
Version of Sunday 1st February, 2015, 13:24

THE MOMENTS SLIDING VECTOR FIELD

ON THE INTERSECTION OF TWO MANIFOLDS

LUCA DIECI AND FABIO DIFONZO

Abstract. In this work, we consider a special choice of sliding vector field on the intersection
of two co-dimension 1 manifolds. The proposed vector field, which belongs to the class of
Filippov vector fields, will be called moments vector field and we will call moments trajectory

the associated solution trajectory. Our main result is to show that the moments vector field
is a well defined, and smoothly varying, Filippov sliding vector field on the intersection Σ of
two discontinuity manifolds, under general attractivity conditions of Σ. We also examine the
behavior of the moments trajectory at first order exit points, and show that it exits smoothly
at these points. Numerical experiments illustrate our results and contrast the present choice
with other choices of Filippov sliding vector field.

1. Introduction

Filippov convexification method, [9], is a very powerful technique to deal with piecewise
smooth dynamical systems, and Filippov methodology has proven to be quite valuable in in-
creasing our understanding of the qualitative features of piecewise smooth systems, as well as a
great help in applications (e.g., see [1, 3, 18]).

However, although the case of one manifold of discontinuity separating two different vector
fields is reasonably well understood, the case when the motion has to take place on the intersec-
tion Σ of two discontinuity manifolds (hence, generically, the phase space is –locally– split into
four regions) still presents outstanding conceptual and practical challenges. The main difficulty
is that, in general, there is no uniquely defined Filippov sliding vector field on Σ, and indeed
our main goal in this work is to propose an appropriate choice of a Filippov vector field on such
intersection Σ. We will do so under the assumption that Σ, in an appropriate sense, attracts
nearby trajectories, and we will say that Σ is attractive.

In the remainder of this Introduction, we review the basic problem in which we are interested,
and previous efforts, define what we mean by attractivity of Σ, introduce relevant definitions
and notation, and give some preliminary results that will be useful later.

1.1. The problem and Filippov solutions. We are interested in piecewise smooth differential
systems of the following type:

(1.1) ẋ = f(x) , f(x) = fi(x) , x ∈ Ri , i = 1, . . . , N , t ∈ [0, T ] .

Here, the Ri ⊆ R
n are open, disjoint and connected sets, so that (locally) R

n =
⋃
Ri, and on

each region Ri the function f is given by a smooth vector field fi. Further, the regions Ri’s are
separated by manifolds (and their intersections) defined as 0-sets of smooth (at least C2) scalar
valued functions hi: Σi := {x ∈ R

n : hi(x) = 0}, i = 1, . . . , p (and, for us, 2p = N).
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From (1.1), in general the vector field is not properly defined on the boundaries of the Ri’s,
where a classical solution ceases to exist. A successful definition of generalized solutions for
problems as in (1.1) is due to Filippov, [9]. These are absolute continuous functions x(t), for
t ∈ [0, T ], such that ẋ(t) ∈ F(x(t)) for almost all t ∈ [0, T ], and where F(x) is the convex hull
of the values of f(x) obtained approaching x through a region Ri. Formally:

(1.2) F(x) :=
⋂

δ>0

⋂

µ(S)=0

co {f (B(x, δ)) \ S} ,

µ being Lebesgue measure on R
n. Under mild conditions (boundedness and upper semicontinuity

of F), existence of Filippov solutions is guaranteed, but uniqueness is much more elusive, as it
depends on the interaction of neighboring vector fields on the boundaries of the regions Ri’s.

1.2. Co-dimension 1: attractivity, existence and uniqueness. The basic theory of Filip-
pov (see [9]) covers fully the case of two regions separated by a manifold Σ defined as the 0-set
of a smooth scalar valued function h. One has the following system:

ẋ = f1(x) , x ∈ R1 , and ẋ = f2(x) , x ∈ R2 ,

Σ := {x ∈ R
n : h(x) = 0} , h : R

n → R ,
(1.3)

where h is a Ck function, with k ≥ 2, ∇h is bounded away from 0 for all x ∈ Σ, hence near Σ,
and (without loss of generality) we label R1 such that h(x) < 0 for x ∈ R1, and R2 such that
h(x) > 0 for x ∈ R2.

Remark 1.1. We stress that the direction of time, the time arrow, is crucial. In this work,
we will tacitly assume of proceeding forward in time. For this reason, as we clarify below, and
unlike -say- the case of a boundary value problem, we believe it is important to take into account
the attractivity properties of the discontinuity surface Σ, and to have these reflected into the
behavior of trajectories on/near Σ.

The interesting case is when trajectories reach Σ from R1 (or R2), and one has to decide
what happens next. To answer this question, it is useful to look at the components of the two
vector fields f1,2 orthogonal to Σ:

(1.4) w1 := ∇h(x)⊤f1(x) , w2 := ∇h(x)⊤f2(x) , x ∈ Σ .

Here, Σ is called attractive in finite time if for some positive constant c, we have

(1.5) ∇h(x)⊤f1(x) ≥ c > 0 and ∇h(x)⊤f2(x) ≤ −c < 0 ,

for x ∈ Σ and in a neighborhood of Σ. In this case, trajectories starting near Σ must reach it,
transversally, and remain there, giving rise to so-called sliding motion. A vector field associated
to sliding motion is called sliding vector field. Filippov proposal (see (1.2)) is to take as sliding
vector field on Σ a convex combination of f1 and f2, fF := (1 − α)f1 + αf2, with α chosen so
that fF ∈ TΣ (fF is tangent to Σ at each x ∈ Σ):

(1.6) ẋ = (1− α)f1 + αf2 , α =
∇h(x)⊤f1(x)

∇h(x)⊤
(
f1(x) − f2(x)

) .

At the same time, Filippov theory also provides first order exit conditions : whenever α = 0,
respectively α = 1, one may expect to leave Σ to enter in R1 with vector field f1, respectively
enter R2 with vector field f2. [In other words, if the sliding vector field has aligned with either
–but not both– f1 or f2, then generically (for smooth f1, f2) we expect to leave Σ as above].

We note that, during sliding motion, the right-hand side of (1.6) is a smooth vector field.
This allows to study the dynamics during sliding motion using classical tools from the theory of
dynamical systems with smooth vector fields; in particular, stability and bifurcation studies for
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equilibria on Σ, and for periodic orbits that may lie at least partly on Σ, have been extensively
studied (e.g., see [3]). �

1.3. Co-dimension 2: general attractivity by subsliding. Our specific interest in this
work is the case of (1.1) with N = 4. Now we will assume that the Ri’s are (locally) separated
by two intersecting smooth manifolds of co-dimension 1. That is, we have

(1.7) Σ1 = {x : h1(x) = 0} , Σ2 = {x : h2(x) = 0} , hi : R
n → R , i = 1, 2 , Σ = Σ1 ∩Σ2 ,

and we will also use the following notation

(1.8) Σ±
1 = {x : h1(x) = 0 , h2(x) ≷ 0} , Σ±

2 = {x : h2(x) = 0 , h1(x) ≷ 0} .

We will always assume that h1,2 are Ck functions, with k ≥ 2, that ∇h1(x) 6= 0, x ∈ Σ1,
∇h2(x) 6= 0, x ∈ Σ2, and further that ∇h1(x) and ∇h2(x) are linearly independent for x on
(and in a neighborhood of) Σ.

So, we have four different regions R1, R2, R3 and R4 with the four different smooth vector
fields fi, i = 1, . . . , 4, in these regions:

(1.9) ẋ = fi(x) , x ∈ Ri , i = 1, . . . , 4 .

Without loss of generality, we will label these regions as follows:

R1 : f1 when h1 < 0 , h2 < 0 , R2 : f2 when h1 < 0 , h2 > 0 ,

R3 : f3 when h1 > 0 , h2 < 0 , R4 : f4 when h1 > 0 , h2 > 0 .
(1.10)

We are specifically interested in the case when trajectories starting near Σ will reach it,
transversally (and in finite time), a case referred to as having Σ attractive for nearby dynamics.
To characterize this situation, it is again convenient to consider the components of the vector
fields orthogonal to Σ. That is, we let (cfr. with (1.4))

w1
1 = ∇h⊤

1 f1 , w1
2 = ∇h⊤

1 f2 , w1
3 = ∇h⊤

1 f3 , w1
4 = ∇h⊤

1 f4 ,

w2
1 = ∇h⊤

2 f1 , w2
2 = ∇h⊤

2 f2 , w2
3 = ∇h⊤

2 f3 , w2
4 = ∇h⊤

2 f4 ,
(1.11)

and we will use the notation wi = (w1
i , w

2
i ) ∈ R

2, i = 1, 2, 3, 4, for those four points in R
2.

Example 1.2. The simplest case of attractive Σ is when it is nodally attractive. This means
that on each of Σ±

1,2 there is sliding motion toward the intersection Σ. These sliding motions on

Σ±
1,2 occur with Filippov sliding vector fields given as in (1.6), henceforth labeled fF

±
1,2. Namely,

fF
+
1 = (1− α+)f2 + α+f4 , α+ =

[ ∇h⊤
1 f2

∇h⊤
1 (f2 − f4)

]

x∈Σ+

1

=
w1

2

w1
2 − w1

4

,

fF
−
1 = (1− α−)f1 + α−f3 , α− =

[ ∇h⊤
1 f1

∇h⊤
1 (f1 − f3)

]

x∈Σ−
1

=
w1

1

w1
1 − w1

3

,

fF
+
2 = (1− β+)f3 + β+f4 , β+ =

[ ∇h⊤
2 f3

∇h⊤
2 (f3 − f4)

]

x∈Σ+

2

=
w2

3

w2
3 − w2

4

,

fF
−
2 = (1− β−)f1 + β−f2 , β− =

[ ∇h⊤
2 f1

∇h⊤
2 (f1 − f2)

]

x∈Σ−
2

=
w2

1

w2
1 − w2

2

.

(1.12)

Finally, at first order, we note that nodal attractivity is guaranteed by the signs of Table 1 for
the entries of wj

i , i = 1, . . . , 4, j = 1, 2. �

The next characterization of attractivity for Σ was called attractivity through sliding in [7].

Definition 1.3 (Partial Nodal Attractivity; [7]). We say that Σ is partially nodally attractive,
or attractive through sliding, if the following conditions hold:



4 LUCA DIECI AND FABIO DIFONZO

Table 1. Nodal Attractivity.

Component i = 1 i = 2 i = 3 i = 4

w1
i , i = 1 : 4 > 0 > 0 < 0 < 0

w2
i , i = 1 : 4 > 0 < 0 > 0 < 0

(a):

[
w1

j (x)
w2

j (x)

]
does not have the same sign of

[
h1(x)
h2(x)

]
for x ∈ Rj, j = 1, 2, 3, 4 ;

(b): at least one of the following conditions is satisfied on Σ, and in a neighborhood of Σ:

(1+): det

[
w1

2 w1
4

1 1

]
> 0 together with (1+a ): (1− α+)w2

2 + α+w2
4 < 0;

(1−): det

[
w1

3 w1
1

1 1

]
< 0 together with (1−a ): (1− α−)w2

1 + α−w2
3 > 0;

(2+): det

[
w2

4 w2
3

1 1

]
< 0 together with (2+a ): (1− β+)w1

3 + β+w1
4 < 0;

(2−): det

[
w2

1 w2
2

1 1

]
> 0 together with (2−a ): (1− β−)w1

1 + β−w1
2 > 0;

(c): if any of (1±) or (2±) is satisfied, then (1±a ) or (2±a ) must be satisfied as well.

Above, we note that the quantities α±, β± (as given in (1.12)), are well defined whenever the
relevant conditions (1±), (2±) hold. �

The next result gives a handy rewriting of (1±a ), (2
±
a ) in Definition 1.3.

Lemma 1.4. Let any of (1±) and/or (2±) in Definition 1.3 hold. Then, the corresponding
conditions (1±a ), (2

±
a ) are equivalent, respectively, to the following:

(1̃+a ) : det
[
w2 w4

]
< 0; (1̃−a ) : det

[
w3 w1

]
< 0;

(2̃+a ) : det
[
w4 w3

]
< 0; (2̃−a ) : det

[
w1 w2

]
< 0.

Proof. Let us prove equivalence between (1+a ) and (1̃+a ). The others are analogous.
Since (1+), (1+a ), (1.12), hold, we get that

−w1
4w

2
2 + w1

2w
2
4

det

[
w1

2 w1
4

1 1

] < 0 , from which det
[
w2 w4

]
< 0 .

Conversely, if det
[
w2 w4

]
< 0, since (1+) holds, we get (1+a ) at once. �

Remark 1.5. Partial nodal attractivity (which of course includes nodal attractivity as a special
case) implies that one has sliding motion on (at least) one of Σ±

1,2, directed towards Σ, and no

sliding motion on any of Σ±
1,2, away from Σ. A typical solution trajectory starting near Σ will

approach (in finite time) the intersection Σ, by first sliding on one of Σ1 or Σ2, directed towards
Σ (of course, a trajectory may also reach Σ directly from within one of the regions Ri’s, but this
is a less likely event).

Remark 1.6. We also note that partial nodal attractivity is not an exclusive characterization of
attractivity of Σ. Namely, Σ may also be spirally attractive. In this case, there is no attractivity
toward Σ through sliding on any of Σ±

1 , Σ
±
2 , and trajectories reach Σ by spiraling around it. See

[4] for the characterization of spirally attractive Σ.
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1.4. Co-dimension 2: general ambiguity. At this point, we may envision having the follo-
wing scenario for a solution trajectory of a system (1.9), with attractive Σ = Σ1 ∩Σ2.

• It starts in a region Ri for some i = 1, 2, 3, 4, until
• it reaches transversally one of Σ±

1,2;

• then, it begins sliding on Σ±
1,2 toward Σ, until

• it reaches transversally the intersection Σ. What happens then?

Now, when Σ is attractive, a trajectory starting on Σ cannot leave Σ. But, how should a solution
trajectory evolve on Σ? In the class of Filippov solutions, we will need to have that ẋ ∈ F(x)
as in (1.2), and further that ẋ lies on the tangent plane to Σ, for any x ∈ Σ. That is, Filippov
solutions will be such that

ẋ ∈
{

λ1f1 + λ2f2 + λ3f3 + λ4f4 , λi ≥ 0 , i = 1, . . . , 4 ,

4∑

i=1

λ1 = 1

}
,

∇h⊤
1 ẋ = ∇h⊤

2 ẋ = 0 .

(1.13)

But, from (1.13), it is plainly apparent that there is no uniqueness of a sliding vector field on
Σ, so that sliding motion on Σ is not uniquely defined.

In this work, we propose a way to select a smooth sliding vector field on Σ, from the class of
Filippov convex combinations (1.13), whenever Σ is attractive through sliding. In other words,
we will select a smooth Filippov sliding vector field fF: for x ∈ Σ, this is of the form

fF = λ1f1 + λ2f2 + λ3f3 + λ4f4 , λi ≥ 0 , i = 1, . . . , 4 ,

4∑

i=1

λ1 = 1 ,

∇h⊤
1 fF = ∇h⊤

2 fF = 0 ,

(1.14)

where the coefficients λi’s depend smoothly on x ∈ Σ. Therefore, with previous notation, we
will have to solve the problem (for x ∈ Σ):

(1.15)

[
W
1
⊤

]
λ =



0
0
1


 , where λ =




λ1

λ2

λ3

λ4


 , and W =

[
w1

1 w1
2 w1

3 w1
4

w2
1 w2

2 w2
3 w2

4

]
, 1 =




1
1
1
1


 .

Obviously, (1.15) is an underdetermined linear system, reflecting the fact that the mere require-
ment of fF being on TΣ is not generally sufficient to uniquely1 characterize a convex combination
of the four vector fields f1, . . . , f4. We propose the following definition of admissible solution of
(1.15).

Definition 1.7. Under the conditions of partial nodal attractivity of Definition 1.3, we say that
a solution λ of (1.15) is admissible, if λ ≥ 0 and λ depends smoothly on x ∈ Σ. �

Remark 1.8. The problem of understanding sliding motion on Σ has been of considerable
interest in the last 15 years. To date, the choice that has received most attention is one based
on bilinear interpolation. This consists in selecting the Filippov vector field below:

(a) fB := (1− α) ((1− β)f1 + βf2) + α ((1− β)f3 + βf4) ,

(b) (α, β) ∈ (0, 1)2 : WλB = 0 with λB :=




(1− α)(1 − β)
(1 − α)β
α(1 − β)

αβ


 .

(1.16)

1There are special cases when the aforementioned ambiguity is not present, as when two of the original vector
fields are identical (e.g., see [17]), but in general we must expect to have an underdetermined system.
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This bilinear interpolation method was originally introduced in [2] for nodally attractive Σ, it was
further mentioned in [3], it was later studied in [8, 7], and it is effectively the sliding technique
underpinning the singular perturbation approach of [15] and of [14]. As proven in [7], when the
conditions of Definition 1.3 hold, this bilinear method gives an admissible solution λB and a
smoothly varying Filippov vector field on Σ. To be precise, and for later reference, we note that
one needs to solve the nonlinear system (1.16)-(b), that is WλB = 0, for (α, β). In general,
this system may have more than one admissible solution; the quoted result in [7] guarantees that
there is only one admissible solution (i.e., values of α and β in [0, 1]), whenever Σ is attractive
as in Definition 1.3.

But, unfortunately, there are potential difficulties caused by the choice (1.16) of vector field.
These become apparent when Σ loses attractivity at generic first order exit points (see below),
where one of the sub-sliding vector fields (on Σ1 or Σ2) has itself become tangent to Σ. As
we will see in Lemma 1.10, at generic exit points Σ ceases to be attractive, and one might
expect a trajectory to exit Σ on the lower co-dimension manifold. However, as proven in [7],
at generic exit points there could be two solutions of (1.16)-(b), giving distinct (α, β) in [0, 1]2,
and different vector fields. Again referring to [7], one such solution always necessarily gives the
sliding vector field on the lower co-dimension manifold, but the other solution corresponds to the
sliding vector field that the trajectory was obeying. As a consequence, even assuming that one
is able to obtain all roots of (1.16)-(b) rather than just following one by continuation, in general
there is a catch: either one discontinuously changes the value of (α, β) in order to exit from Σ
(and loses smoothness), or the loss of attractivity of Σ will go unnoticed to the bilinear vector
field one is using (which remains well defined) and one ends up sliding on Σ, even though Σ is
no longer attractive (see Section 4 for illustration of this fact). To us, this seems undesirable,
since -if perturbations off Σ obey the dynamics of the original piecewise smooth system (1.9)-
in general we expect that the perturbed solution trajectories will not return to Σ, when Σ is not
attractive.

Definition 1.9 (First order exit points; [7]). Let ẋ be as in (1.13), and let fΣ±
1,2

be as in (1.12)

(whenever there is a well defined sliding motion on Σ±
1,2). We say that x ∈ Σ is a generic first

order exit point if one (and just one) of the fF
±
1,2 is itself in the class (1.13), that is it is tangent

to Σ. The corresponding fF
±
1,2 is called an exit vector field. �

As Lemma 1.10 below clarifies (see also [7]), first order exit points are points where Σ ceases
to be partially nodally attractive.

Lemma 1.10. If a point xe ∈ Σ is a first order exit point relative to Σ+
1 , then

(1.17) det
[
w2 w4

]
= 0.

Analogously, if the first order exit points correspond to a sliding regime on Σ−
1 we have det

[
w3 w1

]
=

0, relatively to Σ+
2 we have det

[
w4 w3

]
= 0, and relatively to Σ−

2 have det
[
w1 w2

]
= 0.

Proof. If xe ∈ Σ is a potential exit point for subsliding on Σ+
1 , then (at xe) fF

+
1 is not just in

the plane tangent to Σ1 but also to Σ. That is, at xe we must have

[
W
1
⊤

]



0
λ2

0
λ4


 =



0
0
1


 ,

which of course implies

[
w2 w4

] [λ2

λ4

]
=

[
0
0

]
hence det

[
w2 w4

]
= 0 ,
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since fF
+
1 = λ2f2 + λ4f4, λ2 + λ4 = 1, is the Filippov sliding vector field on Σ+

1 . Similarly for
the other cases. �

As a consequence of Lemma 1.10, at a generic first order exit point for one of the Σ±
1,2, we

would like a solution trajectory to leave Σ and to begin sliding (away from Σ) on the relevant
sub-manifold Σ±

1,2 with corresponding exit vector field. For this reason, we will further restrict

our search for admissible λ, solutions of (1.15), in such a way that they will render the exit
vector field at generic first order exit points.

Definition 1.11 (Smooth Exits). Let λ in (1.14)-(1.15) be admissible and such that, at a generic
first order exit point, λ renders also the exit vector field2. Then, fF will be called a smoothly
exiting vector field. �

1.5. Co-dimension 2: A proposal for a smooth Filippov sliding vector field. To re-
iterate, under the assumption of attractivity of Σ as in Section 1.3, we will want to select an
admissible (positive and smooth) solution of (1.15) in such a way that it will further lead to a
smoothly exiting vector field at generic first order exit points.

Our proposal is based on a rather general principle: To regularize the system (1.15) by
adding to it one extra condition, linear in λ, so to obtain an invertible system giving a solution
λ enjoying the above properties . We will adopt the choice we begun exploring in [5] for the
case of nodal attractivity of Σ, a choice we had called moments regularization. [In [5], we also
showed that, under nodal attractivity assumption, this regularization gave for λ the mean value
barycentric coordinates of Floater ([10, 11]), associated to the points wi, i = 1, 2, 3, 4.]

1.5.1. Moments regularization. We consider the following system (cfr. with (1.15)) to be sati-
sfied for x ∈ Σ:

(1.18) Mλ =




0
0
1
0


 , where M :=



W
1
⊤

d⊤


 ,

with W defined in (1.15) and

(1.19) d :=




d1
−d2
−d3
d4


 , where di := ‖wi‖2 , i = 1, . . . , 4 .

Definition 1.12 (Moments method). We call moments method the method resulting from
solving (1.18) for λ, and using this in the selection of sliding vector field in (1.14). We call
moments solution the solution λ of (1.18), call moments vector field the resulting vector field
(1.14), and call moments trajectory the solution of the differential equation on Σ obtained when
using the moments vector field. �

Below, we validate the moments method, by showing that, for x ∈ Σ and Σ attractive as
in Definition 1.3, the matrix M in (1.18) is non-singular, that the unique solution of (1.18) is
admissible, and that the resulting smoothly varying Filippov sliding vector field fF is further
smoothly exiting at generic first order exit points. Let us emphasize that our construction
will give a Filippov solution (1.14) of the general piecewise smooth system (1.9). Let us also
emphasize that the overall solution trajectory, in general, will only be piecewise smooth: our
concern is that it be smooth on the intersection Σ, but of course –in general– it will be only
continuous at entry points in a sliding region.

2this means that two of the four entries of λ are 0
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Remark 1.13. Of course, the formulation of the moments method we validate in this paper is
valid precisely for the case of Σ of co-dimension 2 examined herein. The extension of the mo-
ments method to the case of Σ of co-dimension 3 (intersection of three co-dimension 1 surfaces)
requires an appropriately modified formulation; details are in [6].

A plan of the paper is as follows. In Section 2, we associate a quadrilateral to the attractivity
configuration of Σ. In Section 3, this geometrical configuration is exploited to prove invertibility
of the matrix M in (1.18), and admissibility of the unique solution λ. In Section 4, we show
on two examples how the moments method compares to the bilinear interpolant technique of
(1.16), and in particular we highlight the different behaviors at first order exit points. In Section
5, we rigorously prove that the moments vector field is smoothly exiting at generic first order
exit points, and we briefly discuss other possibilities enjoying this property. Finally, in Section
6, we give some conclusions.

2. Geometrical pattern for the dynamical problem

In this section, we give a useful geometrical reinterpretation of the algebraic problem (1.15),
when Σ is attractive. Later, this configuration will be exploited to establish solvability of the
system (1.18).

We begin by observing that the general Filippov convexification construction based on (1.14)-
(1.15) is effectively saying that the origin must be in the convex hull of the four points wi,
i = 1, . . . , 4. However, the convex hull of the four points wi’s is a very large set, and may fail to
give a good geometrical correspondence with the dynamics of the problem.

Example 2.1. Consider the following model problem of the type (1.9):

ẋ = fi(x) , i = 1, 2, 3, 4, where

f1 =



x3 − 1
x3

x1 − 1


 , f2 =




2
−1

x2 − 1


 , f3 =




−1
2

x1x2 − 1


 , f4 =



−1
−1
−1


 ,

where (see (1.7)) Σ1 = {x1 = 0}, Σ2 = {x2 = 0}, and so Σ = {x1 = x2 = 0}, and therefore
(see (1.11))

w1 =

[
x3 − 1
x3

]
, w2 =

[
2
−1

]
, w3 =

[
−1
2

]
, w4 =

[
−1
−1

]
.

In this case, on Σ, there is a unique Filippov sliding vector field: ẋ3 = −1.
Consider the initial condition (0, 0, 2) and the time interval 0 ≤ t ≤ 2. In Figure 1, we show

the four snapshots of the vertices wi’s, at times t = 0, t = 1, t = 5/3, and t = 9/5. For t = 0,
we are in a configuration of nodal attractivity, which persists for as long as t < 1. However, as
soon as t ≥ 1, the vertex w1 plays no role in the convex hull of the four points (dotted segment).
Also, observe that as soon as t > 5/3, Σ is no longer attracting nearby trajectories (hence, a
perturbation off Σ will move away from Σ), though the convex hull has not changed. �

Motivated by the above, our goal is to consider a geometric configuration that better reflects
the dynamics of the problem (and attractivity of Σ). To this end, we propose to consider the
quadrilateral Q, determined by w1, w2, w4, w3, in this order. Accordingly, we are proposing
to reinterpret an admissible Filippov solution as one that obtains weights λ to be put on the
vertices of Q in such a way that the origin be the barycenter of Q relative to λ 3. For later
reference, we summarize our proposal of quadrilateral Q. Later in this work, Q will always refer
to this quadrilateral.

3In this context, we can reinterpret (1.18) as a physical equilibrium requirement about the moments provided
by the weights λ with respect to origin, hence the proposed name of moments method we adopted for our
technique.
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Figure 1. Dynamics of Example 2.1: Convex hull versus quadrilateral Q.

Definition 2.2. Given the four points w1, w2, w3, w4, as in (1.11), we define the quadrilateral
Q associated to W to be the quadrilateral obtained by joining the four points in the order w1 to
w2, to w4, to w3, and back to w1. �

The following result is a simple consequence of the characterizations of attractivity of Σ and
the definition of quadrilateral Q. [For part (i), in the case of Σ attractive through sliding, the
result follows at once from Definition 1.3. In the case of spiral attractivity, it follows immediately
from [4, Table 3 or 4]). For part (ii), see Lemma 1.4.] Also, note that, in case (i), sliding motion
on Σ should be taking place.

Lemma 2.3. Let W and Q be defined as usual, for x ∈ Σ.

(i) If Σ is attractive (through sliding, or by spiraling), then the origin is in the interior of
Q. In particular, if the origin is external to Q, then Σ cannot be attractive.

(ii) If x is a generic first order exit point, then the origin belongs to one side (and one only)
of Q. �

We emphasize that that the quadrilateral Q tells us that “if 0 /∈ Q̄ then Σ is not attractive,
and a trajectory with initial conditions off Σ will not be attracted to Σ”: this is our key reason
to consider Q.
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Below, we give some results on the interplay between the quadrilateral Q and the algebraic
problem (1.18). These results will be used in Section 3 to establish solvability of (1.18).

Definition 2.4. The quadrilateral Q is called non-degenerate, if and only if these two conditions
hold:

(a) the vertices are not all aligned (equivalently, at most three vertices are aligned), and
(b) if one vertex of Q is at the origin, then there cannot be two other vertices aligned with

it; in particular, no two vertices can be at the origin. �

Remark 2.5. In agreement with Lemma 2.3, it is an important observation that, in each of the
sliding configurations allowed by Definition 1.3,4 the points wi, i = 1, . . . ,, will always give that
Q is non-degenerate. In fact, the origin is always in the interior of Q. Furthermore, at generic
first order exit points, the origin is along one edge (and one only) of Q, and in particular the
origin cannot be a vertex of Q.

Next, we give a key algebraic result that will be used in Section 3.

Lemma 2.6. If Q is non-degenerate, then the matrix

[
W
1
⊤

]
in (1.15) has full rank 3. Further-

more, there is a nontrivial vector v, as smooth as W , spanning ker

[
W
1
⊤

]
.

Proof. Since we are assuming the quadrilateral relative to W to be non-degenerate, then there
exist three vectors in {wi : i = 1, 2, 3, 4} such that the corresponding triangle has nonzero

area: this implies that the columns corresponding to those three vectors in

[
W
1
⊤

]
are linearly

independent. The statement about the span of ker

[
W
1
⊤

]
is because the symmetric function

[
W
1
⊤

] [
W⊤

1
]
has exactly one zero eigenvalue which is simple (of algebraic multiplicity 1).

Therefore, the eigenvector associated to this 0 eigenvalue can be chosen smooth (e.g., see [13]),

and it provides a basis for ker

[
W
1
⊤

]
. �

We next give a more precise algebraic characterization of the vector v ∈ ker

[
W
1
⊤

]
relatively

to non-degenerate quadrilaterals. This result will be used in Section 5.

Notation 2.7. We will write Aijk for the signed area of the triangle of vertices wi, wj, wk,
in this order, i, j, k = 1, 2, 3, 4, and where the indices are distinct. For example, A123 =

1
2 det

[
w1 w2 w3

1 1 1

]
, and the sign of the determinant indicates whether the triangle is traced

clockwise or counterclockwise. �

Lemma 2.8. Let Q be non-degenerate, and let W be the usual matrix: W = [w1 w2 w3 w4].

Then, if v ∈ ker

[
W
1
⊤

]
, v can have at most one zero component.

Proof. By Lemma 2.6, there is at least one triangle determined by vertices of Q with nonzero
area: without loss of generality, we assume it to be A123. Therefore, by Cramer’s rule (and

4there are 13, not equivalent ones, [7]
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elementary rules of the determinant), we can write this vector v as

(2.1) v =




A243

A134

A142

A123


 .

If, by contradiction, more than one of these components were zero, then the four vertices would
be aligned: but this contradicts that Q be non-degenerate. �

Additionally, (2.1) also shows smoothness of v, because the (signed) area of a triangle is a
smooth function of the triangle vertices (that is, the determinant is a smooth function of the
matrix entries).

Remark 2.9. In light of Lemmata 2.6 and 2.8, clearly any solution of

[
W
1
⊤

]
λ =



0
0
1


 can be

written as

λ = λp + cv ,

where λp is any particular solution, and v ∈ ker

[
W
1
⊤

]
, and thus we note that v cannot have all

components of the same sign. Therefore, in particular, if λp is admissible (hence λp ≥ 0), in
order for λ to be admissible we must have a ≤ c ≤ b, where a ≤ 0 and b ≥ 0 are defined as

a := max

{
−λp,i

vi
: vi > 0

}
, b := min

{
−λp,i

vi
: vi < 0

}
.

3. Moments Solution under general attractivity conditions

Let us now assume the quadrilateral Q is non-degenerate and the origin is internal to it or on
at most one of its edges. In particular, this is the situation when Σ is attractive through sliding.
Then, we will show that M in (1.18) is nonsingular, and the moments solution λ is admissible.
In Section 5, we will further show that the moments vector field is smoothly exiting at generic
first order exit points.

So, consider system (1.18), repeated here for convenience:

(3.1) Mλ =




0
0
1
0


 , where M :=



W
1
⊤

d⊤


 ,

and recall that, see Lemma 2.6, ker

[
W
1
⊤

]
has dimension 1 and it is smoothly spanned by a

vector v, which we will take as in (2.1).
The following general result will be used below.

Lemma 3.1. Let A ∈ R
(n−1)×n be of rank (n − 1), and let its null space be spanned by the

vector v. Let d ∈ R
n be given and consider the matrix B =

[
A
d⊤

]
. Then, B is nonsingular if

and only if d⊤v 6= 0.

Proof. Suppose B is nonsingular, and by contradiction that d⊤v = 0. Then obviously Bv = 0,
hence B would be singular. If d⊤v 6= 0, since ker(A) is spanned just by v, then there cannot be
any vector y: By = 0. �
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Using Lemma 3.1 and Laplace expansion of the determinant with respect to the fourth row
of M , from (3.1) we get (for v in (2.1)):

(3.2) detM = d⊤v .

Now, let Madj be the adjugate5 of M . Since MMadj = MadjM = det(M)I, if M is invertible,
to obtain the unique solution of (3.1) we must look at the third row, Madj(3, :), of Madj.

Direct computation gives

Madj(3, :) =
[
det

[ w2 w3 w4

−d2 −d3 d4

]
, − det

[w1 w3 w4

d1 −d3 d4

]
, det

[w1 w2 w4

d1 −d2 d4

]
, − det

[w1 w2 w3

d1 −d2 −d3

]]
,

and further
4∑

j=1

Madj(3, j) = d⊤v = detM ,

and therefore the unique solution of (3.1), if indeed it exists unique, must be given by

(3.3) λM :=
1

d⊤v
Madj(3, :)

⊤ .

What we will prove below is that each entry in Madj(3, :) has the same sign (some entries may
be 0, but not all of them can be), from which it will follow that detM 6= 0, and further that the
entries of λM are all nonnegative (and sum to 1), which is what we had set out to prove.

We use a geometrical technique. To begin with, assume that for all i = 1, 2, 3, 4, wi 6= 0, and
express each wi in polar coordinates:

(3.4) wi = diŵi, ŵi :=

[
cos θi
sin θi

]
, i = 1, 2, 3, 4 .

Note that just as the original vertices wi’s gave us the quadrilateral Q, now we have obtained

the quadrilateral Q̂ defined by the vertices ŵ1, ŵ2, ŵ4, ŵ3 (in this order) on the unit circle; in
so doing, we have respected the signs of the original vertices coordinates. In particular, if Q

was non-degenerate, so is the associated quadrilateral Q̂ on the unit circle, and if the origin was

internal to Q, it is still internal to the new quadrilateral Q̂.
In this new notation, we have (note the changes of sign on the second equality)

Madj(3, :)
⊤ =




d2d3d4 det



cos θ2 cos θ3 cos θ4
sin θ2 sin θ3 sin θ4
−1 −1 1




−d1d3d4 det



cos θ1 cos θ3 cos θ4
sin θ1 sin θ3 sin θ4
1 −1 1




d1d2d4 det



cos θ1 cos θ2 cos θ4
sin θ1 sin θ2 sin θ4
1 −1 1




−d1d2d3 det



cos θ1 cos θ2 cos θ3
sin θ1 sin θ2 sin θ3
1 −1 −1







=




d2d3d4 det

[
−ŵ2 −ŵ3 ŵ4

1 1 1

]

d1d3d4 det

[
ŵ1 −ŵ3 ŵ4

1 1 1

]

−d1d2d4 det

[
ŵ1 −ŵ2 ŵ4

1 1 1

]

−d1d2d3 det

[
ŵ1 −ŵ2 −ŵ3

1 1 1

]




,

5the transpose of the matrix of cofactors of M
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from which (again, note the changes of sign) we get

(3.5) Madj(3, :)
⊤ =




−d2d3d4 det

[
−ŵ2 ŵ4 −ŵ3

1 1 1

]

−d1d3d4 det

[
ŵ1 ŵ4 −ŵ3

1 1 1

]

−d1d2d4 det

[
ŵ1 −ŵ2 ŵ4

1 1 1

]

−d1d2d3 det

[
ŵ1 −ŵ2 −ŵ3

1 1 1

]




.

Now, each determinant in the components of the vector in (3.5) above represents the (signed)
area of one of the four triangles in which the quadrilateral on the unit circle ŵ1ŵ2ŵ4ŵ3 is divided
by its diagonals. We want to show that they all have the same signs.

The following result from convex geometry will be helpful to us.

Proposition 3.2. [16, Theorem 4.4.1 and Exercise 4.4.1] A non-degenerate quadrilateral Q is
convex if and only if its diagonals intersect in its closure. �

Next, we prove that, for any given quadrilateral on the unit circle, containing the origin and
non-degenerate, its transformed quadrilateral obtained by reflecting one of its diagonals with
respect to the origin is always convex. See Figure 2 for an illustration of this fact.
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0.8
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B

−B

C

−D

Figure 2. Illustration of Proposition 3.3. Transformation of the quadrilateral:
left, convex case, right, nonconvex case.

Proposition 3.3. Given a non-degenerate quadrilateral Q̂ = ABCD with vertices on the unit

circle, and containing the origin, the transformed quadrilateral Q̃ := A(−B)C(−D) is convex.

Proof. Note that if Q reduces to a triangle, the result is trivially true. So, let us assume that
all vertices of Q are distinct.
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If Q̂ is convex, the reflected diagonal (−B)(−D) still intersects the other diagonal AC in the

closure of Q̃.

If Q̂ is not convex, then it is necessarily self-intersecting (on the unit circle we can connect
four points in two different ways only: to create a convex quadrilateral following any clockwise
direction, or a self-intersecting one). Up to relabeling, we can assume that the origin is inside the

triangle ABD. Call B̃ := −B, D̃ := −D, and consider the quadrilateral of vertices A, D̃, C, B̃,
in this order.

Now, since the two angles AB̂C and A
̂̃
DC subtend the same arc AC, being the origin inside

the triangle ABD, then

AB̂C = A
̂̃
DC = α+ β ,

where α is the angle at B in the right triangle ABB̃, and β is the angle in B in the right triangle

CBB̃. Therefore:

A
̂̃
BB =

π

2
− α , C

̂̃
BB =

π

2
− β ,

and so

A
̂̃
BC = A

̂̃
BB +B

̂̃
BC = π − (α+ β) ,

whereas A
̂̃
DC = α+ β. Therefore B̃ and D̃ are on opposite sides with respect to AC because,

otherwise, it would be A
̂̃
BC = A

̂̃
DC: so AC intersects B̃D̃ in the closure of Q̃. By Proposition

3.2, Q̃ is convex. �

With the help of Proposition 3.3, we can now give our main result.

Theorem 3.4. Let Σ be defined in (1.7), wi, i = 1, . . . , 4, be given in (1.11), and let Q be
the quadrilateral of Definition 2.2. Assume that Q is non-degenerate, that wi 6= 0, for all
i = 1, . . . , 4, and that 0 ∈ Q, as x ∈ Σ. Then, the matrix M of the moments method in (1.18)
is nonsingular and the moments solution λM of (3.3) is admissible as x varies in Σ.

Proof. Since Q is non-degenerate, the origin is not a vertex, and 0 ∈ Q, then the quadrilateral Q̂
on the unit circle obtained by using the polar representation of (3.4) is non-degenerate and the

origin is either internal to Q̂ or on just one edge. Recall that Q̂ is the quadrilateral ŵ1, ŵ2, ŵ4, ŵ3.

From Proposition 3.3, the quadrilateral obtained from Q̂ reflecting with respect to the origin
the diagonal joining ŵ2 and ŵ3 is convex. That is, the quadrilateral of vertices ŵ1,−ŵ2, ŵ4,−ŵ3,
is convex. This means that the signed areas of the triangles (ŵ1,−ŵ2,−ŵ3), (ŵ1,−ŵ2, ŵ4),

(ŵ1, ŵ4,−ŵ3), and (−ŵ2, ŵ4,−ŵ3), all have the same sign. [Since Q̂ is non-degenerate, some
but not all of these areas may be 0].

By looking at the determinants appearing in (3.5), we recognize them exactly as the areas of
the aforementioned triangles, and therefore all the components of Madj(3, :) have the same sign,

and then, by (3.3), λM is the unique solution of (3.1), further admissible since
∑4

j=1 Madj(3, j) =

d⊤v.
The fact that λM varies smoothly with x ∈ Σ is a consequence of the smoothness of the

determinant with respect to the matrix entries. �

Corollary 3.5. If the quadrilateral Q is non-degenerate, and the origin is internal to Q, then
λM > 0; i.e., all components of λM are positive.

Proof. Let the origin be in the interior of Q. By Theorem 3.4, λM is therefore admissible. Let
us assume, by contradiction, that for some i = 1, 2, 3, 4, (λM)i = 0: without loss of generality,
let (λM)1 = 0. Looking at (3.5), this happens if and only if the area of the triangle on the unit
circle with vertices −ŵ2, ŵ4, −ŵ3 is zero; but this is equivalent to say that either −ŵ2 = ŵ4 or
ŵ4 = −ŵ3, which in turn is true if and only if the origin belongs to either w2w4 or w4w3, that
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is to the boundary of Q, which contradicts the assumption.
A similar argument holds for the other cases. �

Remark 3.6. Suppose that the origin is on the segment w1w2 and it is not a vertex (simi-
larly, for any other side of the quadrilateral). Then, the unique solution of (3.1), under the
assumptions of Theorem 3.4, is

λ :=




d2

d1+d2
d1

d1+d2

0
0


 .

Remark 3.7. As we said, our motivation was in validating the moments method under the
conditions of partial nodal attractivity. Theorem 3.4 does achieve this. But in fact, it does
more, only needing nondegeneracy of Q and that the origin be either inside Q or on at most
one edge. In particular, Theorem 3.4 validates the moments method also in the case of Σ being
spirally attractive, see [4]. This is simply because, when Σ is spirally attractive, the origin is
inside Q, see Lemma 2.3.

As a consequence of Theorem 3.4, we have the following result, which will be useful in Section
5.

Theorem 3.8. Let x ∈ Σ, let wi, i = 1, . . . , 4, be given in (1.11) (these vertices of course
depend on x), let Q be the quadrilateral of Definition 2.2, and let M be given in (1.18). Assume
that Q is non-degenerate and that wi 6= 0, for all i = 1, . . . , 4.

Then, for each ǫ > 0 sufficiently small, if dist(0, Q) := miny∈Q ‖y‖ < ǫ, the matrix M in

(1.18) is invertible. Moreover, if 0 /∈ Q, then the unique solution of (1.18) is not admissible.

Proof. Since the determinant function is continuous as a function of the entries of W , and
det(M) 6= 0 as 0 ∈ Q, then det(M) 6= 0 if 0 is sufficiently close to Q.
If 0 /∈ Q, then since M is nonsingular the unique solution λM of (1.18) is still given by (3.3).
But, looking at the signed areas in (3.5), we see that two of them are negative, making λM not
admissible. �

3.1. One vertex of Q at the origin. Our results, particularly the construction of the quadri-

lateral Q̂ and therefore Theorem 3.4, have relied on the assumption that wi 6= 0, for every
i = 1, 2, 3, 4. As we will clarify below, this is a very mild and natural assumption, both in terms
of the problem dynamics and of the geometrical interpretation of the same. At the same time,
let us consider here the case when this assumption is violated, and what it implies.

First of all, if two or more of the wi’s were zero, then the quadrilateralQ would be degenerate,
and as a consequence (see (1.15) and (3.1)) W would be of rank 2, and M would be singular; so,
the moments regularization would not be of any use. Moreover, the problem dynamics would
be inherently ambiguous since two of the wi’s being 0 (say w1 = w2 = 0), implies that there are
two admissible exit vector fields in two different regions Ri’s (say, in R1 and R2). Finally, note
that this case of two wi’s equal to 0 is a co-dimension 4 phenomenon.

Suppose now that there is just one index i = 1, 2, 3, 4, for which wi = 0. In this case,
something more can be said. Without loss of generality, suppose that we are at a point x ∈ Σ
where w1 = 0, and wi 6= 0, i = 2, 3, 4.

(a) In terms of the problem’s dynamics, w1 = 0 means that the vector field f1 is itself
tangent to Σ, and therefore f1 is an exit vector field. Clearly, this is not a first order
exit condition (which is a co-dimension 1 phenomenon), and it is a co-dimension 2
phenomenon. Moreover, it is not clear that we can predict the dynamics after this
situation occurs. See Example 3.11 below.
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(b) In terms of the quadrilateral Q, if Q is non-degenerate, then there is still a unique
solution to (1.18), as we show below.

Lemma 3.9. If w1 = 0, and Q is non-degenerate, then the matrix

N =

[
w2 w3 w4

−d2 −d3 d4

]

is invertible.

Proof. Suppose not. Then, without loss of generality we have

[
w2

−d2

]
= α

[
w3

−d3

]
+ β

[
w4

d4

]
for

some α, β, not both 0. Then, we have w2 = αw3 + βw4 and −d2 = αd3 + βd4. From the first
relation, we get

d22 = α2d23 + β2d24 + 2αβw⊤
3 w4

and from the second one we get

d22 = α2d23 + β2d24 − 2αβd3d4 .

Comparing these two expressions for d22, we get the following.

(i) If both α and β are nonzero, then we must have w⊤
3 w4 = −d3d4. From the Cauchy-

Schwartz inequality, this implies that w3 and w4 are aligned with 0 and so Q would be
degenerate, which is a contradiction.

(ii) Now suppose just one of α or β is 0. If α = 0, then w2 and w4 would need to be aligned
with the origin. If β = 0, then w2 and w3 would need to be aligned with the origin.
Either way, Q would be degenerate and we reach a contradiction.

�

As a consequence of Lemma 3.9, we have the following result.

Theorem 3.10. Let x ∈ Σ and wi, i = 1, 2, 3, 4, and Q be defined as usual. Suppose that, at
such x, wi = 0 for an index i, and wj 6= 0, j 6= i, and let Q be non-degenerate.

Then, the moments matrix M is invertible, and (1.18) has a unique admissible solution λM:

(λM)j =

{
0, if j 6= i,

1, if j = i,
, j = 1, 2, 3, 4.

Moreover, as long as Q remains non-degenerate, the solution λM is continuous, but not diffe-
rentiable, in x ∈ Σ.

Proof. Without loss of generality, let w1 = 0, so that (1.18) rewrites as:



0 w2 w3 w4

1 1 1 1
0 −d2 −d3 d4


λ =




0
0
1
0


 .

Clearly, λM =




1
0
0
0


 solves this system. The solution is further unique since N (defined as in

Lemma 3.9) is invertible.
Continuity of λM is a consequence of continuity and invertibility of M with respect to x.

Lack of differentiability is due to lack of smoothness at the origin for the square root function
(viz., for ‖ · ‖). �
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The above lack of smoothness is responsible for the difficulties one may have in locating an
exit point where w1 = 0, and hence to properly predict the dynamics past such an exit point.

Example 3.11. Consider the dynamics on Σ embodied by the points

(3.6) w1 =

[
−t
t

]
, w2 =

[
1
2
−1

]
, w3 =

[
−1
3

]
, w4 =

[
−2
−1

]
, and − 1 ≤ t ≤ 0.5 .

As long as t < 0, Σ is attractive and we have well defined sliding motion on Σ. At t = 0,
w1 = 0 and for t > 0 the origin exits the quadrilateral Q: attractivity is violated, and a co-
dimension 2 exit phenomenon from Σ into R1 is taking place. However, suppose we continue
following the trajectory on Σ (this can be done because of Theorem 3.8). The components of the
moments solution λM behave as in Figure 3, and we observe that two of them (here, λ3 and λ4)
change of sign through this non-generic exit point. A naive application of Theorem 5.7 below
may lead us to believe that exiting and sliding on Σ−

2 with fΣ−
2

should be taking place past the

exit point, rather than exiting onto R1.
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Figure 3. Solution components of λM for the dynamics given by (3.6).

�

4. Examples: Comparing bilinear and moments solutions

Our purpose in this section is to show some numerical experiments with the moments method
and compare it (qualitatively) to the bilinear interpolation technique (see Remark 1.8) insofar
as sliding on Σ.
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The basic numerical integration scheme is a 4th order embedded Runge-Kutta pair based on
the 3

8 -th Runge-Kutta method, with Butcher’s tableau

0 0 0 0 0 0
1/3 1/3 0 0 0 0
2/3 −1/3 1 0 0 0
1 1 −1 1 0 0
b 1/8 3/8 3/8 1/8 0
1 1/8 3/8 3/8 3/8 0

b̂ 1/12 1/2 1/4 0 1/6

.

Adaptive step size control is done as suggested in [12]:

hnew := h ·min

{
facmax,max

{
facmin, fac ·

(
1

err

) 1
q+1

}}
,

where h is the current step size, q := min{p, p̂}, being p the order of the Runge-Kutta scheme
and p̂ the order of the error estimator, and we have chosen

facmax = 5 , facmin = eps (≈ 10−16) , fac = 0.8 ,

and

Err :=

( |xi − x̂i|
1 + |xi| · tol

)

i=1:n

, err := ‖Err‖∞ ,

where tol is a given error tolerance (below, tol = 10−6).
The overall method is an event driven method (according to the naming in [1]), whereby

different regimes (entering and exiting from the discontinuity manifolds) are monitored, and the
appropriate vector fields are integrated. Integration in the regions Ri’s (i = 1, 2, 3, 4) is standard.
Integration during sliding motion is done with a projected version of the basic integration scheme
to guarantee that the stage values and the computed approximations remain on the discontinuity
manifold(s).

In all problems below, integration on Σ = Σ1 ∩ Σ2 will proceed according to two different
choices of convex combination coefficients, and the associated vector fields: the coefficients λB

used to form the bilinear vector field in (1.16)-(a), and the moments coefficients λM used to
form the moments vector field. Let us stress that λB is found by solving the nonlinear system
(1.16)-(b) for α and β; as the bilinear trajectory evolves on Σ, the coefficients α, β, are updated
by continuation with respect to the value at the previous integration step.

Example 4.1. This is a problem in R
3. We have (1.9) with x(0) =



−0.1
−0.1
−0.1


, Σ1 := {x ∈ R

3 :

h1(x) := x1 = 0}, Σ2 := {x ∈ R
3 : h2(x) := x2 = 0}, and Σ := Σ1 ∩Σ2 is just the x3-axis. The

vector fields are given by

f1(x) :=




√
2
8 sin

(
π
4 − x2

3

)
√
2
8 cos

(
π
4 − x2

3

)

x2
1 + x2

2 + 1


 , f2(x) :=



2
√
2 sin

(
3
4π − x2

3

)
√
2 cos

(
3
4π − x2

3

)

x2
1 + x2

2 + 1


 ,

f3(x) :=



√
2 sin

(
π
4 − 2x2

3

)
√
2 cos

(
π
4 − 2x2

3

)

x2
1 + x2

2 + 1


 , f4(x) :=




−2
−1

x2
1 + x2

2 + 1


 .
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Since x(0) ∈ R1, we integrate ẋ = f1(x), until we hit Σ−
2 transversally at ξ1 ≈



−0.0208

0
0.6320


.

Notice that Σ−
2 is attractive, since (see (1.5))

f1(ξ1) ≈



0.0665
0.1638
1.0004


 , f2(ξ1) ≈




2.6204
−0.5324
1.0004


 .

Thus, from ξ1, the trajectory starts sliding on Σ−
2 directed towards Σ with vector field

fΣ−
2

(x) := (1− αΣ−
2

(x))f1(x) + αΣ−
2

(x)f2(x) , αΣ−
2

(x) :=
w2

1(x)

w2
1(x) − w2

2(x)
.

At ξ2 ≈



0.0000
0.0000
0.6619


, the trajectory reaches Σ transversally. At this point, Σ is nodally attractive,

since

W (ξ2) ≈
[
0.0602 2.6596 −0.1285 −2
0.1662 −0.4812 1.4084 −1

]
.

Observe that there is a unique Filippov sliding vector field (1.14) on Σ, namely ẋ3 = 1; however,
λB and λM are different.

With both the bilinear and moments methods the solution trajectory eventually reaches the
first order exit point

ξ3 =




0
0√
π
2


 , where W (ξ3) =

[
− 1

8 2 −1 −2
1
8 1 −1 −1

]
.

For values of x3 greater than
√

π
2 , Σ looses attractivity, and thus, at this value we consider it

to be desirable that also sliding motion on Σ ceases, and –for this reason– at ξ3 we would like
to leave Σ sliding on Σ+

1 . Depending on whether we have λB or λM, however, we witness very
different behaviors as we reach ξ3.

As Figure 4 shows, at ξ3 the bilinear solution λB has all positive components. Instead, the
moments solution λM at ξ3 has its first and third components equal to zero: these are exactly the
components of λ that do not play a role when sliding on Σ+

1 starts; indeed, at ξ3, λM provides
the exit vector field on the sub-manifold Σ+

1 , that is fF+

1

(see (1.12)). Moreover, we note that if

we force integration on Σ past ξ3 for the moments trajectory (note that the moments’ matrix
remains invertible, at least near ξ3, because of Theorem 3.8), then the first and third components
become negative past the exit point, hence the moments solution is not admissible. [This fact
provides a powerful characterization of first order exit points, and a very useful criterion to
detect them numerically.]

As far as the bilinear solution, at ξ3 (1.16)-(b) must have two admissible solutions (see [7]): the
solution (α∗, β∗) we had been following (which gives λB in Figure 4), and a new one, necessarily
being (α+, 1) which has “entered” the admissible region. As shown in [7], the nonlinear system
(1.16)-(b) reduces to a quadratic equation in β, which at ξ3 has the two roots β

∗ and 1. We stress
that, by solving the nonlinear system (1.16)-(b) by continuation, the “new entering” root goes
unnoticed. To sum up, assuming that, somehow, all roots of the nonlinear system (1.16)-(b) are
monitored, one could force the trajectory to exit at ξ3, but following the solution (α∗, β∗) we have
been continuing gives no indication that a first order exit point has been reached; all components
of λB remain positive past ξ3, even though Σ is no longer attracting. Moreover, as Figure 5
shows, if we do not exit Σ at ξ3 and continue integrating on Σ with fB (using the continuation
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Figure 4. Moments and bilinear solutions for x3 ∈ [0.6619..., 1.275].
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Figure 5. Moments and bilinear trajectories for Example 4.1.

of (α∗, β∗)), then the bilinear solution develops a singularity. Namely, at xs ≈




0
0

1.4163


, λB

becomes complex valued, and motion on Σ with fB ceases to make sense. [This last fact is easy
to explain, since the roots of the above parabola in β collide at xs and become complex valued.]
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�

Remark 4.2. In Example 4.1, we have a system in R
3, Σ is a straight line, and all sliding

trajectories satisfy ẋ3 = 1. In particular, using either λB or λM, a sliding trajectory must reach
the point ξ3 above. Although, in principle, both bilinear and moments trajectories could exit at
ξ3, there is a major difference in what happens to λB or λM if we let the trajectory continue
on Σ past ξ3. At first, λB has all components positive and seemingly well behaved, and it does
not betray that the origin has gone outside of the quadrilateral Q. On the other hand, λM has
two components going to 0 at ξ3, and then becoming negative. This is an important fact, which
betrays that the origin has exited the quadrilateral Q, and that allows automatic detection of exit
points, as we will elaborate in Section 5.

In the next example, we show that, in general (that is, when the phase space is not R
3,

nor R2), even when they seemingly are both well defined and exit smoothly, the moments and
bilinear methods lead to different dynamics, and the bilinear solution may again eventually
develops a singularity, similarly to Example 4.1.

Example 4.3. We have (1.9) with x(0) =




−0.1
−0.1
−0.1
0.1


, Σ1 := {x ∈ R

4 : h1(x) := x1 = 0},

Σ2 := {x ∈ R
4 : h2(x) := x2 = 0}, and Σ := Σ1 ∩Σ2 is the (x3, x4) plane. The vector fields are

given by

f1(x) :=




√
2
8 sin

(
π
4 − x4x

2
3

)
√
2
8 cos

(
π
4 − x2

3

)

x2
1 + x2

2 + 1
x1 + x2 + x3 + x2

4


 , f2(x) :=




2
√
2 sin

(
3
4π − x2

3

)
√
2 cos

(
3
4π − x4x

2
3

)

x4x
2
1 + x2

2 + 1
ex1 + x2 + x2

3 + x4


 ,

f3(x) :=




√
2 sin

(
π
4 − 2x2

3

)
√
2 cos

(
π
4 − 2x2

3

)

x2
1 + x2

2 + 1
x1 + ex2 + x3x4


 , f4(x) :=




−2
−1

x1 + x2

x3x
2
4 + 1


 .

We integrate ẋ = f1(x) until the trajectory reaches Σ−
2 transversally at ξ1 ≈




−0.0108
0

0.6319
0.2256


,

where Σ−
2 is attractive, since (see (1.5))

f1(ξ1) ≈




0.1132
0.1638
1.0001
0.6721


 , f2(ξ1) ≈




2.6203
−0.9060
1.0000
1.6142


 .

There is sliding motion on Σ−
2 directed towards Σ, with vector field

fΣ−
2

(x) := (1− αΣ−
2

(x))f1(x) + αΣ−
2

(x)f2(x) , αΣ−
2

(x) :=
w2

1(x)

w2
1(x) − w2

2(x)
.

At ξ2 ≈




0.0000
0.0000
0.6533
0.2436


, the trajectory reaches Σ transversally (see Figure 6). Since at ξ2 we have
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Figure 6. First enter on Σ of moments and bilinear trajectories.

W (ξ2) =

[
0.1114 2.6486 −0.0966 −2
0.1655 −0.8908 1.4110 −1

]
,

then Σ is (at least, near ξ2) nodally attractive. We slide on Σ using either fB or fM. The
respective solution trajectories now follow different paths on Σ, but eventually both reach the
curve of first order exit points given by

x4 = −1 +
π

x2
3

.

Remark 4.4. For this problem, exit curves on Σ are directly computable, and are given by:

x4 = 1− π + 4kπ

2x2
3

, k ∈ Z , and x4 = −1 +
π + 2kπ

x2
3

, k ∈ Z .

As Figure 7 shows, the moments and the bilinear trajectories exit (both of them smoothly)
at different positions on the same exit curve. Namely, the moments and bilinear trajectories
exit at

ξ
(M)
3 ≈




0.0000
0.0000
1.1725
1.2851


 , respectively ξ

(B)
3 ≈




0.0000
0.0000
1.1285
1.4670


 ,

with coefficients

λM(ξ
(M)
3 ) ≈




0
0.4596

0
0.5404


 , respectively λB(ξ

(B)
3 ) ≈




0
0.4446

0
0.5554


 .

After they exit, as shown in Figure 8, trajectories evolve in Σ+
1 until both of them again

reach Σ transversally, but at different points: namely, the moments trajectory enters Σ at
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Figure 7. Projection of moments and bilinear trajectories in the (x3, x4) plane
during sliding motion.
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Figure 8. Solution components of moments and bilinear trajectories.

ξ
(M)
4 ≈




0
0

1.2923
2.4231


, whereas the bilinear trajectory enters Σ at ξ

(B)
4 ≈




0
0

1.2236
2.4714


. After a short

sliding regime on Σ, the moments trajectory exits Σ smoothly at ξ
(M)
5 ≈




0
0

1.3050
2.5150


, where
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Figure 9. Second sliding on Σ: moments trajectory evolves properly, whereas
bilinear trajectory develops a singularity after passing through a first order exit
point.

λM

(
ξ
(M)
5

)
≈




0.9195
0

0.0805
0


. On the other hand, during this second sliding motion on Σ, the

bilinear trajectory passes through a first order exit point, and eventually the coefficients become

complex valued6 at ξ
(B)
5 ≈




0
0

1.3874
4.3001


. See Figure 9 for a magnification of this phenomenon.

After ξ
(M)
5 , the moments trajectory begins sliding on Σ−

1 , from where it exits at




0
−0.0427
1.4022
3.2765


,

entering R3; once there, the moments trajectory eventually reaches Σ+
2 transversally at ξ

(M)
6 ≈



0.3529
0

1.9684
8.6016


. Then, after sliding on Σ+

2 , it exits from there at ξ
(M)
7 ≈




0.1363
0

2.0794
164.9307


 moving into R3.

At ξ
(M)
8 ≈




0
−0.0737
2.1942
210.5975


 the moments trajectory reaches transversally Σ−

1 , slides on it and leaves

it at ξ
(M)
9 ≈




0
−0.0738
2.1953

266.7981


 and enters in R3 again. �

6The explanation of why the bilinear trajectory we are following does not notice the generic first order exit
point, and why the bilinear coefficients eventually become complex valued, is much like the explanation we
provided in Example 4.1
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5. Smooth exits for the moments method and extensions

In this section, we first show that –at generic first order exit points on Σ– the moments
solution renders (automatically) the coefficients for the exit vector field. Then, we briefly discuss
other possibilities to regularize the underdetermined system (1.15), by appending to it a linear
constraint, similarly to what we did in (1.18), and ascertain when/how this will render an
admissible solution λ.

5.1. Smooth exits. As shown in Figure 4 relative to the Example 4.1, when the moments
trajectory reached a generic first order exit point, two components of the moments solution
(i.e., of the vector λM ) became zero, and the other two gave the coefficients of cthe exit vector
field. In fact, more was observed to be true. Since the matrix M remained invertible (see
Theorem 3.8), the solution of (3.1) could be continued past the exit point, and a trajectory
sliding on Σ according to fM continued to exist; however, the moments solution was no longer
admissible, since the two components that had become 0 at the exit point eventually became
negative. This is a general behavior, that here we are going to justify rigorously. It is also a
very important and useful fact, because it allows us to detect that an exit point is reached, and
thus to eventually leave Σ smoothly at the exit point.

First, we have the following simple result.

Lemma 5.1. Let T = ABC be a planar triangle of vertices A, B, and C, joined in this order.
Then,

sgnA(ABĈ) = −sgnA(ABC) ,

where Ĉ is the reflection of C with respect to the origin, and A indicates the signed area.

Proof. The result follows from the fact that if ABC proceeds clockwise, then ABĈ has coun-
terclockwise ordering, and vice versa. �

Next, we need the following concept.

Definition 5.2 (Origin exiting along an edge). Let x(t), 0 ≤ t ≤ T , be the smooth trajectory
on Σ associated to the moments vector field, where the time interval is a time interval for which
the trajectory is well defined (i.e., the associated matrix M in (1.18) is invertible). Assume that
there is a neighborhood of the trajectory, U(x), such that Σ ∩ U(x) is attractive for values of
t in some interval 0 ≤ t ≤ t0, 0 < t0 ≤ T . Let Q(x(·)) be the quadrilateral associated to this
trajectory, and let Q be non-degenerate, and such that that none of the vertices of Q be at the
origin.

Then, we say that the origin is exiting Q along the edge w1w2 if and only if, by definition,
the following occur:

(i) there exists a time te > 0 such that x(te) ∈ Σ, A120(x(te)) = 0, and for all t : 0 ≤ t < te,
A120(x(t)) 6= 0, A240(x(t)) 6= 0, A430(x(t)) 6= 0, and A310(x(t)) 6= 0. Here, A120 is the
signed area of the triangle with vertices w1, w2 and the origin, and similarly for A240

and so forth;
(ii) there exists an open interval Ie centered at te and contained in [0, T ], such that for all

t1, t2 ∈ Ie, with t1 < te < t2, then the following inequality holds:

(5.1) A120(x(t1)) < 0 < A120(x(t2)) ;

(iii) for all t ∈ Ie, A240(x(t)) 6= 0, A430(x(t)) 6= 0, and A310(x(t)) 6= 0.

Analogous definitions hold for the origin exiting along the other edges of the quadrilateral Q, that
is along w2w4, w4w3, w3w1. The value of te above is called (first) exit time for the moments
trajectory. �
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Remark 5.3. The above definition characterizes the situation when –following the moments
solution trajectory on Σ– the origin ends up outside the quadrilateral Q after having encountered
a first order exit point. In this case, since at te we have wi(te) 6= 0, i = 1, 2, 3, 4, then it is
meaningful to determine along which edge of Q the origin exited. See Lemmata 1.4 and 1.10 for
motivation on the inequality (5.1).

In the Lemma below, we will use normalized barycentric coordinates of the origin with respect
to a triangle. Let us recall these.

Notation 5.4. For a given planar triangle TABC of distinct vertices A ≡ (xA, yA), B ≡
(xB , yB), C ≡ (xC , yC), the normalized barycentric coordinates of the origin are given by the
triplet (τA, τB, τC) satisfying the system

(5.2)





τA

[
xA

yA

]
+ τB

[
xB

yB

]
+ τc

[
xC

yC

]
=

[
0
0

]

τA + τB + τC = 1 .

In particular, all coordinates are in [0, 1] whenever 0 ∈ TABC, and if any of them is negative
then 0 is external to the triangle. Finally, if we need to specify the coordinates of a vertex with
respect to the specific triangle TABC, we will write (τABC

A , τABC
B , τABC

C ). �

Lemma 5.5. With the notation of Definition 5.2, suppose that the origin exited Q along w1w2.

Let t ∈ Ie, t > te, so that 0 /∈ Q(x(t)). For any such t, let wi, i = 1, 2, 3, 4, be the vertices
of Q, and let Tijk be the triangles of vertices wi, wj, wk (in this order), for different indices
i, j, k ∈ 1, 2, 3, 4.

Then:

0 ∈ T 123† , or 0 ∈ T 124† ,

where w†
3 and w†

4 are, respectively, the reflections of w4 and w3 with respect to the origin.

Proof. For simplicity, below we will omit writing the dependence on the point x(t), and simply
write Q for Q(x(t)), and so forth.

Since Q is not degenerate, and 0 /∈ Q, then 0 /∈ T 123 or 0 /∈ T 124 (both could be true, of
course). Suppose that 0 /∈ T 123.

Consider the triangle T124† of vertices w1, w2, w
†
4, and look at the normalized barycentric

coordinates of the origin with respect to T124† . Note that T124† cannot be degenerate. (In

fact, assume it was: then w†
4 ∈ w1w2, and hence the entire segment with extrema w†

4 and its
transformed with respect to the origin, that is w3, would be contained in T123. In particular,
this would imply that 0 ∈ T123, which is a contradiction.)

Therefore, from (5.2), using Cramer’s rule and Lemma 5.1, we get

τ124
†

4† =

det

[
w1 w2 0
1 1 1

]

A(w1w2w
†
4)

=

det

[
w1 w2 0
1 1 1

]

|A(w1w2w
†
4)|sgnA(w1w2w

†
4)

=

= −|A(w1w2w3)|
|A(w1w2w

†
4)|

det

[
w1 w2 0
1 1 1

]

|A(w1w2w3)|sgnA(w1w2w3)
= −|A(w1w2w3)|

|A(w1w2w
†
4)|

τ1233 > 0 ,

since τ1233 < 0, being 0 /∈ T 123. Similarly for the other possibilities. �

Corollary 5.6. With same notation as in Lemma 5.5, let 0 /∈ Q and assume the origin exited

along w1w2. Then, the origin is in the interior of Q̂, where Q̂ has vertices w1, w2, w
†
4, w

†
3, and

w†
3, w

†
4 are, respectively, the reflections of w4, w3 with respect to the origin.
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Proof. This is a direct consequence of Lemma 5.5, and the fact that the origin cannot be on the
edge w1w2. �

We are now ready for the anticipated result, stating that two components of λM change sign
as the moments’ trajectory continues on Σ past an exit point (cfr. Theorem 3.8).

Theorem 5.7. With the notation of Definition 5.2, suppose that the origin exited Q along
w1w2, relatively to a moments solution trajectory x(·).

Let t ∈ Ie, t > te, and sufficiently close to te, so that 0 /∈ Q(x(t)). Then, the 3rd and 4th
components of λM are negative at such t: λM,3 < 0 and λM,4 < 0.

Proof. For ease of notation, we omit writing the explicit dependence of t, but all quantities
below must be understood to be relative to the value x(t) of the trajectory.

We prove the result by contradiction. In particular, we assume that λM,3 < 0 and λM,4 ≥ 0;
the other two cases are dealt with analogously (i.e., λM,3 ≥ 0 and λM,4 < 0, or λM,3 ≥ 0 and
λM,4 ≥ 0).

As usual, below M is the matrix of the moments’ method: M =



w1 w2 w3 w4

1 1 1 1
d1 −d2 −d3 d4


,

which under the stated assumptions is invertible. Therefore, there is a unique solution λM =


λM,1

λM,2

λM,3

λM,4


 to (1.18), for which, in particular, λM,3 < 0 and λM,4 ≥ 0. Next, consider the matrix

M̂ :=



w1 w2 −w4 −w3

1 1 1 1
d1 −d2 −d4 d3


 ,

and let Q̂ be the quadrilateral associated to w1, w2,−w3,−w4 (taken in this order). By Corollary

5.6, the origin is in the interior of Q̂, and so (by Theorem 3.4) there exists a unique admissible

moments solution λ̂ such that M̂λ̂ =




0
0
1
0


, which by Corollary 3.5 has all components strictly

positive.

Now, set λ̃ :=




λM,1

λM,2

−λM,4

−λM,3


, and note that

[
w1 w2 −w4 −w3

d1 −d2 −d4 d3

]
λ̃ =



0
0
0


 .

Since the origin is exiting along w1w2, and at te we have λM,3 = λM,4 = 0, by continuity of λM,
possibly restricting the interval Ie, we can assume that

λM,3 + λM,4 <
1

2
,

so that

λM,1 + λM,2 − λM,3 − λM,4 > 0.
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Thus,

˜̃
λ :=

1

λM,1 + λM,2 − λM,3 − λM,4
λ̃

is solution of

M̂
˜̃
λ =




0
0
1
0


 .

But M̂ is non-singular, and so we get
˜̃
λ = λ̂, which contradicts the fact that λ̂ is positive,

whereas λ̂3 =
˜̃
λ3 = −λM,4 ≤ 0. �

5.2. Extensions. Here we consider other possible regularizations, besides that giving the mo-
ments method, of the system (1.15), still obtained enlarging the system (1.15) by appending to
it a linear constraint (as we did in (1.18)). Namely, for x ∈ Σ, we consider the enlarged system

(5.3)



W
1
⊤

a⊤


 λ =




0
0
1
0


 ,

where a is a smoothly varying function of x ∈ Σ, taking values in R
4.

First, we have the following result, which restricts the search for possible functions a, in order
to obtain an admissible solution λ of (5.3).

Theorem 5.8. Let the quadrilateral Q be defined as usual, let it be non-degenerate, and assume
that 0 ∈ Q. Define

A := {a : 03 ∈ TWa
} ,

where TWa
is the tetrahedron with vertices the columns of Wa, and

Wa :=

[
W
a⊤

]
.

Let λ be any solution of the underdetermined system (1.15).
Then, λ is admissible if and only if there exists a ∈ A such that a⊤λ = 0.

Proof. Let λ be any given solution of the underdetermined system (1.15).
If there is a ∈ A such that a⊤λ = 0, then λ is a solution of

(5.4) Maλ =




0
0
1
0


 , where Ma =



W
1
⊤

a⊤


 .

Looking at the third row of the adjugate ofMa, similarly to what we did in Section 3, we observe
that its entries are the volumes of the tetrahedra that any three vertices of TWa

form with the
origin of R3. Since 0 ∈ TWa

, these entries are all positive, hence Ma is invertible, and there
is a unique solution, call it λa, of (5.4), which is further admissible (nonnegative entries, and
smoothly varying).

Next, suppose that λ is an admissible solution of (1.15). Therefore, since
[
W
1
⊤

]
λ =

[
0
0
1

]
, and

[
W
1
⊤

]
has rank 3, there exists a smoothly varying function a such that a⊤λ = 0. Further, since

λ is admissible, from λ ≥ 0, one has that 0 ∈ TWa
, hence a ∈ A. �
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Below, call λa the solution of (5.3). In Theorem 5.9, we consider λa at generic first order exit
points, and show that λa has to be the moments solution λM, if this λa renders the exit vector
field.

Theorem 5.9. Let the quadrilateral Q be defined as usual, and let it be non-degenerate. Let v

span ker

[
W
1
⊤

]
, and let a in (5.3) be such that a⊤v 6= 0. Then, considering the unique solution

λa of (5.3), there holds one of the following alternatives:

(1) either λa is not admissible; or
(2) if λa is admissible, and if xe is a generic first order exit point, then at xe either λa = λM ,

or λa does not give the exit vector field, hence the trajectory associated to λa cannot exit
Σ smoothly at xe.

Proof. For any given x ∈ Σ, since a⊤v 6= 0, by Lemma 3.1, (5.3) has a unique solution. Therefore,
there exists a unique ca ∈ R (of course, ca depends on x) such that

λa = λM + cav ,

where λM is the moments’ solution associated to (1.18). Denote with [aM , bM ] the admissibility
interval determined by λM (note that aM < 0 and bM > 0):

aM := max

{
−λM,i

vi
: vi > 0

}
, bM := min

{
−λM,i

vi
: vi < 0

}
.

Since a⊤λa = 0 and d⊤λM = 0, then ca is uniquely determined as

ca =
d⊤λa

d⊤v
= −a⊤λM

a⊤v
.

Therefore, if ca /∈ [aM , bM ], then λa is not admissible.
If ca ∈ [aM , bM ], and λa is admissible, let xe be a generic first order exit point, and without

loss of generality 7 let fF
−
2 be the associated exit vector field, that is 0 ∈ w1w2. Suppose by

contradiction that λa 6= λM (at xe), but that λa leads to the exit vector field fF
−
2 at xe. Then,

λa,3 = λa,4 = 0, and, as we know, we also have λM,3 = λM,4 = 0. By Lemma 2.8, either v3 6= 0
or v4 6= 0, and therefore ca = 0, giving λa = λM , which is a contradiction. �

Remark 5.10. Of course, Theorem 5.9 does not say that there are no other solutions as in
(5.3) –beside the moments solution– which enjoy the property of rendering the exit vector field
at a first order generic exit point. Indeed, we regularized (1.15) with a vector d as in (1.19),
using the Euclidean distance from the origin of the vertices of Q (i.e., the 2-norm), but we could
have used different norms. We illustrate this in Example 5.11 below.

Example 5.11. With usual notation, consider fi, i = 1, 2, 3, 4, below:

f1(x) :=




2x1 + 1
−x1 + x2x3 + 1
x1 + x2 + 1


 , x ∈ R1 , f2(x) :=




2x1 − 1
−x1 + x3 − 1
x1 + x2x3 + 2


 , x ∈ R2 ,

f3(x) :=




2x1 − 3
−x1 + x2 + 2
x1 + x2x3 − 1


 , x ∈ R3 , f4(x) :=




2x1 + 2
−x1 + x3 − 2
x1 + x3 − 2


 , x ∈ R4 ,

where

h1(x) := x3, h2(x) := x2 .

7of course, any other choice of exit vector field is handled similarly
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Figure 10. Solution components of λM for Example 5.11, using ‖ · ‖i, i = 2, . . . , 100.

Here Σ is the x1-axis, and the matrix W for x ∈ Σ is:

W (x) =

[
x1 + 1 x1 + 2 x1 − 1 x1 − 2
−x1 + 1 −x1 − 1 −x1 + 2 −x1 − 2

]
.

There is attractive sliding motion (in the direction of increasing x1) for |x1| ≤ 1.2. The value
x1 = 1.2 is a first order exit point, with exit vector field fF

+
2 .

As illustration, consider the following family of regularizations of (1.15):



W
1
⊤

a⊤


λ =




0
0
1
0


 where a =




‖w1‖p
−‖w2‖p
−‖w3‖p
‖w4‖p


 , p ≥ 2 .

In Figure 10, we show the plots of the solutions λ of this system, relative to different choices
of the p-norm, for p = 2, . . . , 100. Clearly, the qualitative behavior of different solutions λ’s
relative to different norms is quite similar.

In conclusion, although there are alternatives to using the 2-norm when forming the vector d
in (1.19), for the class of regularized system of the type (5.3) it seems natural to simply use d as
we did in (1.19), using ‖ · ‖2, and compute λM. This choice allowed us to retain the geometrical
flavor of “moments” for the entries of λM. �

6. Conclusions

In this work, we have analyzed the moments regularization technique as a mean to select a
Filippov sliding vector field on a co-dimension 2 manifold Σ (intersection of two co-dimension 1
manifolds).

We proved that –whenever Σ is attractive– the moments regularization gives a well defined,
smoothly varying sets of coefficients, rendering a smooth Filippov sliding vector field on Σ,
which further leads to smooth exits at generic first order exit points. In the process, we have
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introduced (and exploited) a quadrilateral Q which proved to be a useful tool to study sliding
vector fields on a co-dimension 2 manifold. We have also shown by numerical experiments the
behavior of the moments method, and the potential dangers associated to selecting a solution
λ (and an associated sliding vector field) that does not smoothly render the exit vector field at
a first order exit point. Finally, we discussed the case of non-generic exit points, and further
generalizations of our approach.

To date (and with the exception of trivial modifications), we know of no other construc-
tive technique that provably gives admissible (positive and smooth) coefficients, under general
attractivity conditions of Σ, and that further leads to smooth exits at generic first order exit
points.

In a forthcoming work, we discuss extension of the moments’ technique to the case of a
discontinuity manifold of co-dimension 3 (see [6]).
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