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ON THE INVERSE OF SOME SIGN MATRICES AND ON THE
MOMENTS SLIDING VECTOR FIELD ON THE INTERSECTION
OF SEVERAL MANIFOLDS: NODALLY ATTRACTIVE CASE

LUCA DIECI AND FABIO DIFONZO

ABSTRACT. In this paper, we consider selection of a sliding vector field of Filip-
pov type on a discontinuity manifold ¥ of co-dimension 3 (intersection of three co-
dimension 1 manifolds). We propose an extension of the moments vector field to this
case, and —under the assumption that ¥ is nodally attractive— we prove that our exten-
sion delivers a uniquely defined Filippov vector field. As it turns out, the justification
of our proposed extension requires establishing invertibility of certain sign matrices.
Finally, we also propose the extension of the moments vector field to discontinuity
manifolds of co-dimension 4 and higher.

1. INTRODUCTION

An outstanding difficulty in the study of piecewise smooth (PWS) systems is the
selection of a sliding vector field of Filippov type ([9]) on a discontinuity manifold ¥
of co-dimension 2 or higher. In recent times, this problem has received considerable
attention in case ¥ has co-dimension 2; e.g., see [1, 4, 5, 11, 14] for studies of the so-
called bilinear vector field (see below). Instead, in [6], we proposed an alternative way
to define a smooth sliding vector field on a co-dimension 2 discontinuity manifold, which
we called moments vector field, and that presents some advantages with respect to the
bilinear vector field, specifically when Y loses attractivity at first order exit points.

Our purpose in this work is to propose the extension of the moments vector field to
the case of a discontinuity manifold ¥ of co-dimension 3 (and higher), intersection of
three co-dimension 1 manifolds. In this case, and unlike the extension of the bilinear
vector field (which suffers from severe lack of uniqueness), our proposed moments vector
field is uniquely defined under appropriate attractivity assumptions on X.

As it turns out, the justification of our proposal rests on the following two theorems.
The first theorem is about invertibility of a (8,8) matrix M whose entries have some
specified sign-pattern (and specific relations to one another). The second theorem is
about a particular solution of the system with matrix M and right-hand side given by
the unit vector eg.
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!
Theorem 1.1. Let w; = [wf] ,i=1,...,8, be eight vectors in R3, and consider the
w?

matriz W € R3*® given by
(1.1) W .= [wl Wy W3 W4 W5 W Wy wg] .
Assume that the entries of W are nonzero and have the following signs

+ + + + - - - -
(1.2) + + - -+ + - -
+ -+ -+ - + -

Let A € R3*® be the following matriz of “signed” partial distances

PP R R - S - N
(1.3) A= |83 =0k 88 =8B =8 6P o3 6B,
512 512 _512 _512 _5%2 _5(1}2 5%2 5%2
where, for each i =1,...,8,

523 / Z 2_|_ w? 2 513 / ! 2_|_ ,wg, 2 512 / !

Finally, let
(14) d":=[d —dy —dy di —ds ds dr —ds], di:=|wil2 i=1,...,8,

and let 1 € R® be the vector of all 17s.
Then, the matrix

w
A
]]_T
s tnovertible. O

Theorem 1.2. With M as in Theorem 1.1, consider the linear system

(1.6) M) =

HOOOO0OOOO

Call Ay the solution of (1.6). Then, Ay has all positive components: Apr; > 0, i =
1...,8. O

Remark 1.3. There are several works in linear algebra about sign-invertibility of a
matriz, that is relying solely on the signs of the entries of the given matriz; see the
works of Thomassen, [15], Klee and others, [12, 13|, and the comprehensive treatment
in [3]. For example, if the matriz M in (1.5) were an L-matriz, then it would be possible
to establish its invertibility and signs of the entries of the inverse by appealing to these
results. Unfortunately, however, these results are quite general and an L matriz is really
an equivalence class of matrices (with respect to the sign of their entries), and our special
matriz M in (1.5) does not fit in the L-matriz class. As a consequence, the existing
results on sign-invertibility of matrices cannot be used to establish that M is invertible
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(Theorem 1.1) nor of course that the solution of the system in Theorem 1.2 is positive.
For this reason, and motivated by the specific geometric structure of our problem, we
will resort to a direct proof which uses tools from convexr geometry. See Sections 2 and
3.

As we clarify below, the two theorems above validate our proposed extension of the
moments’ method for selecting a sliding vector field on a discontinuity manifold ¥ of
co-dimension 3, under the assumption that ¥ is nodally attractive.

In the remainder of this Introduction we give background information needed to
set forth our proposal for the moments’ method on a co-dimension 3 discontinuity
manifold. In Section 2 we give preliminary results that clarify our construction and lay
the groundwork to prove Theorems 1.1 and 1.2, which we do in Section 3. In Section 4
we propose the extension of the moments’ method to the case of discontinuity manifolds
of co-dimension 4 and higher. Conclusions are in Section 5.

Notation 1.4. We will write 0y, for the origin in R* and 1, for the vector of all 1’s in
RE, or simply 0 and 1 when it is clear from the context. Unless otherwise stated, the
norm s always the 2-norm.

1.1. Motivation. Consider the following piecewise smooth system,

(1.7) 2'(t) = fi(x), € R, i=1,...,8,

where the regions R;’s are open, disjoint and connected sets of R™, so that R™ = | J R;,
and on each region R; the function f; is smooth.

Moreover, the regions R;’s are separated by manifolds defined as 0-sets of smooth (at
least C2) scalar functions h;: ¥; := {z € R™ : h;(x) = 0}, i = 1,2,3, which intersect
pairwise and all three of them. For notational convenience, we use

Y12 =X1N¥e, Yi3:=31NX3, Yo3:=>2NX3,
to describe the three possible co-dimension 2 discontinuity manifolds, and further
Sy ={r €Ny : ha(x) 0}
and similarly for Efg and 255’3. Finally,
Yi=X1NYXe N3

will be the co-dimension 3 manifold of interest to us.
Without loss of generality, we label the regions R;’s as follows (see Figure 1 for an
illustration of the situation)

Ry :={x € R" : hy(z) < 0,hy(z) < 0,hs(z) <0},
Ry :={x € R" : hy(z) < 0,hy(z) < 0,hs(z) > 0},
Rs :={x € R" : hy(z) < 0,hy(z) > 0,hs(z) < 0},
Ry :={x € R" : hy(z) <0, hy(z) > 0, h3(z) > 0},
Rs :={x € R" : hy(z) > 0,hy(z) < 0,h3(z) < 0},
Rs :={x € R" : hy(z) > 0,hy(x) < 0, h3(z) > 0},
Ry :={x € R" : hy(z) > 0,ha(z) > 0, h3(z) < 0},
Rg :={x € R" : hy(z) > 0,hy(z) > 0,h3(z) > 0} .
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F1GURE 1. Regions and discontinuity surfaces.

Our goal is to describe a Filippov sliding vector field on 3, which extends the moments
vector field we proposed in [6] in the co-dimension 2 case.

1.2. Sliding vector field. We assume that {Vh;(z)}i=123 is a linearly independent
set at any x € ¥ and in a neighborhood of X.

For z € ¥, define the projections of the vector fields f;, 7 = 1,...,8, onto the normal
directions to the three manifolds:

—

(1.8) w; = U}iz = Vh;—fl , 1= 1, ,8
w; Vhi f;

Consider the matrix W € R3*® (which depends smoothly on x) as in (1.1):
(1.9) W = [wl Wy w3 W4 W5 Wg Wy wg] )

Next, we assume that the manifold ¥ is nodally attractive, which we characterize by
the following first order condition, that of course depends on the regions’ labeling.

Definition 1.5. We say that X is nodally attractive if the matrix W has the sign pattern
of (1.2). O

On X, we are interested in Filippov solutions of (1.7). In particular, we seek a sliding
vector field of the form

(1.10) Jr = Mfi+Xafo+A3fs +Mafa+ Asfs + A6 fo + Arfr + Asfs
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with nonnegative coefficients \;’s adding to 1. Imposing that fr is tangent to X, gives
the following underdetermined linear system

(1.11) [m A=

= o O O

where W € R3*® is defined as in (1.9). It is evident that (1.11) is an underdetermined
system. In Corollary 2.3 below we will show that the matrix H/Iq has a four dimensional

kernel; hence, to select a unique Filippov sliding vector field on X, the issue is how “to
fix” the four available degrees of freedom. Again, we stress that we are specifically
interested in smooth vector fields on ¥; for this reason, we seek solutions of (1.11) with
positive components, and with the \;’s smoothly varying with x € ¥, which we will call
admissible solutions.

1.2.1. Trilinear (interpolant) vector field. A possible choice to determine an admissible
solution of (1.11), and a vector field as in (1.10), is to select A € R® of the form

(1—a)(1—=p8)(1—7)
(1—=a)(1—8)y
(1- a)Bglﬂ— )

1—a)By

(1-12) A aa-pi-y |
ol = B)y
aB(l—7)

afy

where «, 3, v € (0,1). Since the choice (1.12) clearly gives > . A\; = 1, one would
need that «, 3, € [0,1] to have an admissible solution. Now, the relation (1.11) gives
a nonlinear system of three equations in the three unknowns «,3,v. As proven in
[8], when ¥ is nodally attractive, this nonlinear system always has a solution «, £,
v € (0,1). The choice (1.12) is the “natural” extension to the co-dimension 3 case of
the bilinear interpolant method, and it is important to observe that the choice (1.12) is
consistent with the bilinear interpolant technique on the lower co-dimension manifolds;
indeed, alternately setting one of «, 3,7, to be 0 or 1, gives the 6 possible combinations
needed for a sliding vector field on the relevant co-dimension 2 manifolds (namely, on
Efz, Efg, Eét,?))‘ For example, when v = 0, one obtains the bilinear vector field on ¥7,,
namely

(1.13) (1—=a)[(1=B)fr+Bfs] +al(l = B)fs + Bf7] -

However, there is a difficulty with the formulation (1.12): even when ¥ is nodally
attractive, in general there is more than one admissible solution of the nonlinear system;
see Example 1.6 below.
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Example 1.6. Consider the following matriz W, which corresponds to a nodally at-
tractive discontinuity surface X3 (see Definition 1.5 and the sign pattern of (1.2))
1 3 1 1 -7 -1 -3 =5
we=11 1 -1 -3 3 11 -1 -1
1 -9 5 -1 1 -5 9 -1
As reported in 7], searching for the trilinear solution (1.12) relative to the system
(1.14) WA=03,

gives two distinct solutions, associated to (o, 3,7v) = (1/2,1/2,1/2) and to (o, B,7) ~
(0.3316,0.2913,0.3080), namely

[1/8] [0.3268]
1/8 0.1459
1/8 0.1347
1/8 | 006
A= g ™ AR o626
1/8 0.0724
1/8 0.0668
1/8 0.0298

(The Jacobian of the nonlinear system in (o, B,7) associated to the first root is singular,
as that root is double).

1.3. Moments method. In case of a discontinuity manifold of co-dimension 2 (inter-
section of two co-dimension 1 manifolds), in [6] we proposed a methodology to select a
uniquely defined sliding vector field of Filippov type, and we called the resulting method
the moments’ method. Here we propose an extension of the moments’ method as a mean
to provide a sliding vector field in case ¥ is of co-dimension 3.

Let us recall that, if ¥ from (1.7) is a co-dimension 2 manifold, intersection of two
co-dimension 1 manifolds Y1, Yo, then computing the moments’ solution amounts to
solving the linear system

0
(1.15) ax= |7
0
where
W [Jwn ||
(1.16) M:= (17|, W:= [wl wy w3 w4]7 d:= —[|wa|] :
a7 —[Jws|
[[ws]|
with

wl =Vh]f;, i=1,234, j=12,
being h; and ho the event functions of which ¥, and Yo, are the 0-sets.
In [6] it is proven that M is invertible whenever ¥ is attractive by subsliding, in
particular when ¥ is nodally attractive, and that (1.15) provides a unique admissible
solution \y;. For later reference, we summarize this special case in the following theorem.
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wh wl owl o wl : .
Theorem 1.7 ([6]). Let W = |} 73 73 41 ¢ R2*4 have the following sign

wy wy; Wz Wy
pattern:

+ + - -

1.1
1) B~
and let M be defined as in (1.16). Then the linear system (1.15) is nonsingular and has
a unique admissible solution. ]

At this point, the key to understand how to provide the extension of the moments’
method is to realize that —alongside the co-dimension 3 manifold ¥— there are also seve-
ral lower co-dimension manifolds where solution trajectories can slide, approaching 3.
Specifically, in a neighborhood of ¥, there are three co-dimension 1 manifolds (namely,
Y1, Y2, ¥3), and three co-dimension 2 manifolds, namely X2, 313, ¥23. Now, un-
der the assumption of nodal attractivity of X, there is a unique Filippov sliding vector
field on the co-dimension 1 manifolds, but there is an ambiguity of how to select a
Filippov sliding vector field on the co-dimension 2 manifolds. Therefore, to arrive at
an appropriate extension of the moments’ method, we will need to insist that on the
co-dimension 2 manifolds we are using the moments’ vector field as sliding vector field.
We will need to further make sure that an appropriate distinction is made between
the cases of ZIQ and 21—,2’ since different vector fields enter in the convex combination
defining the moments sliding vector field in these cases (and similarly for Ef}) and X7 5,
and 223 and X 3).

Guided by the above consideration, our idea is to normalize (1.11) in the same fa-
shion of co-dimension 2 which leads to consider precisely the matrix of “signed” par-
tial distances (1.3). To witness, consider the sub-surface Y93, that is the subset of
r € R? for which hy(z) = 0 and hz(z) = 0. Looking at the sign pattern of W in
(1.2), we notice that two natural sets of vertices w;’s arise, namely {w;, wy, w3, w4} and
{ws, wg, w7, ws}, according to the sign of their first component: the first four vertices
have w} > 0,1 =1,2,3,4; the last four vertices have wl-l <0,7=5,6,7,8. Moreover,

2 .2 9 2 2 2 2
the sign pattern of w};, w% w% w%} and [wg “’9, “’g w% is the same as that in
wy Wy Wz Wy w5 Wg W7 Wy
(1.17), that is the nodal attractivity sign pattern in co-dimension 2. This implies that
the two sets {w1,wq,ws, ws} and {ws, wg, w7, ws} are determining subsliding towards
>, on 22_7 3 and 233 respectively. From Theorem 1.7, we know that the moments vector

fields on Eig is well defined. This means that, on 233, there are unique admissible
solutions of

w?  ws w3 wi 0
wi  ws wg’ w; \— 0
1 1 1 1 1
63 0B —o3 o3 0
and of
wE w? w2 w? 0
wg’ wé’ w% wg’ \— 0
1 1 1 1 1]’
6B 0B —oF o2 0
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where 673 = /(w?)2 + (w})?, i = 1,...,8. This implies that ~within the moments’

method framework— we must regularize those two blocks with the corresponding partial
distance vector relative to Yo 3: we then choose to append the row

7 6B P 5B e o 5P
to []IT] in order to obtain consistency with the moments solution on X3 3. Analogous

reasoning relative to ZfQ and ng leads us to regularize [HT] by appending to it the

matrix A as defined in (1.3).
Notice that, when 5f~k #0foralli=1,...,8and j,k = 1,2,3 (e.g., this is guaranteed
when (1.2) holds for the signs of the entries of W), the sign pattern of A is

+ - -+ + - - +
(1.18) + -+ - - + - +
+ + - - - - + +

Finally, we assemble the matrix (1.5), where the row of 1’s is merely reflecting the
convexity requirement, and the last row, the vector d in (1.4), formally expresses our
proposal of weights to place on the vertices w;’s, 7 = 1,...,8, to maintain the geometrical
flavor of moments (so to make the origin the barycenter of the polytope).

Definition 1.8. The matriz M (1.5) is called the moments matrix, and the moments’
method (on X) consists in solving (1.6) for X, and then using this X in the construction
of the sliding vector field (1.10), which will be called moments vector field.

As a consequence of Theorems 1.1 and 1.2, and under the assumptions therein, we
thus have that the moments’ method selects a unique solution A with positive entries,
and a unique sliding vector field (further, varying smoothly, since so do the entries of
the matrix M).

Example 1.9. With the matriz W as in Ezample 1.6, and forming M as in (1.5), the
unique moments solution \ys, computed according to Theorem 1.2 and relative to (1.14),
s given by

[0.4492
0.0502
0.0327
0.1019
0.0492
0.0279
0.0321
0.2569

Remark 1.10. In the present case of ¥ of co-dimension 3, to prove our results on
the feasibility of the moments method, we are assuming that 3 is nodally attractive.
FExtensive computational evidence indicates that the method proposed herein continues to
provide a unique solution with nonnegative entries also under more general attractivity
configurations of . Although we have not attempted a complete proof to include all
other possible cases, we note that the proof of Theorem 1.1 (and thus also Theorem 1.2)
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holds under more generous assumptions that those of nodal attractivity only; see Remark
3.1.

2. PRELIMINARY RESULTS

In this section, we show that the system (1.11) has a 4-parameter family of solutions,
as well as other results which we will use to prove Theorem 1.1.
First, we have the following handy linear algebra result.

Lemma 2.1. Let A € R™™, n < m, be full rank, and let b € R™. Consider the system
(2.1) Az =10,

and let d € R™ be a nonzero vector.
If there exist x and y solutions of (2.1), such that

d'z=¢, and d'y=n,
. A
with £ # n, then ar has rank n + 1.

Proof. By hypothesis, dimker(4) = m — n. Let then V € R™*(™=") he such that
range(V') = ker(A), and by contradiction suppose that d € range(AT). Then we must
have

d'"Ve=0,

for all ¢ € R™~™. Since both x and y are solutions of (2.1), then there exists ¢ € R™~"
such that

y=x+Ve.
Therefore

n=dy=daz+dVe=¢,

and this contradicts the assumption & # 1. Hence, [A} has full rank n + 1. O

dT
Next, we have the following simple result.

Lemma 2.2. Let W satisfy the sign pattern of (1.2). Then

rank W = 3.
Proof. By the sign pattern of W(2 : 3,1 : 2), rank W > 2. If, by contradiction, rank W =
2, then w; € span{w;,ws} for all i = 3,...,8; nonetheless, no linear combination of wy,
wy can match the signs of all w;, 1 = 3,...,8, at once. O

Finally, we have the anticipated result.

W

Corollary 2.3. Let /VIV/ = []IT

] . Then rank W = 4, hence ker(W) is 4-dimensional.
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2
w
Proof. Because of Theorem 1.7, the matrix |w?| contains a non-singular submatrix,
ﬂT
hence it must have rank 3. Let us then consider the system
w? 0
wd| A= |0
17 1
w?
By Theorem 1.7, considering the first four columns and the last four columns of |w? |,
]]_T

there exist the two corresponding moments solutions A and u to these system with the
following structures:

A= y K=

QOO * * % %
* ¥ ¥ ¥ OOO0O

and all their entries are nonnegative. Therefore, considering the extended matrix W=

2
33 and exploiting the sign pattern of W in (1.2), we obtain that
]].T
>0 <0
—~ 0 —~ 0
WA= e Wy = 0
1 1
Thus, using Lemma 2.1, we get that W has rank 4. g

In order to prove our main theorem, Theorem 1.1, we will show that the 8 columns
of M, without the last entry equal to 1, give 8 affinely independent vectors. To achieve
this, we will use a convex geometry construction, and the following objects will simplify
our presentation.

Let

wy

(22) V; = Az s ’L'Zl,...,&
d;

(2.3) v; :=sign(v;), i=1,...,8,

~ v;

2.4 v = , 1=1,...,8,

24 F ol

and

(2.5) TN/::conV{ﬂi:z'zl,...,S},

and

(2.6) Vi=conv{vy; : i=1,...,8}.
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We will further consider the polar of V:

(2.7) V°:{$GR7:UZ-T:E§1,z’zl,...,S}.

Note that V° is a closed convex set containing the origin in its interior, and the boundary
of V°, 9V°, is given by OV = {x € V° : vz =1, for some i =1,...,8}.

Lemma 2.4. For any i = 1,...,8, the vectors v; € OV°. Moreover, for any i,j =
1,...,8, 4 # j, v;, vj belongs to distinct facets of the polyhedron V°, and vinT)j < 0.

Proof. Obviously, v,/ v; = 1 for all i =1,...,8.
Next, consider v;. We notice that
0] vy = wh 4+ ws + w3 — 633 — 633 + 632 — dy

= (w3 —05°) + (w3 — 85°) + (8,° — da) — ||

<0.
Analogously, we have that 9] v3 < 0, 9] v5 < 0. Moreover,

Oy vg = wi +wi +w + 630 — 61 — 012 +dy
= (wj +dg — 65> = 8;%) + (67 — |wi| — Jwi]) <0,

since, in general, Va2 + b2 < |a| + |b|, and, for our particular setting, it holds that

wy +dy— 012 — 532 <0

= wj +dy <6} + 042
= 2wi)? + (wh)? + (wd)? + 2whdy < 2(wd)? + (w?)? + (wi)? 4 261353>
= 0 < (wf)? - (wi)?,

that is clearly true. Similarly, we have 9] vg < 0 and ¥} v7 < 0.
Finally, let us prove that i)\lT vg < 0. This is the same as

b = ] — ]+ /& = (d)” + /& — ()" + /& — (ud)*  ds <0,
that is, dividing both sides by dg,

wd]  JuR] o wg)’ w)’ AN
e 1 - 1— (=8 1— (=8 1-(=2) —1<o0.
dg dg dg + dg * d8 * d8
Therefore, we need to prove that

fla,b,c) <0, where f(a,bc):=—a—b—c+V1-a?+V1-02+V1-c2-1,

for a,b,c > 0 and such that a® + b + ¢> = 1. But this last verification is a simple
computation, given that the function f vanishes when one of a, b, ¢ is equal to 0, and it
has a unique critical point in the region of interest, which is a minimum®.

Identical arguments apply for all other v; and vj, i # j, and the result follows. O

Next, we have the following.

and is attained at a = b=c¢ =

Lthe minimum value is w

Sl
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Lemma 2.5. The vectors v;, i = 1,...,8, are affinely independent, hence Vois a 7-
simplex.

Proof. First, consider the matrices V= [51 58] € R™8 which is of rank 7, and
W = [171 178]. By the definition of the vectors v;’s, it follows that W = XA/D_l,

with D = diag (||vi|l1, i = 1,...8), and hence W is also of rank 7.

Now, we know that 0 = (1/8) 2%, ;, and therefore also 0 = Y25 7;7;, with 7; =

T1
%, i =1...,8 Let 7 := | : |, so that W7t = 07, and also o := 27. Since
Zj:l llvjlla .

78

1 =177 # 170 = 2, then using Lemma 2.1, the matrix BA@ is invertible, and the
claim follows. O

Remark 2.6. From the proof of Lemma 2.5 it follows that the origin is in the interior
of V.. Also, any subset of {v1,...,08} gives an affinely independent set and therefore,

forany j =1,...,8, ify € conv{vy,...,v;} then there exist unique o,...,o; € [0,1],
.': a; = 1, suc at y = :: ;v;; further, as UL i s full rank, then
1 1 h that 1 o 0;; furth T ..

a,...,o  depend continuously on y.

Our goal is to show that 0 € intV/, and this will be shown by using the following
result from classic convex geometry (see Grinbaum, [10, pag.48, Exercise 5.(vii)]).

Lemma 2.7. Let A C R be any set, d > 1. Then A° is bounded if and only if
0 € intconvA.

Proof. Let us first prove that, for any set C' € R%,

(2.8) C'is bounded <= 0 € intC”°.

If C is bounded, then there exists ¢ > 0 such that C' C Bs(0), and by a property of the
polar mapping, B 1 (0) C C°, from which 0 € intC°. Viceversa, if 0 € intC°, then there
exists 0 > 0 such that Bs(0) C C°, from which C C C°° C B%(O), meaning that C' is

bounded.
From this result, using A° instead of C', we can conclude that A° is bounded if and only
if 0 € intA°°. Since A°° = clconv(A U {0}), then intA°° = intconv A. O

The next result will be the stepping stone for our argument to show that V° is
bounded. The idea behind it relies on Remark 2.6: we will prove that, given any
y € V'\ {0}, we can project y, along the linear subspace (y), onto OV °. This geometric
property will eventually allow us to construct a ball containing V° (see the proof of
Theorem 1.1).

Lemma 2.8. For alln = 2,...,8 and for any y € ‘7, y # 0, there exists a unique
¢y > 1 such that cyy € OV°, and ¢, depends continuously on y.

Proof. We proceed recursively on n = 2,...,8.
Let n = 2, and take, without loss of generality,

y=(1—t)o; +t0, te0,1].
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Now, given any y € V \ {0}, we look for ¢; > 1 such that
v (e [(1 =80 + 1)) =1 or vy (¢ [(1 =)0y + 1)) =1,
that is (see Lemma 2.4)

c(l1—1t)+ cttvlTT)g =1 or ¢(l-— t)vgﬂl + gt =1.

Let now
b 1-— ’U;—’El
1= P P )
(1 —vy01) + (1 — v/ )
and note (see Lemma 2.4) that t; € (0,1). Moreover, letting tc = ﬁ, we claim
1

that 1 < tg. It is easily seen that t; < fc holds if and only if the following relation
holds

(2.9) 1-— (v;%) (vl v2> > 0.
But this last relation can be rewritten as

(0391 (07%2) < loall sy

which is clearly true since v; and vy have different signs. Also, let us set

L t € [0,t],

) 1-t(l—v) D2)’
C =
‘ 1 t e (t,1].

v;ﬁl—t(vggl—l)’

Now, for t € [0,;] and since #; < tc, we have that 1 — ¢(1 — v{ p) > 0, and of course
1 — (1 — v v3) <1, so that
cg>1, te [O,tl].

vl U1

If t € (t1,1], then v;% —t (vaT)l - 1) > 0 if and only if 72

- < t. But since (2.9) is

oI
equivalent to t; > T~ , and v2 vy —t (v2 U] — 1) < 1if and only if £ < 1, then it holds
again that

o >1, te(t,1].
Also, note that, for ¢t = ¢y, it holds that
(2.10) 1)1 [Ctl((l —t1)v; + tﬂ)g)] = 112 [Ctl((l — tl)’Ul + twg)] 1,

and therefore ¢; is continuous for ¢ € [0,1]. Moreover, simple computations show that,
for any ¢ € [0, t1], we have

o fer((1 =)oy + 1)) = 1,
v (1 =)0y + t1a)] < 1,
and, for any ¢ € (t1, 1] we have
vy [e((1 = 1)) + t0o)]
v [e((1 =)0y + t2a)] <

IN

j=1....8,j#1,

1,
1, j=1,...,8 j+#2.
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Thus, the case n = 2 is proven.
Let now assume y € conv{v; : i =1,2,3}:

3 3
y=> aiti, Y =1 o€01], i=123.
i=1 i=1

If y is in the convex hull of two of these vertices, then there is nothing to prove. There-
fore, we can assume that none of the a;’s, ¢ = 1,2,3, is zero. Let us then rewrite y
as

2
Y = Z o;0; + a3vs.

i=1

Let

2
Do
i=1

== ,

Do
i=1

so that y € conv{v; : i =1,2}. As in the case n = 2, there exists ¢ > 1 such that
cy € dV°; also, v3 € 9V°.
Moreover, note that

2
ZEOZZ' <’U;—5@>
~ i—1
v (€9) = =5
>
i=1

and since ¢y € 9V°, then there must exist i # 3 such that

<0,

v (€7) = 1.

Therefore, we can leverage the same arguments as in the base case n = 2, having that
for all ¢ € [0, 1] there exists ¢; > 1 such that

e [(1— 1)Eg + ] € aV°.

Setting

CcQsg

t:= 5 ,
Z o + Ccas
i=1



MOMENTS SOLUTION IN CO-DIMENSION 3 15

we have that ¢ € [0,1] and, further,

2 2
Yo Yan
(1—5)cj+ oy = — =t =, s 5

2 2 2
E o; + Eag E (67 E oG + Eag
i=1 i=1 i=1

C

2
E ai+5a3
i=1

Y,

so that _
5 ac yeve.
Z a; + cas
i=1
Since —y—C > 1 if and only if ¢ > 1, that is true, and ¢; > 1, then the existence

i1 @itcas
is verified; continuity follows from Remark 2.6. Thus, the claim is proved for n = 3.
We can proceed in the same way for all n > 3; e.g., let us prove the case of n = 8§,
assuming that the claim is true for n < 7, and that y € conv{v; : i =1,...,8}:

8 8
y=> iti, Y =1 o €[01], i=1..8
i=1 i=1

If some of the a;’s are 0, then y is in the convex hull of fewer than 8 of the v;’s and
there is nothing to prove. Therefore, we can assume that all of the o;’s, 7 = 1,...,8,
are not zero. Let us then rewrite y as

7

E ;v;

7
Y= Z o;U; + agtg , and let y := =1

7 )
i=1
so that y € conv{v; : i=1,...,7}. By previous cases, there exists ¢ > 1 such that

cy € 9V°; also, vg € 9V°.
Moreover, note that

7
Z'Eai (’U;—’EZ>
T (~ _ =1
Ug (CN) - 7
Do
i=1

and since ¢y € 9V°, then there must exist i # 8 such that

v (€7) = 1.

<0,
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Therefore, using the same arguments as in the case n = 2, we have that for all ¢ € [0, 1]
there exists ¢; > 1 such that
e [(1—t)cy + tug] € OV°.
Setting

so that

Since ——C%—— > 1 if and only if & > 1, that is true, and ¢; > 1, then the existence
i=1 i +casg ¢

is verified; again, continuity follows from Remark 2.6.

Finally, let us now prove that ¢, is unique for any y € V, y # 0. In fact, arguing by
contradiction, let d > 1 be such that d # ¢, — say d > ¢, — and dy € OV°: then there
exists j = 1,...,8 such that

va(dy) =1.
Let us also assume that viT(cyy) =1 for some ¢ =1,...,8. If i # j, then
d d d
o @) =] (o) = 2ol (e) = 2 > 1.
Cy Cy Cy

implying that dy ¢ 0V°, that is not true. Therefore, i = j. But then
d = dvf (cyy) = eyv] (dy) = ¢y,

which contradicts our assumption. Thus ¢, is unique, as claimed, and this concludes

the proof. O
Remark 2.9. In Lemma 2.8, we have constructed a map
VA {0} — 1,
o) \ {0} — [1,0)
Y cy

that is well defined, and continuous.
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Now, from Remark 2.6, there exists o > 0 such that
Bs(0) SV CV°.
We can then extend the map (2.11) to V°\ {0}.

Proposition 2.10. For any y € V°\ {0} there exists a unique ¢, > 1 such that
cyy € OV°. Moreover, this map y — ¢y is continuous on V°\ {0}.

Proof. Let y € V°\ {0}, and § > 0 such that Bs(0) C V. Then, setting z := ”—5”5, we

have z € OB5(0), and so z € V. Then, there exists ¢, > 1 such that ¢,z € OV°, or in
other words

cyy € 0V,
where
o )
@R Tl

Since c¢yy € OV°, then there exists i = 1,...,8 such that viT (cyy) = 1. If, by contradic-
tion, ¢, < 1, then
1
ful-T y=—>1,
Cy
which implies y ¢ V°, that is not the case. Thus ¢, > 1.
Let now d > 1 be such that dy € 0V°. Therefore
& e ov?e,
Cy
and from an argument similar to the above one, it follows that dg—; > 1. Since the map
(2.11) is well defined, then 9= = ¢, and so d = c,.

Cy

Therefore the map
VEAN{0} — [1,00)

Y —cy
is well defined and continuous. O
Corollary 2.11. Let § > 0 be such that Bs(0) C V°. Then it holds that
sup cyM = max c¢,.
yeve 1) 2€9B;5(0)

y#0

Proof. First, by construction we have that

Cy 5= cyT.

Let now

)
yeVe o

y70
Mp:= max c¢,
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and note that Mp is well defined because of Weierstrass’ Theorem, since 9Bs(0) is

compact. If y € V° y # 0, then ﬁ& € 0B5(0), and thus

from which
My < Mp.
If z € 0B;(0), then z € V°, and therefore

Cy = 62@ < MV7

from which
Mp < My,

and this concludes the proof. ]
Remark 2.12. From Corollary 2.11, we have that

- Iyl
[ 1= sup ¢y
yeve o
y#0

is finite, since it is equal to MaX 9B, (0) Cz that is the maximum of a continuous function
(see Remark 2.9) on a compact set. Therefore

[ = maxc M
yeve Y '
y#0

3. PROOF OF MAIN RESULTS

Proof of Theorem 1.1. To prove that 0 € intV, using Lemma 2.7, we will prove that V°
is bounded. Let § > 0 such that Bs(0) C V, and let (see Remark 2.12)

Iyl
= Imax cC = max ¢
K ye;/oo Y5 2€aBs(0)
Yy

Pick now y € V°, y # 0, but otherwise arbitrary. Therefore, since ¢, > 1,

Iyl < llewll = e, 185 = ey 35 < s

and we conclude that

Ve - Bu6(0)7
that is V° is bounded.
Therefore V' contains 07 in its interior: so there exists R > 0 such that

Br (07) C V.
Since the volume function is monotonically increasing by inclusion (see [2, 10]), and
vol V' = | det M|,

then
0 < vol Bg (07) < volV = |det M]|.
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Thus, the matrix (see (1.5))

w
A
M = ar
ﬂT
is invertible, which concludes the proof of Theorem 1.1. O

Proof of Theorem 1.2. From Theorem 1.1, (1.6) has a unique solution Ap;. We want to
show that

8 8
(3.1) Or =3 Avi, >0, > A=1.
=1 =1

From the above proof of Theorem 1.1, it follows that the vectors v;, ¢ = 1,...,8, are
affinely independent, and that V' = conv{v;, i = 1,...,8} is a 7-simplex containing the
origin in its interior. Therefore, for sure
8 8
07:Za,v,, a; >0, Za,zl
i=1 i=1

Now, by contradiction, suppose that one of the «;’s is 0, without loss of generality say
ag = 0. Then

7 7
07220@1}@-, OZZ'ZO, Zai:1.
i=1 i=1

But then 07 € conv {vy,...,v7}, that is 07 € OV, and this contradicts that 07 € int(V).
Therefore, (3.1) holds, the unique solution of M\ = eg has all positive components,

and the proof of Theorem 1.2 is completed. O
For completeness, we notice that the solution Ays of (1.6) can be written using M,gq;,

the adjugate of M, as
1

Ay = ——
M= Jet M

wo W3 W4 W5 W Wy WS q
dct{ Az Az Ay As Ag Ar As}
—do —d3 dy —ds dg d7 —dg
Wl w3 W4 W5 We W7 Ws
—dot[Al Ay Ay A Ag A Ag}
di —d3 d4 —ds ds d7 —ds
w] w2 W4 W5 We W7 WS
det|:A1 Az Ay As Ag A7 As}
di —ds d4 —ds dg d7 —dg
w] w2 w3 W5 We Wy W8
—dot|:A1 Az Az As Ag A7 As}
AT di —do —ds —ds dg d7 —d
Madj(& ) - = wll w22 w33w4 5w66w77w8 8
det{Al As As Ay Ag A7 Ag}
d1 —dz —d3 d4 dG d7 _d8
w1 w2 W3 w4 W5 Wy W
—det[A1 Az Az Ay A5 Ay As}
di —ds —ds d4 —ds d7 —dg
w1 w2 W3 w4 W5 We W8
det[m As Ay Ay As Ag As}
di —do —d3 d4 —ds dg —dsg
w1 w2 W3 W4 W5 We W7
—dot{Al As A Ay As Ag m]
L dy —ds —d3 d4 —ds dg d7

As a side result, this expression shows that any seven of the v;’s are linearly independent
vectors (we knew that they were affinely independent).

Madj (87 :)T )

where
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Remark 3.1. Our proof of Theorem 1.1 (from which Theorem 1.2 followed as well)
hinged on the fact that the vectors v;, i = 1,...,8, were affinely independent, and that
the associated vectors v;’s were so as well (see Lemma 2.5). For us, affine independence
of the ¥;’s and v;’s was a consequence of nodal attractivity of X, and this was the
only property we have used that came from the dynamics of the differential system

under study. Because of these considerations, the result (i.e., invertibility of the matriz
w

M = ) would still hold true every time one has a matriz W leading to affinely

A
dT
1T
independent vectors v;’s and v;’s. This includes many more cases of attractive ¥ than
just that of nodally attractive 3.

4. EXTENSION TO CO-DIMENSION 4 AND HIGHER

In this section, we propose the extension of the moments solution to any co-dimension
p > 1, under nodal attractivity conditions. Before doing that, we introduce the diffe-
rential problem associated to it.

Consider the piecewise smooth system

(4.1) 2'(t) = filz), € Ry, i=1,...,27,

where the regions R;’s are open, disjoint and connected sets of R", so that R = m,
and on each region R; the function f; is smooth.

The regions R;’s are separated by manifolds defined as O-sets of C? scalar functions
hi: ¥; == {z € R" : hj(z) = 0}, i = 1,...,p. Assume that the normals Vh;’s are
linearly independent on (hence in a neighborhood of) X, and let

(4.2) = ﬁ 5
i=1

be the co-dimension p manifold of interest to us. Letting
wg = th(x)Tfi(a:), i=1,...,2° j=1,...,p,

we associate the matrix W = (wlj ) € RP*?” to (4.1). As before, the linear system to
solve in order to determine a sliding vector field on ¥ is given by

Wi, |0
(4.3) H A= [ 1}
Obviously, this is an underdetermined linear system, and in Lemma 4.3 and Corollary
4.4 we will see that [Fﬂ has rank p + 1, under appropriate attractivity conditions of
3. Tt is this system that we will regularize according to the moments’ technique. Once
more, we stress that we are interested in admissible solutions of (4.3), hence positive
and smoothly varying with x € 3.

Let us first recall the sign pattern of W characterizing nodally attractive conditions,
as in [8].
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Definition 4.1. We say that ¥ in (4.2) is nodally attractive, or equivalently that W
satisfies nodally attractive conditions, if the sign pattern of W is given by the following
recursion relations:

sW =11 -1],

1., -1,
(k) o 2k—1 2k—1 o
SV = [S(k—l) S(k—l)]’ k=2,...,p.

In [8], the authors proved that —when ¥ is nodally attractive- there always exits
a multilinear (interpolant) solution A to the system WA = 0. For later reference, we
summarize this result without proof.

Lemma 4.2 ([8]). Suppose that W € RP*2" satisfies nodally attractive conditions.
Then, for any p > 1, there exist aq,...,qap, all in (0,1), such that the vector A € R*”
defined as

(I—a1)(1—a2)...(l—ap—1)(1-ap)
(I—a1)(1—az)...(l—ap—1)ap
(I—a1)(1—az)...ap-1(1-ap)

(I—a1)(1—az)...ap10p

A= | (-anaz.(i-ap-1)(i-ay)

(l—al)azz...ap,lap
al(l—ag)...(l.—ap,l)(l—ap)

a1O2...0p10p

solves the system WA = 0,, and 21221 A= 1. O
With the help of Lemma 4.2 we can prove the following.

Lemma 4.3. For any k > 1, consider W*) ¢ REx2" satisfying the sign pattern of
Definition 4.1. Then

rank W = k.

Proof. The proof is by induction on k. The case k = 1 is in [9] (k = 2 is in [6], and
k = 3 is Corollary 2.3).

Let us assume the result true for k&, and let us consider W*+1) with sign pattern given
as in Definition 4.1. Let us pick wy, ..., wqr, the first half of the columns of W*+1),
By Lemma 4.2, there exist A1,..., A\ € (0,1), such that

2k w;

DA =0,
i=1 wf+1

k. we also have

2k
Z/\szl > 0.
i=1

and since w} >0 fori=1...,2
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Using this linear combination to replace the (k4 1)-st column of W*+1) gives the matrix
>0
— 0
Wkt .~ wy v WE .
0
Now, we have that
w? o Wl
sign (det W(kH)) = sign | det : : #0,
,wllc+1 wllzﬂ
W ]
where the last inference comes from the inductive hypothesis, since :
E-+1 E-+1
wl PEEEY wk

has the sign pattern of the first & columns of W), which is supposed to be full rank.
This in turn implies that rank W&+ = + 1. ]

Finally, we have

Corollary 4.4. For any k > 1, consider W*) := [W{T ], where Wk) ¢ Rkx2" satisfies
the sign pattern of Definition 4.1. Then rank wk =k 4 1, hence ker (W(k)> is (2F —

k — 1)-dimensional.

Proof. The case k = 1 is elementary. So, proceeding by induction, let k& > 2 be fixed
and —using Lemma 4.2, and because of the nodally attractive sign pattern— consider
multilinear interpolant solutions A() and A2 associated, respectively, to the submatri-

*
] [k e e
ces : * |, and : : . of W+ Note that A\(1) = -
N Rl I R 0
I | 1 1 :
0]
107 L o
. >0 <0
0 0
and A@) — i’ . Then WH+DAD — |+ | WH+DA\@ —
. 0 0
: 1 1
—*— B - - -
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From inductive hypothesis, since the two submatrices

w? ol Wl e wlo
: : and : :
wlf“ . w’;}jl w’;}jil . w;“;ill
1 e 1 1 . 1
are full rank k + 1 having the same sign pattern as W®*) = 1T | using Lemma 2.1
gives
(k+1)
rank [W]lT } =k+2.

O
Remark 4.5. On account of Corollary 4.4, for nodally attractive %, it follows that the

linear system (4.3),
Wi, 10,
bl

has rank p + 1, therefore providing a family of solutions depending on (2P —p — 1) free
parameters. From Lemma 4.2, one possibility to fix these is by using the multilinear
interpolant approach. Needless to say (as already observed in Example 1.6 for the case
of p = 3), there is severe lack of uniqueness of solutions in this case. Below, we will
propose the moments regularization.

The moments regularization requires to append a matrix A of signed partial distances

and a row d' of full distances of wy, ..., w to The matrix A will manage all

w
NN
the subslidings at lower co-dimensions: they happen from co-dimension 2 all the way
to co-dimension p — 1. Therefore, we have

p—1

(1)1

k=2 k

rows of partial distances: thus A € R =P=2*2"  Adding the row d', gives 2 —p — 1
extra equations, as desired.

In order to decide the sign pattern of A, it is necessary to recognize the entire sub-
structures of lower co-dimensions nested within it when a partial distance is selected:
then, the sign of each entry is determined by the sign product of the components con-
sidered to compute the partial distance. This is better explained by looking at Example
4.6 below for the case of co-dimension 4, which clearly indicates how one will proceed
in general. About the sign pattern of d', our proposal is to consider the following

recursion:
1
Rl o [ _1:| '

—[Rk k=1,...,p—1,
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and then define
(w1l
(4.4) d:=Rp|
[[wan ||

Observe that this sign pattern is the same as considering the sign product of all the
components in the vectors [wi], 1=1,...,2P.

Example 4.6. In co-dimension 4, the sign pattern of W is given by
=== — —
sgmwwz[iitt;;::iiti;;::}
B e s et it i b
We split A, the matriz of partial distances, as

_ |sign(Amr) © A
sign(Am) © Aqp |’

where ® is the Hadamard (componenth’se) product, Ay contains the rows of partial
distances over three components of wf. at the time, and A contains the rows of partial
distances over two components of w) at the time. Therefore, choosing components 2,3, 4

for the first row, 1,3,4 for the second row, 1,2,4 for the third row, 1,2,3 for the fourth
row, we get that the sign pattern of A is

e — 4 —
sign(Am) = [T -7 X 2Tt
S L A AL
with

92,3.4(1) 92,3,4(16)
Ap = 91,3,4(1) 1,3,4(16)
91,2,4(1) 91,2,4(16)
d1,2,3(1) 01,2,3(16)

where, for any h =1,...,16 and suitably chosen i,j,k =1,2,3,4,

i (h) =\ (w2 + ()2 + (wh)? .

Notice that the sign pattern of the first row in Ay is determined this way: since we are
considering components 2, 3,4, then we look at second, third and fourth row of W ; those
rows present the sign pattern from co-dimension 3 in columns 1,...,8 and 9,...,16:
we then select the sign pattern of d from the co-dimension 3 case in the corresponding
columns. The same (selecting the corresponding suitable columns) has to be done for
the other rows.

The same rationale needs to be followed for determining the sign pattern of Arr,
using the sign pattern of d from the co-dimension 2 case (that is [—i— - - +]) in the
corresponding columns giving the co-dimension 2 sign pattern, after we have selected
the components to compute the partial distance. Therefore, the sign pattern of Ay is

e+t — == = ++++
-t —— =+ —++

: B B e et s

sign(Am) = [Ty TSI TTT,
e e s i e T
e e A
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with ~ .
d1,2(1) 91,2(16)
91,3(1) 61,3(16)
Ay = 5174(1) 51,4(16)
d2,3(1) d2,3(16) |
d2,4(1) 92,4(16)
_5&4(1) 53A(16)_

where, for any h =1,...,16 and suitably chosen i,j = 1,2,3,4,

Finally, according to (4.4),
sign(d') =[+-—+—++-—++-+-—+].

Putting everything together, the sign pattern of the moments matriz My in co-dimension
4 1s

s e e e S S
S e N RN
R R N
RN

R
T
T
1

At
T

DI+ ++ 1+
L+ 1+ 1+
FH+
Do+t
L1+
i1+
I+

L
R R
R e

NN

—+ 1+
SRR

1
has all positive components, proceed precisely like the case of co-dimension 3 proved in
this paper. In particular, the proof of Theorem 1.1 when p = 4 holds unchanged, aside
from the obvious changes in the dimensions (we have now 16 vectors U.s, etc.).

The proof of invertibility of this matrixz, and the fact that the solution of My = [015}

5. CONCLUSIONS

In this work, we have proposed an extension of the moments’ method to the case
of a co-dimension 3 discontinuity manifold 3. Under the assumption that > is nodally
attractive, we have proven that the resulting moments matriz is nonsingular, and further
that the unique solution provided by the moments system is admissible, i.e., we recovered
a unique convex combination and a unique Filippov sliding vector field on X. As far as we
know, this is the first instance of a constructive technique providing a unique admissible
sliding vector field on a nodally attractive discontinuity manifold of co-dimension 3.

We have also proposed the extension of the moments method to higher co-dimension,
explicitly providing details on how to construct the moments’ matrix in the co-dimension
4 case, and justification of its invertibility.
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