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1. Introduction

Our purpose in this paper is to discuss, and compare, several possibilities on how to select a Filippov sliding vector field
on a codimension 2 singularity surface X, which is itself the intersection of two codimension 1 singularity surfaces. We
give a unifying framework within which to compare the various possibilities considered, and we will highlight and clarify
important connections to methods that have proven useful in computer graphics and finite elements techniques.

In this section, we review the basic problem and set up notation. Then, in Sections 2 and 3 we look at different possibilities
for Filippov sliding vector fields. For convenience, we classify different choices as being either analytic-algebraic methods
or geometric methods; the distinction is only for convenience of introducing the methods, but the geometric methods we
consider can in fact be interpreted as special choices of analytic methods. Finally, in Section 4 we see how one may generally
reformulate the problem with respect to sub-sliding vector fields. In Section 5 we give our conclusions.

1.1. The problem and Filippov solutions

We are interested in piecewise smooth differential systems of the following type:

x=fx, f®=fi®,xeR,i=1,...,4, (1.1)
with initial condition x(0) = xo € R;, for some i. Here, the R; C R" are open, disjoint and connected sets, and we may as well
think that R" = |, Ri. Each f; is smooth on R;, i = 1, ..., 4, and we will assume that each f; is actually smooth in an open
neighborhood of the closure of each R;,i = 1, ..., 4. (Strictly speaking, this last assumption may actually be not needed,

but it simplifies some of the later exposition.)
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Table 1

Nodal attractivity.
Component i=1 i=2 i=3 i=4
w,.1 >0 >0 <0 <0
w? >0 <0 >0 <0

1

Clearly, from (1.1), the vector field is not properly defined on the boundaries of the R;’s. We are particularly interested in
analyzing what happens in this case, under the scenario that solution trajectories are attracted towards these boundaries.

1.2. Codimension 1: attractivity, existence and uniqueness

The classical Filippov theory (see [1]) is concerned with the case of two regions separated by a surface X defined as the
0-set of a smooth scalar valued function h:
x=fix), x€R, and Xx=f[H%), X€Ry,

Y ={xeR":h(x) =0}, h:R"— R, (1.2)

where Vh is bounded away from O for all x € X, hence near X. As in [1], we assume that h is a ¢* function, with k > 2.
Finally, without loss of generality, we label R, such that h(x) < 0 for x € Ry, and R, such that h(x) > 0 for x € R,.

The interesting case is when trajectories reach X' from R; (or R;), and one has to decide what happens next. To answer
this question, it is useful to look at the components of the two vector fields f; , orthogonal to X':

_[wi] _ [Vh® i)
w_[w] . [Vh(x)%(x)}’ xe (1.3)

Filippov theory is a first order theory (that is, based on nonvanishing w;, i = 1, 2) providing an answer to this situation. We
call X attractive in finite time if for some positive constant c, we have

Vhx)"fi(x) >c>0 and Vhx)  fr(x) < —c <0,

for x € X. In this case, trajectories starting near X must reach it and remain there: sliding motion. Filippov proposal is to
take as sliding vector field on X' a convex combination of f; and f5, fr := (1 — «)f; + af>, with o chosen so that fr € Ts (fr
is tangent to X' ateachx € X):

_ Vh(x)" f1(x)
o = .
Vh(x)"fi(x) — Vh(x)"f,(%)

X =1 —a)f +af, (1.4)

1.3. Codimension 2: nodal attractivity

As we said, we are concerned with (1.1), where now the R;’s are (locally) separated by two intersecting smooth surfaces
of co-dimension 1, ¥y = {x : hy(x) = 0} and X, = {x : h(x) = 0}, and we have X = X; N X,. As before, we will assume
that Vhi(x) # 0,x € Xy, Vha(x) # 0,x € X5, that hy , are C¥ functions, with k > 2, and further that Vh;(x) and Vh;(x)
are linearly independent for x on (and in a neighborhood of) X.

We have four different regions Ry, R, R3 and R4 with the four different vector fields f;,i = 1, ..., 4, in these regions:

x=fi(x), xeR,i=1,...,4. (1.5)
Without loss of generality, we can label the regions as follows:

R12f1 WhCl’lh] <0, h2<0, Rz:fz whenhl <0, h2>0,

1.6

R3If3 Whenh1 >0, hz <0, R4Zf4 Whenhl >0, hz > 0. ( )
We further let (cf. with (1.3))

wi = Vh{fi, w, = Vh!f, wy = Vh{ fs, w, = Vh!fa, (17)

wi =Vhifi, wi=Vhif, wi=Vhfs, wi=Vhfs,

and restrict to the case of ¥ being nodally attractive, a condition characterized by the constraints on the sign of w' and w?
expressed in Table 1, which are assumed to be valid on X and near it (uniformly away from 0).

According to the present setup, when x is near X', a trajectory through x will be attracted to X', and - upon reaching it -
will be forced to remain on it (sliding motion).

Remark 1.1. Nodal attractivity of X is just one of several different sufficient conditions under which X will attract nearby
trajectories. Arguably, nodal attractivity is the simplest of all these sufficient conditions and it serves as a fundamental
benchmark to evaluate different means for obtaining a sliding vector field on X'. A more comprehensive classification of
attractivity conditions for X' is in [2], and we are currently investigating the behavior of some of the methods examined
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herein under these more exhaustive attractivity conditions. For completeness, we also note that the case in which X' does
not attract nearby trajectories is of more limited interest.

Even under nodal attractivity, it is to be expected that a trajectory will typically first reach one of X'y or X, and then slide
on it towards X'. (Of course, a trajectory may hit X' directly, without first reaching one of ¥ , and sliding on it towards X,
but this is a measure 0 set of initial conditions.) For completeness, and later use, below we define these sub-sliding vector
fields.

Let Eli = {x : hi(x) = 0, hy(x) = 0}, and similarly 223‘. So, when x is on X'y ; (but not on the intersection X'), we have
the following four sub-sliding vector fields, defined as in Section 1.2:

fer@ = —a b +a™fa,  fr(0=1-afi +ah,

+ + - - (1.8)
for @ =0 =B+ p"fas  for 0 :=Q0=FDN+B Lo
Note that - under the assumptions of nodal attractivity of Table 1 - these vector fields are well defined, with
1 1
+._ W -_ W
o .—wl_w], o .——wl_wl,
2 4 1 3
w? w? (1.9)
pr=—"—. p=—
w3 — Wy wi] — W,

The difficulty is how to properly define sliding motion on X' = X N X,.

We will still consider the Filippov convexification method to define the vector field on X', whereby considering a vector
field on X' defined as a convex combination of the vector fields fi, . . ., f4, and such that it lies on the tangent plane to X', Ty,
for any x € X. That is, we will restrict to vector fields of the form

4
fr = Afi + Aofo 4+ Aafs 4+ Aafa, A>0,i=1,...,4, Z)»1=1,
i1

(1.10)
Vh{fr = Vh fr = 0.
Adopting our previous notation, we thus have to solve the problem (for x € X):
0 M wi v} owow)
Wi = |:0i| where A = )é cand W = [ w? w? w? wil, (1.11)
1 v 11 1 1

and we will call a solution A of (1.11) admissible if A > 0.

Clearly, (1.11) is an underdetermined linear system, reflecting the fact that the mere requirement of fr being on T, is not
sufficient to uniquely characterize a convex combination of the four vector fields fi, . . ., f4. This is precisely our concern in
this paper: how can one properly define fr, under the conditions expressed by Table 1. Our specific interest will be to select
a Filippov sliding vector field that varies smoothly with respect tox € X.

1.4. Framework

To begin with, we have the following result on the matrix W. Note that W depends smoothly on x € X, say it is a G
function of x, k > 1, since each of the f's(j =1, ...,4)and hy’s (i = 1, 2) are.

Lemma 1.2. For x € X, consider the matrix valued function W of (1.11), under the sign constraints of Table 1. Then, W has
constant rank equal to 3, for any x € X. Moreover, ker(W) is spanned by a unit vector of class C.

Proof. Suppose W does not have rank 3. Then, there are two columns of W that can be written as a linear combination of the
+ + - -

other two. But recall that W has the form [+ -+ —]. Therefore, trivially in no case two columns of W can be given as a
11 1 1

linear combination of any of the other two columns. In particular, it follows that the matrix W has a one-dimensional kernel.
As a consequence, the function W W - which takes values in R*** - depends smoothly on x, and has one eigenvalue

equal to 0 and three eigenvalues not 0. But, since this is a Hermitian function of constant rank 3, then (e.g., see [3]) there

exists a smoothly varying orthogonal function U: UT(WTW)U = [1(\;1 g], where the eigenvalues of the (3 x 3) function M

are not 0. In particular, calling v the last column of U, ker(W) = span(v), as claimed. O

Remark 1.3. In practice, we will have that along a smooth trajectory on X during sliding motion, W will effectively be a
smooth function of one real parameter (time).
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Based upon Lemma 1.2, and under the assumptions therein, we will thus have that all solutions of (1.11) can be once and
for all written as

A=u—+cv, (1.12)

where v (which we may, but do not have to, also take of unit length) smoothly spans ker(W), w is any particular solution
of (1.11), not necessarily admissible, and ¢ € R will need to be chosen so that A in (1.12) is admissible (i.e., each of its com-
ponent be nonnegative). Observe that, because of Table 1, v must have some positive and some negative components, and
thus the admissibility interval for c in (1.12) is ¢ € [a, b], where

a:=max{—&: vi>0}, b:=min{—&:vi<0}, (1.13)
V; Vi
where we remark that the values of a, b, depend both on w and v, and of course in general on the pointx € X.

In the next sections, we will focus on different ways to choose A in (1.12), and we will further relate the various choices to
each other. As already remarked, our emphasis will be to have methods which produce a smoothly varying solution vector A.

Remark 1.4. In (1.12), u can be chosen in any way we want, regardless of providing an admissible (or smooth) solution of
(1.11); for example, we can select u to be the solution of (1.11) of minimal 2-norm (see Section 2.2.1). In general, also v can
be any vector spanning ker(W), though here below we will always assume that it be smooth in x € X. Therefore, to obtain
a smoothly varying A from (1.12), it will be crucial to appropriately select c there.

Example 1.5 (A Model Example). To compare the various techniques we review/introduce, we will use the following
example, which is sufficiently simple to allow hand calculations, yet rich enough to illustrate all desired features.
We take the following vector fields f;, i = 1, 2, 3, 4, taking values in R>:

2X1 —+ 1 2X] —1
fix) = | —x1 + x2x3 + 1:| , X€ERy, Hx) = |:—x1 + X3 — 1:| , XE€Ry,
X1 +x2+1 X1+ Xox3 4+ 2
2x1 — 3 2x1 + 2
f3(X) = | —X1+Xx3 + 2j| , X€ER;3, f4(X) = |:—X1 + X3 — 2j| , X € Ry,
| X1+ X2x3 — 1 X1+ X3 — 2

where the regions R;’s are as in (1.6) and
hl(X) = X3, hz(X) = X3.
0 0
Therefore, ¥ = {x € R : x, = x3 = 0}, we have the two unit normals n; (x) = [0} , X € Xq,ny(x) = [1} , x € Xy, and
1 0
we can write the matrix W for x € X as:

x1+1 X1+ 2 x1—1 X1 —2
W(X) =|—-x1+1 —x1—-1 —x+2 —x1—-2/.
1 1 1 1

(1.14)

Observe that the sign pattern of Table 1 for nodal attractivity holds for x; € (—1, 1). At the same time, we also note that the
more comprehensive attractivity conditions of [2] hold also outside of this interval, namely for |x;| < 1.2, and that when
x1 = *1.2 the exit conditions of [2] hold, X' is no longer attractive, and one should exit X by sliding on X'q, respectively
X’5. 0On account of this, we would surely value any technique able to provide smoothly varying solutions A for all |x{] < 1.2,
relatively to the present example, and further one which when x; = £1.2 renders two coefficients in A equal to 0. As we
will see below, there are not many such choices.

Finally, one can easily obtain the general form of the admis-
sible solutions (1.12), for example written as

22y 5

3 9 —5
0 1

A= 2 +c , (1.15)

Zx 1
3 1

1 1 __

- — =X

3 9 1] 3

L L. . . Admissible region (x1, ¢) in (1.15).
which is admissible for (xq, ¢) in the shaded region shown on

the right.
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2. Analytic-algebraic methods

Here we introduce some techniques to select A in (1.12). As far as we know, the construction behind the method(s) of
Section 2.1 is new. The idea of Section 2.2.1 is patterned on general minimum variation principles, and the second method in
that section is already in [4]. Finally, the techniques examined in Section 2.3 are patterned after a successful interpretation
of the Filippov sliding vector field in co-dimension 1.

2.1. Mean field methods

Given the form of (1.12), and the restriction on c given by (1.13), we define a uniform mean field method by selecting ¢
to be the midpoint of [a, b] (recall that a and b depend on i, v,and x € X):
a+b

2
Note that, in (2.1), we are taking the expected value of the random variable = according to the uniform distribution over
[a, b]. This suggests a useful generalization, based on the following definition.

AMF =u-+ v. (21)

Definition 2.1 (Mean Field Methods). Let u be a particular solution of (1.11), and v be also given. Assume that the random
variable = obeys a probability distribution over [a, b], with pdf (probability density function) g(&). Then, we define the
family of mean field methods according to

b b
c = / Eg(€)dé and g = p+ (/ £g(&) dé) v. (2.2)

We have the following result, telling us that the (pointwise) value of A, is independent of .
Lemma 2.2. For given v, the value of g in (2.2) is independent of the particular solution w. Moreover, choosing ¢ and Ag as
in (2.2) always gives an admissible solution.

Proof. Suppose that we have chosen c as in (2.2) for a given u, and let 1z be another solution of (1.11), giving admissibility
interval ¢ e [a, b].
Then, there exists a value t € [a, b] such that ;t = p + Tv. But

A+cv>0eu+C+t)v>0&C+rela,bleCela—1,b—1].

In particular, [@ 3] and [a, b] have the same length. From this, it follows that if £ has pdf g(§) over [a, b], then E will have
pdfg() :=g( +1),& €[d,b] = [a — 1, b — ]. Therefore, by (2.2),

b—rt b—t
% ﬁ+<[ SE(S)dé>v=ﬁ+</ Sg(é+r)dr§>v

b b b
ﬁ+</ («S—r)g(é)d$>v=ﬁ+</ ce@)ds —c [ g@)ds)v
b b
zﬁ—rv+(/ Sg(é)dé)vzwr(f Sg@)ds)vzxg.

Finally, that choosing ¢ and A, as in (2.2) produces an admissible solution is clear. O

The following example shows that, in general, Ayr (i.e., where the probability distribution function is the uniform
distribution), although obviously admissible, and trivially continuous in case w is, is not as smooth as W.

Example 2.3. Let us refer to Example 1.5. By the configuration of this problem, it is easy to obtain

1x ! ifx; € 6 0
a) +bx) |6 15 ! 57|
2 I I 1 6
—x; — —, Iifxye|0,-],
18 15 5

which gives Ay not differentiable at x; = 0, whereas W is analyticinx;. O

So, it is natural to ask: “How can we choose a distribution function g in order to make A, in (2.2) as smooth as W?”
We propose to consider the following family of distribution functions:
a —a)*!
ga(%_) = %‘ € [av b]» o€ (07 +OO) (23)
(b—a)*
This family of pdf's belongs to the Beta distribution family with parameters («, 1), and we restrict to this family of pdf’s
because of their natural formulation on compact intervals.
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For (2.3), we have

b b
g >0, / ga(E)dE = 1, / Ega(E)dE —

from which c in (2.2) is given by

a-+ «
a+1 14+«

’

c=0—-y)a+yb, y= (2.4)

a+1’
that is, for every o € (0, 4+00), the expectation of the random variable & with measure g, (£) is the convex combination of
a, b with weights 1, ;.

Although not necessarily any choice of « in (2.3) gives an admissible solution as smooth as W (e.g., taking « = 1 gives
Amr), we will see in Section 3 that in fact it is possible to choose « to obtain a smoothly varying, admissible, A.

2.2. Minimum norm

Here we look at two very natural approaches: to choose the Filippov sliding vector field fr in such a way to minimize || A||,
or to minimize ||f|| directly. Below, the norm is the 2-norm.

2.2.1. Minimizing A

Here we seek the minimum norm solution of (1.11).

Without directly imposing the positivity constraints, it is simple to obtain the minimum 2-norm solution; e.g., by using
the SVD (singular value decomposition) of W: W = USV ", where U € R3*3 and V € R**4 are orthogonal and § = [¥, 0]
with ¥ = diag(o;,i =1, 2, 3) (note, g; #~ 0):

di/o 0
R _ dZ/UZ d _ UT 0
)"mm - Vyv y - d3/0.3 ) - 1 k)
0
which can also be rewritten from the form (1.12) as
Amin == (I —vv ). (2.5)

It is easy to realize that A, is as smooth as W.! However, it is equally simple to realize that in general this solution may
not be admissible (i.e., it is not generally true that A, > 0). R

Using again the structure (1.12), the min 2-norm admissible solution, Amin, is simply given by A i, above if A, is admis-
sible, and by whichever of ;© 4+ av or p + bv gives minimum 2-norm otherwise. Unfortunately, now A, may fail to vary
smoothly.

Example 2.4. Take Example 1.5, at x; = —0.9.

- 0.4 1

4
11 0.3
2 _ . . 0s
Then, Apin = 1 which is clearly not admissible. In this 0.2
"0 0.1 0
1 0 -0.5
4 -2 -1 0 1 2 -2 -1 0 1 2
case, the admissible solution of minimum 2-norm is Anin = o8 02
1 ) }
g 0.6 0.26
3 —1.7667 0.4 0.24
5 |, with fnin = 0 . (Coincidentally, these corre- 0.2 0.22
0 0 0 02
7 -0.2 0.18
- -2 -1 0 1 2 -2 -1 0 1 2
30

spond to Aave and fyve as in Example 2.11.) However, as can be

- " : /Xmm components for Example 1.5.
seen in the figure on the right, A, is not as smooth as W.

2.2.2. Minimizing f [Minimum Variation]
This approach was already suggested in [4]. The goal is to find f as in (1.10) of minimal norm. That is, one solves

0
min ||f||?, subjectto WA = [0} )
1

T Use the argument in the proof of Lemma 1.2.
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Writing A = @ + cv asin (1.12), we have to determine the minimum of

4 4
IE.|I? + 2cF, F, + c*|F, 1>, whereF, = Y uifi, Fy = vifi
i=1 i=1
-
The minimum is attained for c = — ﬁ’F‘ j’; , and so the vector field afforded by this approach is
F, ET
fuv :=F (1—— v )F , (2.6)
a I IE "
which can be fit into the class of vector fields (1.10) by taking
FTF
)"MV =u—- ° UZ'U. (27)
IFol

Unfortunately, this approach is also affected by similar limitations as those encountered for A;,. To be precise, now it may
happen that fyy is not a Filippov vector field (in the sense that Ayy in (2.7) is not admissible), and by restricting the mini-
mization search so that Ayy is admissible may render a non-smooth fyy.

Example 2.5. Consider again Example 1.5. Here, the resulting fyy = 0.

0.8 0.4
0.6 03
0.4
0.2
0.2
0 0.1
Looking at the Ay components on the right, we notice 0, % o i
that they are smooth, but not always positive for x; €
(_1 1). 1 0.35
0.3
0.5
0.25
0
0.2
-0.5
. . e . . . . -2 -1 0 1 2 -2 -1 0 1 2
By imposing positivity constraints, that is solving
0
min ||f||?, subjecttoWr =|0|, x>0, (2.8)
1
we highlight in the figures below how this generally produces a lack of smoothness in A and a resulting lack of smoothness
inf.
0.6 0.8
0.4 0.6
0.2 0.4 o
0 0.2 °
-0.2 0
-2 -1 0 1 2 -2 -1 0 1 2 -1
08 03 o
0.6 -
04 0.25 s
02 0.2 Sis -1 05 0 0.5 1 1.5
0 . o .
o2 First component of f relatively to (2.8).
-2 -1 0 1 2 -2 -1 0 1 2

Components of A for (2.8).

For completeness, we remark that - in general - it is not true that fy;y = 0 even without imposing the admissibility
constraints.

Remark 2.6. Whereas it is surely possible to select a different norm, rather than the 2-norm we have chosen, it is not clear
to us how “a-priori” one may choose a norm so to obtain a smoothly varying admissible solution through the above mini-
mization processes.
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2.3. Averaging

Here we attempt to indirectly define a Filippov sliding vector field by averaging the dynamics near X' in a similar way to
what has proven to be successful in the case of sliding motion on a co-dimension 1 surface.

We recall that when X' has co-dimension 1, a simple averaging process of the Euler discretization method converges to
the Filippov sliding vector field in (1.4). In that case, the idea seems to have been originally introduced by Utkin in [5] (see
also [6,7] for added generality). The idea is simple, but we need to re-interpret it appropriately in order to appreciate how
we may extend it.

Let xg € X, let n(xp) be the (unit) normal to X at xq and represent points in a §-neighborhood of x, of base point x (i.e.,
whose orthogonal projection is xg), as {x € R" : x = xy + n(xg)c(x)}, where the scalar valued function c(x) represent the
distance along the normal direction, hence c(x) = h(x). This way we can define a strip € of width 26 around X

Now, suppose we have fields f; and f;, defined on and around X. Take a point X0 € R;, of base point x, € ¥, such that
h(x©) = —§, and consider the value given by a Euler step, xV = x@ 4+1.f; (x(@), with 7, chosen so that x" isin R, and h(x")
= & (this is always possible, given that hlf; > 0). From xV, we take another Euler step, x® = xV + 7;f,(xV), with 7y so
that x? € Ry and h(x®) = —8. Now consider (x® — x@) /(g + 11) = —=h x©) 4+ e (x). A standard calculation
(e.g., see [6]) gives that

lim(¢® —x®) /(0 + 71) = afi (x0) + (1 = @) x0).

a = h' (xo)f1 (%0)/ (h (x0)) (fi (X0) — f2(X0)),
thatis (1.4).

Remarks 2.7.

(i) We note that this averaging process is logically one-dimensional, since the iterates are effectively controlled by the
scalar values h(x), rather than just by x.
(ii) We also note that the limiting value is the same for any point at distance § from X, relatively to the same base point
Xo € X.In other words, we could have started just as well from the point xo + n(xp)é.
(iii) Finally, we stress that the process is (and must be) stopped after two Euler steps.

X (Tp
o e h(x0)=5 :
We can visualize this process as if it is taking place on *
an interval of length 24 for the h-axis around the origin Tof (xp) T (x,(Ty) |20
. h(x)=0
(h = 0), and we bounce from one end of the interval to
the other. See the figure on the right. 5
h(x)=—"

X, (1)

In co-dimension 2, we attempt to generalize the above approach by working with the Euclidean distance. So, we consider
a “cylinder-like” region € surrounding X (which serves as the “axis” of the cylinder) and “radius” §, as defined by the
requirement that

X€C & [h®|? = (h(x)* + (ha(x))* = §°.

It will be useful to better explain the structure of € by considering points within distance § from a base point xo € X. In
other words, if N(xo) = [n, ny ], represent the matrix of the unit normals at X, € X, we will have x = xy + N(xo)c(x), and

Ix — xo||*> < 2. Hence, all points in € (hence, at distance § from X), of same base point (orthogonal projection)x, € X, will
belong to a section Rs(xg) of G, for which we will have

¢ = 8(NT(xo)N(xp)) " [‘;’jg} , fes. (2.9)

Through (2.9), we can thus bijectively map all points in € of same base point X, to points on the unit circle, i.e., to angles 6.
(Note that, in general, the neighborhood is ellipsoidal.)

Example 2.8. Consider Example 1.5. Here, X' is a plane, and the two normals are n; = e; and n, = e,. From (2.9) we get

sin6
the angle 6, and the vector fields, evaluated on €, assume the form

c=9$§ [COSG], that is a circular neighborhood. All points in € are distinguished by the value of the first component x;, and by

2%x1+ 1 2%x1 — 1
fix) =| —x;+1+8%cos@sind |, fix)=| —x —1+38sinf
X1+ 1+8cosé X1+ 2+ 82cos6sind
2%1—3 2x1 + 2
frx) = —X1+2+8cosf |, fa(x) = |:—x1 —2+94 sin9i| .
X1 — 1+ 8%cos@sind Xy —2+8sin6
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With the above in mind, we will now distinguish between two different averaging processes: (i) averaging the dynamics
induced by the original vector fields f; » 3 4, or (ii) averaging the dynamics induced by the sub-sliding vector fields of (1.8),

+
ffl.z'

2.3.1. Averaging original dynamics
Here we look at the dynamics of the Euler map under the original vector fields, by requiring successive iterates to remain
in C.
We generate points on C by the following iterative process.
Algorithm 1.
(i) Givena pointx©@ e @, letx©® e R;, (one of the regions Ry, Ry, R3, R4) and let f;, be the corresponding vector field. Then,

take a Euler step with stepsize tq so that the value
XD = x© 4 Tofiy x©) (2.10)

is also in € (see Lemma 2.9). (In the (measure 0) eventuality that xX¥ or one of the iterates below is on X; or X, we
modify this construction by taking the Filippov sliding vector field f; , on these co-dimension 1 surfaces.)
(ii) Repeat this process. Thatis, fork =0, 1,2, ..., let ’

KD =x0 0y ), 7 R = 6. (2.11)

Lemma 2.9. Let the assumptions on X' of Table 1 hold. Then, for given § > 0, the above iteration (2.11) is well defined. That is,
there exists a unique 7, > 0in (2.11).

Proof. We consider the first step, assuming that x) is not on either of X, X,. The other steps, as well as the case of x© e
X1, are handled similarly. We have ||h(x?)||? = §2, and seek 7o such that ||h(x")||> = §2. From Taylor expansion with
remainder in the Lagrange form, we have

hxV) = h(x?) + ©Vh (n0)fi,10),  (m0)j € [ ), ™). j=1,....n.
Now, requiring h(x")Th(x(V) = §2, gives 1o = 0, which is unacceptable, or
hT (X[ VR (10)fiy (10) ]

O T TR ofy i 2

which is strictly positive on account of Table 1 and of the labeling of the regions Ry, ...,Rs. O

It is insightful to visualize this iterative process as if we
bounce from point to point on a circle of radius § around
the origin by taking Euler steps of appropriate stepsizes;
see the figure on the right.

In order to obtain an average vector field from the above iteration, we now collect together in four different groups all
stepsizes generated in (2.11) above, according to which one is the vector field for which they are being Euler steps. That is,
from (2.11) we will call 7, = ‘L’k(l). if fi, = f1, and similarly for ‘L'k(z), t,§3), 7,'k(4), with the obvious modification required if we

are using one of the fxi] ,- It must be appreciated that the values of the ;’s depend on §.

Suppose? that the trajectory generated by x© is periodic in the angle 6; that is, suppose that we generate iterates whose
associated angles satisfy 6(x©), 8(x), ..., 8(x"N0) = 6(x(?), and note that N itself generally may depend on §. Under
this situation, it is reasonable to consider the following quantity:

No—1 .
> o
k
k=0
No—1

D T
k=0

, i=1,2,3,4. (2.12)

M 8) ==

2 we conjecture that, for fixed § > 0, and constant vector fields, this supposition is correct, but lack a complete proof of this fact; based on what follows,
we lack motivation to embark in such possible proof.



170 L. Dieci, F. Difonzo / Journal of Computational and Applied Mathematics 262 (2014) 161-179

Note that this would give an admissible solution. But, as we said, we need the orbits to be periodic. Moreover, we must
demand that (2.12) has alimit as § — 0, a property which is not clear at all if it is true. In fact, both periodicity and existence
of the limit are quite hard to prove in general and/or to verify in a practical problem. Furthermore, as we see in Example 2.10,
even if the orbit is periodic and the limit exists, in general the value of points in € with same projection x, € X differs. As
a consequence, this averaging technique turns out to be unsatisfactory as a way to define a Filippov sliding vector field. We
say this because an obvious requirement of this way of proceeding must be that the limiting values of A,.(x?, 8) be the
same for all x©' e Rs(xo).

Example 2.10. Consider Example 1.5, with x; = 0.5 there; so, we let x, = (0.5, 0, 0) € X'. We take two different points in
Rs(xp), namely (see Example 2.8) corresponding to: (a) 8 = eps, and (b) & = 0.7815 (here, eps is the machine precision,
and eps ~ 2.2204e — 016). In these cases, the generated orbits are periodic and for A,y given in (2.12) the limiting values
as 6 — 0 exist and give:

0 0.3889
0.2333 0
@ 1ose67 | ® [03333]"
0.2000 0.2778

with average periods of 95.2704 and 96.2323 respectively.

To move out of the impasse above, we also considered a second averaging process, over the angle 9, for all points with
same base point on X. That is, calling x(6) the points in ¢ with same base point Xy, and subject to the same limitations
previously mentioned on the proper definition of A,y (x(6)), we considered the following quantity,

2w

which - as long as it is well defined - is surely giving an admissible solution, identical for all points in ¢ with same base
point xg. Alas, even when well defined, the above turns out to be unsatisfactory.

21
Aave(X0) = i/ Aave(x(0)) d6, (2.13)
0

Example 2.11. Let us refer again to Example 1.5, with x; = —0.9.

17667 0.1667
In this case we obtain fye = |: 0 } and Aye = |:0‘6800], 9 "
0 0.2333

which is surely admissible. But, as the figure on the right
exemplifies, this A, solution is clearly not differentiable in x4,
despite W being analytic in it. As a consequence, this possible
way to interpret how to select a Filippov sliding vector field
does not appear to be a viable choice.

2.3.2. Averaging sub-sliding dynamics

In the nodally attractive case considered in this work, we can take also an alternative point of view in order to build an
average sliding vector field. As before, we consider the 2-norm to define the cylinder € around X, of radius 4.

The point of the construction below is to realize that — because of nodal attractivity - a trajectory of the dynamical system
(1.1) starting at a point in € will typically hit one of the sub-sliding surfaces Eﬁz before reaching X itself. This allows us to
effectively reduce the dimensionality of the averaging process, by looking at the points in € which end up first on one of
Efz. At that point, the averaging process will be the same as we had in co-dimension 1.

Recalling (1.8)-(1.9), we will look for a sliding vector field on X of the following form

f=cofer +oife + G sy + 6 fxo (2.14)

To understand how to select the coefficients c;",, we reason as follows.

Let xo € X be given, and consider the §-section Rs(xp) in ©, defined as before; see (2.9). For fixed value of §, consider
the Euler segments starting at a point xX® € Rs(xo), defined so to remain in €, but monitoring the first time that any such
segment crosses one of the X7",. In other words, we define (see (2.10)) xV(t) = x©@ + 7, (x), T < 1o; if this segment
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reaches € without first having crossed one of the Efz, then we take T = 7 as in (2.10), and continue by taking Euler seg-
ments (see (2.11)) to generate XXV () = x® + ¢f, (xV), T < 74, until the first time one of these segments crosses one

of the Z‘fz. (The probability 0 eventuality that one of these segments first reaches X' directly is presently ignored, and see
Remarks 2.12-(i).) It is quite easy to see that, because of nodal attractivity, for any starting point in Rs(xg) there is a first
Euler segment crossing one of Z‘fz. We stress that this process generally depends on §.

By doing what described above, and recalling the form of Rs (x,), we effectively obtain a partition of S', that is of [0, 27],
into arcs: an angle from each of these arcs is associated to whichever sub-surface Efz is reached first by the Euler segments
starting from that angle in Rs(xg). So, for given §, we will have four arc-lengths, which we call 91%2; eg., 91+ is the length of the
arc of S’ whose associated points have a Euler segment first reaching X, etc. Again, let us stress that these 91{[2 generally
depend on §.

Now, as soon as one of the sub-surfaces Eli,z is reached by a Euler segment, we reduce the dimensionality of the process
and go back to the case of co-dimension 1. For example, suppose that for a certain angle 9, the Euler iterates starting with
x© € Rs(xo) reach X" first; then, we restrict consideration to the co-dimension 1 surface X, with Filippov vector fields

given byfg’1 and fy in (1.8)-(1.9); but, in co-dimension 1 the averaging process is well understood, and in this case it will
give a Filippov sliding vector field at x € X. With this, we will now have (all quantities below generally depend on §)

oy =0 - 01)f>;]+ + a1f);;, [z, =0 — az)f;;r + azf;;,
nyfy+ n{ft (2.15)

a, = - 5 a, = . 5
) (fxf _fx;) ny (fz;r _fz;)

Next, we compute the following ratios, defining the percentage of
points in Rs(xo) contributing to fx,, respectively to f,, see the figure
on the right. We make the dependence on § explicit:

0;“(5) + 0, (3)
27 ’

05 (8) + 65 (8)
27 '

L(8) ==
(2.16)

L2 (5) =

o u
¥ L2

Finally, we let § — 0, and propose taking
Ly = lim Ly (6), L, = lim L,(6), (2.17)
§—0 §—0
and from this the overall sliding vector field at xy € X as

fmean = L1f21 + L2f22~
With this rewriting, the coefficients cfz in (2.14) are:

o =L(l—a), ¢ =La, ¢ =L(1-a), ¢ =D>Lao. (2.18)
Therefore, by making definition (2.14) explicit in terms of the f;’s, this “average” solution of (1.11) is
M=oy +(1—=B7)c,

A—a)e +87¢,
amcy + (1= pNe)
atel + BreS

(2.19)

Amean =

Remarks 2.12.

(i) The case in which a Euler segment crosses X directly, ahead of crossing either (but not both) Xy or X, is not a concernin
defining the values in (2.16), and then (2.17), because, for each given §, there are just four angles giving this eventuality.
Hence, they do not contribute to the arc lengths we used.

(i) The limitin (2.17)as § — 0 exists as a consequence of the fact that (for any i = 1, 2, 3, 4) |Ifi(x) — fi(xo)|| is arbitrarily
small for x € Rs(xg).

(iii) In principle, it is possible to attempt averaging for neighborhoods of ¥ defined by norms other than the 2-norm we
used. We made some (limited) experiments also with the co-norm and the 1-norm, and our results were qualitatively
similar to those we reported for the 2-norm.
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Example 2.13. Let us consider again Example 1.5, with x; = —0.9.
0.3 1
0.2 0.8
0.6
]+ 0.1
! 0.1992 0.0636 04
. . ¢ | _ [o0.0383 __|0.6618 0 0.2
In this case we obtain o= |:0.2]79 »and Amean = | 90618 N i
2 0.5446 0.2127 -2 -1 0 1 2 -2 -1 0 1 2
3
1 0.28
—2.1582
and fpean = 0 |, whereas a plot of all components of 08 026
0 0.6 0.24
Amean 1N function of x; is given on the right. 0.4 0.22
0.2 0.2
0 0.18
-2 -1 0 1 2 -2 -1 0 1 2

As the above figure makes clear, the components vary smoothly as long as the nodal attractivity assumptions hold; i.e.,
x1 € (—1, 1). But, they do not extend nicely outside of this interval, a fact which appears to limit this averaging process and
the construction of A s, to purely nodally attractive configurations.

3. Geometric methods

Here we look at techniques which can be naturally framed within the context of rebuilding polygons in the plane, and
finding a representation (i.e., coordinates) for points internal to the polygon in terms of convex combination of the vertices.
As it turns out, these are the most interesting techniques.

So, the idea is to think of the values wj’ i=1,2,j=1,2,3,4,in(1.7) as giving the four different points w; = (wj], wjz),
j=1,2,3,4,then consider the polygon made up by joining the vertices in the following order

I1 .= wiwawaws.

Given our assumptions on the w]’f's, it is easy to realize that the origin is inside the polygon. Thus, our task is to find the
coordinates of the origin with respect to the given vertices.

Although not derived from this interpretation, the technique in [8,2] belongs to this class of methods. The appropriate
framework within which to interpret these techniques, and to derive another very promising one, turns out to be that of
barycentric coordinates, widely used in computer graphics.

Definition 3.1 (Barycentric Coordinates). Let §2 be a closed convex polygon in the plane, with vertices w1, ..., wy, n > 3,
and let z € £2.The functions A; : £ — R,i = 1,...,n, are called barycentric coordinates for z, if they satisfy the three
properties of positivity, convexity, and interpolation:

@riz) >0, i=1,...,n, @)Zpﬂ@=L @)Z)@@W:z (3.1)
i=1 i=1

In the special case of n = 3, barycentric coordinates are unique and are called triangular coordinates. For n > 4, there is
no unique choice of barycentric coordinates. In the context of interest to us, we have n = 4, z = 0, and we seek 1;(0) to be
smoothly varying functions of the vertices w1, ..., w4.

Even though barycentric coordinates are not unique for n > 4, they share some general properties that follow from the
three defining axioms (3.1). In particular, they satisfy the Lagrange property A;(w;) = &, and they are linear along each
edge of £2. To see this, observe that the axioms (3.1) imply linear precision, i.e. for any linear function f one has Z?Zl 1i(2)
fwi) =f(2).

Below, we will look at three instances of quadrilateral barycentric coordinates of the origin relatively to the polygon of
vertices wq, w,, Wy, w3 (in this order). Note that, under nodal attractivity assumption, the origin is inside the polygon.

3.1. Bilinear interpolation

An important choice of barycentric coordinates is based upon bilinear interpolation. In this case, one seeks X in (3.1) of
the form:

(1 —a)(1—8)

_ (1-w)B
r=| asg | «@Belo (3.2)

ap
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We will call Ag the choice above. In our context, this choice was first proposed in [9], and then thoroughly investigated and
justified in [2], where it was proven to give a smoothly varying solution XA so that the Filippov sliding vector field in (1.10)
is well defined. (The results in [2] validate this choice under more general attractivity assumptions than just nodal attrac-
tivity.)

Quite clearly, the structure (3.2) derives from the convexity requirement on the solution components,

M+2)+ A3 +2) =1 —-a)+ao
=1-a)(1-B+A—-a)+a(l—y)+ay,

where «, 8, y € [0, 1], and then A is obtained by selecting y = . This choice can be understood as a (nonlinear) regular-
ization of the system (1.11), as below.

0 0 0 1
Definition 3.2. Avector A € R*issaid to satisfy the B-conditionif A;14 = A,A3.Equivalently, lettingR := |:8 _01 _0] g:| ,
1 0 0 O

one has ATRAL = 0.

Lemma 3.3. A solution A of (1.11) is Ag if and only if it satisfies the B condition.

Proof. It is straightforward from the construction that Ay satisfies the B condition. Now, suppose A verifies the B condition.
Then, let us define

A3 A2
o= , B = .
A+ A3 A+ Ao

A trivial computation gives

A—a)i—py= 2t _ f =
S Mt AsAi Ay A0 +A3)

and similarly for the other components. O

1

This Ag can be also obtained by appropriate choices of ¢ in (1.12), and as a mean field solution associated to a special
value of « in the pdf (2.3).

Theorem 3.4. Consider the form (1.12), . = 1 + cv, where w is any particular solution of (1.11), v spans ker W, and c € [a, b]

(admissibility interval). Then, the bilinear interpolant solution Ay is obtained with c = — 'f;ﬁ}’:, and it is the mean-field solution
associated to the pdf (2.3)witha =y /(1 —y),y = —ﬁ (a + ';Tr’lfg).
Proof. Since Ag solves (1.11), then RT AgR = 0. Therefore, the value of ¢ in (1.12)isc = — 'f;ﬁg.
From (2.4) and the above, we must then have (1 — y)a+ yb = —ﬁ;ﬁg.
Example 3.5. In Example 1.5 with x; = —0.9 we have
0.3 0.8
02 0.6
0.4
0.1
0.2
0.1056 19989 0
e — 0.6367 and fy = 0 0
B = 10.0367 B 0 ’ At 0 1 > % R 2
0.2211
1 0.25
whereas a plot of Ay as a function of x; is shown on the right. 08 0.24
Note that two of the components of Ag vanish at +1.2 (see 06 0.23
Example 1.5). 0.4 0.22
0.2 0.21
92 -1 0 1 2 0'32 -1 0 1 2

3.2. Moments solution: mean value coordinates

Another, less transparent, instance of barycentric coordinates is obtained upon selecting the A;’s in such a way that the
total moment of w4, w3 equals the total moment of w,, w,, all taken with respect to the origin. More precisely, we regularize
(1.11) by adding to it the following condition:

d])\] — dz)\.z — d3)\3 + d4)\.4 =0, where d,’ =4/ (wil)z + (wiz)z, i=1,...,4.
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So, we are looking for a solution of the system

1 1 1 1
w; W, W3 W,

2 2 2 2 0 W 0
Wy Wy Wy Wy, 8 or |d"|x= 8 (3.3)
dl —d2 —d3 d4 1 ET 1

1 1 1 1

Below, we will show that there is always a unique solution of (3.3), as smooth as W. We will call this solution the moments
solution and label it as A,. As far as we know, this choice of selecting A in (1.10) is new.
First, we have the following lemma.

Lemma 3.6. Under the nodal attractivity assumptions of Table 1, the matrix [(‘;Yr] has full rank 3, and thus its kernel is
1-dimensional.

Proof. The sign pattern of the above matrix is

+ + - -
+ - 4+ -
+ - - +

Then, we claim that any linear combination with coefficients ay, a, of the first and second rows cannot match the third row.
Obviously, the claim is correct if either of a; or a, is 0. Now, if a;, a; > 0, then d4 cannot be obtained; ifa; > 0,a, < 0,
then d, cannot be obtained; if a; < 0, a, > 0, then it is d; that cannot be obtained, and if a;, a, < 0, then d; cannot be
obtained. O

To prove that (3.3) gives an admissible solution, it is very convenient to establish the equivalence of (3.3) to the so-called
mean value coordinates introduced by Floater; see [10].

Definition 3.7 (Mean Value Coordinates). Let £2 be a planar polygon of vertices wy, ..., w,. Forx € £, let
0 () ()
ri(x) = ———, viX) = T —xl , (34)
> vi(X) l

j=1
and «;(x) be the angle at x in the triangle [x, w;, w;iy1]. Then, the A;(x) are called mean value coordinates of x.

We refer to the cited work of Floater, [ 10], for a proof that mean value coordinates are well defined for points inside our
polygon. Here, we show that they are equivalent to the moments solution in our context, where we have the polygon of
vertices w1, w, w4 and w3, and seek mean value coordinates of the origin.

Lemma 3.8. The mean value coordinates satisfy (3.3).

Proof. We already know that the mean value coordinates verify (1.11), so we are left to prove that they fulfill the third
equation of (3.3). But this follows immediately from (3.4), since

diA — dyAy — d3hs + dghy = tan (%) + tan (%) - (tan (%) + tan (%)) - (tan (%) 4+ tan (%))
+ (tan (%) + tan (%)) =0. O

Finally, we have the following.

Theorem 3.9. The mean value coordinates (3.4) are the unique solutions of (3.3). In particular, (3.3) is a nonsingular system.
Proof. From Lemma 3.8, we know that the mean value coordinates vector A, is a solution of (3.3), with positive components,
and - in particular - it is a nontrivial solution of [:Yr] A = 0. Hence, see Lemma 3.6, A, spans the kernel of [(‘;Yr] Since any

solution p of (3.3) must satisfy u € ker ([(‘;‘4]) and e’ = 1, then (3.3) has the unique solution Ap,. O

Remarks 3.10.

(i) Animportant consequence of the above is that A, is as smooth as W. In fact, A, is a solution of (3.3), which - on account
of Theorem 3.9 - is an invertible linear system, and so its solution is as smooth as the coefficients, that is as W. See also
Example 3.12.

(i) In light of the above equivalence, we favor implementing the moments method as we proposed in this work, that is
solving (3.3), rather than by forming (3.4). Indeed, in the present context, solving (3.3) is much simpler.
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The following result summarizes the relation between the moments solution, the general form of admissible solution in
(1.12), and the mean field solution associated to a special value of « in the pdf (2.3).

Theorem 3.11. Consider the form (1.12), A = w+cv, where w is any particular solution of (1.11), v spans ker W, and c € [a, b]

di
(admissibility interval). Then, the moments solution A, is obtained with ¢ = —dT—", where d = :dz ,in (1.12), and is the
dTv ds
dy
mean-field solution associated to the pdf (2.3)witha =y /(1 —y),y = —ﬁ <a + %).
Proof. Since A, is a solution of (1.11), then d" A, = 0. Therefore, the value of ¢ in (1.12) is —‘gr—’:, as stated.
From (2.4) and the above, we must then have (1 — y)a + yb = —‘j;—‘:, from which the result follows. O
Example 3.12. Let us consider Example 1.5, with x; = —0.9.
0.4 0.8
0.3 0.6
In this case we get
0.2 0.4
0.0949 20395 0.1 02
0.6431
Am = s fm = 0 P e 1 2 e 1 2
0.0431 0 ° °
0.2190 08 0.26
whereas a plot of A, in function of x; is shown on the 06 024
right. Note that two of the components of A, vanish at 0.4
+1.2 (see Example 1.5). 0z 022
92 -1 0 1 2 o.gg -1 0 1 2

3.3. Wachspress solution

Another choice of planar barycentric coordinates is due to Wachspress (see [10,11]). Rephrased in our context, this gives
an admissible value of A in (1.11), which we will call Ay, defined by the requirement (see Fig. 1):

i cot cot
A= 4”1 R Ui = M etc. (3.5)
dl
Z Mi
i=1

We refer to the original derivation of Wachspress, [11], for a justification of this choice.

Example 3.13. Let us consider Example 1.5, with x; = —0.9.

0.4 0.8
03 0.6
In this case we get 02 04
0.1 0.2
0.0832
A 0.6483 f _28833 92 -1 0 1 2 92 -1 0 1 2
W= 10.0506 |’ w= 0 ’ o .
0.2180
0.6 02
whereas a plot of Ay in function of x; is shown on the right. 0.4
0.2 0.18
0 0.16
2 4 0 1 2 2 4 0 ] 2

We note that Wachspress coordinates extend smoothly beyond the nodal attractivity interval (—1, 1), but the plot of the
third component betrays that Wachspress coordinates are not well defined when the origin belongs to a side of the polygon,
a fact already remarked by Floater in [10]. This fact makes Ay less appealing than Ag and A, beyond the case of nodally
attractive X.

3.4. Another geometric solution

Afinal choice of geometric coordinates is the one based on the construction adopted in [ 12]. This choice does not generally
give a Filippov solution (that is, it does not select a value of A in (1.11)), but still selects a value of A giving a smoothly varying
vector field on X. The difference with respect to the standard Filippov choice is that one first projects the vector fields onto
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Fig. 1. Figure for the definition of the Wachspress solution.

the tangent plane at x, € X, then seeks a convex combination of the same. In our notation, calling Ap the resulting values
of these convex coefficients, one proceeds as follows.
One seeks a sliding vector field (not necessarily of Filippov type) of the form

4
for=Y awi. vi=fi—NN"N)""w, N=[Vh Vhy].
i=1
In its simplest form, in [12], selection of A was done as follows:

-
l_[ Clj Wj
i J# ,
A= Hi ,  where u; = % i=1,...,4
DMy [l w; —a wi
J J#
a; = 1 a, = -1 as = 1 a4 = 1
1= 11 2 — 1 ) 3 = —1l 4 = 11
Example 3.14. Let us consider again Example 1.5, with x; = —0.9.
0.3 0.4
0.29 0.35
0.28 0.3 \
0.27 0.25
g%ig —1.9713
In this case we get Ap = 02021 ,and fp = 0 , 08— 1 = %% o o 1 2
0.2250 0
whereas a plot of Ap in function of x; is shown on the 035 022
right. 03 02
0.25
0.18
0.2
0.16
-2 -1 0 1 2 -2 -1 0 1 2

From the above plot, we note that these coordinates extend smoothly beyond the nodal attractivity interval (—1, 1).
However, note that none of the components of Ap is 0 at 1.2 (see Example 1.5). So, although this choice does not generally
give a Filippov sliding vector field, it may be of some (limited) interest in the nodally attractive case.

4. Nodal attractivity and stochastic basis

In this final section, we adopt the rewriting of a Filippov vector field in terms of the sub-sliding vector fields (cf. (2.14)).
Indeed, we can rewrite A as:

c

+
1 0 1—a” 0 1-8"
c; —at -
A= Mg, whereq:= 1+ , and M := ! Oa aOf 1 _OIBJF '30
2 af 0 B 0
G

Observe that M is column stochastic, hence we may call any A derived from this form a stochastic subsliding solution.
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This implies that we can obtain a solution of (1.11) by solving the following problem:

cf cf
c _ 0 _ (o
B | = O, stA=M L > 0, (4.1)
G 1 G
Y ¢

where B := WM. Moreover, letting fori,j = 1, 2,i < j, D;j := det [w,» wj], then B can be written as
0 0 —biz bu
B = —bz] b22 0 0 s
1 1 1 1

where

D34 D12 D24 D13

biz == S > by == — 2 5 by == — 1 1 by == I _1-
w3 — wy w] — w; Wy — Wy Wy — W,

Under the nodal attractivity assumption, Table 1 assures that these bj;’s are positive, so that the sign pattern of B results
0 0 - +
[— + 0 0:|, and obviously rank(B) = 3. So, from (4.1) we have
11 1 1
¢ = xby, ¢y = xby, ¢y = ybua, C, = Yybys,
for some x and y such that

(b13 + b14)y + (ba1 + bpo)x =1,

_ 1=y _ V4
and thus, .for some y € IR,;{ = pba X = byr+h”
In particular, we can write every solution of (4.1) as
_ by _
B 0 7] bz] + b22 0 b22
0 by 0 ba1 + ba
b4 byt + b bis b1
= ——= |+ =(1- — | + — . 42
k b1z + b1a Y _L ( 7) bi3 + b Y by1 + by (42)
bis biz + bia _ b 0
| by3 + byg b b1z + b1a 0
~ biz+bia-
Set
0 b2y
0 by1 + by
b14 bz]
51 = > . L ) SZ = _—
b13 + bl4 b21 + b22
bis 0
biz + bia 0
then (4.2) rewrites as
g=>0—=y)s1+ys. (4.3)

Now, let us determine the largest admissibility interval for y. From (4.3), we have

Mq = Ms; + yM(sy — s1). (4.4)
But, both Ms; and Ms, are admissible solutions of (1.11), and so M (s, — s;) belongs to ker W. Therefore, we can use (1.12)
with

M = Msq,

v = M(sy — 51).

From this, we can find the admissibility interval for c: A = u + cwv, call it (as, bs), see (1.13). Hence, from (4.4) we get that
y € (as, bs) if and only if q as in (4.3) provides a strictly positive solution Mq of (1.11).
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Example 4.1. Consider again Example 1.5, with x; = —0.9. We have (as, bs) = (—0.3039...,1.1144...) and the values
of y giving all the solutions we have derived so far are:

v = 0.5944,
yvr = 0.4052,
Ymin = 1.8235,
¥m = 0.5034,
Ymean = 0.2375,
yw = 0.4052,
p = 1.4690.

Note that Ymean = L1 in (2.16). Also, note that y,i, and yp produce values outside of the admissibility interval, betraying that
the corresponding approaches either produce Filippov solutions which are not admissible (namely, Ay ), or do not produce
Filippov solutions (namely, Ap).

5. Conclusions

In this paper we considered several possibilities on how to define a Filippov sliding vector field on a co-dimension 2
singularity surface X, intersection on two co-dimension 1 surfaces. As underlying assumption, we considered the case of
nodally attractive X.

We broadly classified the various possibilities into two groups: algebraic/analytic and geometric. In the first group, we
considered three possible ways to define a Filippov vector field: a mean-field formulation, two approaches based on min-
imizing the 2-norm, and two different averaging techniques. The mean-field approaches depend on the underlying prob-
ability density function (pdf), and produce a smoothly varying vector field on X for an appropriate pdf. The minimization
techniques we considered, in general (even if well defined) fail to produce a smoothly varying Filippov sliding vector field.
The two averaging techniques we considered behave very differently: (i) averaging the original dynamics appears to have se-
rious difficulties of convergence and smoothness, (ii) averaging the sub-sliding vector fields, instead, delivers a well defined
selection; however, this specific interpretation appears to be limited to the case of nodally attractive X

The geometric approaches we considered are a generally viable mean to select a Filippov sliding vector field. In particu-
lar, the techniques which can be cast in the framework of “barycentric coordinates” methods deliver a uniquely defined and
smoothly varying vector field on a nodally attractive X. Specifically, we reinterpreted a method based on bilinear interpo-
lation, introduced one which we called moments method, and reviewed the Wachspress method. Finally, we also revisited
amethod introduced in [12]. Of all of these, the bilinear interpolant and the moments method appear to be the most appro-
priate choices. The bilinear interpolant method has been extensively analyzed in recent works (e.g., see [2,8]), under general
(not only nodal) attractivity assumptions on X. The moments method, instead, appear to be new in the present context
(i.e., to define a Filippov sliding vector field); we further proved that this method is equivalent to the so-called mean value co-
ordinates with which name has been used successfully in the last 10 years in the computer graphics community (see [10,13]).
From the computational point of view, the expense associated with forming the moments and bilinear solution is much the
same: the bulk of it is forming the values wi’s, which is required for both methods; then, for the moments solution, we need
to solve the linear system (3.3), whereas for the bilinear solution we need to solve a quadratic equation.

In future work, we anticipate considering the extension of the moments’ method to the case of generally attractive X (not
just nodally attractive), and we will also attempt interpreting the vector field resulting from the moments method in terms
of the dynamics of a suitably regularized problem (similarly to what is done in [14] for the bilinear interpolant). Finally,
we will look at the case of singularity surface of co-dimension 3, a situation where we are still not aware of any technique
having been proposed that successfully delivers a uniquely defined smooth Filippov vector field, not even in the nodally
attractive case. Ideas based on the mean-field and moments techniques hold promise in this context. In particular, it will be
interesting to see how (and if) the classes of 3-d barycentric coordinates, mean value coordinate, and spherical coordinates,
that have been studied in computer graphics during the last 5 years (see [15,16]), can be used in the case of interest to us.
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Corrigendum

Corrigendum to “A comparison of Filippov sliding vector @CmssMark
fields in codimension 2” [J. Comput. Appl. Math. 262 (2014)
161-179]

Luca Dieci*, Fabio Difonzo
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

The authors regret that there was a mistake in the statement of Theorem 3.4. The correction follows.

In the statement and proof of Theorem 3.4, the value of ¢ has to be replaced with
o “HRvE V(TR — (1R (T RY)
vTRy ’

We have to take the appropriate =+ sign so that ¢ € [a, b]. In particular, if we let p(x) be the polynomial

px) = x*v"Rv + 2XpLTRU + /LTR,LL,

the correct = sign is the opposite sign of p(a).

This correction impacts also the value of y in the stated Theorem, and proof, which should be simply given as y =
1
——(a—o).
b—a

The revised proof is as follows.

Proof. One needs to solve for ¢ from the relation kl;rRAB = 0. This gives the quadratic equation for c:
c2v"Rv + ZCMTRU + /,LTR/L =0,

and the appropriate root is the one identified above. O

The authors would like to apologise for any inconvenience caused by their careless proofreading.
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