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set ftj; Ajg ; j = 0; 1; : : : ; where Aj 2 IRn�n are invertible. Typically, hj :=tj+1 � tj is small. We can (and do) think of Aj as A(tj) for some smooth A.An issue which has not received much attention is structured matrix interpo-lation. For the above data set, we need a representation of the data valid forall t 2 [t0; tN ], and such that it reduces to Aj at tj. Naturally, the resultinginterpolant, ~A, should be a smooth real function, and kA(t) � ~A(t)k shouldbe nicely bounded (unless otherwise stated, k � k refers to the 2{norm). Thisis no di�erent than interpolation for the entries of the matrices Aj, and infact polynomial interpolation of matrices is common in engineering applica-tions [1,10]. However, our interest is in interpolating so that ~A(t) retains thestructure of the Aj, that is that ~A(t) is orthogonal, symplectic, or positivede�nite, if the Aj's are such. As far as we know, this problem has not beenaddressed in this generality. One possibility would be to simply interpolate,polynomially, the given matrices to give PA(t). Now, usually PA(t) does notshare the structure of the data, so we may need to modify it appropriately. Inthe Frobenius norm, conceptually it is easy to �nd the closest positive semi-de�nite matrix to a symmetric one, as well as the closest orthogonal matrix toa given invertible matrix, so we could obtain (at each given t) a structurally\correct" answer in these cases. However, this does not usually give a smoothinterpolant. Our idea for structured matrix interpolation is quite straightfor-ward: (i) associate to the matrices Ak their real logarithms (which will beclari�ed below), and call these Lk, (ii) perform polynomial interpolation onthe Lk, and call ~L(t) the resulting interpolant, and then (iii) let ~A(t) = e~L(t).Clearly, there are non-trivial issues to resolve: lack of uniqueness, computa-tional expense, and potential numerical instabilities. This simple idea will bemodi�ed and extended. Note that, in step (i) we need to compute logarithmsof matrices which are presumably close to one another. This motivates our�rst problem: how to compute logarithms of nearby matrices.Logarithms. Because of our applications, we consider only real logarithms ofreal matrices; the derivation would simplify considerably if we could considercomplex logarithms. By a real logarithm of A, we mean any matrix X 2 IRn�nsuch that eX = A : Now, suppose we have two matrices, A1 and A2, withkA2 � A1k small, and we have computed L1, the logarithm of A1. Intuitively,one would expect L2, the logarithm of A2, to be \close" to L1. (It turns outthat L2 is not necessarily close to L1.) Can one take advantage of knowledgeof L1 when computing L2?As far as we know, all previous work on computing the logarithm of a matrixA has focussed on the case of computing a logarithm for a given matrix [4,7,8].Also, the focus has been on computing a logarithm which is a primary matrixfunction of A; i.e., a primary logarithm. Recall, a primary matrix function is afunction on the spectrum, �(A), of the matrixA (see [5]). Moreover, computinga primary logarithm has always been restricted to the principal logarithm2



of A with eigenvalues on the main branch; i.e., they have imaginary partswithin (��; �). Sensitivity analysis for logarithms of matrices has only beencompleted for the principal logarithm. Recall, a principal logarithm admitsthe integral representationL = log(A) = 1Z0 (A� I)[(A� I)t+ I]�1dt : (1.1)Finding a logarithm of a matrix presents intrinsic di�culties not present, forexample, for the exponential of a matrix. Chief is the choice of the branch,which is not clear, except for positive de�nite matrices, where the principallogarithm is a natural choice. The principal branch might not be appropriate,for example, if we envision a continuation process. Intimately connected withthis issue is whether or not we need a logarithm which is a primary matrixfunction. It is important, therefore, to understand what distinguishes a non-primary logarithm from a primary one. Since log(A) is any matrixX such thateX = A, the following possibilities are typical. First a non-primary logarithmoccurs when the eigenvalues of A are real and negative, but there is a real Lsuch that eL = A; e.g.,A = �� 1 00 1� and L = � 0 ��� 0 � :(Note, the eigenvalues of L are on the border of the main branch.) Anotherpossibility occurs when, corresponding to a repeated eigenvalue of A, we takedi�erent values for the logarithm (that is, on di�erent branches); necessarily,the end result is a non-primary logarithm.Example 1.1 Consider the matricesA(t) = e�(t) � cos(�(t)) sin(�(t))� sin(�(t)) cos(�(t))� ; L(t) = � �(t) �(t)��(t) �(t)� (1.2)where �(t) = 2� sin t, and � is a smooth function. If �(t) = 0, A(t) is orthog-onal and symplectic. It is simple to show that eL(t) = A(t) for all t, thus L(t)is a logarithm of A(t). The eigenvalues of A(t) and L(t) are, respectively,e�(t)[cos(�(t))� i sin(�(t))] and �(t)� i�(t) :Clearly, A(�=2) = e�(�=2) I, whileL(�=2) = ��(�=2) 2��2� �(�=2)� ;3



so L(�=2) cannot be a primary matrix function. Likewise, L(�=6) cannot be aprimary matrix function since A(�=6) has both eigenvalues on the negative realaxis. As t crosses �=6, the eigenvalues of L(t) exit from the principal branch(��; �), and re-enter it at t = 5�=6. Naturally, passing from one branch toanother implies passing from a primary to a non-primary matrix function bystepping on the boundary of the open connected set where the function log(z)is analytic. Moreover, remaining on the main branch would require introducinga discontinuity. For example, the principal logarithm associated with A(t) isLp(t)=L(t) ; 0 � t < �=6 ;Lp(t)=L(t) + � 0 �2�2� 0 � ; �=6 < t < 5�=6 ; etc:Lp is clearly not de�ned at t = �=6; etc., whereas L(t) in (1.2) is smooth for allt. Note, kA(t+�)�A(t)k = O(�) when t = �=6��=2, but kLp(t+�)�Lp(t)k =O(1) : Summarizing, care must be taken to obtain a smooth logarithm; to thisend, we cannot consider just principal logarithms.When working with matrix functions, familiar rules from calculus of one vari-able may not hold; e.g., for eA+B = eAeB we usually need A and B to commute.For logarithms, if log(A) log(B) = log(B) log(A), thenelog(AB) = elog(A)+log(B) : (1.3)Note, generally (1.3) does not hold if AB = BA, as the following shows:A = I; B = � 1 30 2� ; log(A) = � 0 2��2� 0 � ; log(B) = � 0 3 log 20 log 2 � :However, (1.3) holds when AB = BA if log(A) and log(B) are both primarymatrix functions. Then, (1.3) implies that a logarithm of A may be found fromthe rescaled relationlog(A) = X + log(e�XA) ; if AX = XA : (1.4)This last result is indicative of the enormous simpli�cations for commutingmatrices. If all matrices A0; A1; : : : ; AN commute, we can re-use much of thecomputational work (for example, only one Schur decomposition is needed).Also, rescaling as in (1.4) becomes obvious. Unfortunately, commutativity israre.Interpolation. The simple idea is: (i) given a suitable invertible function f ,transform the data (tj; Aj) to (tj; f(Aj)); j = 0; 1; : : : ; N ; (ii) perform stan-dard polynomial interpolation on this transformed data resulting in the inter-polant P (t); (iii) �nally, use f�1(P (t)) as the interpolant for the original data.4



Besides computational issues, the key is to determine f so that the interpolanthas the desired structure. The following lemmas motivate our choices for f .Lemma 1.2 Given an invertible matrix A 2 IRn�n with no eigenvalue on thenegative real axis:(i) if A is orthogonal, there exists a real skew symmetric logarithm;(ii) if A is symplectic, there exists a real Hamiltonian logarithm;(iii) if A is positive de�nite, there exists a unique real symmetric logarithm.Moreover, in cases (i) and (ii), the logarithms are uniquely speci�ed if, relativeto the eigenvalues � of A, we specify which the branch of the log function (e.g.,the usual choice would be �� < Im(log(�)) < �). Conversely, given a matrixX 2 IRn�n which is skew symmetric, Hamiltonian, or symmetric, then thematrix eX is orthogonal, symplectic, or positive de�nite, respectively.PROOF. The �rst part is in [11] for the orthogonal and symplectic cases,whereas the positive de�nite case is a trivial veri�cation, using a Schur di-agonalization of A. The converse is well-known from integration theory fordi�erential equations. 2Remark 1.3 To obtain a real logarithm X, assuming A has no eigenvalueson the negative real axis can be weakened to require that \A has an evennumber of Jordan blocks of each size for every negative eigenvalue"; however,a real matrix X solution of eX = A cannot be a primary matrix function ifA has any negative eigenvalues [5]. This weaker assumption also guaranteesthat if A is orthogonal then it has a real skew-symmetric logarithm whichcan easily be proved as follows: (i) bring A to block-diagonal form, QTAQ =diag(D11; : : : ; Dpp) ; where Dii are either (2; 2) blocks of the type � c s�s c �,or are 1 or �1; (ii) for the blocks � c s�s c � take as logarithms the skew-symmetric blocks � 0 ��� 0 �, with � = cos�1(c); (iii) for the eigenvalue 1take 0 as logarithm; (iv) for each block ��1 00 �1� take a skew-symmetriclogarithm � 0 (2k + 1)��(2k + 1)� 0 � ; k 2 Z. Sharp conditions under which asymplectic A has a real Hamiltonian logarithm are more involved [3].Lemma 1.4 Given an invertible matrix A 2 IRn�n such that �1 =2 �(A),consider the M�obius transformationc : z 2 C =f�1g ! 
 1� z1 + z ; 
 2 IR; 
 6= 0 : (1.5)
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If A is orthogonal, symplectic, or positive de�nite, c(A) is skew-symmetric,Hamiltonian, or symmetric, respectively. Conversely, given X 2 IRn�n suchthat �
 =2 �(X) and X is skew symmetric or Hamiltonian then c�1(X) isorthogonal or symplectic, respectively. Moreover, if X is symmetric andj
j > max�i2�(X) j�ij (1.6)then c�1(X) is positive de�nite.PROOF. The orthogonal and symplectic cases are in [2]. If A is positivede�nite, then c(A) = c(A)T is obvious. Given X, clearly c�1(X) = (
I �X)(
I + X)�1; which is symmetric if X is. Let Y = c�1(X), y 2 IRn be anonzero vector, and consider yTY y. Letting z = (
I +X)�1y,yTY y = zT (
I +X)(
I �X)z = kzk2
2 � zTX2z � kzk2(
2 �max�i(X2));from which the result follows. 2Remark 1.5 In Lemma 1.4, for orthogonal and symplectic matrices, the valueof 
 in (1.5) is arbitrary; a typical choice is 
 = �1, in which case c(A) is theCayley transform of A. If X in Lemma 1.4 is skew-symmetric, its eigenvaluesare purely imaginary, and so certainly �
 =2 �(X). Also, if X is Hamiltonian,and �
 =2 �(X), then certainly also 
 =2 �(X) since eigenvalues come in �pairs. For 
 = �2 in (1.5), c(A) is just the �rst diagonal Pad�e approximationto log(A), and the inverse transform is precisely the �rst diagonal Pad�e ap-proximation of the exponential. Such nice interplay does not persist for higherorder diagonal Pad�e approximations to log(A) and exp(X).2 Logarithms of nearby matricesA recurring problem in numerical computation is how to take advantage ofwork done already for slight changes in input. Typically, this problem is en-countered for the factorization of a matrix when the change is a low rankmodi�cation. We consider the problem of obtaining log(A+E) once log(A) isknown and E is a matrix of small norm.We consider a Taylor expansion approach. Let G be the logarithm functionand F the exponential function. That is, we have decided upon a stem functionlog acting on complex numbers z : log(z), and therefore consider only primarymatrix functions log(A). Now, consider the stem function as de�ned locally. To
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have log(A) real, we must take values of log(z) which are complex conjugaterelative to complex conjugate eigenvalues of A. Formally,G(A+ E) = G(A) +G0(A)E +O(kEk2) ; (2.1)where G0(A) is the Fr�echet derivative of the function G. (We will see thatthis is well de�ned, and also justify the term O(kEk2) in (2.1).) The followingiterative process is immediate. With A0 = A and L0 = G(A0) given,Lk+1=Lk +G0(Ak)Ek ; Ak = F (Lk);Ek=A+ E � F (Lk) ; k = 0; 1; : : : : (2.2)We need a concrete representation for G0(Ak)Ek. Restricting attention to prin-cipal logarithms, an expression for G0(A)E [4] isG0(A)E = 1Z0 [(A� I)t+ I]�1E[(A� I)t+ I]�1dt : (2.3)Remark 2.1 Under the stated restrictions, (2.2){(2.3) is a locally quadrati-cally convergent iteration. However, an iterative method based on (2.2){(2.3)is not convenient; it is expensive, works only for principal logarithms, and isnot competitive with the formulations below.Consider the relation elog(A) = A, or F (G(A)) = A. Using the integral formulafor the Fr�echet derivative of the exponential [12], and letting X = G(A),F 0(X) : Z ! F 0(X)Z = 1Z0 F ((1� t)X)ZF (tX)dt : (2.4)Therefore, if the mapping Z ! F 0(G(A))Z is invertible, using the chain rulefor the composite function,G0(A) E = [F 0(G(A))]�1 E : (2.5)This is a general expression for the Fr�echet derivative of G when F 0(G(A)) isinvertible. Now unroll (2.4): Z ! vec(Z), where vec(Z) 2 IRn2 is the vectorof entries the columns of Z (�rst to last). Thus, an equivalent requirement isthat the n2 � n2 matrix D(X) := 1Z0 etXT 
 e(1�t)Xdt
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be invertible. Using elementary properties of the Kronecker product [5],� 2 �(D(X))) � = 1Z0 e�te�(1�t)dt ; �; � 2 �(X) ;therefore, � = e� ; � = � ; � = e� � e��� � ; � 6= � :Now, recall that �; � 2 �(log(A)), and � = 0 (hence D(X) is not invertible)if and only if � = � � 2ik�; k 2 N. This is not possible for primary matrixfunctions log(A). Thus, we have the following lemma.Lemma 2.2 If log(A) is a primary matrix function, then its Fr�echet deriva-tive is given by (2.5).Remark 2.3 The expression (2.5) was derived in [8] for the principal loga-rithm. It su�ces that the logarithms be primary matrix functions.An alternative to the Taylor expansion of G(A+ E) is provided by Newton'smethod for the nonlinear equationF (L)� A = 0 : (2.6)Given L0, iterateF 0(Lk) (Lk+1 � Lk) = A� Ak; Ak = F (Lk) ; k = 0; 1; : : : ; (2.7)where F 0(Lk)(Lk+1�Lk) is given by (2.4). Invertibility of F 0(Lk) requires thatno two eigenvalues � and � of Lk may be of the type � = �� 2ik�. Recall,F (X + Z) = F (X) + 1Z0 F ((1� t)X)ZF (t(X + Z))dt : (2.8)Now, from (2.7), with the restriction on the eigenvalues,F 0(Lk)[(Lk+1 � L) + (L� Lk)] = F (L)� F (Lk);so Lk+1 � L = (F 0(Lk))�1 1Z0 F (Lk(1� t)) (L� Lk) (F (Lt)� F (Lkt))dt;
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and the last term under the integral sign is O(L � Lk), so we have localquadratic convergence.Remark 2.4 With the restriction on the eigenvalues of Lk, iteration (2.7)(using (2.4)) is the same as (2.2){(2.5). Generally it is not possible to use(2.7) to approximate logarithms L which are not primary matrix functions ofA.The only known technique for approximating, by Newton's method, logarithmswhich are not primary matrix functions uses (2.7) when L0 commutes with L[2]. In this case (2.7) can be rewrittenLk+1=Lk + e�Lk(A� Ak); orLk+1=Lk + e�LkA� I; k = 0; 1; : : : (2.9)Summary. There are three possible formulations of Newton's method: (2.2),(2.7), and (2.9). For the derivative in (2.2), we can use (2.3) if we are on theprincipal branch, or (2.5) for any other primary logarithm. For the derivativein (2.7), we can use (2.4). For primary logarithms, (2.2) and (2.7) areequivalent. Finally, (2.9) is valid only if L0L = LL0; then (2.9) can be usedto approximate any logarithm (primary or non-primary).Known conditioning results are restricted to the principal logarithm [4,8]. In[4,8], a representation of the Fr�echet derivative of the logarithm is justi�ed forprincipal logarithms only. On the other hand, from Lemma 2.2, the Fr�echetderivative is well de�ned for any primary logarithm. Moreover, the argumentfollowing (2.8) legitimizes the term O(kEk2) in (2.1). Thus, we can use (2.1) toexpress the sensitivity of the log function. In particular, if L 6= 0 and L+�Lare primary logarithms of A and A + E, thenk�LkkLk � kG0(A)k kAkkLk kEkkAk + O(kEk2) : (2.10)The condition number of the logarithm function G at A,kG0(A)k kAkkLk ; (2.11)acts as a relative error magni�cation factor.Remark 2.5 From (2.11), using (2.5), the closer log(A) is to a non-primarymatrix function, the worse its conditioning.
9



Next, we turn our attention to principal logarithms.Theorem 2.6 Given A 2 IRn�n with principal logarithm log(A). Let E 2IRn�n be such that A+ E has a principal logarithm, log(A+ E). Thenlog(A + E) = log(A) + 1Z0 ((A� I)t + I)�1E [(A+ E � I)t+ I]�1 dt :(2.12)PROOF. From (1.1),log(A+ E) = 1Z0 (A+ E � I)((A+ E � I)t+ I)�1dt : (2.13)Now,(A+E � I)[(A+ E � I)t+ I]�1 = (A� I)[(A� I)t + I]�1+ [(A� I)t + I]�1E[(A+ E � I)t+ I]�1 : (2.14)Using (1.1) for log(A) and (2.13) for log(A+ E), (2.12) follows. 2Remark 2.7 (2.12) is valid since the principal logarithm log((A+E�I)t+I)exists for all t 2 [0; 1], not just at t = 0; 1. Our path (A + E � I)t + I fromI to A+E, which exploits knowledge of log(A), di�ers greatly from the moredirect homotopy path A + tE. Exploiting the latter path is pro�table when(A+ tE) is invertible for 0 � t � 1 and the principal logarithm of (A+E)A�1exists, to compute the logarithm of the rescaled matrix (A+ E)A�1:log((A + E)A�1) = E 1Z0 (A + tE)�1dt :(This expression coincides with (2.12) when A and E commute (recall (1.4)).)The integral in (2.12) is the harder to evaluate the closer we are to the bound-ary of the main branch for the eigenvalues of the logarithm(s) of A and A+E,and these are ill-conditioned principal logarithms (see Remark 2.5). Considerreplacing1Z0 ((A� I)t+ I)�1 E ((A+ E � I)t+ I)�1 dt := 1Z0 M(t)dt ;by a quadrature rule Q := NXk=1 gkM(tk) :10



Let V (t) := (A� I)[(A� I)t+ I]�1;W (t) := (A + E � I)[(A+ E � I)t+ I]�1;so M(t) = W (t)� V (t) = (A� I)�1V (t)EW (t)(A+ E � I)�1:For standard quadrature rules based on polynomial interpolation, an estimateof the error in replacing R 10 M(t)dt by Q is of the form ng(N)max0�t�1kM (k)(t)kfor an appropriate value k. We can obtain an error estimate using the rule onthe entries ofM ; the factor n arises because of norm arguments, while g(N) isa term which depends on the number of points, and decreases with increasingN . A lengthy but simple computation shows thatV (j)(t) = (�1)jj! V j+1(t); W (j)(t) = (�1)jj! W j+1(t) ;and thusM (k)(t) = (�1)kk! (A� I)�1V (t) 24 kXj=0V j(t)EW k�j(t)35W (t)(A+ E � I)�1:(2.15)So, we need good bounds for k[(A � I)t + I]�1k and k[(A + E � I)t + I]�1kto obtain reasonable error bounds. For example, for Gauss rules, the errorestimate (see also Corollary 4.4 in [4])k 1Z0 M(t)dt�Q]k � n (N !)4(2N + 1)((2N)!)3 max0�t�1 kM (2N)(t)k:holds. If kA� Ik � ! < 1 and kA+ E � Ik � !, we can sharpen this tok 1Z0 M(t)dt�Qk � n (N !)4(2N)! (2N)! 1(1� !)2 � !1� !�2N kEk :Theorem 2.8 Consider (2.12) and suppose that Gauss quadrature rules areused to approximate the integral. Assume that A and A + E are both or-thogonal or symplectic, respectively. Also, assume that log(A) is either exact,or replaced by a skew-symmetric or Hamiltonian approximation, respectively.Then, the resulting approximation to log(A+E), if de�ned, is skew-symmetricor Hamiltonian, respectively. 11



PROOF. Recall the integral formula (2.13) for log(A+E). From [4, Theorem4.3], Gauss rules at N points on (2.13) are equivalent to (N;N) diagonalPad�e approximants to log(A+E). Moreover, from [2, Theorem 2.2], diagonalPad�e approximants are skew-symmetric or Hamiltonian matrices if A + Eis orthogonal or symplectic, respectively. Finally, because of (2.14) and thelinearity of Gauss rules, using a Gauss rule on (2.13) is the same as using aGauss rule on1Z0 (A� I)[(A� I)t+ I]�1dt; 1Z0 [(A� I)t+ I]�1E[(A + E � I)t + I]�1dtseparately. The �rst integral represents log(A), thus Gauss rules on the secondintegral deliver the stated structure. 2We brie
y discuss positive de�nite matrices. Two facts set these matricesapart: (i) we are interested only in the unique real symmetric (principal) log-arithm; (ii) the series expansion (\series 2" of [4])log(A) = 2 1Xk=0 12k + 1[(A� I)(A+ I)�1]2k+1 (2.16)converges. In contrast, the more familiar series (\series 1" of [4])log(A) = � 1Xk=1 (I � A)kk ; (2.17)requires �(I �A) < 1 for convergence. To rescale a positive de�nite matrix A,we use (1.5) restricted to diagonal scalings:log(A) = �I log d+ log(dA) ; d > 0 : (2.18)Lemma 2.9 Let A be positive de�nite, and �1 � �2 � : : : � �n > 0 be itseigenvalues. Then, the value d > 0 for which kI � dAk < 1 is minimized isd = 2�1 + �n : (2.19)The value d > 0 for which k(I � dA)(I + dA)�1k is minimized isd = 1p�1�n : (2.20)PROOF. A simple veri�cation su�ces. 2Remark 2.10 Note, scaling with d in (2.19) gives kI � dAk = (cond(A) �12



1)=(cond(A)+1), and with d in (2.20) gives k(I�dA)(I+dA)�1k = (cond(A1=2)�1)=(cond(A1=2) + 1). Thus, unless cond(A) is reasonably small, or we are con-tent with low accuracy, the series (2.16) and (2.17) (even after rescaling) arenot competitive with a Schur decomposition approach computationally. Toobtain inexpensive estimates of the optimal d, we estimate �1; �n from Ger-schgorin segments on A; D�1AD; D�1=2AD1=2, with D = diag(A), [6], bycalculating these segments both by row and column; estimates of 0 for �n arereplaced by the machine precision EPS. This is su�cient for rescaling.3 Matrix interpolationWe consider interpolating a sequence of matrices of orthogonal, symplectic, orpositive de�nite type, so that the result is orthogonal, symplectic, or positivede�nite, respectively. The basic results are Lemmas 1.2 and 1.4. Consider thechoice in Lemma 1.2.Logarithm and exponential. We have the data set (ti; Ai)Ni=0, with ti 6=tj; i 6= j, where Ai 2 IRn�n, Ai = A(ti), with A a smooth function. Assumethat A(t) = eL(t) 2 IRn�n for some smooth L(t). Suppose also that Li =log(Ai) = L(ti); i = 0; : : : ; N .Theorem 3.1 Let ~L(t) be the unique interpolatory polynomial to (ti; Li)Ni=0,and let ~A(t) = e~L(t) : (3.1)If L 2 CN+1,kA(t)� ~A(t)k �jQNi=0(t� ti)j(N + 1)! max� kL(N+1)(�)k max0�s�1(ke~L(t)(1�s)k keL(t)sk) ;kI � ~A(t)A�1(t)k � (3.2)jQNi=0(t� ti)j(N + 1)! max� kL(N+1)(�)k max0�s�1(ke~L(t)(1�s)k keL(t)(s�1)k) ;where � = �(t) is a multi-index, that is, L(N+1)(�) is the matrix of entriesL(N+1)ij (�ij) with t0 � �ij � tN . Moreover, for all t, ~A(t) is orthogonal, symplec-tic, or positive de�nite, if L(t) is skew-symmetric, Hamiltonian, or symmetric(so A(t) is orthogonal, symplectic, or positive de�nite) respectively.
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PROOF. Writing~L(t) = NXi=0 li(t)Li ; li(t) = NYk=0; k 6=i (t� tk)(ti � tk) ;since skew-symmetric, Hamiltonian, and symmetric matrices are closed undersum, so is ~L(t), and the last part follows at once. The error estimates followfrom taking norms in the relationeL(t) � e~L(t) = 1Z0 e~L(t)(1�s)(L(t)� ~L(t))eL(t)sds ;and from the interpolation error formulakL(t)� ~L(t)k = 1(N + 1)! j NYi=0(t� ti)j kL(N+1)(�)k : 2Remark 3.2 The �rst estimate in (3.2) gives the absolute error, while thesecond is essentially the relative error.Remark 3.3 If A(t) is orthogonal, and hence L(t) and ~L(t) are skew-symmetricand ~A(t) is orthogonal, then keL(t)sk = ke~L(t)sk = 1, and the only error is frominterpolating the Li.The strongest assumptions we have made are that A(t) = eL(t) for some realL 2 CN+1, and that we can obtain L(ti) from the A(ti). The second assumptionhas nontrivial practical implications. The assumption A(t) = eL(t) with smoothL may not be restrictive, for example, when L can be taken as a principallogarithm, as for positive de�nite A. This follows at once from the integralrepresentation (1.1), and suggests that the overall interpolation problem issimpler if A(t) is not far from the identity. To ensure that we need to dealonly with principal logarithms, a variety of transformations are available.Possible rescalingsExample 3.4 Suppose A(t) has been measured only at (t1; A1) and (t2; A2),that A 2 C2 (at least), and that kI � A1;2k > 1 but A1 and A2 are close. Leth := t2� t1, and E := A1 �A2. The previous construction approximates A(t)on [t1; t2] by ~A(t) = e~L(t), where~L(t) = t2 � th log(A1) + t� t1h log(A2):Now, suppose E is small enough so that kEA�11 k < 1. ConsiderÂ(t) = eL̂(t) A1 ; L̂(t) = T1 t� t1h ; T1 = log(A2A�11 ) : (3.3)14



Then, Â(t) is a second order approximation to A(t) which is generally di�erentfrom ~A(t). The advantage of (3.3) is thatA2A�11 is now close to the identity,since A2 = (I�EA�11 )A1, from which it follows that kI�A2A�11 k = kEA�11 k <1. Thus, it should be simpler to �nd T1 (as principal logarithm) than to �ndL1 and L2; moreover, there is one less logarithm to compute. Symplecticityand orthogonality are clearly preserved by (3.3). If A(t) is positive de�nite,to be sure that we only take logarithms of positive de�nite matrices, we mayrescale as follows. Suppose E is such that max j�(E(A1+A2)�1)j < max(k(I�A1)(I + A1)�1k; k(I � A2)(I + A2)�1k), and let A1 = CCT be the Choleskyfactorization. ConsiderÂ(t) = C eL̂(t) CT ; L̂(t) = T1 t� t1h ; T1 = log(C�1A2C�T ) : (3.4)This is also a second order approximation toA(t), but now the matrixC�1A2C�Tis better scaled (recall (2.16)). In fact, k(I�C�1A2C�T )(I+C�1A2C�T )�1k =max j�(E(A1 + A2)�1)j :Here, we outline an extension of (3.3) which gives better computational results,and on which we will report in Section 5. For this rescaling strategy to besuccessful, we need the matrices to be inverted to be well conditioned, asotherwise a loss of precision may take place. We rescale the data set (ti; Ai)Ni=0to (ti; AiB)Ni=0, where B is chosen so that the AiB are closer to the identitythan are the Ai. Then, the interpolant (3.1) is used on this rescaled data set.In summary,�A(t) = e�L(t)B�1 ; �L(t) = NXi=0 li(t)�Li ; �Li = log(AiB) : (3.5)Error estimates such as those in (3.2) are naturally modi�ed for (3.5). Clearly,if the matrices Ai's are symplectic and orthogonal, so is �A(t) in (3.5). In thenumerical experiments of Section 5, we use (3.5) for symplectic and orthogonalmatrices by taking B�1 = AbN=2c.Remark 3.5 For positive de�nite matrices, we may replace (3.5) by�A(t) = Ce�L(t)CT ; �L(t) = NXi=0 li(t)�Li ; �Li = log(C�1AiC�T ) ; (3.6)where in practice we use CCT = AbN=2c. Note, (3.6) and (3.5) are theoreti-cally identical, if we use B = C�TC�1, since then AiB = C(C�1AiC�T )C�1.However, with (3.6), we compute logarithms only of positive de�nite matrices.Cayley transform. A more e�cient alternative to the logarithm and expo-15



nential is to represent the data (ti; Ai) using the rational function of Lemma1.4, �xing 
 = �1 in (1.5). Assuming that �1 =2 �(Ai); i = 0; : : : ; N , and that1 =2 �( ~C(t)) ,Ai!Ci = �(I � Ai)(I + Ai)�1 ;~C(t) = NXi=0 Cili(t) ; and ~A(t) = (I + ~C(t)) (I � ~C(t))�1 : (3.7)Theorem 3.6 With the above notation, let A(t) 2 IRn�n be invertible, assumethat �1 =2 �(A(t)); t 2 [t0; tN ], and that 1 =2 �( ~C(t)). Let C(t) = �(I �A(t))(I + A(t))�1, and assume that A 2 CN+1. Then,kA(t)� ~A(t)k �2 jQNi=0(t� ti)j(N + 1)! max� kC(N+1)(�)k k(I � C(t))�1k k(I � ~C(t))�1k ;kI � A�1(t) ~A(t)k � (3.8)2 jQNi=0(t� ti)j(N + 1)! max� kC(N+1)(�)k k(I + C(t))�1k k(I � ~C(t))�1k ;where � = �(t) is a multi-index and C(N+1)(�) is the matrix of entries C(N+1)ij (�ij)with t0 � �ij � tN . Moreover, for all t, ~A(t) is orthogonal or symplectic, ifA(t) is orthogonal or symplectic, respectively. If A(t) is positive de�nite, then~A(t) is also positive de�nite, if max�2�( ~C(t))j�j < 1.PROOF. Since C(t) = �(I � A(t))(I + A(t))�1 and A 2 CN+1, then C 2CN+1. Moreover,A(t)� ~A(t) = 2(I � C(t))�1(C(t)� ~C(t))(I � ~C(t))�1:Taking norms and using the polynomial interpolation error formula, (3.8) fol-lows. The last part is a consequence of Lemma 1.4. 2Remark 3.7 We restrict to the case 
 = �1 for simplicity, since every valueof 
 6= 0 gives the same ~A(t).Remark 3.8 If A(t) is orthogonal, and hence C; ~C are skew-symmetric and~A is orthogonal, it is easy to obtain the bounds2k(I � C(t))�1k k(I � ~C(t))�1k � 2 ;2k(I + C(t))�1k k(I � ~C(t))�1k � 2 : (3.9)16



Thus, at worst, the interpolation error is magni�ed by the factor 2. (Comparewith Remark 3.2 [2]).Of course, the rescaling strategy for the logarithm and exponential pair (see(3.5){(3.6)) may be used to make the Ci's closer to the zero matrix.There is a major di�erence between Theorems 3.1 and 3.5. In both cases,we need assumptions on the data (i.e., on A(t)), however in Theorem 3.5 wealso need a restriction on the spectrum of the interpolant: 1 =2 �( ~C(t)); usingstandard polynomial interpolation on the Ci, there is no guarantee of this. Itis easy to construct positive de�nite matrices Ai violating this condition evenwhen all Ci's have eigenvalues in (0; 1).4 Implementation issuesHere, we discuss implementations and a (leading order) 
ops estimate. 1Logarithms of nearby matrices. For principal logarithms, we have experi-mented with (2.12) restricted to Gauss-Legendre rules, both for accuracy andto recover skew-symmetric/Hamiltonian logarithms (see Theorem 2.8). Thecost is that associated with evaluating the integrand, 8n3=3. Unless kA � Ikand kA+E�Ik are small (say, < 1=2), the large number of quadrature pointsneeded for a good accuracy makes the procedure very expensive.For Newton's method in the formulation (2.7), each iteration requires com-puting the exponential of a matrix and the solution of F 0(Lk)�k = Ek, where�k = Lk+1 � Lk and Ek = A�Ak. For principal logarithms, we may use (2.3)and approximate �k by a quadrature rule, but this is usually very expensive.Instead, we may use (2.4) to de�ne �k implicitly. Then, Newton's method canbe used to compute non-principal primary logarithms. Thus, we need to �nd�k from F 0(Lk)�k := 1Z0 e(1�t)Lk�ketLkdt = Ek : (4.1)Consider the operator� ! F 0(L)� := 1Z0 F ((1� t)L)�F (tL)dt1 Here, a 
op is the combined expense of one 
oating point multiplication and one
oating point addition. 17



and approximate this operator using the composite trapezoidal rule,F 0J(L)�J := 12J+1 [eL�J + 2 2J�1Xj=1 ejL=2J�Je(2J�j)L=2J +�JeL] : (4.2)The following equivalent formulation is much easier to evaluate (only requiringthe matrices eL=2J�j which are already available if eL is computed by a standardscaling and squaring method [8]). LetZJ := (eL=2J�J +�JeL=2J )=2J+1 ;Zj�1 := eL=2jZj + ZjeL=2j ; j = J; J � 1; : : : ; 1 ;then F 0J(L)�J = Z0 :In [8], Kenney and Laub proved that the operator F 0J(L) is invertible for J > 0and for the principal logarithm L. In fact, it is invertible for any primary loga-rithm. It is enough to note that [F 0J(L)]�1 can be found by inverting the aboveprocedure; i.e., if Z0 := E = F 0J(L)�J , solving sequentially for Z1; Z2; : : : ; ZJand �J fromeL=2jZj + ZjeL=2j =Zj�1 ;eL=2J�J +�JeL=2J =2J+1ZJ ;then F 0J(L) is invertible when these (Sylvester) equations are uniquely solvable.This necessitates that u + v 6= 0 for u; v 2 �(eL=2j ); j � 1, which is true forany primary logarithm L, since � 6= �� 2ki� when �; � 2 �(L). In short, wehave shown the following lemma.Lemma 4.1 If L = log(A) is a primary matrix function, then its Fr�echetderivative can be approximated by [F 0J(L)]�1.Thus, the solution �k of F 0(Lk)�k = Ek can be approximated by the solution�k;J of F 0J(Lk)�k;J = Ek. To implement this, we use the standard procedure ofscaling and squaring followed by using a (6; 6) diagonal Pad�e approximant toevaluate eLk=2J (in essence, the function expm in Matlab [9]); J was chosen sothat kLk=2Jk < 1=4, which gave su�cient accuracy for �k;J , and representeda good compromise between quadrature error, speed of convergence, and cost.To solve the Sylvester equations BX+XB = C, we used the function schur ofMatlab to bring B to quasi-triangular form, then solved the block-triangularlinear system [I
B+BT 
 I]vec(X) = vec(C). The Schur reduction is of Lk,so that for each iteration all computations are performed on quasi-triangularmatrices, and requires about 8n3 
ops [8]. At the last stage, we must work18



with full matrices (Ek and �k) which requires 4n3 extra 
ops. To computethe cost of one iteration, we must add the cost of computing Ak = eLk , i.e.,(16=3 + J)n3=6 
ops, and the cost of solving J + 1 Sylvester equations, i.e.,(J + 1)n3 
ops. This is expensive, but permits recovery of a primary, non-principal, logarithm close to a given one.Now we consider the convergence properties of the process arising when wereplace the integral (4.1) by a quadrature rule as in (4.2). The approximateNewton iteration isF 0J(Yk)�k;J =A� Bk; Bk = eYk ;Yk+1=Yk +�k;J ; k = 0; 1; : : : ; (4.3)with Y0 = L0 given, where F 0J(Yk)�k;J is given as in (4.2).Theorem 4.2 For the iteration (4.3),�k+1;J =�F 0J(Yk+1)�1h 1Z0 e(1�t)Yk�k;J(etYk+1 � etYk)dt+ (F 0(Yk)� F 0J(Yk))�k;Ji: (4.4)PROOF. A simple veri�cation su�ces. 2Remark 4.3 The expression (4.4) highlights that the decrease in magnitudeof the updates in (4.3) is a�ected by two factors. First is the usual factorof a Newton iteration which is quadratic in the previous update (since thelast term under the integral sign in (4.4) is O(�k;J)); the second factor in(4.4) arises from the inexact evaluation of the integral in (4.1), and dependslinearly on the previous update. If the composite trapezoidal rule (4.2) is usedto obtain F 0J , then the contraction factor for the linearly decreasing term isproportional to h2, where h = 1=2J . Thus, there is a clear trade-o� betweenspeed of convergence and cost. It is ine�cient to use an extremely accurateapproximation to the integral in (4.1), and the strategy we adopted of selectingJ; kLkk=2J < 1=4, gives an excellent compromise between speed of convergenceand overall cost.Interpolation. The basic technique is ~A(t) = f�1(P (t)), whereP (t) = NXi=0 li(t)f(Ai)and li(t) are the cardinal functions of Lagrange interpolation. The cost is19



N + 1 evaluations of f , plus evaluating f�1 for each value ~A(t) that we mustcompute.The log-exp method arises from choosing f(Ai) = log(Ai) with f�1 the expo-nential function. The cost of evaluating log(Ai) is O(n3), and the size of theconstant in the order term usually depends on kI �Ak. There is potential forill-conditioning when Ai has eigenvalues near the negative real axis. In general,to obtain a smooth interpolant, non-principal logarithms must be computed,and possibly also non-primary ones. The Cayley method results from takingf(Ai) to be the Cayley transform of Ai and f�1 its inverse transform. Com-puting f and its inverse requires 4n3=3 
ops. Clearly, this is less expensivethan the log-exp method, but it can be unstable because of the inversion ofI � ~C(t) in (3.7). Moreover, it is not de�ned if �1 2 �(Ai).To alleviate these di�culties, for both methods we experimented with therescaling in (3.5) and (3.6). The rescaling cost is (13 + N)n3 
ops, and, withrespect to the un-rescaled method, we need one less f -evaluation and one morematrix multiplication to compute �A(t).5 ExamplesAll our computations used Matlab (EPS ' 2:2 � 10�16). We have solved manyproblems, some of them arising from systems of di�erential equations. Here,we report only on those tests which highlight the typical behavior for comput-ing logarithms of nearby matrices, computing non-principal logarithms, andstructured interpolation of sequences of matrices.Example 5.1 This is Example 1.1 with �(t) = 0. Recall that A(t) is or-thogonal and symplectic, L(t) is skew-symmetric and Hamiltonian, and �1 2�(A(t)), for t = ��=6+2k�; so, in the neighborhood of ��=6+2k�, we cannotuse the Cayley method for interpolation purposes, and we need non-principal(and possibly non-primary) logarithms for the log-exp method.Example 5.2 A(t) = Q1(t)Q2(t) whereQ1(t)=0BBB@ 1 0 0 00 cos a1t sin a1t 00 � sin a1t cos a1t 00 0 0 11CCCA ;
20



Q2(t)=0BBB@ cos a2t sin a2t 0 0� sin a2t cos a2t 0 00 0 cos a2t sin a2t0 0 � sin a2t cos a2t1CCCA ; t 2 [0; 1]:A(t) is orthogonal, but we do not know log(A(t)); the matrices A(t) and A(s)do not commute (t 6= s).(a) a1 = 1; a2 = 4. With A(0) = I, log(A(0)) = 0, log(A(t)) is inside theprincipal branch, but is very close to the boundary for t 2 (0:75; 0:85).(b) a1 = �4; a2 = 6. With A(0) = I, log(A(0)) = 0, log(A(t)) exits from theprincipal branch for some t 2 (0:7; 0:8). We do not know if A(t) = eL(t)for a smooth L(t).Example 5.3 A(t) = S1(t)S2(t) where:S1(t) = � I Z(t)0 I � ; S2(t) = � I 0Y (t) I � ;Z(t) = sin (a1t)� 1 1=31=3 9=4� ; Y (t) = sin (a2t)� 7=2 50=350=3 4 � ; t 2 [0; 1] ;a1 = 0:45, a2 = 0:45p2. A(t) is symplectic, but we do not know log(A(t)),and A(t) and A(s) do not commute (t 6= s). With A(0) = I, log(A(0)) =0, log(A(t)) is inside the principal branch; kI � S(t)k grows as t nears 1(kI � S(1)k ' 13:2).Example 5.4 The positive de�nite matrixA(t) = exp D(t)Q(t) +QT (t)D(t)2 ! ;where D(t) = 0BBB@�1 + t2 0 0 00 1� t2 0 00 0 �1+t2 00 0 0 1+t2 1CCCA ; t 2 [0; 1] ;and Q(t) is A(t) of Example 5.2(b).Logarithms of nearby matrices We used Gauss N -point quadrature forthe integral formula (2.12). In Table 1, we show results obtained on Example5.1, with logarithms of A + E computed to limiting precision. Let Lc be thecomputed logarithms. Then, we show err = keLc � (A+ E)k=kA+Ek; errm= k log (A+ E) � Lck=k log (A+ E)k, where log (A + E) is the exact loga-rithm of A + E; in later tables, it is the principal logarithm returned by the21



Matlab function logm. The number of points needed to obtain the requiredaccuracy decreases with kEk. In Table 2, we highlight, for the same example,the di�culties occuring near the boundary of the principal branch. Eventu-ally no accuracy is obtained with 16 Gauss points, but the relevant matrixstructure is always preserved to machine precision.Table 1. Formula (2.12) - Example 5.1: A = A(0:1); A+ E = A(0:1 + �t)err errm kEk=kAk N kI � (A+ E)k �t5.33e-16 3.61e-16 6.11e-01 16 1.17e+00 1.00e-011.18e-15 9.88e-16 6.25e-02 10 6.76e-01 1.00e-021.20e-15 1.05e-15 6.25e-03 9 6.23e-01 1.00e-032.57e-15 4.07e-15 6.25e-04 8 6.18e-01 1.00e-04Table 2. Formula (2.12) - Example 5.1: A = A(t� �=48); A+ E = A(t)err errm kEk=kAk N kI � (A + E)k t2.22e-16 2.87e-16 4.08e-01 8 4.08e-01 �=482.62e-15 1.84e-15 4.03e-01 15 1.15e+00 3�=481.52e-02 5.48e-03 3.72e-01 16 1.97e+00 7�=482.00e+00 9.95e-01 3.61e-01 16 2.00e+00 8�=48Tables 3-5 present results obtained with Newton's method (2.4)-(2.7). In the�rst run of Newton's method (�rst line in each table), L0 is the principallogarithm of A; for successive executions, we used the previously computedlogarithm as initial guess. In these tables, k is the number of iterations; �Lk =kLk�Lk�1k=kLkk; J is the number of Sylvester equations solved per iteration.Stopping criteria were: err < tollf, or kLk � Lk�1k < tolla + tollrkLkk,with tolla = tollr = 10�3pEPS; tollf = 10�15.In Table 3, the number of iterations needed for convergence increases close tothe boundary of the principal branch, whereas in Table 4 more computation(see J) is needed when (A + E) is far from the identity. From Table 5, oncomparing err and errm, the iteration converged to primary but non-principallogarithms of A(t).Table 3. Newton's method - Example 5.2(a): A = A(t� 0:05); A+ E = A(t)err �Lk k errm kEk=kAk J kI � (A+ E)k t2.52e-14 4.64e-12 8 4.45e-14 2.26e-01 5 2.00e+00 0.702.37e-15 2.24e-13 10 1.92e-14 2.26e-01 5 2.00e+00 0.755.45e-15 7.48e-13 15 5.11e-14 2.26e-01 5 2.00e+00 0.804.09e-15 2.43e-13 10 4.61e-15 2.26e-01 5 2.00e+00 0.855.17e-14 8.74e-12 8 7.24e-14 2.26e-01 5 1.99e+00 0.90
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Table 4. Newton's method - Example 5.3: A = A(t1); A+ E = A(t2)err �Lk k errm kEk=kAk J kI � (A+ E)k t1 � t21.80e-15 1.17e-13 6 2.17e-15 7.02e-01 5 2.64e+00 0.1 � 0.21.74e-15 2.39e-13 6 2.51e-15 3.38e-01 5 5.48e+00 0.3 � 0.42.44e-14 2.09e-13 6 1.64e-15 1.65e-01 8 1.05e+01 0.8 � 0.94.31e-14 4.17e-12 7 2.76e-14 1.49e-01 10 1.65e+01 0.9 � 1.0Table 5. Newton's method - Example 5.2(b): A = A(t1); A+ E = A(t2)err �Lk k errm kEk=kAk J kI � (A+ E)k t1 � t23.43e-15 1.89e-13 8 2.02e+00 8.05e-01 5 2.00e+00 0.70 � 0.804.85e-15 1.70e-13 7 2.12e+00 4.13e-01 5 1.99e+00 0.80 � 0.85Interpolation. Tables 6-8 contain results for interpolating the data set (ti; Ai)Ni=0by the log-exp/Cayley methods and their rescaled versions. For these, and allother cases we examined, the following trends are observed. Rescaling the data(see Section 3) is bene�cial for symplectic and orthogonal sequences (Tables6, 8), but not for positive de�nite sequences (Table 7). The log-exp method isconsistently more accurate than the Cayley method. If data points are avail-able to arbitrarily raise the order of the interpolant, the Cayley method is lessexpensive than the log{exp method for a given accuracy requirement. In Tables6-8, the spacing h = (tN � t0)=N , Err is an estimate of the maximum relativeerror at the midpoint of the interval: Err = maxj kA(sj) � ~A(sj)k=kA(sj)k,where sj = tm + j(tN � t0)=200; j = �10; �9; : : : ; 10; tm = (tN + t0)=2,and the error for the rescaled versions is Errs. The relevant matrix structure(orthogonality, simplecticity, positive de�niteness) was always maintained byboth the log-exp and Cayley methods. From Table 6, note that the errors forthe unrescaled Cayley method may be explained by a large norm of deriva-tives of C(t) (see Theorem 3.5). Finally, in Table 8, the rescaled methods arecompared in a singular case.Table 6. log-exp/Cayley methods - Example 5.2(a): [t0; tN ] = [0:5; 1]N + 1 h log-exp Err log-exp Errs Cayley Err Cayley Errs4 1.67e-01 5.88e-01 6.79e-04 2.00e+00 4.26e-038 7.14e-02 3.90e-02 8.57e-08 1.83e+00 8.55e-0712 4.55e-02 2.10e-03 1.52e-11 7.11e-01 2.02e-1016 3.33e-02 6.84e-05 3.11e-15 1.85e+00 4.79e-1420 2.63e-02 2.26e-05 1.03e-15 2.00e+00 4.92e-16
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Table 7. log-exp/Cayley methods - Example 5.4: [t0; tN ] = [0:25; 0:5]N + 1 h log-exp Err log-exp Errs Cayley Err Cayley Errs4 8.33e-02 5.77e-03 1.05e-02 6.79e-03 1.42e-0212 2.27e-02 7.23e-13 4.22e-09 9.32e-10 1.40e-0816 1.67e-02 5.73e-15 3.39e-12 4.07e-13 1.43e-11Table 8. Scaled log-exp/Cayley methods - Example 5.1: [t0; tN ] = [0:3; 0:8]N + 1 h log-exp Errs Cayley Errs4 1.67e-01 5.93e-05 1.41e-038 7.14e-02 2.37e-12 4.68e-0612 4.55e-02 8.52e-16 5.66e-0916 3.33e-02 - 6.26e-1224 2.17e-02 - 8.06e-16References[1] P. Antsaklis and Z. Gao, Polynomial and rational matrix interpolation: theoryand control applications, Int. J. Control 58 (1993) 349{404.[2] L. Dieci, Considerations on computing real logarithms of matrices, Hamiltonianlogarithms, and skew-symmetric logarithms, Linear Algebra Appl. 244 (1996)35-54.[3] L. Dieci, Real Hamiltonian logarithm of a symplectic matrix, preprint (1997).[4] L. Dieci, B. Morini and A. Papini, Computational techniques for real logarithmsof matrices, SIAM J. Matrix Anal. Appl. 17 (1996) 570-593.[5] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, (CambridgeUniversity Press, Cambridge, 1991).[6] K. R. Jackson and W. L. Seward, Adaptive linear equation solvers in codes forlarge sti� systems of ODEs, SIAM. J. Sci. Stat. Comput. 14 (1993) 800-823.[7] C. Kenney and A. J. Laub, Pad�e error estimates for the logarithm of a matrix,Int. J. Control, 50 (1989) 707-730.[8] C. Kenney and A. J. Laub, Condition estimates for matrix functions, SIAM J.Matrix Anal. Appl. 10 (1989) 191-209.[9] Matlab Reference Guide, (The MathWorks, Inc., Natick, MA, 1992).[10] E. Newman, Generation of wide-band data of moments by interpolating theimpedance matrix, IEEE Trans. Antennas & Propagation 36 (1988) 1820-1824.[11] Y. Sibuya, Note on real matrices and linear dynamical systems with periodiccoe�cients, J. Math. Anal. Appl. 1 (1960) 363-372.24
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