional expense, and potential numerical instabilities. This simple idea will be
modified and extended. Note that, in step (i) we need to compute logarithms
of matrices which are presumably close to one another. This motivates our
first problem: how to compute logarithms of nearby matrices.

Logarithms. Because of our applications, we consider only real logarithms of
real matrices; the derivation would simplify considerably if we could consider
complex logarithms. By a real logarithm of A, we mean any matrix X € IR"*"
such that e¥ = A. Now, suppose we have two matrices, A; and A, with
|Ay — Ay|| small, and we have computed Ly, the logarithm of A,. Intuitively,
one would expect Lo, the logarithm of Ay, to be “close” to L;. (It turns out
that Lo is not necessarily close to L;.) Can one take advantage of knowledge
of Ly when computing L?

As far as we know, all previous work on computing the logarithm of a matrix
A has focussed on the case of computing a logarithm for a given matrix [4,7,8].
Also, the focus has been on computing a logarithm which is a primary matriz
function of A;i.e., a primary logarithm. Recall, a primary matrix function is a
function on the spectrum, A(A), of the matrix A (see [5]). Moreover, computing
a primary logarithm has always been restricted to the principal logarithm

of A with eigenvalues on the main branch; i.e., they have imaginary parts
within (—7, 7). Sensitivity analysis for logarithms of matrices has only been
completed for the principal logarithm. Recall, a principal logarithm admits
the integral representation

L = log(4) = /(A ~D[(A— D)t + 1]\t (1.1)

Finding a logarithm of a matrix presents intrinsic difficulties not present, for
example, for the exponential of a matrix. Chief is the choice of the branch,
which is not clear, except for positive definite matrices, where the principal
logarithm is a natural choice. The principal branch might not be appropriate,
for example, if we envision a continuation process. Intimately connected with
this issue is whether or not we need a logarithm which is a primary matrix
function. It is important, therefore, to understand what distinguishes a non-
primary logarithm from a primary one. Since log(A) is any matrix X such that

= A, the following possibilities are typical. First a non-primary logarithm
occurs when the eigenvalues of A are real and negative, but there is a real L
such that el = A; e.g.,

1 0 0
ae (20 wa = (2T,

(Note, the eigenvalues of L are on the border of the main branch.) Another
possibility occurs when, corresponding to a repeated eigenvalue of A, we take
different values for the logarithm (that is, on different branches); necessarily,
the end result is a non-primary logarithm.

Example 1.1 Consider the matrices

an { cos(B() sin(B(1) Calh) B®)
A(t) = e <_sm(B(1) Cos(ﬁ(t))>’ L(t)_<—ﬁ(t) a(t)) (12)

where ((t) = 2msint, and « is a smooth function. If a(t) = 0, A(t) is orthog-
onal and symplectic. It is simple to show that e“(®) = A(#) for all ¢, thus L(t)
is a logarithm of A(t). The eigenvalues of A(t) and L(t) are, respectively,

e*Wicos(8(t)) % isin(B(t))] and at) £ip(t).

Clearly, A(r/2) = e"/?) [while

L) = ("2).

-2

so L(m/2) cannot be a primary matrix function. Likewise, L(7/6) cannot be a
primary matrix function since A(7/6) has both eigenvalues on the negative real
axis. As t crosses /6, the eigenvalues of L(t) exit from the principal branch
(—m,), and re-enter it at ¢ = 57 /6. Naturally, passing from one branch to
another implies passing from a primary to a non-primary matrix function by
stepping on the boundary of the open connected set where the function log(z)
is analytic. Moreover, remaining on the main branch would require introducing
a discontinuity. For example, the principal logarithm associated with A(t) is

L,(t)=L(t), 0<t<m7/6,

Lp(t):L(t)—i-(;:T _§W>, /6 <t<5mw/6, etc.

L, is clearly not defined at ¢t = 7/6, etc., whereas L(¢) in (1.2) is smooth for all
t. Note, ||A(t+€) —A(t)|| = O(e) when t = 7/6—€/2, but ||L,(t+€) — L,(t)]| =
O(1) . Summarizing, care must be taken to obtain a smooth logarithm; to this
end, we cannot consider just principal logarithms.

When working with matrix functions, familiar rules from calculus of one vari-
able may not hold; e.g., for eA*t? = e%e? we usually need A and B to commute.
For logarithms, if log(A) log(B) = log(B) log(A), then

elog(AB) — elog(A)-i-lOg(B) . (13)

Note, generally (1.3) does not hold if AB = BA, as the following shows:

B (1 3 (0 27 (0 3log2
A=1, B—<0 2); log(A)—<_27T 0>’ log(B)—<0 log2>'

However, (1.3) holds when AB = BA if log(A) and log(B) are both primary
matrix functions. Then, (1.3) implies that a logarithm of A may be found from
the rescaled relation

log(A) = X +log(e™™A), if AX =XA. (1.4)

This last result is indicative of the enormous simplifications for commuting
matrices. If all matrices Ay, Ay,..., Ay commute, we can re-use much of the
computational work (for example, only one Schur decomposition is needed).
Also, rescaling as in (1.4) becomes obvious. Unfortunately, commutativity is
rare.

Interpolation. The simple idea is: (i) given a suitable invertible function f,
transform the data (t;, 4;) to (¢;, f(4;)), 7 = 0,1,...,N; (ii) perform stan-
dard polynomial interpolation on this transformed data resulting in the inter-
polant P(t); (iii) finally, use f~'(P(¢)) as the interpolant for the original data.

Besides computational issues, the key is to determine f so that the interpolant
has the desired structure. The following lemmas motivate our choices for f.

Lemma 1.2 Given an invertible matric A € IR™™" with no eigenvalue on the
negative real axis:

1) if A is orthogonal, there exists a real skew symmetric logarithm;
) if A is orth [, th /51, l sk tric | th
1) if A is symplectic, there exists a real Hamiltonian logarithm;
5) if At lectic, th 51 I Hamaltonian | th
i) if A is positive definite, there exists a unique real symmetric logarithm.
41) if A tive d ite, th 5t ' [tric [ith

Moreover, in cases (i) and (ii), the logarithms are uniquely specified if, relative
to the eigenvalues A of A, we specify which the branch of the log function (e.g.,
the usual choice would be —m < Im(log(A)) < m). Conversely, given a matriz
X € IR™™ which is skew symmetric, Hamiltonian, or symmetric, then the
matriz e is orthogonal, symplectic, or positive definite, respectively.

PROOF. The first part is in [11] for the orthogonal and symplectic cases,
whereas the positive definite case is a trivial verification, using a Schur di-
agonalization of A. The converse is well-known from integration theory for
differential equations. O

Remark 1.3 To obtain a real logarithm X, assuming A has no eigenvalues
on the negative real axis can be weakened to require that “A has an even
number of Jordan blocks of each size for every negative eigenvalue”; however,
a real matrix X solution of eX¥ = A cannot be a primary matrix function if
A has any negative eigenvalues [5]. This weaker assumption also guarantees
that if A is orthogonal then it has a real skew-symmetric logarithm which
can easily be proved as follows: (i) bring A to block-diagonal form, QT AQ =

diag(Dy, ..., D,y), where Dj; are either (2,2) blocks of the type (_CS i),

c

or are 1 or —1; (ii) for the blocks (

. 0 g
symmetric blocks (—ﬂ 0

i) take as logarithms the skew-

>, with 8 = cos !(c); (iii) for the eigenvalue 1

take 0 as logarithm; (iv) for each block <_01 _01> take a skew-symmetric
: 0 (2k+)7 . :
logarithm <—(2k 1) 0) , k € Z. Sharp conditions under which a

symplectic A has a real Hamiltonian logarithm are more involved [3].

Lemma 1.4 Given an invertible matriv A € IR™™" such that —1 ¢ A(A),
consider the Mébius transformation

1—2
; ~1 e . 1.
c:z€C/{-1} » i, 7ERF0 (1.5)

If A is orthogonal, symplectic, or positive definite, c(A) is skew-symmetric,
Hamiltonian, or symmetric, respectively. Conversely, given X € IR™"™ such
that —y ¢ A(X) and X is skew symmetric or Hamiltonian then ¢='(X) is
orthogonal or symplectic, respectively. Moreover, if X is symmetric and

~ 1.
[v[> max |Asl (1.6)

then ¢ (X)) is positive definite.

PROOF. The orthogonal and symplectic cases are in [2]. If A is positive
definite, then c¢(A) = ¢(A4)" is obvious. Given X, clearly ¢™(X) = (y[—
X)(yI + X)~!, which is symmetric if X is. Let Y = ¢ }(X), y € IR" be a
nonzero vector, and consider y'Yy. Letting z = (yvI + X) 'y,

y'Yy=2"(7I+X)(yI — X)z = ||z]|*+* — 2" X?z > ||z[]*(7* — max \;(X?)),
from which the result follows. O

Remark 1.5 In Lemma 1.4, for orthogonal and symplectic matrices, the value
of v in (1.5) is arbitrary; a typical choice is v = —1, in which case ¢(A) is the
Cayley transform of A. If X in Lemma 1.4 is skew-symmetric, its eigenvalues
are purely imaginary, and so certainly +v ¢ A(X). Also, if X is Hamiltonian,
and —y ¢ A(X), then certainly also v ¢ A(X) since eigenvalues come in =+
pairs. For v = —2 in (1.5), ¢(A) is just the first diagonal Padé approximation
to log(A), and the inverse transform is precisely the first diagonal Padé ap-
proximation of the exponential. Such nice interplay does not persist for higher
order diagonal Padé approximations to log(A) and exp(X).

2 Logarithms of nearby matrices

A recurring problem in numerical computation is how to take advantage of
work done already for slight changes in input. Typically, this problem is en-
countered for the factorization of a matrix when the change is a low rank
modification. We consider the problem of obtaining log(A + E) once log(A) is
known and F is a matrix of small norm.

We consider a Taylor expansion approach. Let G be the logarithm function
and F' the exponential function. That is, we have decided upon a stem function
log acting on complex numbers z : log(z), and therefore consider only primary
matrix functions log(A). Now, consider the stem function as defined locally. To

have log(A) real, we must take values of log(z) which are complex conjugate
relative to complex conjugate eigenvalues of A. Formally,

G(A+E)=GA) +G'(A)E+O(|E|]?), (2.1)

where G'(A) is the Fréchet derivative of the function G. (We will see that
this is well defined, and also justify the term O(||E||?) in (2.1).) The following
iterative process is immediate. With Ay = A and Ly = G(Ay) given,

Ly =Ly + G'(Ak)Ek , A, = F(Lg),
Ey=A+E—F(L), k=0,1,.... (2.2)

We need a concrete representation for G'(Ay) Ey. Restricting attention to prin-
cipal logarithms, an expression for G'(A)E [4] is

AVE = /A D+ 17 B[(A — Dt + 1) dt . (2.3)

Remark 2.1 Under the stated restrictions, (2.2)—(2.3) is a locally quadrati-
cally convergent iteration. However, an iterative method based on (2.2)—(2.3)
is not convenient; it is expensive, works only for principal logarithms, and is
not competitive with the formulations below.

Consider the relation e°) = A or F(G(A)) = A. Using the integral formula
for the Fréchet derivative of the exponential [12], and letting X = G(A),

F'(X): Z — F'(X /F (1 —) X)ZF(tX)dt. (2.4)

Therefore, if the mapping Z — F'(G(A))Z is invertible, using the chain rule
for the composite function,

G'(A) B = [F(GA)]™ (2.5)

This is a general expression for the Fréchet derivative of G when F'(G(A)) is
invertible. Now unroll (2.4): Z — vec(Z), where vec(Z) € IR is the vector
of entries the columns of Z (first to last). Thus, an equivalent requirement is
that the n? x n? matrix

1
D(X) := /etXT ® e DX gt
0

be invertible. Using elementary properties of the Kronecker product [5],
1
ve ADX)) = v = /e’\te“(l_”dt, A pe A(X);
0

therefore,
et — et

A
N s

Now, recall that A, p € A(log(A)), and v = 0 (hence D(X) is not invertible)
if and only if A = p + 2ikw, k € N. This is not possible for primary matrix
functions log(A). Thus, we have the following lemma.

v=e, A=p; v =

Lemma 2.2 Iflog(A) is a primary matriz function, then its Fréchet deriva-
tive is given by (2.5).

Remark 2.3 The expression (2.5) was derived in [8] for the principal loga-
rithm. It suffices that the logarithms be primary matrix functions.

An alternative to the Taylor expansion of G(A + E) is provided by Newton’s
method for the nonlinear equation

F(L)—A=0. (2.6)

Given Ly, iterate

F'(Lg) (Lgs1 — L) = A— Ay, Apr=F(Lg), k=0,1,..., (2.7

where F'(Ly)(Ly+1 — Lg) is given by (2.4). Invertibility of F'(Lj,) requires that
no two eigenvalues A and p of Ly may be of the type A = p & 20km. Recall,

F(X+2) = F(X) + /F((l HX)ZF(H(X + Z))dt. (2.8)

0

Now, from (2.7), with the restriction on the eigenvalues,

F'(Li)[(Lir = L) + (L = Le)] = F(L) = F(Lg),

1
Lisi— L= (F'(Ly) /ﬂF (Li(1 — 1)) (L — Ly) (F(Lt) — F(Lyt))dt,
1]

and the last term under the integral sign is O(L — L), so we have local
quadratic convergence.

Remark 2.4 With the restriction on the eigenvalues of Ly, iteration (2.7)
(using (2.4)) is the same as (2.2)—(2.5). Generally it is not possible to use
(2.7) to approximate logarithms L which are not primary matrix functions of

A.

The only known technique for approximating, by Newton’s method, logarithms
which are not primary matrix functions uses (2.7) when Ly commutes with L
[2]. In this case (2.7) can be rewritten

Lk+1 = Lk + eiLk (A - Ak), or
Lyyi=Lp+e™A—1 k=0,1,... (2.9)

Summary. There are three possible formulations of Newton’s method: (2.2),
(2.7), and (2.9). For the derivative in (2.2), we can use (2.3) if we are on the
principal branch, or (2.5) for any other primary logarithm. For the derivative
in (2.7), we can use (2.4). For primary logarithms, (2.2) and (2.7) are
equivalent. Finally, (2.9) is valid only if LyL = LLy; then (2.9) can be used
to approximate any logarithm (primary or non-primary).

Known conditioning results are restricted to the principal logarithm [4,8]. In
[4,8], a representation of the Fréchet derivative of the logarithm is justified for
principal logarithms only. On the other hand, from Lemma 2.2, the Fréchet
derivative is well defined for any primary logarithm. Moreover, the argument
following (2.8) legitimizes the term O(||E||?) in (2.1). Thus, we can use (2.1) to
express the sensitivity of the log function. In particular, if L # 0 and L + AL
are primary logarithms of A and A + E, then

IALL _ 4oy 141 DE :
<||G'(A + O(|E|]7) . 2.10
T < 1@z g euEr (2.10)

The condition number of the logarithm function G at A,

16 (4] H (2.11)

acts as a relative error magnification factor.

Remark 2.5 From (2.11), using (2.5), the closer log(A) is to a non-primary
matrix function, the worse its conditioning.

Next, we turn our attention to principal logarithms.

Theorem 2.6 Given A € IR"" with principal logarithm log(A). Let E €
IR™™™ be such that A+ E has a principal logarithm, log(A + E). Then

1
log(A + B) = log(4) + [(A= Dt +1)" E[(A+E It + 1] dt (2.12)
0

PROOF. From (1.1),

1
log(A + E) :/A+E DA+ E —)t + 1)"'dt . (2.13)
0

Now,
(A+E-D[(A+E-It+I"'=A-D[(A-Dt+1]!
+[(A=Dt+ I 'E[(A+E-I)t+1]*. (2.14)
Using (1.1) for log(A) and (2.13) for log(A + E), (2.12) follows. O

Remark 2.7 (2.12) is valid since the principal logarithm log((A+E —1)t+1)
exists for all ¢ € [0, 1], not just at t = 0,1. Our path (A + E — I)t + I from
I to A+ E, which exploits knowledge of log(A), differs greatly from the more
direct homotopy path A + tE. Exploiting the latter path is profitable when
(A+1¢E) is invertible for 0 < ¢ < 1 and the principal logarithm of (A+ E)A™!
exists, to compute the logarithm of the rescaled matrix (A + E)A™L:

1
log((A + E)A /A+tE)Lt
0

(This expression coincides with (2.12) when A and E commute (recall (1.4)).)

The integral in (2.12) is the harder to evaluate the closer we are to the bound-
ary of the main branch for the eigenvalues of the logarithm(s) of A and A+ E,
and these are ill-conditioned principal logarithms (see Remark 2.5). Consider
replacing

1 1
/ A-It+D) " E (A+E—-Dt+1)" dt::/M(t)dt,
0 0

by a quadrature rule

N
Q= gxM(tx).
k=1

10

Let

V) =(A-D[(A-Dt+1]",
Wt)=A+E-D[(A+E-Dt+1]",

SO

M) =WEt)=V(Et)=(A-1)"'VI)EW{#)(A+E—1)"*"

For standard quadrature rules based on polynomial interpolation, an estimate
of the error in replacing [M(t)dt by @ is of the form ng(N)On<1;cL<xl||M(k) Gl
for an appropriate value k. We can obtain an error estimate using the rule on
the entries of M; the factor n arises because of norm arguments, while g(N) is
a term which depends on the number of points, and decreases with increasing
N. A lengthy but simple computation shows that

VO@) = (=171 Vith@), W) = (=1)7! With(e),

and thus

M® (1) = (=1)FEN (A =)7V (1) {fj Vj(t)EW’“‘j(t)] W) (A+E-1)""
" (2.15)

So, we need good bounds for ||[(A — I)t + I]7}|| and ||[(A+ E — D)t + I}
to obtain reasonable error bounds. For example, for Gauss rules, the error
estimate (see also Corollary 4.4 in [4])

| a0~ @l < gy s 101

holds. If ||[A — I]| <w < 1 and ||[A+ E — I|| <w, we can sharpen this to

(N1)? 1 w \2N
(2N)! (2N)! (1 — w)? <1 _ w) £

1

| [M -Ql <n

0

Theorem 2.8 Consider (2.12) and suppose that Gauss quadrature rules are
used to approximate the integral. Assume that A and A + E are both or-
thogonal or symplectic, respectively. Also, assume that log(A) is either exact,
or replaced by a skew-symmetric or Hamiltonian approximation, respectively.
Then, the resulting approzimation to log(A+ E), if defined, is skew-symmetric
or Hamiltonian, respectively.

11

PROOF. Recall the integral formula (2.13) for log(A+ E). From [4, Theorem
4.3], Gauss rules at N points on (2.13) are equivalent to (N, N) diagonal
Padé approximants to log(A + E). Moreover, from [2, Theorem 2.2|, diagonal
Padé approximants are skew-symmetric or Hamiltonian matrices if A + F
is orthogonal or symplectic, respectively. Finally, because of (2.14) and the
linearity of Gauss rules, using a Gauss rule on (2.13) is the same as using a
Gauss rule on

/A DA~ Dt + 1] tdt, /[(A—I)t—i-l]*lE[(A+E—I)t+[]*1dt

separately. The first integral represents log(A), thus Gauss rules on the second
integral deliver the stated structure. O

We briefly discuss positive definite matrices. Two facts set these matrices
apart: (i) we are interested only in the unique real symmetric (principal) log-
arithm; (ii) the series expansion (“series 2” of [4])

log(A) = 2 ki_o: 2k1+ : [(A—1)(A+ 1) 1)kt (2.16)

converges. In contrast, the more familiar series (“series 1”7 of [4])

k

log(4) = —2%, (2.17)

requires p(I — A) < 1 for convergence. To rescale a positive definite matrix A,
we use (1.5) restricted to diagonal scalings:

log(A) = —Ilogd+log(dA), d>0. (2.18)

Lemma 2.9 Let A be positive definite, and \y > Ao > ... > X\, > 0 be its
eigenvalues. Then, the value d > 0 for which ||I — dA|| < 1 is minimized is

d = 2.19
AL+ A, (2.19)
The value d > 0 for which ||(I — dA)(I + dA)™!|| is minimized is
1
d = . 2.20
o (2.20)

PROOF. A simple verification suffices. 0O

Remark 2.10 Note, scaling with d in (2.19) gives || — dA|| = (cond(A) —

12

1)/(cond(A)+1), and with d in (2.20) gives ||(I—dA)(I+dA)~!|| = (cond(AY?)—
1)/(cond(A'2) 4+ 1). Thus, unless cond(A) is reasonably small, or we are con-
tent with low accuracy, the series (2.16) and (2.17) (even after rescaling) are
not competitive with a Schur decomposition approach computationally. To
obtain inexpensive estimates of the optimal d, we estimate Ay, A, from Ger-
schgorin segments on A, D™'AD, D~Y2AD'Y? with D = diag(A), [6], by
calculating these segments both by row and column; estimates of 0 for A, are
replaced by the machine precision EPS. This is sufficient for rescaling.

3 Matrix interpolation

We consider interpolating a sequence of matrices of orthogonal, symplectic, or
positive definite type, so that the result is orthogonal, symplectic, or positive
definite, respectively. The basic results are Lemmas 1.2 and 1.4. Consider the
choice in Lemma 1.2.

Logarithm and exponential. We have the data set (;, 4;)Y,, with ¢; #
tj, i # j, where A, € R™", A, = A(t;), with A a smooth function. Assume
that A(t) = eX® € IR™™ for some smooth L(t). Suppose also that L; =

Theorem 3.1 Let L(t) be the unique interpolatory polynomial to (t;, L)Y,
and let

A(t) = 0. (3.1)
If L e CNHL

JA(t) — A(t)]| <

[TLY(t —t)] (N+1) L) (1=8) | (| L()s

D Ll s (e OO),
11— A AT (@)]| < (3.2)

—| HiN:O(t _ ti)| (N+1) L(t)(1—s) L(t)(s—1)

T D] s (MO RO,

where n = n(t) is a multi-index, that is, LNTV(n) is the matriz of entries
LE;VH)(T]M) with ty < mij < ty. Moreover, for allt, A(t) is orthogonal, symplec-
tic, or positive definite, if L(t) is skew-symmetric, Hamiltonian, or symmetric

(so A(t) is orthogonal, symplectic, or positive definite) respectively.

13

PROOF. Writing

. N o (E—t)
(1) ; (1) (1) k:yk# (t— o)

since skew-symmetric, Hamiltonian, and symmetric matrices are closed under
sum, so is L(t), and the last part follows at once. The error estimates follow
from taking norms in the relation

and from the interpolation error formula

IL(t) = L)l = ﬁl Ho(t =)L ()]l O

Remark 3.2 The first estimate in (3.2) gives the absolute error, while the
second is essentially the relative error.

Remark 3.3 If A(t) is orthogonal, and hence L(t) and L(t) are skew-symmetric
and A(t) is orthogonal, then ||e?®*|| = ||eL(®*|| = 1, and the only error is from
interpolating the L;.

The strongest assumptions we have made are that A(t) = e for some real
L € CN*! and that we can obtain L(¢;) from the A(t;). The second assumption
has nontrivial practical implications. The assumption A(t) = e with smooth
L may not be restrictive, for example, when L can be taken as a principal
logarithm, as for positive definite A. This follows at once from the integral
representation (1.1), and suggests that the overall interpolation problem is
simpler if A(t) is not far from the identity. To ensure that we need to deal
only with principal logarithms, a variety of transformations are available.

Possible rescalings

Example 3.4 Suppose A(t) has been measured only at (¢;, A;) and (¢, As),
that A € C? (at least), and that ||[I — A; || > 1 but A; and A, are close. Let
h:=ty—t, and F := A; — A,. The previous construction approximates A(t)
on [ty,t5] by A(t) = X where

ty — 1
h

L) = it

log(A;) +

log(4,).

Now, suppose E is small enough so that |EA;*|| < 1. Consider

7 - t—t
Aty = O A, L) =T

T = log(AATY) . (3.3)

14

Then, A(t) is a second order approximation to A(t) which is generally different
from A(t). The advantage of (3.3) is thatA; A" is now close to the identity,
since Ay = (I—EAT') Ay, from which it follows that |[I— A, AT = ||[EATY| <
1. Thus, it should be simpler to find T; (as principal logarithm) than to find
L, and Lsy; moreover, there is one less logarithm to compute. Symplecticity
and orthogonality are clearly preserved by (3.3). If A(t) is positive definite,
to be sure that we only take logarithms of positive definite matrices, we may
rescale as follows. Suppose E is such that max |A(E(A;+ A2))| < max(||({ —
AN+ A) 7L I — Ag) (I + Ag)7L]), and let A; = CCT be the Cholesky
factorization. Consider

t—1t
h Y

~

Aty = C 2O T Lit) =T,

T]_ = lOg(CilAgciT) . (34)

This is also a second order approximation to A(¢), but now the matrix C~! A,C~"
is better scaled (recall (2.16)). In fact, |[[(I—C~tA,C~1)(IT+C~1A,C~ 1) =
max |)\(E(A1 + Ag)_1)| .

Here, we outline an extension of (3.3) which gives better computational results,
and on which we will report in Section 5. For this rescaling strategy to be
successful, we need the matrices to be inverted to be well conditioned, as
otherwise a loss of precision may take place. We rescale the data set (¢;, A;)Y,
to (t;, A;B)Y,,, where B is chosen so that the A;B are closer to the identity
than are the A;. Then, the interpolant (3.1) is used on this rescaled data set.
In summary,

Alt) = "Bt L(t) = S U(t)Li, Li=log(AiB). (3.5)

Error estimates such as those in (3.2) are naturally modified for (3.5). Clearly,
if the matrices A;’s are symplectic and orthogonal, so is A(t) in (3.5). In the
numerical experiments of Section 5, we use (3.5) for symplectic and orthogonal
matrices by taking B~ = A|n/9.

Remark 3.5 For positive definite matrices, we may replace (3.5) by

A(t) = CPOCT | L(t) =Y L(t)Li, L; =1log(C™*A4,C7T), (3.6)

N
=0

where in practice we use CC? = A|y/y. Note, (3.6) and (3.5) are theoreti-
cally identical, if we use B = C~1C~!, since then A;B = C(C~'A;C~1)C~L.
However, with (3.6), we compute logarithms only of positive definite matrices.

Cayley transform. A more efficient alternative to the logarithm and expo-

15

nential is to represent the data (¢;, A;) using the rational function of Lemma
1.4, fixing v = —1 in (1.5). Assuming that —1 ¢ A(4;), i =0,..., N, and that
L& ACQR)),

C(H) =3 Cili(t), and A(t) = (I+C(1) (I - C(1) " (3.7)

Theorem 3.6 With the above notation, let A(t) € IR"*" be invertible, assume
that —1 ¢ A(A(t)), t € [to,tn], and that 1 ¢ A(C(t)). Let C(t) = —(I —
A) (I + A(t)) L, and assume that A € CNTL. Then,

4@ - Al <
It =)]
(N +1)!
I - A~) A()]| < (33)
Yot =)]
(N+1)!

max [CYV ()| (1= C) I = C®) 7,

max [CYV)| 11+ C®) MU =)

where n = 1(t) is a multi-index and CN+Y (1) is the matriz of entries Ci(JNH) (1mi5)
with tg < ny; < ty. Moreover, for all t, fl(t) s orthogonal or symplectic, if
A(t) is orthogonal or symplectic, respectively. If A(t) is positive definite, then

A(t) is also positive definite, if max |\ < 1.
AEA(C())

PROOF. Since C(t) = —(I — A(t))(I + A(¢))"" and A € CN*!, then C €
CN*L. Moreover,
A(t) = A(t) = 2(1 = ()7 (C(t) = C)U = Ct) 7"

Taking norms and using the polynomial interpolation error formula, (3.8) fol-
lows. The last part is a consequence of Lemma 1.4. O

Remark 3.7 We restrict to the case v = —1 for simplicity, since every value
of v # 0 gives the same A(t).

Remark 3.8 If A(t) is orthogonal, and hence C, C are skew-symmetric and

A is orthogonal, it is easy to obtain the bounds

21(1 = @)U = CEp <2,
_ o)L

2|1+ C) I =)) < 2. (3.9)

16

Thus, at worst, the interpolation error is magnified by the factor 2. (Compare
with Remark 3.2 [2]).

Of course, the rescaling strategy for the logarithm and exponential pair (see
(3.5)-(3.6)) may be used to make the C;’s closer to the zero matrix.

There is a major difference between Theorems 3.1 and 3.5. In both cases,
we need assumptions on the data (i.e., on A(t)), however in Theorem 3.5 we
also need a restriction on the spectrum of the interpolant: 1 ¢ A(C(t)); using
standard polynomial interpolation on the Cj, there is no guarantee of this. It
is easy to construct positive definite matrices A; violating this condition even
when all C;’s have eigenvalues in (0, 1).

4 TImplementation issues

Here, we discuss implementations and a (leading order) flops estimate. !

Logarithms of nearby matrices. For principal logarithms, we have experi-
mented with (2.12) restricted to Gauss-Legendre rules, both for accuracy and
to recover skew-symmetric/Hamiltonian logarithms (see Theorem 2.8). The
cost is that associated with evaluating the integrand, 8n®/3. Unless ||A — ||
and ||A+ E —I|| are small (say, < 1/2), the large number of quadrature points
needed for a good accuracy makes the procedure very expensive.

For Newton’s method in the formulation (2.7), each iteration requires com-
puting the exponential of a matrix and the solution of F'(Ly)d; = Ej, where
0k = Lg11 — Ly and E, = A — Ag. For principal logarithms, we may use (2.3)
and approximate J, by a quadrature rule, but this is usually very expensive.
Instead, we may use (2.4) to define J; implicitly. Then, Newton’s method can
be used to compute non-principal primary logarithms. Thus, we need to find
0 from

1
F,(Lk)ék = /e(l_t)Lk 5k€thdt = Ek . (41)
0

Consider the operator

§ — F(L)S = /F((l—t)L)cSF(tL)dt

I Here, a flop is the combined expense of one floating point multiplication and one
floating point addition.

17

and approximate this operator using the composite trapezoidal rule,

271
[BLAJ) Z ejL/Z‘IAje(Z‘I*j)L/QJ + AJ@L]. (4.2)
j=1

F}(L)AJ = 9J+1

The following equivalent formulation is much easier to evaluate (only requiring
the matrices e2/2"~ which are already available if e is computed by a standard
scaling and squaring method [8]). Let

Zyi=("¥ Ay + Agetl?y 20t
Zi =Pz + 2" =0 J—1,...,1,

then

F fI(L)AJ = 2.
In [8], Kenney and Laub proved that the operator F'}(L) is invertible for J > 0
and for the principal logarithm L. In fact, it is invertible for any primary loga-
rithm. It is enough to note that [F"(L)]~* can be found by inverting the above
procedure; i.e., if Zy := E = F}(L)A, solving sequentially for 7y, Z,,..., 2,
and Ay from

e 7+ Ziet T = 2, 4,

€L/2JAJ + AJ@L/ZJ = 2J+1ZJ R

then F7}(L) is invertible when these (Sylvester) equations are uniquely solvable.
This necessitates that u + v # 0 for u, v € A(e”/?"), j > 1, which is true for
any primary logarithm L, since A # pu &+ 2kim when A\, g € A(L). In short, we
have shown the following lemma.

Lemma 4.1 If L = log(A) is a primary matriz function, then its Fréchet
derivative can be approzimated by [F'(L)] ™ .

Thus, the solution ¢ of F'(Ly)d, = Ej can be approximated by the solution
Ay j of F(L)Ayg,; = Ej. To implement this, we use the standard procedure of
scaling and squaring followed by using a (6, 6) diagonal Padé approximant to
evaluate e“#/2" (in essence, the function expm in Matlab [9]); J was chosen so
that ||Lg/2”7|| < 1/4, which gave sufficient accuracy for Ay s, and represented
a good compromise between quadrature error, speed of convergence, and cost.
To solve the Sylvester equations BX +X B = C, we used the function schur of
Matlab to bring B to quasi-triangular form, then solved the block-triangular
linear system [/ ® B+ B' ® Ilvec(X) = vec(C). The Schur reduction is of Ly,
so that for each iteration all computations are performed on quasi-triangular
matrices, and requires about 8n® flops [8]. At the last stage, we must work

18

with full matrices (Ej and Ay) which requires 4n® extra flops. To compute
the cost of one iteration, we must add the cost of computing A4, = e, i.e.,
(16/3 + J)n?/6 flops, and the cost of solving J + 1 Sylvester equations, i.e.,
(J + 1)n3 flops. This is expensive, but permits recovery of a primary, non-
principal, logarithm close to a given one.

Now we consider the convergence properties of the process arising when we
replace the integral (4.1) by a quadrature rule as in (4.2). The approximate
Newton iteration is

F}(Yk)Ak,J :A — Bk, Bk = BYk
Vi =Y+ Apy, k=01,..., (4.3)
with Yy = Ly given, where F(Y;)Ay, s is given as in (4.2).

Theorem 4.2 For the iteration (4.3),

1
Apgr,g=— Fi (Y1)~ /e (1— tYkA tYk+1 . etYk)dt
0
+ (F'(Yk) = F)(Yi) A] (4.4)

PROOF. A simple verification suffices. O

Remark 4.3 The expression (4.4) highlights that the decrease in magnitude
of the updates in (4.3) is affected by two factors. First is the usual factor
of a Newton iteration which is quadratic in the previous update (since the
last term under the integral sign in (4.4) is O(Ay,s)); the second factor in
(4.4) arises from the inexact evaluation of the integral in (4.1), and depends
linearly on the previous update. If the composite trapezoidal rule (4.2) is used
to obtain F7, then the contraction factor for the linearly decreasing term is
proportional to h%, where h = 1/27. Thus, there is a clear trade-off between
speed of convergence and cost. It is inefficient to use an extremely accurate
approximation to the integral in (4.1), and the strategy we adopted of selecting
J, || Le|l/27 < 1/4, gives an excellent compromise between speed of convergence
and overall cost.

Interpolation. The basic technique is A(t) = f~*(P(t)), where

and [;(t) are the cardinal functions of Lagrange interpolation. The cost is

19

N + 1 evaluations of f, plus evaluating f ! for each value A(t) that we must
compute.

The log-exp method arises from choosing f(4;) = log(A;) with f~! the expo-
nential function. The cost of evaluating log(A4;) is O(n?), and the size of the
constant in the order term usually depends on || — A||. There is potential for
ill-conditioning when A; has eigenvalues near the negative real axis. In general,
to obtain a smooth interpolant, non-principal logarithms must be computed,
and possibly also non-primary ones. The Cayley method results from taking
f(A;) to be the Cayley transform of A; and f~! its inverse transform. Com-
puting f and its inverse requires 4n®/3 flops. Clearly, this is less expensive
than the log-exp method, but it can be unstable because of the inversion of
I —C(t)in (3.7). Moreover, it is not defined if —1 € A(4;).

To alleviate these difficulties, for both methods we experimented with the
rescaling in (3.5) and (3.6). The rescaling cost is (3 + N)n® flops, and, with
respect to the un-rescaled method, we need one less f-evaluation and one more
matrix multiplication to compute A(t).

5 Examples

All our computations used Matlab (EPS ~ 2.2 x 10~1%), We have solved many
problems, some of them arising from systems of differential equations. Here,
we report only on those tests which highlight the typical behavior for comput-
ing logarithms of nearby matrices, computing non-principal logarithms, and
structured interpolation of sequences of matrices.

Example 5.1 This is Example 1.1 with «(t) = 0. Recall that A(t) is or-
thogonal and symplectic, L(t) is skew-symmetric and Hamiltonian, and —1 €
A(A(t)), for t = £7/6+2km; so, in the neighborhood of £7/6+2km, we cannot
use the Cayley method for interpolation purposes, and we need non-principal
(and possibly non-primary) logarithms for the log-exp method.

Example 5.2 A(t) = Q1 (t)Q2(t) where

0 0 0
cosai;t sinait 0
—sinait cosa;t 0
0 0 1

Qi(t) =

)

o O O

20

cos ast sinast 0 0

| —sinast cosast 0 0
@(t) = 0 0 cosast sinast |’ t€[0,1].
0 0 —sinast cosast

A(t) is orthogonal, but we do not know log(A(¢)); the matrices A(t) and A(s)
do not commute (¢ # s).

(a) a; = 1, ap = 4. With A(0) = I, log(A(0)) = 0, log(A(t)) is inside the
principal branch, but is very close to the boundary for ¢ € (0.75,0.85).

(b) ap = —4, ay = 6. With A(0) = I, log(A(0)) = 0, log(A(t)) exits from the
principal branch for some ¢ € (0.7,0.8). We do not know if A(t) = e*®
for a smooth L(t).

Example 5.3 A(t) = S;(t)S2(t) where:

s0-(5 40) . si0-(dy 1)

Z(t) = sin (ay1) (1}3 éﬁ) L Y(t) = sin (ay) (570//23 504/3> el
a; = 0.45, ay = 0.45\/2. A(t) is symplectic, but we do not know log(A(t)),
and A(t) and A(s) do not commute (¢ # s). With A(0) = I, log(A(0)) =
0, log(A(t)) is inside the principal branch; ||[I — S(t)|| grows as ¢ nears 1
(I = S(1)]| ~ 13.2).

Example 5.4 The positive definite matrix

D)Q(t T()D(t
A(t):exp< (>Q(>+2Q<> (>>7
where
-1+45 0 0 0
0 1-4L 0 0
D(t) = 2 , te[0,1],
0 0 -5 0 0,1]
0 0 0 14t

and Q(t) is A(t) of Example 5.2(b).

Logarithms of nearby matrices We used Gauss N-point quadrature for
the integral formula (2.12). In Table 1, we show results obtained on Example
5.1, with logarithms of A + FE computed to limiting precision. Let L. be the
computed logarithms. Then, we show err = ||el* — (A + E)||/||A + E||; err,,
= |[log(A+ E) — L.||/||log (A + E)||, where log (A + E) is the exact loga-
rithm of A 4+ F; in later tables, it is the principal logarithm returned by the

21

Matlab function logm. The number of points needed to obtain the required
accuracy decreases with ||E||. In Table 2, we highlight, for the same example,
the difficulties occuring near the boundary of the principal branch. Eventu-
ally no accuracy is obtained with 16 Gauss points, but the relevant matrix
structure is always preserved to machine precision.

Table 1. Formula (2.12) - Example 5.1: A = A(0.1), A+ E = A(0.1 + 6t)
err err,, E|/IAll | N I —(A+E)| ot
5.33e-16 3.61e-16 6.11e-01 16 1.17e4-00 1.00e-01
1.18e-15 9.88e-16 6.25e-02 10 6.76e-01 1.00e-02
1.20e-15 1.05e-15 6.25e-03 9 6.23e-01 1.00e-03
2.57e-15 4.07e-15 6.25e-04 8 6.18e-01 1.00e-04
Table 2. Formula (2.12) - Example 5.1: A = A(t — 7/48), A+ E = A(t)
err err,, IEIAL | N | M =-(A+ B t
2.22e-16 2.87e-16 4.08e-01 8 4.08e-01 /48
2.62e-15 1.84e-15 4.03e-01 15 1.15e+00 371'/48
1.52e-02 5.48e-03 3.72e-01 16 1.97e+00 T /48
2.00e+00 9.95e-01 3.61e-01 16 2.00e+4-00 87 /48

Tables 3-5 present results obtained with Newton’s method (2.4)-(2.7). In the
first run of Newton’s method (first line in each table), Ly is the principal
logarithm of A; for successive executions, we used the previously computed
logarithm as initial guess. In these tables, k is the number of iterations; AL, =
\|L. — Lg—1||/|| Lg||; J is the number of Sylvester equations solved per iteration.
Stopping criteria were: err < tollf, or ||Ly — Li_1|| < tolla + tollr|| Ly,
with tolla = tollr = 10 3\/EPS, tollf = 101,

In Table 3, the number of iterations needed for convergence increases close to
the boundary of the principal branch, whereas in Table 4 more computation
(see J) is needed when (A + E) is far from the identity. From Table 5, on
comparing err and err,,, the iteration converged to primary but non-principal
logarithms of A(t).

Table 3. Newton’s method - Example 5.2(a): A = A(t — 0.05), A+ E = A(t)

err ALy k err,, IE||/I|All J I — (A+ E)|| t
2.52e-14 4.64e-12 8 4.45e-14 2.26e-01 5 2.00e+00 0.70
2.37e-15 2.24e-13 10 1.92e-14 2.26e-01 5 2.00e+00 0.75
5.45e-15 7.48e-13 15 5.11e-14 2.26e-01 5 2.00e+00 0.80
4.09e-15 2.43e-13 10 4.61e-15 2.26e-01 5 2.00e+00 0.85
5.17e-14 8.74e-12 8 7.24e-14 2.26e-01 5 1.99e+4-00 0.90

22

Table 4. Newton’s method - Example 5.3: A = A(t,), A+ E = A(ty)

err ALy k err,, IIE|/]| Al J I —(A+E)| t =ty

1.80e-15 1.17e-13 6 2.17e-15 7.02e-01) 2.64e+00 0.1 +0.2

1.74e-15 2.39e-13 6 2.51e-15 3.38e-01) 5.48e+00 0.3 +0.4

2.44e-14 2.09e-13 6 1.64e-15 1.65e-01 8 1.05e+01 0.8 0.9

4.31e-14 4.17e-12 7 2.76e-14 1.49e-01 10 1.65e+-01 09 +1.0

Table 5. Newton’s method - Example 5.2(b): A = A(t1), A+ E = A(ts)
err ALy k err,, IIE|/]| Al J I —(A+E)| t =ty

3.43e-15 1.89¢-13 8 2.02e+00 8.05e-01) 2.00e+-00 0.70 = 0.80
4.85e-15 1.70e-13 7 2.12e+00 4.13e-01) 1.99e+-00 0.80 +~ 0.85

Interpolation. Tables 6-8 contain results for interpolating the data set (¢;, A;)N,

by the log-exp/Cayley methods and their rescaled versions. For these, and all
other cases we examined, the following trends are observed. Rescaling the data
(see Section 3) is beneficial for symplectic and orthogonal sequences (Tables
6, 8), but not for positive definite sequences (Table 7). The log-exp method is
consistently more accurate than the Cayley method. If data points are avail-
able to arbitrarily raise the order of the interpolant, the Cayley method is less
expensive than the log—exp method for a given accuracy requirement. In Tables
6-8, the spacing h = (ty —t9)/N, Err is an estimate of the maximum relative
error at the midpoint of the interval: Err = max; ||A(s;) — A(s;)||/[|A(s;)],
where s; = t, + j(tn — t0)/200, j = —10, =9,...,10, ¢, = (tx + t0)/2,
and the error for the rescaled versions is Err,. The relevant matrix structure
(orthogonality, simplecticity, positive definiteness) was always maintained by
both the log-exp and Cayley methods. From Table 6, note that the errors for
the unrescaled Cayley method may be explained by a large norm of deriva-
tives of C'(t) (see Theorem 3.5). Finally, in Table 8, the rescaled methods are
compared in a singular case.

Table 6. log-exp/Cayley methods - Example 5.2(a): [tg, ty] = [0.5, 1]
N+1 h log-exp Err | log-exp Err; | Cayley Err |Cayley Err,
4 1.67e-01 5.88e-01 6.79e-04 2.00e4-00 4.26e-03
8 7.14e-02 3.90e-02 8.57e-08 1.83e4-00 8.55e-07
12 4.55e-02 2.10e-03 1.52e-11 7.11e-01 2.02e-10
16 3.33e-02 6.84e-05 3.11e-15 1.85e4-00 4.79e-14
20 2.63e-02 2.26e-05 1.03e-15 2.00e+4-00 4.92¢-16

23

Table 7. log-exp/Cayley methods - Example 5.4: [ty, ty] = [0.25, 0.5]
N+1 h log-exp Err | log-exp Err, |Cayley Err |Cayley Err,
4 8.33e-02 5.77e-03 1.05e-02 6.79e-03 1.42e-02
12 2.27e-02 7.23e-13 4.22e-09 9.32¢-10 1.40e-08
16 1.67e-02 5.73e-15 3.39e-12 4.07e-13 1.43e-11
Table 8. Scaled log-exp/Cayley methods - Example 5.1: [to, ty] = [0.3, 0.8]
N+1 h lpg-exp Err| Cayley Err,
4 1.67e-01 5.93e-05 1.41e-03
8 7.14e-02 2.37e-12 4.68e-06
12 4.55e-02 8.52e-16 5.66e-09
16 3.33e-02 - 6.26e-12
24 2.17e-02 - 8.06e-16
References

[1] P. Antsaklis and Z. Gao, Polynomial and rational matrix interpolation: theory
and control applications, Int. J. Control 58 (1993) 349-404.

[2] L. Dieci, Considerations on computing real logarithms of matrices, Hamiltonian
logarithms, and skew-symmetric logarithms, Linear Algebra Appl. 244 (1996)
35-54.

[3] L. Dieci, Real Hamiltonian logarithm of a symplectic matrix, preprint (1997).

[4] L. Dieci, B. Morini and A. Papini, Computational techniques for real logarithms
of matrices, SIAM J. Matriz Anal. Appl. 17 (1996) 570-593.

[5] R. A. Horn and C. R. Johnson, Topics in Matriz Analysis, (Cambridge
University Press, Cambridge, 1991).

[6] K. R. Jackson and W. L. Seward, Adaptive linear equation solvers in codes for
large stiff systems of ODEs, SIAM. J. Sci. Stat. Comput. 14 (1993) 800-823.

[7] C. Kenney and A. J. Laub, Padé error estimates for the logarithm of a matrix,
Int. J. Control, 50 (1989) 707-730.

[8] C. Kenney and A. J. Laub, Condition estimates for matrix functions, STAM J.
Matriz Anal. Appl. 10 (1989) 191-209.

[9] Matlab Reference Guide, (The MathWorks, Inc., Natick, MA, 1992).

[10] E. Newman, Generation of wide-band data of moments by interpolating the
impedance matrix, IEEE Trans. Antennas & Propagation 36 (1988) 1820-1824.

[11] Y. Sibuya, Note on real matrices and linear dynamical systems with periodic
coefficients, J. Math. Anal. Appl. 1 (1960) 363-372.

24

[12] C. Van Loan, The sensitivity of the matrix exponential, SITAM J. Numer. Anal.
14 (1977) 971-981.

25

