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a b s t r a c t

We consider several possibilities on how to select a Filippov sliding vector field on a codi-
mension 2 singularity surface Σ , intersection of two codimension 1 surfaces. We discuss
and compare several, old and new, approaches, under the assumption that Σ is nodally
attractive. Of specific interest is the selection of a smoothly varying Filippov sliding vector
field. As a result of our analysis and experiments, the best candidates of the many possi-
bilities explored are those based on the so-called barycentric coordinates. In the present
context, one of these possibilities appear to be new.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Our purpose in this paper is to discuss, and compare, several possibilities on how to select a Filippov sliding vector field
on a codimension 2 singularity surface Σ , which is itself the intersection of two codimension 1 singularity surfaces. We
give a unifying framework within which to compare the various possibilities considered, and we will highlight and clarify
important connections to methods that have proven useful in computer graphics and finite elements techniques.

In this section,we review the basic problem and set up notation. Then, in Sections 2 and 3we look at different possibilities
for Filippov sliding vector fields. For convenience, we classify different choices as being either analytic–algebraic methods
or geometric methods; the distinction is only for convenience of introducing the methods, but the geometric methods we
consider can in fact be interpreted as special choices of analytic methods. Finally, in Section 4we see how onemay generally
reformulate the problem with respect to sub-sliding vector fields. In Section 5 we give our conclusions.

1.1. The problem and Filippov solutions

We are interested in piecewise smooth differential systems of the following type:

ẋ = f (x), f (x) = fi(x), x ∈ Ri, i = 1, . . . , 4, (1.1)

with initial condition x(0) = x0 ∈ Ri, for some i. Here, the Ri ⊆ Rn are open, disjoint and connected sets, and wemay as well
think that Rn

=


i Ri. Each fi is smooth on Ri, i = 1, . . . , 4, and we will assume that each fi is actually smooth in an open
neighborhood of the closure of each Ri, i = 1, . . . , 4. (Strictly speaking, this last assumption may actually be not needed,
but it simplifies some of the later exposition.)

∗ Corresponding author.
E-mail addresses: dieci@math.gatech.edu (L. Dieci), fdifonzo3@math.gatech.edu (F. Difonzo).

0377-0427/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cam.2013.10.055



Author's personal copy

162 L. Dieci, F. Difonzo / Journal of Computational and Applied Mathematics 262 (2014) 161–179

Table 1
Nodal attractivity.

Component i = 1 i = 2 i = 3 i = 4

w1
i >0 >0 <0 <0

w2
i >0 <0 >0 <0

Clearly, from (1.1), the vector field is not properly defined on the boundaries of the Ri’s. We are particularly interested in
analyzing what happens in this case, under the scenario that solution trajectories are attracted towards these boundaries.

1.2. Codimension 1: attractivity, existence and uniqueness

The classical Filippov theory (see [1]) is concerned with the case of two regions separated by a surface Σ defined as the
0-set of a smooth scalar valued function h:

ẋ = f1(x), x ∈ R1, and ẋ = f2(x), x ∈ R2,

Σ := {x ∈ Rn
: h(x) = 0}, h : Rn

→ R,
(1.2)

where ∇h is bounded away from 0 for all x ∈ Σ , hence near Σ . As in [1], we assume that h is a Ck function, with k ≥ 2.
Finally, without loss of generality, we label R1 such that h(x) < 0 for x ∈ R1, and R2 such that h(x) > 0 for x ∈ R2.

The interesting case is when trajectories reach Σ from R1 (or R2), and one has to decide what happens next. To answer
this question, it is useful to look at the components of the two vector fields f1,2 orthogonal to Σ:

w =


w1
w2


:=


∇h(x)⊤f1(x)
∇h(x)⊤f2(x)


, x ∈ Σ . (1.3)

Filippov theory is a first order theory (that is, based on nonvanishing wi, i = 1, 2) providing an answer to this situation. We
call Σ attractive in finite time if for some positive constant c , we have

∇h(x)⊤f1(x) ≥ c > 0 and ∇h(x)⊤f2(x) ≤ −c < 0,

for x ∈ Σ . In this case, trajectories starting near Σ must reach it and remain there: sliding motion. Filippov proposal is to
take as sliding vector field on Σ a convex combination of f1 and f2, fF := (1 − α)f1 + αf2, with α chosen so that fF ∈ TΣ (fF
is tangent to Σ at each x ∈ Σ):

x′
= (1 − α)f1 + αf2, α =

∇h(x)⊤f1(x)
∇h(x)⊤f1(x) − ∇h(x)⊤f2(x)

. (1.4)

1.3. Codimension 2: nodal attractivity

As we said, we are concerned with (1.1), where now the Ri’s are (locally) separated by two intersecting smooth surfaces
of co-dimension 1, Σ1 = {x : h1(x) = 0} and Σ2 = {x : h2(x) = 0}, and we have Σ = Σ1 ∩ Σ2. As before, we will assume
that ∇h1(x) ≠ 0, x ∈ Σ1, ∇h2(x) ≠ 0, x ∈ Σ2, that h1,2 are Ck functions, with k ≥ 2, and further that ∇h1(x) and ∇h2(x)
are linearly independent for x on (and in a neighborhood of) Σ .

We have four different regions R1, R2, R3 and R4 with the four different vector fields fi, i = 1, . . . , 4, in these regions:

ẋ = fi(x), x ∈ Ri, i = 1, . . . , 4. (1.5)

Without loss of generality, we can label the regions as follows:

R1 : f1 when h1 < 0, h2 < 0, R2 : f2 when h1 < 0, h2 > 0,
R3 : f3 when h1 > 0, h2 < 0, R4 : f4 when h1 > 0, h2 > 0.

(1.6)

We further let (cf. with (1.3))

w1
1 = ∇h⊤

1 f1, w1
2 = ∇h⊤

1 f2, w1
3 = ∇h⊤

1 f3, w1
4 = ∇h⊤

1 f4,

w2
1 = ∇h⊤

2 f1, w2
2 = ∇h⊤

2 f2, w2
3 = ∇h⊤

2 f3, w2
4 = ∇h⊤

2 f4,
(1.7)

and restrict to the case of Σ being nodally attractive, a condition characterized by the constraints on the sign of w1 and w2

expressed in Table 1, which are assumed to be valid on Σ and near it (uniformly away from 0).
According to the present setup, when x is near Σ , a trajectory through x will be attracted to Σ , and – upon reaching it –

will be forced to remain on it (sliding motion).

Remark 1.1. Nodal attractivity of Σ is just one of several different sufficient conditions under which Σ will attract nearby
trajectories. Arguably, nodal attractivity is the simplest of all these sufficient conditions and it serves as a fundamental
benchmark to evaluate different means for obtaining a sliding vector field on Σ . A more comprehensive classification of
attractivity conditions for Σ is in [2], and we are currently investigating the behavior of some of the methods examined
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herein under these more exhaustive attractivity conditions. For completeness, we also note that the case in which Σ does
not attract nearby trajectories is of more limited interest.

Even under nodal attractivity, it is to be expected that a trajectory will typically first reach one ofΣ1 orΣ2, and then slide
on it towards Σ . (Of course, a trajectory may hit Σ directly, without first reaching one of Σ1,2 and sliding on it towards Σ ,
but this is a measure 0 set of initial conditions.) For completeness, and later use, below we define these sub-sliding vector
fields.

Let Σ±

1 = {x : h1(x) = 0, h2(x) ≷ 0}, and similarly Σ±

2 . So, when x is on Σ1,2 (but not on the intersection Σ), we have
the following four sub-sliding vector fields, defined as in Section 1.2:

fΣ+

1
(x) := (1 − α+)f2 + α+f4, fΣ−

1
(x) := (1 − α−)f1 + α−f3,

fΣ+

2
(x) := (1 − β+)f3 + β+f4, fΣ−

2
(x) := (1 − β−)f1 + β−f2.

(1.8)

Note that – under the assumptions of nodal attractivity of Table 1 – these vector fields are well defined, with

α+
:=

w1
2

w1
2 − w1

4
, α−

:=
w1

1

w1
1 − w1

3
,

β+
:=

w2
3

w2
3 − w2

4
, β−

:=
w2

1

w2
1 − w2

2
.

(1.9)

The difficulty is how to properly define sliding motion on Σ = Σ1 ∩ Σ2.
We will still consider the Filippov convexification method to define the vector field on Σ , whereby considering a vector

field on Σ defined as a convex combination of the vector fields f1, . . . , f4, and such that it lies on the tangent plane to Σ, TΣ ,
for any x ∈ Σ . That is, we will restrict to vector fields of the form

fF = λ1f1 + λ2f2 + λ3f3 + λ4f4, λi ≥ 0, i = 1, . . . , 4,
4

i=1

λ1 = 1,

∇h⊤

1 fF = ∇h⊤

2 fF = 0.

(1.10)

Adopting our previous notation, we thus have to solve the problem (for x ∈ Σ):

Wλ =

0
0
1


, where λ =

λ1
λ2
λ3
λ4

 , andW =

w1
1 w1

2 w1
3 w1

4

w2
1 w2

2 w2
3 w2

4

1 1 1 1

 , (1.11)

and we will call a solution λ of (1.11) admissible if λ ≥ 0.
Clearly, (1.11) is an underdetermined linear system, reflecting the fact that the mere requirement of fF being on TΣ is not

sufficient to uniquely characterize a convex combination of the four vector fields f1, . . . , f4. This is precisely our concern in
this paper: how can one properly define fF , under the conditions expressed by Table 1. Our specific interest will be to select
a Filippov sliding vector field that varies smoothly with respect to x ∈ Σ .

1.4. Framework

To begin with, we have the following result on the matrix W . Note that W depends smoothly on x ∈ Σ , say it is a Ck

function of x, k ≥ 1, since each of the fj’s (j = 1, . . . , 4) and hi’s (i = 1, 2) are.

Lemma 1.2. For x ∈ Σ , consider the matrix valued function W of (1.11), under the sign constraints of Table 1. Then, W has
constant rank equal to 3, for any x ∈ Σ . Moreover, ker(W ) is spanned by a unit vector of class Ck.

Proof. SupposeW does not have rank 3. Then, there are two columns ofW that can bewritten as a linear combination of the

other two. But recall thatW has the form


+ + − −

+ − + −

1 1 1 1


. Therefore, trivially in no case two columns ofW can be given as a

linear combination of any of the other two columns. In particular, it follows that thematrixW has a one-dimensional kernel.
As a consequence, the function W⊤W – which takes values in R4×4 – depends smoothly on x, and has one eigenvalue

equal to 0 and three eigenvalues not 0. But, since this is a Hermitian function of constant rank 3, then (e.g., see [3]) there
exists a smoothly varying orthogonal function U: UT (W TW )U =


M 0
0 0


, where the eigenvalues of the (3 × 3) function M

are not 0. In particular, calling v the last column of U , ker(W ) = span(v), as claimed. �

Remark 1.3. In practice, we will have that along a smooth trajectory on Σ during sliding motion, W will effectively be a
smooth function of one real parameter (time).
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Based upon Lemma 1.2, and under the assumptions therein, we will thus have that all solutions of (1.11) can be once and
for all written as

λ = µ + cv, (1.12)

where v (which we may, but do not have to, also take of unit length) smoothly spans ker(W ), µ is any particular solution
of (1.11), not necessarily admissible, and c ∈ R will need to be chosen so that λ in (1.12) is admissible (i.e., each of its com-
ponent be nonnegative). Observe that, because of Table 1, v must have some positive and some negative components, and
thus the admissibility interval for c in (1.12) is c ∈ [a, b], where

a := max

−

µi

vi
: vi > 0


, b := min


−

µi

vi
: vi < 0


, (1.13)

where we remark that the values of a, b, depend both on µ and v, and of course in general on the point x ∈ Σ .
In the next sections, wewill focus on different ways to choose λ in (1.12), andwewill further relate the various choices to

each other. As already remarked, our emphasis will be to havemethodswhich produce a smoothly varying solution vector λ.

Remark 1.4. In (1.12), µ can be chosen in any way we want, regardless of providing an admissible (or smooth) solution of
(1.11); for example, we can select µ to be the solution of (1.11) of minimal 2-norm (see Section 2.2.1). In general, also v can
be any vector spanning ker(W ), though here below we will always assume that it be smooth in x ∈ Σ . Therefore, to obtain
a smoothly varying λ from (1.12), it will be crucial to appropriately select c there.

Example 1.5 (A Model Example). To compare the various techniques we review/introduce, we will use the following
example, which is sufficiently simple to allow hand calculations, yet rich enough to illustrate all desired features.

We take the following vector fields fi, i = 1, 2, 3, 4, taking values in R3:

f1(x) :=

 2x1 + 1
−x1 + x2x3 + 1
x1 + x2 + 1


, x ∈ R1, f2(x) :=

 2x1 − 1
−x1 + x3 − 1
x1 + x2x3 + 2


, x ∈ R2,

f3(x) :=

 2x1 − 3
−x1 + x2 + 2
x1 + x2x3 − 1


, x ∈ R3, f4(x) :=

 2x1 + 2
−x1 + x3 − 2
x1 + x3 − 2


, x ∈ R4,

where the regions Ri’s are as in (1.6) and

h1(x) := x3, h2(x) := x2.

Therefore, Σ = {x ∈ R3
: x2 = x3 = 0}, we have the two unit normals n1(x) =


0
0
1


, x ∈ Σ1, n2(x) =


0
1
0


, x ∈ Σ2, and

we can write the matrixW for x ∈ Σ as:

W (x) =

 x1 + 1 x1 + 2 x1 − 1 x1 − 2
−x1 + 1 −x1 − 1 −x1 + 2 −x1 − 2

1 1 1 1


. (1.14)

Observe that the sign pattern of Table 1 for nodal attractivity holds for x1 ∈ (−1, 1). At the same time, we also note that the
more comprehensive attractivity conditions of [2] hold also outside of this interval, namely for |x1| ≤ 1.2, and that when
x1 = ±1.2 the exit conditions of [2] hold, Σ is no longer attractive, and one should exit Σ by sliding on Σ1, respectively
Σ2. On account of this, we would surely value any technique able to provide smoothly varying solutions λ for all |x1| ≤ 1.2,
relatively to the present example, and further one which when x1 = ±1.2 renders two coefficients in λ equal to 0. As we
will see below, there are not many such choices.

Finally, one can easily obtain the general form of the admis-
sible solutions (1.12), for example written as

λ =



2
3

−
5
9
x1

0
2
3
x1

1
3

−
1
9
x1


+ c


−

5
3
1
1

−
1
3

 , (1.15)

which is admissible for (x1, c) in the shaded region shown on
the right.

Admissible region (x1, c) in (1.15).
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2. Analytic–algebraic methods

Here we introduce some techniques to select λ in (1.12). As far as we know, the construction behind the method(s) of
Section 2.1 is new. The idea of Section 2.2.1 is patterned on general minimum variation principles, and the secondmethod in
that section is already in [4]. Finally, the techniques examined in Section 2.3 are patterned after a successful interpretation
of the Filippov sliding vector field in co-dimension 1.

2.1. Mean field methods

Given the form of (1.12), and the restriction on c given by (1.13), we define a uniform mean field method by selecting c
to be the midpoint of [a, b] (recall that a and b depend on µ, v, and x ∈ Σ):

λMF := µ +
a + b
2

v. (2.1)

Note that, in (2.1), we are taking the expected value of the random variable Ξ according to the uniform distribution over
[a, b]. This suggests a useful generalization, based on the following definition.

Definition 2.1 (Mean Field Methods). Let µ be a particular solution of (1.11), and v be also given. Assume that the random
variable Ξ obeys a probability distribution over [a, b], with pdf (probability density function) g(ξ). Then, we define the
family of mean field methods according to

c :=

 b

a
ξg(ξ) dξ and λg := µ +

 b

a
ξg(ξ) dξ


v. (2.2)

We have the following result, telling us that the (pointwise) value of λg is independent of µ.

Lemma 2.2. For given v, the value of λg in (2.2) is independent of the particular solution µ. Moreover, choosing c and λg as
in (2.2) always gives an admissible solution.
Proof. Suppose that we have chosen c as in (2.2) for a given µ, and let µ be another solution of (1.11), giving admissibility
intervalc ∈ [a,b].

Then, there exists a value τ ∈ [a, b] such thatµ = µ + τv. Butµ +cv ≥ 0 ⇔ µ + (c + τ)v ≥ 0 ⇔c + τ ∈ [a, b] ⇔c ∈ [a − τ , b − τ ].

In particular, [a,b] and [a, b] have the same length. From this, it follows that if ξ has pdf g(ξ) over [a, b], thenξ will have
pdfg(ξ) := g(ξ + τ),ξ ∈ [a,b] = [a − τ , b − τ ]. Therefore, by (2.2),

λg = µ +

 b−τ

a−τ

ξg(ξ) dξ
v = µ +

 b−τ

a−τ

ξg(ξ + τ) dξ
v

= µ +

 b

a
(ξ − τ)g(ξ) dξ


v = µ +

 b

a
ξg(ξ) dξ − τ

 b

a
g(ξ) dξ


v

= µ − τv +

 b

a
ξg(ξ) dξ


v = µ +

 b

a
ξg(ξ) dξ


v = λg .

Finally, that choosing c and λg as in (2.2) produces an admissible solution is clear. �
The following example shows that, in general, λMF (i.e., where the probability distribution function is the uniform

distribution), although obviously admissible, and trivially continuous in case µ is, is not as smooth asW .

Example 2.3. Let us refer to Example 1.5. By the configuration of this problem, it is easy to obtain

a(x1) + b(x1)
2

=


1
6
x1 −

1
15

, if x1 ∈


−

6
5
, 0


,

1
18

x1 −
1
15

, if x1 ∈


0,

6
5


,

which gives λMF not differentiable at x1 = 0, whereas W is analytic in x1. �
So, it is natural to ask: ‘‘How can we choose a distribution function g in order to make λg in (2.2) as smooth asW?’’
We propose to consider the following family of distribution functions:

gα(ξ) :=
α(ξ − a)α−1

(b − a)α
, ξ ∈ [a, b], α ∈ (0, +∞). (2.3)

This family of pdf’s belongs to the Beta distribution family with parameters (α, 1), and we restrict to this family of pdf’s
because of their natural formulation on compact intervals.
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For (2.3), we have

gα ≥ 0,
 b

a
gα(ξ)dξ = 1,

 b

a
ξgα(ξ)dξ =

1
α + 1

a +
α

1 + α
b,

from which c in (2.2) is given by

c = (1 − γ )a + γ b, γ =
α

α + 1
, (2.4)

that is, for every α ∈ (0, +∞), the expectation of the random variable ξ with measure gα(ξ) is the convex combination of
a, bwith weights 1

α
, α

1+α
.

Although not necessarily any choice of α in (2.3) gives an admissible solution as smooth as W (e.g., taking α = 1 gives
λMF), we will see in Section 3 that in fact it is possible to choose α to obtain a smoothly varying, admissible, λg .

2.2. Minimum norm

Here we look at two very natural approaches: to choose the Filippov sliding vector field fF in such away tominimize ∥λ∥,
or to minimize ∥fF∥ directly. Below, the norm is the 2-norm.

2.2.1. Minimizing λ

Here we seek the minimum norm solution of (1.11).
Without directly imposing the positivity constraints, it is simple to obtain the minimum 2-norm solution; e.g., by using

the SVD (singular value decomposition) of W : W = USV⊤, where U ∈ R3×3 and V ∈ R4×4 are orthogonal and S = [Σ, 0]
with Σ = diag(σi, i = 1, 2, 3) (note, σi ≠ 0):

λmin = Vy, y =

d1/σ1
d2/σ2
d3/σ3

0

 , d = UT

0
0
1


,

which can also be rewritten from the form (1.12) as

λmin := (I − vv⊤)µ. (2.5)
It is easy to realize that λmin is as smooth as W .1 However, it is equally simple to realize that in general this solution may
not be admissible (i.e., it is not generally true that λmin ≥ 0).

Using again the structure (1.12), the min 2-norm admissible solution,λmin, is simply given by λmin above if λmin is admis-
sible, and by whichever of µ + av or µ + bv gives minimum 2-norm otherwise. Unfortunately, nowλmin may fail to vary
smoothly.

Example 2.4. Take Example 1.5, at x1 = −0.9.

Then, λmin =


1
4
11
20

−
1
20
1
4

, which is clearly not admissible. In this

case, the admissible solution of minimum 2-norm isλmin =
1
6
3
5
0
7
30

, with fmin =


−1.7667

0

0


. (Coincidentally, these corre-

spond to λave and fave as in Example 2.11.) However, as can be
seen in the figure on the right,λmin is not as smooth asW .

λmin components for Example 1.5.

2.2.2. Minimizing f [Minimum Variation]
This approach was already suggested in [4]. The goal is to find f as in (1.10) of minimal norm. That is, one solves

min ∥f ∥2, subject toWλ =

0
0
1


.

1 Use the argument in the proof of Lemma 1.2.
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Writing λ = µ + cv as in (1.12), we have to determine the minimum of

∥Fµ∥
2
+ 2cF⊤

µ Fv + c2∥Fv∥
2, where Fµ :=

4
i=1

µifi, Fv :=

4
i=1

vifi.

The minimum is attained for c = −
F⊤
µ Fv

∥Fv∥2
, and so the vector field afforded by this approach is

fMV := F⊤

µ


I −

Fv

∥Fv∥

F⊤
v

∥Fv∥


Fµ, (2.6)

which can be fit into the class of vector fields (1.10) by taking

λMV = µ −
F T
µFv

∥Fv∥
2
v. (2.7)

Unfortunately, this approach is also affected by similar limitations as those encountered for λmin. To be precise, now it may
happen that fMV is not a Filippov vector field (in the sense that λMV in (2.7) is not admissible), and by restricting the mini-
mization search so that λMV is admissible may render a non-smooth fMV.

Example 2.5. Consider again Example 1.5. Here, the resulting fMV = 0.

Looking at the λMV components on the right, we notice
that they are smooth, but not always positive for x1 ∈

(−1, 1).

By imposing positivity constraints, that is solving

min ∥f ∥2, subject toWλ =

0
0
1


, λ ≥ 0, (2.8)

we highlight in the figures below how this generally produces a lack of smoothness in λ and a resulting lack of smoothness
in f .

For completeness, we remark that – in general – it is not true that fMV = 0 even without imposing the admissibility
constraints.

Remark 2.6. Whereas it is surely possible to select a different norm, rather than the 2-norm we have chosen, it is not clear
to us how ‘‘a-priori’’ one may choose a norm so to obtain a smoothly varying admissible solution through the above mini-
mization processes.



Author's personal copy

168 L. Dieci, F. Difonzo / Journal of Computational and Applied Mathematics 262 (2014) 161–179

2.3. Averaging

Here we attempt to indirectly define a Filippov sliding vector field by averaging the dynamics near Σ in a similar way to
what has proven to be successful in the case of sliding motion on a co-dimension 1 surface.

We recall that when Σ has co-dimension 1, a simple averaging process of the Euler discretization method converges to
the Filippov sliding vector field in (1.4). In that case, the idea seems to have been originally introduced by Utkin in [5] (see
also [6,7] for added generality). The idea is simple, but we need to re-interpret it appropriately in order to appreciate how
we may extend it.

Let x0 ∈ Σ , let n(x0) be the (unit) normal to Σ at x0 and represent points in a δ-neighborhood of x0, of base point x0 (i.e.,
whose orthogonal projection is x0), as {x ∈ Rn

: x = x0 + n(x0)c(x)}, where the scalar valued function c(x) represent the
distance along the normal direction, hence c(x) = h(x). This way we can define a strip C of width 2δ around Σ .

Now, suppose we have fields f1 and f2, defined on and around Σ . Take a point x(0)
∈ R1, of base point x0 ∈ Σ , such that

h(x(0)) = −δ, and consider the value givenby a Euler step, x(1)
= x(0)

+τ0f1(x(0)), with τ0 chosen so that x(1) is inR2 andh(x(1))
= δ (this is always possible, given that hT

x f1 > 0). From x(1), we take another Euler step, x(2)
= x(1)

+ τ1f2(x(1)), with τ1 so
that x(2)

∈ R1 and h(x(2)) = −δ. Now consider (x(2)
− x(0))/(τ0 + τ1) =

τ0
τ0+τ1

f1(x(0)) +
τ1

τ0+τ1
f2(x(1)). A standard calculation

(e.g., see [6]) gives that

lim
δ→0

(x(2)
− x(0))/(τ0 + τ1) = αf1(x0) + (1 − α)f2(x0),

α = hT (x0)f1(x0)/(hT (x0))(f1(x0) − f2(x0)),

that is (1.4).

Remarks 2.7.
(i) We note that this averaging process is logically one-dimensional, since the iterates are effectively controlled by the

scalar values h(x), rather than just by x.
(ii) We also note that the limiting value is the same for any point at distance δ from Σ , relatively to the same base point

x0 ∈ Σ . In other words, we could have started just as well from the point x0 + n(x0)δ.
(iii) Finally, we stress that the process is (and must be) stopped after two Euler steps.

We can visualize this process as if it is taking place on
an interval of length 2δ for the h-axis around the origin
(h = 0), and we bounce from one end of the interval to
the other. See the figure on the right.

In co-dimension 2, we attempt to generalize the above approach byworkingwith the Euclidean distance. So, we consider
a ‘‘cylinder-like’’ region C surrounding Σ (which serves as the ‘‘axis’’ of the cylinder) and ‘‘radius’’ δ, as defined by the
requirement that

x ∈ C ⇐⇒ ∥h(x)∥2
= (h1(x))2 + (h2(x))2 = δ2.

It will be useful to better explain the structure of C by considering points within distance δ from a base point x0 ∈ Σ . In
other words, if N(x0) = [n1, n2]x0 represent the matrix of the unit normals at x0 ∈ Σ , we will have x = x0 + N(x0)c(x), and
∥x− x0∥2

≤ δ2. Hence, all points in C (hence, at distance δ from Σ), of same base point (orthogonal projection) x0 ∈ Σ , will
belong to a section Rδ(x0) of C, for which we will have

c = δ

N⊤(x0)N(x0)

−1

cos θ
sin θ


, θ ∈ S1. (2.9)

Through (2.9), we can thus bijectively map all points in C of same base point x0 to points on the unit circle, i.e., to angles θ .
(Note that, in general, the neighborhood is ellipsoidal.)

Example 2.8. Consider Example 1.5. Here, Σ is a plane, and the two normals are n1 = e3 and n2 = e2. From (2.9) we get
c = δ


cos θ
sin θ


, that is a circular neighborhood. All points in C are distinguished by the value of the first component x1, and by

the angle θ , and the vector fields, evaluated on C, assume the form

f1(x) =

 2x1 + 1
−x1 + 1 + δ2 cos θ sin θ

x1 + 1 + δ cos θ

 , f2(x) =

 2x1 − 1
−x1 − 1 + δ sin θ

x1 + 2 + δ2 cos θ sin θ

 ,

f3(x) =

 2x1 − 3
−x1 + 2 + δ cos θ

x1 − 1 + δ2 cos θ sin θ

 , f4(x) =

 2x1 + 2
−x1 − 2 + δ sin θ
x1 − 2 + δ sin θ


.
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With the above in mind, we will now distinguish between two different averaging processes: (i) averaging the dynamics
induced by the original vector fields f1,2,3,4, or (ii) averaging the dynamics induced by the sub-sliding vector fields of (1.8),
f ±

Σ1,2
.

2.3.1. Averaging original dynamics
Here we look at the dynamics of the Euler map under the original vector fields, by requiring successive iterates to remain

in C.
We generate points on C by the following iterative process.

Algorithm 1.
(i) Given a point x(0)

∈ C, let x(0)
∈ Ri0 (one of the regions R1, R2, R3, R4) and let fi0 be the corresponding vector field. Then,

take a Euler step with stepsize τ0 so that the value

x(1)
= x(0)

+ τ0fi0(x
(0)) (2.10)

is also in C (see Lemma 2.9). (In the (measure 0) eventuality that x(0) or one of the iterates below is on Σ1 or Σ2, we
modify this construction by taking the Filippov sliding vector field f ±

Σ1,2
on these co-dimension 1 surfaces.)

(ii) Repeat this process. That is, for k = 0, 1, 2, . . . , let

x(k+1)
= x(k)

+ τkfik(x
(k)), τk : ∥h(x(k+1))∥2

= δ. (2.11)

Lemma 2.9. Let the assumptions on Σ of Table 1 hold. Then, for given δ > 0, the above iteration (2.11) is well defined. That is,
there exists a unique τk > 0 in (2.11).

Proof. We consider the first step, assuming that x(0) is not on either of Σ1, Σ2. The other steps, as well as the case of x(0)
∈

Σ1,2, are handled similarly. We have ∥h(x(0))∥2
= δ2, and seek τ0 such that ∥h(x(1))∥2

= δ2. From Taylor expansion with
remainder in the Lagrange form, we have

h(x(1)) = h(x(0)) + τ0∇h⊤(η0)fi0(η0), (η0)j ∈

(x(0))j, (x(1))j


, j = 1, . . . , n.

Now, requiring h(x(1))Th(x(1)) = δ2, gives τ0 = 0, which is unacceptable, or

τ0 = −2δ
h⊤(x(0))


∇h⊤(η0)fi0(η0)


∥∇h⊤(η0)fi0(η0)∥2

,

which is strictly positive on account of Table 1 and of the labeling of the regions R1, . . . , R4. �

It is insightful to visualize this iterative process as if we
bounce frompoint to point on a circle of radius δ around
the origin by taking Euler steps of appropriate stepsizes;
see the figure on the right.

In order to obtain an average vector field from the above iteration, we now collect together in four different groups all
stepsizes generated in (2.11) above, according to which one is the vector field for which they are being Euler steps. That is,
from (2.11) we will call τk = τ

(1)
k , if fik = f1, and similarly for τ

(2)
k , τ

(3)
k , τ

(4)
k , with the obvious modification required if we

are using one of the f ±

Σ1,2
. It must be appreciated that the values of the τk’s depend on δ.

Suppose2 that the trajectory generated by x(0) is periodic in the angle θ ; that is, suppose that we generate iterates whose
associated angles satisfy θ(x(0)), θ(x(1)), . . . , θ(x(N0)) = θ(x(0)), and note that N0 itself generally may depend on δ. Under
this situation, it is reasonable to consider the following quantity:

λi
ave(x

(0), δ) :=

N0−1
k=0

τ
(i)
k

N0−1
k=0

τk

, i = 1, 2, 3, 4. (2.12)

2 We conjecture that, for fixed δ > 0, and constant vector fields, this supposition is correct, but lack a complete proof of this fact; based on what follows,
we lack motivation to embark in such possible proof.
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Note that this would give an admissible solution. But, as we said, we need the orbits to be periodic. Moreover, we must
demand that (2.12) has a limit as δ → 0, a property which is not clear at all if it is true. In fact, both periodicity and existence
of the limit are quite hard to prove in general and/or to verify in a practical problem. Furthermore, as we see in Example 2.10,
even if the orbit is periodic and the limit exists, in general the value of points in C with same projection x0 ∈ Σ differs. As
a consequence, this averaging technique turns out to be unsatisfactory as a way to define a Filippov sliding vector field. We
say this because an obvious requirement of this way of proceeding must be that the limiting values of λave(x(0), δ) be the
same for all x(0)

∈ Rδ(x0).

Example 2.10. Consider Example 1.5, with x1 = 0.5 there; so, we let x0 = (0.5, 0, 0) ∈ Σ . We take two different points in
Rδ(x0), namely (see Example 2.8) corresponding to: (a) θ = eps, and (b) θ = 0.7815 (here, eps is the machine precision,
and eps ≈ 2.2204e − 016). In these cases, the generated orbits are periodic and for λave given in (2.12) the limiting values
as δ → 0 exist and give:

(a)

 0
0.2333
0.5667
0.2000

 , (b)

0.3889
0

0.3333
0.2778

 ,

with average periods of 95.2704 and 96.2323 respectively.

To move out of the impasse above, we also considered a second averaging process, over the angle θ , for all points with
same base point on Σ . That is, calling x(θ) the points in C with same base point x0, and subject to the same limitations
previously mentioned on the proper definition of λave(x(θ)), we considered the following quantity,

λave(x0) :=
1
2π

 2π

0
λave(x(θ)) dθ, (2.13)

which – as long as it is well defined – is surely giving an admissible solution, identical for all points in C with same base
point x0. Alas, even when well defined, the above turns out to be unsatisfactory.

Example 2.11. Let us refer again to Example 1.5, with x1 = −0.9.

In this case we obtain fave =


−1.7667

0
0


, and λave =

0.1667
0.6000

0
0.2333


,

which is surely admissible. But, as the figure on the right
exemplifies, thisλave solution is clearly not differentiable in x1,
despiteW being analytic in it. As a consequence, this possible
way to interpret how to select a Filippov sliding vector field
does not appear to be a viable choice.

2.3.2. Averaging sub-sliding dynamics
In the nodally attractive case considered in this work, we can take also an alternative point of view in order to build an

average sliding vector field. As before, we consider the 2-norm to define the cylinder C around Σ , of radius δ.
The point of the construction below is to realize that – because of nodal attractivity – a trajectory of the dynamical system

(1.1) starting at a point in C will typically hit one of the sub-sliding surfaces Σ±

1,2 before reaching Σ itself. This allows us to
effectively reduce the dimensionality of the averaging process, by looking at the points in C which end up first on one of
Σ±

1,2. At that point, the averaging process will be the same as we had in co-dimension 1.
Recalling (1.8)–(1.9), we will look for a sliding vector field on Σ of the following form

f := c+

1 fΣ+

1
+ c−

1 fΣ−

1
+ c+

2 fΣ+

2
+ c−

2 fΣ−

2
. (2.14)

To understand how to select the coefficients c±

1,2, we reason as follows.
Let x0 ∈ Σ be given, and consider the δ-section Rδ(x0) in C, defined as before; see (2.9). For fixed value of δ, consider

the Euler segments starting at a point x(0)
∈ Rδ(x0), defined so to remain in C, but monitoring the first time that any such

segment crosses one of the Σ±

1,2. In other words, we define (see (2.10)) x(1)(τ ) = x(0)
+ τ fi0(x

(0)), τ ≤ τ0; if this segment
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reaches C without first having crossed one of the Σ±

1,2, then we take τ = τ0 as in (2.10), and continue by taking Euler seg-
ments (see (2.11)) to generate x(k+1)(τ ) = x(k)

+ τ fik(x
(k)), τ ≤ τk, until the first time one of these segments crosses one

of the Σ±

1,2. (The probability 0 eventuality that one of these segments first reaches Σ directly is presently ignored, and see
Remarks 2.12-(i).) It is quite easy to see that, because of nodal attractivity, for any starting point in Rδ(x0) there is a first
Euler segment crossing one of Σ±

1,2. We stress that this process generally depends on δ.
By doing what described above, and recalling the form of Rδ(x0), we effectively obtain a partition of S1, that is of [0, 2π ],

into arcs: an angle from each of these arcs is associated to whichever sub-surface Σ±

1,2 is reached first by the Euler segments
starting from that angle in Rδ(x0). So, for given δ, wewill have four arc-lengths, whichwe call θ±

1,2; e.g., θ
+

1 is the length of the
arc of S1 whose associated points have a Euler segment first reaching Σ+

1 , etc. Again, let us stress that these θ±

1,2 generally
depend on δ.

Now, as soon as one of the sub-surfaces Σ±

1,2 is reached by a Euler segment, we reduce the dimensionality of the process
and go back to the case of co-dimension 1. For example, suppose that for a certain angle θ , the Euler iterates starting with
x(0)

∈ Rδ(x0) reach Σ+

1 first; then, we restrict consideration to the co-dimension 1 surface Σ1, with Filippov vector fields
given by f +

Σ1
and f −

Σ1
in (1.8)–(1.9); but, in co-dimension 1 the averaging process is well understood, and in this case it will

give a Filippov sliding vector field at x0 ∈ Σ . With this, we will now have (all quantities below generally depend on δ)

fΣ1 := (1 − a1)fΣ+

1
+ a1fΣ−

1
, fΣ2 := (1 − a2)fΣ+

2
+ a2fΣ−

2
,

a1 :=

n⊤

2 fΣ+

1

n⊤

2 (fΣ+

1
− fΣ−

1
)
, a2 :=

n⊤

1 fΣ+

2

n⊤

1 (fΣ+

2
− fΣ−

2
)
.

(2.15)

Next, we compute the following ratios, defining the percentage of
points in Rδ(x0) contributing to fΣ1 , respectively to fΣ2 , see the figure
on the right. We make the dependence on δ explicit:

L1(δ) :=
θ+

1 (δ) + θ−

1 (δ)

2π
,

L2(δ) :=
θ+

2 (δ) + θ−

2 (δ)

2π
.

(2.16)

Finally, we let δ → 0, and propose taking
L1 = lim

δ→0
L1(δ), L2 = lim

δ→0
L2(δ), (2.17)

and from this the overall sliding vector field at x0 ∈ Σ as
fmean = L1fΣ1 + L2fΣ2 .

With this rewriting, the coefficients c±

1,2 in (2.14) are:

c+

1 := L1(1 − a1), c−

1 := L1a1, c+

2 := L2(1 − a2), c−

2 := L2a2. (2.18)
Therefore, by making definition (2.14) explicit in terms of the fi’s, this ‘‘average’’ solution of (1.11) is

λmean :=


(1 − α−)c−

1 + (1 − β−)c−

2

(1 − α+)c+

1 + β−c−

2

α−c−

1 + (1 − β+)c+

2

α+c+

1 + β+c+

2

 . (2.19)

Remarks 2.12.
(i) The case inwhich a Euler segment crossesΣ directly, ahead of crossing either (but not both)Σ1 orΣ2, is not a concern in

defining the values in (2.16), and then (2.17), because, for each given δ, there are just four angles giving this eventuality.
Hence, they do not contribute to the arc lengths we used.

(ii) The limit in (2.17) as δ → 0 exists as a consequence of the fact that (for any i = 1, 2, 3, 4) ∥fi(x) − fi(x0)∥ is arbitrarily
small for x ∈ Rδ(x0).

(iii) In principle, it is possible to attempt averaging for neighborhoods of Σ defined by norms other than the 2-norm we
used. We made some (limited) experiments also with the ∞-norm and the 1-norm, and our results were qualitatively
similar to those we reported for the 2-norm.
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Example 2.13. Let us consider again Example 1.5, with x1 = −0.9.

In this casewe obtain


c+1
c−1
c+2
c−2

 =

0.1992
0.0383
0.2179
0.5446


, andλmean =

0.0636
0.6618
0.0618
0.2127



and fmean =


−2.1582

0
0


, whereas a plot of all components of

λmean in function of x1 is given on the right.

As the above figure makes clear, the components vary smoothly as long as the nodal attractivity assumptions hold; i.e.,
x1 ∈ (−1, 1). But, they do not extend nicely outside of this interval, a fact which appears to limit this averaging process and
the construction of λmean to purely nodally attractive configurations.

3. Geometric methods

Here we look at techniques which can be naturally framed within the context of rebuilding polygons in the plane, and
finding a representation (i.e., coordinates) for points internal to the polygon in terms of convex combination of the vertices.
As it turns out, these are the most interesting techniques.

So, the idea is to think of the values wi
j, i = 1, 2, j = 1, 2, 3, 4, in (1.7) as giving the four different points wj = (w1

j , w
2
j ),

j = 1, 2, 3, 4, then consider the polygon made up by joining the vertices in the following order

Π := w1w2w4w3.

Given our assumptions on the wi
j ’s, it is easy to realize that the origin is inside the polygon. Thus, our task is to find the

coordinates of the origin with respect to the given vertices.
Although not derived from this interpretation, the technique in [8,2] belongs to this class of methods. The appropriate

framework within which to interpret these techniques, and to derive another very promising one, turns out to be that of
barycentric coordinates, widely used in computer graphics.

Definition 3.1 (Barycentric Coordinates). Let Ω be a closed convex polygon in the plane, with vertices w1, . . . , wn, n ≥ 3,
and let z ∈ Ω . The functions λi : Ω → R, i = 1, . . . , n, are called barycentric coordinates for z, if they satisfy the three
properties of positivity, convexity, and interpolation:

(a) λi(z) ≥ 0, i = 1, . . . , n, (b)
n

i=1

λi(z) = 1, (c)
n

i=1

λi(z)wi = z. (3.1)

In the special case of n = 3, barycentric coordinates are unique and are called triangular coordinates. For n ≥ 4, there is
no unique choice of barycentric coordinates. In the context of interest to us, we have n = 4, z = 0, and we seek λi(0) to be
smoothly varying functions of the vertices w1, . . . , w4.

Even though barycentric coordinates are not unique for n ≥ 4, they share some general properties that follow from the
three defining axioms (3.1). In particular, they satisfy the Lagrange property λi(wj) = δij, and they are linear along each
edge of Ω . To see this, observe that the axioms (3.1) imply linear precision, i.e. for any linear function f one has

n
i=1 λi(z)

f (wi) = f (z).
Below, we will look at three instances of quadrilateral barycentric coordinates of the origin relatively to the polygon of

vertices w1, w2, w4, w3 (in this order). Note that, under nodal attractivity assumption, the origin is inside the polygon.

3.1. Bilinear interpolation

An important choice of barycentric coordinates is based upon bilinear interpolation. In this case, one seeks λ in (3.1) of
the form:

λ =

(1 − α)(1 − β)
(1 − α)β
α(1 − β)

αβ

 , α, β ∈ [0, 1]. (3.2)
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Wewill call λB the choice above. In our context, this choice was first proposed in [9], and then thoroughly investigated and
justified in [2], where it was proven to give a smoothly varying solution λ so that the Filippov sliding vector field in (1.10)
is well defined. (The results in [2] validate this choice under more general attractivity assumptions than just nodal attrac-
tivity.)

Quite clearly, the structure (3.2) derives from the convexity requirement on the solution components,

(λ1 + λ2) + (λ3 + λ4) = (1 − α) + α

= (1 − α)(1 − β) + (1 − α)β + α(1 − γ ) + αγ ,

where α, β, γ ∈ [0, 1], and then λB is obtained by selecting γ = β . This choice can be understood as a (nonlinear) regular-
ization of the system (1.11), as below.

Definition 3.2. Avectorλ ∈ R4 is said to satisfy theB-condition ifλ1λ4 = λ2λ3. Equivalently, lettingR :=

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


,

one has λ⊤Rλ = 0.

Lemma 3.3. A solution λ of (1.11) is λB if and only if it satisfies the B condition.

Proof. It is straightforward from the construction that λB satisfies the B condition. Now, suppose λ verifies the B condition.
Then, let us define

α :=
λ3

λ1 + λ3
, β :=

λ2

λ1 + λ2
.

A trivial computation gives

(1 − α)(1 − β) =
λ1

λ1 + λ3

λ1

λ1 + λ2
=

(λ1)
2

(λ1 + λ2)(λ1 + λ3)
= λ1,

and similarly for the other components. �

This λB can be also obtained by appropriate choices of c in (1.12), and as a mean field solution associated to a special
value of α in the pdf (2.3).

Theorem 3.4. Consider the form (1.12), λ = µ+ cv, where µ is any particular solution of (1.11), v spans kerW, and c ∈ [a, b]
(admissibility interval). Then, the bilinear interpolant solution λB is obtained with c = −

R⊤µR
R⊤vR

, and it is the mean-field solution

associated to the pdf (2.3) with α = γ /(1 − γ ), γ := −
1

b−a


a +

R⊤µR
R⊤vR


.

Proof. Since λB solves (1.11), then R⊤λBR = 0. Therefore, the value of c in (1.12) is c = −
R⊤µR
R⊤vR

.

From (2.4) and the above, we must then have (1 − γ )a + γ b = −
R⊤µR
R⊤vR

. �

Example 3.5. In Example 1.5 with x1 = −0.9 we have

λB =

0.1056
0.6367
0.0367
0.2211

 and fB =


−1.9989

0
0


,

whereas a plot of λB as a function of x1 is shown on the right.
Note that two of the components of λB vanish at ±1.2 (see
Example 1.5).

3.2. Moments solution: mean value coordinates

Another, less transparent, instance of barycentric coordinates is obtained upon selecting the λi’s in such a way that the
totalmoment ofw1, w3 equals the totalmoment ofw2, w4, all takenwith respect to the origin.More precisely, we regularize
(1.11) by adding to it the following condition:

d1λ1 − d2λ2 − d3λ3 + d4λ4 = 0, where di :=


(w1

i )
2 + (w2

i )
2, i = 1, . . . , 4.
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So, we are looking for a solution of the system
w1

1 w1
2 w1

3 w1
4

w2
1 w2

2 w2
3 w2

4

d1 −d2 −d3 d4
1 1 1 1

 λ =

0
0
0
1

 or

 W
d⊤

e⊤

 λ =

0
0
0
1

 . (3.3)

Below, we will show that there is always a unique solution of (3.3), as smooth as W . We will call this solution the moments
solution and label it as λm. As far as we know, this choice of selecting λ in (1.10) is new.

First, we have the following lemma.

Lemma 3.6. Under the nodal attractivity assumptions of Table 1, the matrix
 W
d⊤


has full rank 3, and thus its kernel is

1-dimensional.

Proof. The sign pattern of the above matrix is
+ + − −

+ − + −

+ − − +


.

Then, we claim that any linear combination with coefficients a1, a2 of the first and second rows cannot match the third row.
Obviously, the claim is correct if either of a1 or a2 is 0. Now, if a1, a2 > 0, then d4 cannot be obtained; if a1 > 0, a2 < 0,
then d2 cannot be obtained; if a1 < 0, a2 > 0, then it is d3 that cannot be obtained, and if a1, a2 < 0, then d1 cannot be
obtained. �

To prove that (3.3) gives an admissible solution, it is very convenient to establish the equivalence of (3.3) to the so-called
mean value coordinates introduced by Floater; see [10].

Definition 3.7 (Mean Value Coordinates). Let Ω be a planar polygon of vertices w1, . . . , wn. For x ∈ Ω , let

λi(x) :=
νi(x)
n

j=1
νj(x)

, νi(x) :=

tan


αi−1(x)
2


+ tan


αi(x)
2


∥wi − x∥

, (3.4)

and αi(x) be the angle at x in the triangle [x, wi, wi+1]. Then, the λi(x) are called mean value coordinates of x.

We refer to the cited work of Floater, [10], for a proof that mean value coordinates are well defined for points inside our
polygon. Here, we show that they are equivalent to the moments solution in our context, where we have the polygon of
vertices w1, w2, w4 and w3, and seek mean value coordinates of the origin.

Lemma 3.8. The mean value coordinates satisfy (3.3).

Proof. We already know that the mean value coordinates verify (1.11), so we are left to prove that they fulfill the third
equation of (3.3). But this follows immediately from (3.4), since

d1λ1 − d2λ2 − d3λ3 + d4λ4 = tan
α2

2


+ tan

α1

2


−


tan

α4

2


+ tan

α2

2


−


tan

α1

2


+ tan

α3

2


+


tan

α3

2


+ tan

α4

2


= 0. �

Finally, we have the following.

Theorem 3.9. The mean value coordinates (3.4) are the unique solutions of (3.3). In particular, (3.3) is a nonsingular system.

Proof. FromLemma3.8,we know that themean value coordinates vectorλm is a solution of (3.3),with positive components,
and – in particular – it is a nontrivial solution of

 W
d⊤


λ = 0. Hence, see Lemma 3.6, λm spans the kernel of

 W
d⊤


. Since any

solution µ of (3.3) must satisfy µ ∈ ker
 W

d⊤


, and e⊤µ = 1, then (3.3) has the unique solution λm. �

Remarks 3.10.
(i) An important consequence of the above is that λm is as smooth asW . In fact, λm is a solution of (3.3), which – on account

of Theorem 3.9 – is an invertible linear system, and so its solution is as smooth as the coefficients, that is asW . See also
Example 3.12.

(ii) In light of the above equivalence, we favor implementing the moments method as we proposed in this work, that is
solving (3.3), rather than by forming (3.4). Indeed, in the present context, solving (3.3) is much simpler.
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The following result summarizes the relation between the moments solution, the general form of admissible solution in
(1.12), and the mean field solution associated to a special value of α in the pdf (2.3).

Theorem 3.11. Consider the form (1.12), λ = µ+cv, whereµ is any particular solution of (1.11), v spans kerW, and c ∈ [a, b]

(admissibility interval). Then, the moments solution λm is obtained with c = −
d⊤µ

d⊤v
, where d :=

 d1
−d2
−d3
d4


, in (1.12), and is the

mean-field solution associated to the pdf (2.3) with α = γ /(1 − γ ), γ := −
1

b−a


a +

d⊤µ

d⊤v


.

Proof. Since λm is a solution of (1.11), then d⊤λm = 0. Therefore, the value of c in (1.12) is −
d⊤µ

d⊤v
, as stated.

From (2.4) and the above, we must then have (1 − γ )a + γ b = −
d⊤µ

d⊤v
, from which the result follows. �

Example 3.12. Let us consider Example 1.5, with x1 = −0.9.

In this case we get

λm =

0.0949
0.6431
0.0431
0.2190

 , fm =


−2.0395

0
0


,

whereas a plot of λm in function of x1 is shown on the
right. Note that two of the components of λm vanish at
±1.2 (see Example 1.5).

3.3. Wachspress solution

Another choice of planar barycentric coordinates is due toWachspress (see [10,11]). Rephrased in our context, this gives
an admissible value of λ in (1.11), which we will call λW, defined by the requirement (see Fig. 1):

λi :=
µi
4

i=1
µi

, µ1 :=
cot γ3 + cotβ1

d21
, etc. (3.5)

We refer to the original derivation of Wachspress, [11], for a justification of this choice.

Example 3.13. Let us consider Example 1.5, with x1 = −0.9.

In this case we get

λW =

0.0832
0.6483
0.0506
0.2180

 , fW =


−2.0833

0
0


,

whereas a plot of λW in function of x1 is shown on the right.

We note thatWachspress coordinates extend smoothly beyond the nodal attractivity interval (−1, 1), but the plot of the
third component betrays thatWachspress coordinates are not well definedwhen the origin belongs to a side of the polygon,
a fact already remarked by Floater in [10]. This fact makes λW less appealing than λB and λm beyond the case of nodally
attractive Σ .

3.4. Another geometric solution

A final choice of geometric coordinates is the one based on the construction adopted in [12]. This choice does not generally
give a Filippov solution (that is, it does not select a value of λ in (1.11)), but still selects a value of λ giving a smoothly varying
vector field on Σ . The difference with respect to the standard Filippov choice is that one first projects the vector fields onto
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Fig. 1. Figure for the definition of the Wachspress solution.

the tangent plane at x0 ∈ Σ , then seeks a convex combination of the same. In our notation, calling λP the resulting values
of these convex coefficients, one proceeds as follows.

One seeks a sliding vector field (not necessarily of Filippov type) of the form

fP :=

4
i=1

λivi, vi = fi − N(N⊤N)−1wi, N =

∇h1 ∇h2


.

In its simplest form, in [12], selection of λ was done as follows:

λi =
µi
j

µj
, where µi =


j≠i

a⊤

j wj
j≠i

a⊤

j wj − a⊤

i wi
, i = 1, . . . , 4

a1 =


1
1


, a2 =


−1
1


, a3 =


1

−1


, a4 =


1
1


.

Example 3.14. Let us consider again Example 1.5, with x1 = −0.9.

In this case we get λP =

0.2789
0.2940
0.2021
0.2250


, and fP =


−1.9713

0
0


,

whereas a plot of λP in function of x1 is shown on the
right.

From the above plot, we note that these coordinates extend smoothly beyond the nodal attractivity interval (−1, 1).
However, note that none of the components of λP is 0 at ±1.2 (see Example 1.5). So, although this choice does not generally
give a Filippov sliding vector field, it may be of some (limited) interest in the nodally attractive case.

4. Nodal attractivity and stochastic basis

In this final section, we adopt the rewriting of a Filippov vector field in terms of the sub-sliding vector fields (cf. (2.14)).
Indeed, we can rewrite λ as:

λ = Mq, where q :=


c+

1

c−

1

c+

2

c−

2

 , and M :=

 0 1 − α− 0 1 − β−

1 − α+ 0 0 β−

0 α− 1 − β+ 0
α+ 0 β+ 0

 .

Observe thatM is column stochastic, hence we may call any λ derived from this form a stochastic subsliding solution.
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This implies that we can obtain a solution of (1.11) by solving the following problem:

B


c+

1

c−

1

c+

2

c−

2

 =

0
0
1


, s.t. λ = M


c+

1

c−

1

c+

2

c−

2

 > 0, (4.1)

where B := WM . Moreover, letting for i, j = 1, 2, i < j,Dij := det

wi wj


, then B can be written as

B :=

 0 0 −b13 b14
−b21 b22 0 0
1 1 1 1


,

where

b13 :=
D34

w2
3 − w2

4
, b14 := −

D12

w2
1 − w2

2
, b21 := −

D24

w1
2 − w1

4
, b22 :=

D13

w1
1 − w1

3
.

Under the nodal attractivity assumption, Table 1 assures that these bij’s are positive, so that the sign pattern of B results
0 0 − +

− + 0 0
1 1 1 1


, and obviously rank(B) = 3. So, from (4.1) we have

c+

1 = xb22, c−

1 = xb21, c+

2 = yb14, c−

2 = yb13,

for some x and y such that

(b13 + b14)y + (b21 + b22)x = 1,

and thus, for some γ ∈ R, y =
1−γ

b13+b14
, x =

γ

b21+b22
.

In particular, we can write every solution of (4.1) as

q =



0
0
b14

b13 + b14
b13

b13 + b14

 + γ



b22
b21 + b22

b21
b21 + b22

−
b14

b13 + b14

−
b13

b13 + b14


= (1 − γ )


0
0
b14

b13 + b14
b13

b13 + b14

 + γ


b22

b21 + b22
b21

b21 + b22
0
0

 . (4.2)

Set

s1 :=


0
0
b14

b13 + b14
b13

b13 + b14

 , s2 :=


b22

b21 + b22
b21

b21 + b22
0
0

 ,

then (4.2) rewrites as

q = (1 − γ )s1 + γ s2. (4.3)

Now, let us determine the largest admissibility interval for γ . From (4.3), we have

Mq = Ms1 + γM(s2 − s1). (4.4)

But, both Ms1 and Ms2 are admissible solutions of (1.11), and so M(s2 − s1) belongs to kerW . Therefore, we can use (1.12)
with

µ := Ms1,
v := M(s2 − s1).

From this, we can find the admissibility interval for c: λ = µ + cv, call it (aS, bS), see (1.13). Hence, from (4.4) we get that
γ ∈ (aS, bS) if and only if q as in (4.3) provides a strictly positive solutionMq of (1.11).
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Example 4.1. Consider again Example 1.5, with x1 = −0.9. We have (aS, bS) = (−0.3039 . . . , 1.1144 . . .) and the values
of γ giving all the solutions we have derived so far are:

γB = 0.5944,
γMF = 0.4052,
γmin = 1.8235,
γm = 0.5034,
γmean = 0.2375,
γW = 0.4052,
γP = 1.4690.

Note that γmean = L1 in (2.16). Also, note that γmin and γP produce values outside of the admissibility interval, betraying that
the corresponding approaches either produce Filippov solutions which are not admissible (namely, λmin), or do not produce
Filippov solutions (namely, λP).

5. Conclusions

In this paper we considered several possibilities on how to define a Filippov sliding vector field on a co-dimension 2
singularity surface Σ , intersection on two co-dimension 1 surfaces. As underlying assumption, we considered the case of
nodally attractive Σ .

We broadly classified the various possibilities into two groups: algebraic/analytic and geometric. In the first group, we
considered three possible ways to define a Filippov vector field: a mean-field formulation, two approaches based on min-
imizing the 2-norm, and two different averaging techniques. The mean-field approaches depend on the underlying prob-
ability density function (pdf), and produce a smoothly varying vector field on Σ for an appropriate pdf. The minimization
techniques we considered, in general (even if well defined) fail to produce a smoothly varying Filippov sliding vector field.
The two averaging techniqueswe considered behave very differently: (i) averaging the original dynamics appears to have se-
rious difficulties of convergence and smoothness, (ii) averaging the sub-sliding vector fields, instead, delivers a well defined
selection; however, this specific interpretation appears to be limited to the case of nodally attractive Σ .

The geometric approaches we considered are a generally viable mean to select a Filippov sliding vector field. In particu-
lar, the techniques which can be cast in the framework of ‘‘barycentric coordinates’’ methods deliver a uniquely defined and
smoothly varying vector field on a nodally attractive Σ . Specifically, we reinterpreted a method based on bilinear interpo-
lation, introduced one which we called moments method, and reviewed the Wachspress method. Finally, we also revisited
a method introduced in [12]. Of all of these, the bilinear interpolant and the moments method appear to be the most appro-
priate choices. The bilinear interpolant method has been extensively analyzed in recent works (e.g., see [2,8]), under general
(not only nodal) attractivity assumptions on Σ . The moments method, instead, appear to be new in the present context
(i.e., to define a Filippov sliding vector field);we further proved that thismethod is equivalent to the so-calledmean value co-
ordinateswithwhich namehas been used successfully in the last 10 years in the computer graphics community (see [10,13]).
From the computational point of view, the expense associated with forming the moments and bilinear solution is much the
same: the bulk of it is forming the values wi

j ’s, which is required for both methods; then, for the moments solution, we need
to solve the linear system (3.3), whereas for the bilinear solution we need to solve a quadratic equation.

In futurework, we anticipate considering the extension of themoments’method to the case of generally attractiveΣ (not
just nodally attractive), and we will also attempt interpreting the vector field resulting from the moments method in terms
of the dynamics of a suitably regularized problem (similarly to what is done in [14] for the bilinear interpolant). Finally,
we will look at the case of singularity surface of co-dimension 3, a situation where we are still not aware of any technique
having been proposed that successfully delivers a uniquely defined smooth Filippov vector field, not even in the nodally
attractive case. Ideas based on the mean-field and moments techniques hold promise in this context. In particular, it will be
interesting to see how (and if) the classes of 3-d barycentric coordinates, mean value coordinate, and spherical coordinates,
that have been studied in computer graphics during the last 5 years (see [15,16]), can be used in the case of interest to us.
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Corrigendum

Corrigendum to ‘‘A comparison of Filippov sliding vector
fields in codimension 2’’ [J. Comput. Appl. Math. 262 (2014)
161–179]
Luca Dieci ∗, Fabio Difonzo
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

The authors regret that there was a mistake in the statement of Theorem 3.4. The correction follows.

In the statement and proof of Theorem 3.4, the value of c has to be replaced with

c =
−µ⊤Rv ±


(µ⊤Rv)2 − (µ⊤Rµ)(v⊤Rv)

v⊤Rv
.

We have to take the appropriate ± sign so that c ∈ [a, b]. In particular, if we let p(x) be the polynomial

p(x) := x2v⊤Rv + 2xµ⊤Rv + µ⊤Rµ,

the correct ± sign is the opposite sign of p(a).

This correction impacts also the value of γ in the stated Theorem, and proof, which should be simply given as γ =

−
1

b−a (a − c).

The revised proof is as follows.

Proof. One needs to solve for c from the relation λ⊤

B RλB = 0. This gives the quadratic equation for c:

c2v⊤Rv + 2cµ⊤Rv + µ⊤Rµ = 0,

and the appropriate root is the one identified above. �

The authors would like to apologise for any inconvenience caused by their careless proofreading.
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