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ON THE INVERSE OF SOME SIGN MATRICES AND ON THE

MOMENTS SLIDING VECTOR FIELD ON THE INTERSECTION

OF SEVERAL MANIFOLDS: NODALLY ATTRACTIVE CASE

LUCA DIECI AND FABIO DIFONZO

Abstract. In this paper, we consider selection of a sliding vector field of Filip-
pov type on a discontinuity manifold Σ of co-dimension 3 (intersection of three co-
dimension 1 manifolds). We propose an extension of the moments vector field to this
case, and –under the assumption that Σ is nodally attractive– we prove that our exten-
sion delivers a uniquely defined Filippov vector field. As it turns out, the justification
of our proposed extension requires establishing invertibility of certain sign matrices.
Finally, we also propose the extension of the moments vector field to discontinuity
manifolds of co-dimension 4 and higher.

1. Introduction

An outstanding difficulty in the study of piecewise smooth (PWS) systems is the
selection of a sliding vector field of Filippov type ([9]) on a discontinuity manifold Σ
of co-dimension 2 or higher. In recent times, this problem has received considerable
attention in case Σ has co-dimension 2; e.g., see [1, 4, 5, 11, 14] for studies of the so-
called bilinear vector field (see below). Instead, in [6], we proposed an alternative way
to define a smooth sliding vector field on a co-dimension 2 discontinuity manifold, which
we called moments vector field , and that presents some advantages with respect to the
bilinear vector field, specifically when Σ loses attractivity at first order exit points.

Our purpose in this work is to propose the extension of the moments vector field to
the case of a discontinuity manifold Σ of co-dimension 3 (and higher), intersection of
three co-dimension 1 manifolds. In this case, and unlike the extension of the bilinear
vector field (which suffers from severe lack of uniqueness), our proposed moments vector
field is uniquely defined under appropriate attractivity assumptions on Σ.

As it turns out, the justification of our proposal rests on the following two theorems.
The first theorem is about invertibility of a (8, 8) matrix M whose entries have some
specified sign-pattern (and specific relations to one another). The second theorem is
about a particular solution of the system with matrix M and right-hand side given by
the unit vector e8.
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Theorem 1.1. Let wi =

[
w1

i

w2
i

w3
i

]
, i = 1, . . . , 8, be eight vectors in R3, and consider the

matrix W ∈ R3×8 given by

(1.1) W :=
[
w1 w2 w3 w4 w5 w6 w7 w8

]
.

Assume that the entries of W are nonzero and have the following signs

(1.2)



+ + + + − − − −
+ + − − + + − −
+ − + − + − + −




Let ∆ ∈ R3×8 be the following matrix of “signed” partial distances

(1.3) ∆ :=



δ231 −δ232 −δ233 δ234 δ235 −δ236 −δ237 δ238
δ131 −δ132 δ133 −δ134 −δ135 δ136 −δ137 δ138
δ121 δ122 −δ123 −δ124 −δ125 −δ126 δ127 δ128


 ,

where, for each i = 1, . . . , 8,

δ23i :=
√

(w2
i )

2 + (w3
i )

2 , δ13i :=
√
(w1

i )
2 + (w3

i )
2 , δ12i :=

√
(w1

i )
2 + (w2

i )
2 .

Finally, let

(1.4) d⊤ :=
[
d1 −d2 −d3 d4 −d5 d6 d7 −d8

]
, di := ‖wi‖2, i = 1, . . . , 8 ,

and let 1 ∈ R8 be the vector of all 1’s.
Then, the matrix

(1.5) M :=




W
∆
d⊤

1
⊤




is invertible. �

Theorem 1.2. With M as in Theorem 1.1, consider the linear system

(1.6) Mλ =




0
0
0
0
0
0
0
1


 .

Call λM the solution of (1.6). Then, λM has all positive components: λM,i > 0, i =
1 . . . , 8. �

Remark 1.3. There are several works in linear algebra about sign-invertibility of a
matrix, that is relying solely on the signs of the entries of the given matrix; see the
works of Thomassen, [15], Klee and others, [12, 13], and the comprehensive treatment
in [3]. For example, if the matrix M in (1.5) were an L-matrix, then it would be possible
to establish its invertibility and signs of the entries of the inverse by appealing to these
results. Unfortunately, however, these results are quite general and an L matrix is really
an equivalence class of matrices (with respect to the sign of their entries), and our special
matrix M in (1.5) does not fit in the L-matrix class. As a consequence, the existing
results on sign-invertibility of matrices cannot be used to establish that M is invertible
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(Theorem 1.1) nor of course that the solution of the system in Theorem 1.2 is positive.
For this reason, and motivated by the specific geometric structure of our problem, we
will resort to a direct proof which uses tools from convex geometry. See Sections 2 and
3.

As we clarify below, the two theorems above validate our proposed extension of the
moments’ method for selecting a sliding vector field on a discontinuity manifold Σ of
co-dimension 3, under the assumption that Σ is nodally attractive.

In the remainder of this Introduction we give background information needed to
set forth our proposal for the moments’ method on a co-dimension 3 discontinuity
manifold. In Section 2 we give preliminary results that clarify our construction and lay
the groundwork to prove Theorems 1.1 and 1.2, which we do in Section 3. In Section 4
we propose the extension of the moments’ method to the case of discontinuity manifolds
of co-dimension 4 and higher. Conclusions are in Section 5.

Notation 1.4. We will write 0k for the origin in Rk and 1k for the vector of all 1’s in
Rk, or simply 0 and 1 when it is clear from the context. Unless otherwise stated, the
norm is always the 2-norm.

1.1. Motivation. Consider the following piecewise smooth system,

(1.7) x′(t) = fi(x), x ∈ Ri, i = 1, . . . , 8,

where the regions Ri’s are open, disjoint and connected sets of Rn, so that Rn =
⋃

Ri,
and on each region Ri the function fi is smooth.

Moreover, the regions Ri’s are separated by manifolds defined as 0-sets of smooth (at
least C2) scalar functions hi: Σi := {x ∈ Rn : hi(x) = 0}, i = 1, 2, 3, which intersect
pairwise and all three of them. For notational convenience, we use

Σ1,2 := Σ1 ∩ Σ2 , Σ1,3 := Σ1 ∩ Σ3 , Σ2,3 := Σ2 ∩ Σ3 ,

to describe the three possible co-dimension 2 discontinuity manifolds, and further

Σ±
1,2 := {x ∈ Σ1 ∩ Σ2 : h3(x) ≷ 0}

and similarly for Σ±
1,3 and Σ±

2,3. Finally,

Σ := Σ1 ∩Σ2 ∩Σ3

will be the co-dimension 3 manifold of interest to us.
Without loss of generality, we label the regions Ri’s as follows (see Figure 1 for an

illustration of the situation)

R1 := {x ∈ Rn : h1(x) < 0, h2(x) < 0, h3(x) < 0},
R2 := {x ∈ Rn : h1(x) < 0, h2(x) < 0, h3(x) > 0},
R3 := {x ∈ Rn : h1(x) < 0, h2(x) > 0, h3(x) < 0},
R4 := {x ∈ Rn : h1(x) < 0, h2(x) > 0, h3(x) > 0},
R5 := {x ∈ Rn : h1(x) > 0, h2(x) < 0, h3(x) < 0},
R6 := {x ∈ Rn : h1(x) > 0, h2(x) < 0, h3(x) > 0},
R7 := {x ∈ Rn : h1(x) > 0, h2(x) > 0, h3(x) < 0},
R8 := {x ∈ Rn : h1(x) > 0, h2(x) > 0, h3(x) > 0} .
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Figure 1. Regions and discontinuity surfaces.

Our goal is to describe a Filippov sliding vector field on Σ, which extends the moments
vector field we proposed in [6] in the co-dimension 2 case.

1.2. Sliding vector field. We assume that {∇hi(x)}i=1,2,3 is a linearly independent
set at any x ∈ Σ and in a neighborhood of Σ.

For x ∈ Σ, define the projections of the vector fields fi, i = 1, . . . , 8, onto the normal
directions to the three manifolds:

(1.8) wi =



w1
i

w2
i

w3
i


 :=



∇h⊤1 fi
∇h⊤2 fi
∇h⊤3 fi


 , i = 1, . . . , 8 .

Consider the matrix W ∈ R3×8 (which depends smoothly on x) as in (1.1):

(1.9) W =
[
w1 w2 w3 w4 w5 w6 w7 w8

]
.

Next, we assume that the manifold Σ is nodally attractive, which we characterize by
the following first order condition, that of course depends on the regions’ labeling.

Definition 1.5. We say that Σ is nodally attractive if the matrix W has the sign pattern
of (1.2). �

On Σ, we are interested in Filippov solutions of (1.7). In particular, we seek a sliding
vector field of the form

(1.10) fF = λ1f1 + λ2f2 + λ3f3 + λ4f4 + λ5f5 + λ6f6 + λ7f7 + λ8f8
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with nonnegative coefficients λi’s adding to 1. Imposing that fF is tangent to Σ, gives
the following underdetermined linear system

(1.11)

[
W
1
⊤

]
λ =




0
0
0
1


 ,

where W ∈ R3×8 is defined as in (1.9). It is evident that (1.11) is an underdetermined

system. In Corollary 2.3 below we will show that the matrix

[
W
1
⊤

]
has a four dimensional

kernel; hence, to select a unique Filippov sliding vector field on Σ, the issue is how “to
fix” the four available degrees of freedom. Again, we stress that we are specifically
interested in smooth vector fields on Σ; for this reason, we seek solutions of (1.11) with
positive components, and with the λi’s smoothly varying with x ∈ Σ, which we will call
admissible solutions.

1.2.1. Trilinear (interpolant) vector field. A possible choice to determine an admissible
solution of (1.11), and a vector field as in (1.10), is to select λ ∈ R8 of the form

(1.12) λ =




(1− α)(1− β)(1 − γ)
(1− α)(1 − β)γ
(1− α)β(1 − γ)

1− α)βγ
α(1 − β)(1− γ)

α(1− β)γ
αβ(1 − γ)

αβγ




,

where α, β, γ ∈ (0, 1). Since the choice (1.12) clearly gives
∑

i λi = 1, one would
need that α, β, γ ∈ [0, 1] to have an admissible solution. Now, the relation (1.11) gives
a nonlinear system of three equations in the three unknowns α, β, γ. As proven in
[8], when Σ is nodally attractive, this nonlinear system always has a solution α, β,
γ ∈ (0, 1). The choice (1.12) is the “natural” extension to the co-dimension 3 case of
the bilinear interpolant method, and it is important to observe that the choice (1.12) is
consistent with the bilinear interpolant technique on the lower co-dimension manifolds;
indeed, alternately setting one of α, β, γ, to be 0 or 1, gives the 6 possible combinations
needed for a sliding vector field on the relevant co-dimension 2 manifolds (namely, on
Σ±
1,2,Σ

±
1,3,Σ

±
2,3). For example, when γ = 0, one obtains the bilinear vector field on Σ−

12,
namely

(1.13) (1− α) [(1− β)f1 + βf3] + α [(1− β)f5 + βf7] .

However, there is a difficulty with the formulation (1.12): even when Σ is nodally
attractive, in general there is more than one admissible solution of the nonlinear system;
see Example 1.6 below.
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Example 1.6. Consider the following matrix W , which corresponds to a nodally at-
tractive discontinuity surface Σ (see Definition 1.5 and the sign pattern of (1.2))

W :=



1 3 1 11 −7 −1 −3 −5
1 1 −11 −3 3 11 −1 −1
1 −9 5 −1 1 −5 9 −1


 .

As reported in [7], searching for the trilinear solution (1.12) relative to the system

(1.14) Wλ = 03 ,

gives two distinct solutions, associated to (α, β, γ) = (1/2, 1/2, 1/2) and to (α, β, γ) ≈
(0.3316, 0.2913, 0.3080), namely

λ =




1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8




and λ ≈




0.3268
0.1459
0.1347
0.06
0.1626
0.0724
0.0668
0.0298




.

(The Jacobian of the nonlinear system in (α, β, γ) associated to the first root is singular,
as that root is double).

1.3. Moments method. In case of a discontinuity manifold of co-dimension 2 (inter-
section of two co-dimension 1 manifolds), in [6] we proposed a methodology to select a
uniquely defined sliding vector field of Filippov type, and we called the resulting method
the moments’ method . Here we propose an extension of the moments’ method as a mean
to provide a sliding vector field in case Σ is of co-dimension 3.

Let us recall that, if Σ from (1.7) is a co-dimension 2 manifold, intersection of two
co-dimension 1 manifolds Σ1, Σ2, then computing the moments’ solution amounts to
solving the linear system

(1.15) Mλ =




0
0
1
0


 ,

where

(1.16) M :=



W
1
⊤

d⊤


 , W :=

[
w1 w2 w3 w4

]
, d :=




‖w1‖
−‖w2‖
−‖w3‖
‖w4‖


 ,

with
wj
i := ∇h⊤j fi, i = 1, 2, 3, 4, j = 1, 2,

being h1 and h2 the event functions of which Σ1, and Σ2, are the 0-sets.
In [6] it is proven that M is invertible whenever Σ is attractive by subsliding, in

particular when Σ is nodally attractive, and that (1.15) provides a unique admissible
solution λM. For later reference, we summarize this special case in the following theorem.
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Theorem 1.7 ([6]). Let W =

[
w1
1 w1

2 w1
3 w1

4

w2
1 w2

2 w2
3 w2

4

]
∈ R2×4 have the following sign

pattern:

(1.17)

[
+ + − −
+ − + −

]
,

and let M be defined as in (1.16). Then the linear system (1.15) is nonsingular and has
a unique admissible solution. �

At this point, the key to understand how to provide the extension of the moments’
method is to realize that –alongside the co-dimension 3 manifold Σ– there are also seve-
ral lower co-dimension manifolds where solution trajectories can slide, approaching Σ.
Specifically, in a neighborhood of Σ, there are three co-dimension 1 manifolds (namely,
Σ1, Σ2, Σ3), and three co-dimension 2 manifolds, namely Σ1,2, Σ1,3, Σ2,3. Now, un-
der the assumption of nodal attractivity of Σ, there is a unique Filippov sliding vector
field on the co-dimension 1 manifolds, but there is an ambiguity of how to select a
Filippov sliding vector field on the co-dimension 2 manifolds. Therefore, to arrive at
an appropriate extension of the moments’ method, we will need to insist that on the
co-dimension 2 manifolds we are using the moments’ vector field as sliding vector field.
We will need to further make sure that an appropriate distinction is made between
the cases of Σ+

1,2 and Σ−
1,2, since different vector fields enter in the convex combination

defining the moments sliding vector field in these cases (and similarly for Σ+
13 and Σ−

1,3,

and Σ+
2,3 and Σ−

2,3).

Guided by the above consideration, our idea is to normalize (1.11) in the same fa-
shion of co-dimension 2 which leads to consider precisely the matrix of “signed” par-
tial distances (1.3). To witness, consider the sub-surface Σ2,3, that is the subset of
x ∈ R3 for which h2(x) = 0 and h3(x) = 0. Looking at the sign pattern of W in
(1.2), we notice that two natural sets of vertices wi’s arise, namely {w1, w2, w3, w4} and
{w5, w6, w7, w8}, according to the sign of their first component: the first four vertices
have w1

i > 0, i = 1, 2, 3, 4; the last four vertices have w1
i < 0, i = 5, 6, 7, 8. Moreover,

the sign pattern of

[
w2
1 w2

2 w2
3 w2

4

w3
1 w3

2 w3
3 w3

4

]
and

[
w2
5 w2

6 w2
7 w2

8

w3
5 w3

6 w3
7 w3

8

]
is the same as that in

(1.17), that is the nodal attractivity sign pattern in co-dimension 2. This implies that
the two sets {w1, w2, w3, w4} and {w5, w6, w7, w8} are determining subsliding towards
Σ, on Σ−

2,3 and Σ+
2,3 respectively. From Theorem 1.7, we know that the moments vector

fields on Σ±
2,3 is well defined. This means that, on Σ+

2,3, there are unique admissible
solutions of 



w2
1 w2

2 w2
3 w2

4
w3
1 w3

2 w3
3 w3

4
1 1 1 1
δ231 −δ232 −δ233 δ234


λ =




0
0
1
0




and of 


w2
5 w2

6 w2
7 w2

8

w3
5 w3

6 w3
7 w3

8

1 1 1 1
δ235 −δ236 −δ237 δ238


λ =




0
0
1
0


 ,
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where δ23i =
√

(w2
i )

2 + (w3
i )

2, i = 1, . . . , 8. This implies that –within the moments’

method framework– we must regularize those two blocks with the corresponding partial
distance vector relative to Σ2,3: we then choose to append the row

[
δ231 −δ232 −δ233 δ234 δ235 −δ236 −δ237 δ238

]

to

[
W
1
⊤

]
in order to obtain consistency with the moments solution on Σ2,3. Analogous

reasoning relative to Σ±
1,2 and Σ±

1,3 leads us to regularize

[
W
1
⊤

]
by appending to it the

matrix ∆ as defined in (1.3).

Notice that, when δjki 6= 0 for all i = 1, . . . , 8 and j, k = 1, 2, 3 (e.g., this is guaranteed
when (1.2) holds for the signs of the entries of W ), the sign pattern of ∆ is

(1.18)



+ − − + + − − +
+ − + − − + − +
+ + − − − − + +


 .

Finally, we assemble the matrix (1.5), where the row of 1’s is merely reflecting the
convexity requirement, and the last row, the vector d in (1.4), formally expresses our
proposal of weights to place on the vertices wi’s, i = 1, . . . , 8, to maintain the geometrical
flavor of moments (so to make the origin the barycenter of the polytope).

Definition 1.8. The matrix M (1.5) is called the moments matrix, and the moments’
method (on Σ) consists in solving (1.6) for λ, and then using this λ in the construction
of the sliding vector field (1.10), which will be called moments vector field.

As a consequence of Theorems 1.1 and 1.2, and under the assumptions therein, we
thus have that the moments’ method selects a unique solution λ with positive entries,
and a unique sliding vector field (further, varying smoothly, since so do the entries of
the matrix M).

Example 1.9. With the matrix W as in Example 1.6, and forming M as in (1.5), the
unique moments solution λM, computed according to Theorem 1.2 and relative to (1.14),
is given by

λM ≈




0.4492
0.0502
0.0327
0.1019
0.0492
0.0279
0.0321
0.2569




.

Remark 1.10. In the present case of Σ of co-dimension 3, to prove our results on
the feasibility of the moments method, we are assuming that Σ is nodally attractive.
Extensive computational evidence indicates that the method proposed herein continues to
provide a unique solution with nonnegative entries also under more general attractivity
configurations of Σ. Although we have not attempted a complete proof to include all
other possible cases, we note that the proof of Theorem 1.1 (and thus also Theorem 1.2)
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holds under more generous assumptions that those of nodal attractivity only; see Remark
3.1.

2. Preliminary results

In this section, we show that the system (1.11) has a 4-parameter family of solutions,
as well as other results which we will use to prove Theorem 1.1.

First, we have the following handy linear algebra result.

Lemma 2.1. Let A ∈ Rn×m, n < m, be full rank, and let b ∈ Rn. Consider the system

(2.1) Ax = b ,

and let d ∈ Rm be a nonzero vector.
If there exist x and y solutions of (2.1), such that

d⊤x = ξ , and d⊤y = η ,

with ξ 6= η, then

[
A
d⊤

]
has rank n+ 1.

Proof. By hypothesis, dimker(A) = m − n. Let then V ∈ Rm×(m−n) be such that
range(V ) = ker(A), and by contradiction suppose that d ∈ range(A⊤). Then we must
have

d⊤V c = 0,

for all c ∈ Rm−n. Since both x and y are solutions of (2.1), then there exists c ∈ Rm−n

such that

y = x+ V c.

Therefore

η = d⊤y = d⊤x+ d⊤V c = ξ ,

and this contradicts the assumption ξ 6= η. Hence,

[
A
d⊤

]
has full rank n+ 1. �

Next, we have the following simple result.

Lemma 2.2. Let W satisfy the sign pattern of (1.2). Then

rankW = 3.

Proof. By the sign pattern ofW (2 : 3, 1 : 2), rankW ≥ 2. If, by contradiction, rankW =
2, then wi ∈ span{w1, w2} for all i = 3, . . . , 8; nonetheless, no linear combination of w1,
w2 can match the signs of all wi, i = 3, . . . , 8, at once. �

Finally, we have the anticipated result.

Corollary 2.3. Let W̃ :=

[
W
1
⊤

]
. Then rank W̃ = 4, hence ker(W̃ ) is 4-dimensional.
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Proof. Because of Theorem 1.7, the matrix



w2

w3

1
⊤


 contains a non-singular submatrix,

hence it must have rank 3. Let us then consider the system


w2

w3

1
⊤


λ =



0
0
1


 .

By Theorem 1.7, considering the first four columns and the last four columns of



w2

w3

1
⊤


,

there exist the two corresponding moments solutions λ and µ to these system with the
following structures:

λ =




∗
∗
∗
∗
0
0
0
0


 , µ =




0
0
0
0
∗
∗
∗
∗


 ,

and all their entries are nonnegative. Therefore, considering the extended matrix W̃ =


w1

w2

w3

1
⊤


 and exploiting the sign pattern of W in (1.2), we obtain that

W̃λ =




> 0
0
0
1


 , W̃µ =




< 0
0
0
1


 .

Thus, using Lemma 2.1, we get that W̃ has rank 4. �

In order to prove our main theorem, Theorem 1.1, we will show that the 8 columns
of M , without the last entry equal to 1, give 8 affinely independent vectors. To achieve
this, we will use a convex geometry construction, and the following objects will simplify
our presentation.

Let

vi :=



wi

∆i

di


 , i = 1, . . . , 8,(2.2)

v̂i := sign(vi), i = 1, . . . , 8,(2.3)

ṽi :=
v̂i

‖vi‖1
, i = 1, . . . , 8,(2.4)

and

(2.5) Ṽ := conv {ṽi : i = 1, . . . , 8} ,
and

(2.6) V := conv {vi : i = 1, . . . , 8} .
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We will further consider the polar of V :

(2.7) V ◦ =
{
x ∈ R7 : v⊤i x ≤ 1, i = 1, . . . , 8

}
.

Note that V ◦ is a closed convex set containing the origin in its interior, and the boundary
of V ◦, ∂V ◦, is given by ∂V ◦ = {x ∈ V ◦ : v⊤i x = 1 , for some i = 1, . . . , 8}.
Lemma 2.4. For any i = 1, . . . , 8, the vectors ṽi ∈ ∂V ◦. Moreover, for any i, j =
1, . . . , 8, i 6= j, ṽi, ṽj belongs to distinct facets of the polyhedron V ◦, and v⊤i ṽj < 0.

Proof. Obviously, v⊤i ṽi = 1 for all i = 1, . . . , 8.
Next, consider v̂1. We notice that

v̂⊤1 v2 = w1
2 + w2

2 + w3
2 − δ232 − δ132 + δ122 − d2

= (w1
2 − δ132 ) + (w2

2 − δ232 ) + (δ122 − d2)− |w3
2 |

< 0 .

Analogously, we have that v̂⊤1 v3 < 0, v̂⊤1 v5 < 0. Moreover,

v̂⊤1 v4 = w1
4 + w2

4 + w3
4 + δ234 − δ134 − δ124 + d4

= (w1
4 + d4 − δ134 − δ124 ) + (δ234 − |w2

4| − |w3
4|) < 0 ,

since, in general,
√
a2 + b2 ≤ |a|+ |b|, and, for our particular setting, it holds that

w1
4 + d4 − δ134 − δ124 < 0

⇐⇒ w1
4 + d4 < δ134 + δ124

⇐⇒ 2(w1
4)

2 + (w2
4)

2 + (w3
4)

2 + 2w1
4d4 < 2(w1

4)
2 + (w2

4)
2 + (w3

4)
2 + 2δ134 δ124

⇐⇒ 0 < (w2
4)

2 · (w3
4)

2,

that is clearly true. Similarly, we have v̂⊤1 v6 < 0 and v̂⊤1 v7 < 0.
Finally, let us prove that v̂⊤1 v8 < 0. This is the same as

−|w1
8| − |w2

8 | − |w3
8|+

√
d28 −

(
w1
8

)2
+

√
d28 −

(
w2
8

)2
+

√
d28 −

(
w3
8

)2 − d8 < 0,

that is, dividing both sides by d8,

−|w1
8|

d8
− |w2

8|
d8

− |w3
8|

d8
+

√
1−

(
w1
8

d8

)2

+

√
1−

(
w2
8

d8

)2

+

√
1−

(
w3
8

d8

)2

− 1 < 0.

Therefore, we need to prove that

f(a, b, c) < 0 , where f(a, b, c) := −a− b− c+
√

1− a2 +
√

1− b2 +
√

1− c2 − 1 ,

for a, b, c > 0 and such that a2 + b2 + c2 = 1. But this last verification is a simple
computation, given that the function f vanishes when one of a, b, c is equal to 0, and it
has a unique critical point in the region of interest, which is a minimum1.

Identical arguments apply for all other v̂i and vj , i 6= j, and the result follows. �

Next, we have the following.

1the minimum value is −
√

3−3+3
√

2√
3

and is attained at a = b = c = 1√
3
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Lemma 2.5. The vectors ṽi, i = 1, . . . , 8, are affinely independent, hence Ṽ is a 7-
simplex.

Proof. First, consider the matrices V̂ =
[
v̂1 · · · v̂8

]
∈ R7×8, which is of rank 7, and

W̃ =
[
ṽ1 · · · ṽ8

]
. By the definition of the vectors ṽi’s, it follows that W̃ = V̂ D−1,

with D = diag (‖vi‖1, i = 1, . . . 8), and hence W̃ is also of rank 7.

Now, we know that 0 = (1/8)
∑8

i=1 v̂i, and therefore also 0 =
∑8

i=1 τiṽi, with τi =

‖vi‖1∑8
j=1 ‖vj‖1

, i = 1 . . . , 8. Let τ :=

[ τ1
...
τ8

]
, so that W̃ τ = 07, and also σ := 2τ . Since

1 = 1
⊤τ 6= 1

⊤σ = 2, then using Lemma 2.1, the matrix

[
W̃
1
⊤

]
is invertible, and the

claim follows. �

Remark 2.6. From the proof of Lemma 2.5 it follows that the origin is in the interior

of Ṽ . Also, any subset of {ṽ1, . . . , ṽ8} gives an affinely independent set and therefore,
for any j = 1, . . . , 8, if y ∈ conv{ṽ1, . . . , ṽj} then there exist unique α1, . . . , αj ∈ [0, 1],
∑j

i=1 αi = 1, such that y =
∑j

i=1 αj ṽj; further, as

[
ṽ1 · · · ṽj
1 · · · 1

]
is full rank, then

α1, . . . , αj depend continuously on y.

Our goal is to show that 0 ∈ intV , and this will be shown by using the following
result from classic convex geometry (see Grünbaum, [10, pag.48, Exercise 5.(vii)]).

Lemma 2.7. Let A ⊆ Rd be any set, d ≥ 1. Then A◦ is bounded if and only if
0 ∈ intconvA.

Proof. Let us first prove that, for any set C ∈ Rd,

(2.8) C is bounded ⇐⇒ 0 ∈ intC◦.

If C is bounded, then there exists δ > 0 such that C ⊆ Bδ(0), and by a property of the
polar mapping, B 1

δ
(0) ⊆ C◦, from which 0 ∈ intC◦. Viceversa, if 0 ∈ intC◦, then there

exists δ > 0 such that Bδ(0) ⊆ C◦, from which C ⊆ C◦◦ ⊆ B 1

δ
(0), meaning that C is

bounded.
From this result, using A◦ instead of C, we can conclude that A◦ is bounded if and only
if 0 ∈ intA◦◦. Since A◦◦ = clconv(A ∪ {0}), then intA◦◦ = intconvA. �

The next result will be the stepping stone for our argument to show that V ◦ is
bounded. The idea behind it relies on Remark 2.6: we will prove that, given any

y ∈ Ṽ \ {0}, we can project y, along the linear subspace 〈y〉, onto ∂V ◦. This geometric
property will eventually allow us to construct a ball containing V ◦ (see the proof of
Theorem 1.1).

Lemma 2.8. For all n = 2, . . . , 8 and for any y ∈ Ṽ , y 6= 0, there exists a unique
cy ≥ 1 such that cyy ∈ ∂V ◦, and cy depends continuously on y.

Proof. We proceed recursively on n = 2, . . . , 8.
Let n = 2, and take, without loss of generality,

y = (1− t)ṽ1 + tṽ2, t ∈ [0, 1].
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Now, given any y ∈ Ṽ \ {0}, we look for ct ≥ 1 such that

v⊤1 (ct [(1− t)ṽ1 + tṽ2]) = 1 or v⊤2 (ct [(1− t)ṽ1 + tṽ2]) = 1,

that is (see Lemma 2.4)

ct(1− t) + cttv
⊤
1 ṽ2 = 1 or ct(1− t)v⊤2 ṽ1 + ctt = 1.

Let now

tI :=
1− v⊤2 ṽ1

(1− v⊤2 ṽ1) + (1− v⊤1 ṽ2)
,

and note (see Lemma 2.4) that tI ∈ (0, 1). Moreover, letting tC := 1
1−v⊤

1
ṽ2
, we claim

that tI < tC. It is easily seen that tI < tC holds if and only if the following relation
holds

(2.9) 1−
(
v⊤2 ṽ1

)(
v⊤1 ṽ2

)
> 0.

But this last relation can be rewritten as(
v⊤2 v̂1

)(
v⊤1 v̂2

)
< ‖v1‖1‖v2‖1

which is clearly true since v1 and v2 have different signs. Also, let us set

ct :=





1
1−t(1−v⊤

1
ṽ2)

, t ∈ [0, tI],

1
v⊤
2
ṽ1−t(v⊤

2
ṽ1−1)

, t ∈ (tI, 1].

Now, for t ∈ [0, tI] and since tI < tC, we have that 1 − t(1 − v⊤1 ṽ2) > 0, and of course
1− t(1− v⊤1 ṽ2) ≤ 1, so that

ct ≥ 1, t ∈ [0, tI].

If t ∈ (tI, 1], then v⊤2 ṽ1 − t
(
v⊤2 ṽ1 − 1

)
> 0 if and only if

v⊤2 ṽ1

v⊤
2
ṽ1−1

< t. But since (2.9) is

equivalent to tI >
v⊤
2
ṽ1

v⊤
2
ṽ1−1

, and v⊤2 ṽ1− t
(
v⊤2 ṽ1 − 1

)
< 1 if and only if t < 1, then it holds

again that

ct ≥ 1, t ∈ (tI, 1].

Also, note that, for t = tI, it holds that

(2.10) v⊤1 [ctI((1 − tI)ṽ1 + tIṽ2)] = v⊤2 [ctI((1 − tI)ṽ1 + tIṽ2)] = 1 ,

and therefore ct is continuous for t ∈ [0, 1]. Moreover, simple computations show that,
for any t ∈ [0, tI], we have

v⊤1 [ct((1− t)ṽ1 + tṽ2)] = 1,

v⊤j [ct((1− t)ṽ1 + tṽ2)] ≤ 1, j = 1, . . . , 8, j 6= 1,

and, for any t ∈ (tI, 1] we have

v⊤2 [ct((1− t)ṽ1 + tṽ2)] = 1,

v⊤j [ct((1− t)ṽ1 + tṽ2)] ≤ 1, j = 1, . . . , 8, j 6= 2.
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Thus, the case n = 2 is proven.
Let now assume y ∈ conv {ṽi : i = 1, 2, 3}:

y =

3∑

i=1

αiṽi,

3∑

i=1

αi = 1, αi ∈ [0, 1], i = 1, 2, 3.

If y is in the convex hull of two of these vertices, then there is nothing to prove. There-
fore, we can assume that none of the αi’s, i = 1, 2, 3, is zero. Let us then rewrite y
as

y =

2∑

i=1

αiṽi + α3ṽ3.

Let

ỹ :=

2∑

i=1

αiṽi

2∑

i=1

αi

,

so that ỹ ∈ conv {ṽi : i = 1, 2}. As in the case n = 2, there exists c̃ ≥ 1 such that
c̃ ỹ ∈ ∂V ◦; also, ṽ3 ∈ ∂V ◦.
Moreover, note that

v⊤3 (c̃ ỹ) =

2∑

i=1

c̃ αi

(
v⊤3 ṽi

)

2∑

i=1

αi

< 0,

and since c̃ ỹ ∈ ∂V ◦, then there must exist i 6= 3 such that

v⊤i (c̃ ỹ) = 1.

Therefore, we can leverage the same arguments as in the base case n = 2, having that
for all t ∈ [0, 1] there exists ct ≥ 1 such that

ct [(1− t)c̃ ỹ + tṽ3] ∈ ∂V ◦.

Setting

t :=
c̃ α3

2∑

i=1

αi + c̃ α3

,
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we have that t ∈ [0, 1] and, further,

(1− t)c̃ ỹ + t ṽ3 =

c̃

2∑

i=1

αi

2∑

i=1

αi + c̃ α3

2∑

i=1

αiṽi

2∑

i=1

αi

+
c̃ α3

2∑

i=1

αi + c̃ α3

ṽ3

=
c̃

2∑

i=1

αi + c̃ α3

y,

so that
ct c̃

2∑

i=1

αi + c̃ α3

y ∈ ∂V ◦.

Since c̃∑
2
i=1

αi+c̃ α3

≥ 1 if and only if c̃ ≥ 1, that is true, and ct ≥ 1, then the existence

is verified; continuity follows from Remark 2.6. Thus, the claim is proved for n = 3.
We can proceed in the same way for all n ≥ 3; e.g., let us prove the case of n = 8,
assuming that the claim is true for n ≤ 7, and that y ∈ conv {ṽi : i = 1, . . . , 8}:

y =

8∑

i=1

αiṽi,

8∑

i=1

αi = 1, αi ∈ [0, 1], i = 1, . . . , 8.

If some of the αi’s are 0, then y is in the convex hull of fewer than 8 of the ṽi’s and
there is nothing to prove. Therefore, we can assume that all of the αi’s, i = 1, . . . , 8,
are not zero. Let us then rewrite y as

y =
7∑

i=1

αiṽi + α8ṽ8 , and let ỹ :=

7∑

i=1

αiṽi

7∑

i=1

αi

,

so that ỹ ∈ conv {ṽi : i = 1, . . . , 7}. By previous cases, there exists c̃ ≥ 1 such that
c̃ ỹ ∈ ∂V ◦; also, ṽ8 ∈ ∂V ◦.
Moreover, note that

v⊤8 (c̃ ỹ) =

7∑

i=1

c̃ αi

(
v⊤8 ṽi

)

7∑

i=1

αi

< 0,

and since c̃ ỹ ∈ ∂V ◦, then there must exist i 6= 8 such that

v⊤i (c̃ ỹ) = 1.
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Therefore, using the same arguments as in the case n = 2, we have that for all t ∈ [0, 1]
there exists ct ≥ 1 such that

ct [(1− t)c̃ ỹ + tṽ8] ∈ ∂V ◦.

Setting

t :=
c̃ α8

7∑

i=1

αi + c̃ α8

,

it comes that t ∈ [0, 1] and, further,

(1− t)c̃ ỹ + t ṽ8 =

c̃

7∑

i=1

αi

7∑

i=1

αi + c̃ α8

7∑

i=1

αiṽi

7∑

i=1

αi

+
c̃ α8

7∑

i=1

αi + c̃ α8

ṽ8

=
c̃

7∑

i=1

αi + c̃ α8

y,

so that
ct c̃

7∑

i=1

αi + c̃ α8

y ∈ ∂V ◦.

Since c̃∑7
i=1

αi+c̃ α8

≥ 1 if and only if c̃ ≥ 1, that is true, and ct ≥ 1, then the existence

is verified; again, continuity follows from Remark 2.6.

Finally, let us now prove that cy is unique for any y ∈ Ṽ , y 6= 0. In fact, arguing by
contradiction, let d ≥ 1 be such that d 6= cy – say d > cy – and dy ∈ ∂V ◦: then there
exists j = 1, . . . , 8 such that

v⊤j (dy) = 1.

Let us also assume that v⊤i (cyy) = 1 for some i = 1, . . . , 8. If i 6= j, then

v⊤i (dy) = v⊤i

(
d

cy
cyy

)
=

d

cy
v⊤i (cyy) =

d

cy
> 1,

implying that dy /∈ ∂V ◦, that is not true. Therefore, i = j. But then

d = dv⊤i (cyy) = cyv
⊤
i (dy) = cy,

which contradicts our assumption. Thus cy is unique, as claimed, and this concludes
the proof. �

Remark 2.9. In Lemma 2.8, we have constructed a map

(2.11)
Ṽ \ {0} −→ [1,∞)

y 7−→ cy

that is well defined, and continuous.
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Now, from Remark 2.6, there exists δ > 0 such that

Bδ(0) ( Ṽ ⊆ V ◦.

We can then extend the map (2.11) to V ◦ \ {0}.
Proposition 2.10. For any y ∈ V ◦ \ {0} there exists a unique cy ≥ 1 such that
cyy ∈ ∂V ◦. Moreover, this map y → cy is continuous on V ◦ \ {0}.

Proof. Let y ∈ V ◦ \ {0}, and δ > 0 such that Bδ(0) ( Ṽ . Then, setting z := y
‖y‖δ, we

have z ∈ ∂Bδ(0), and so z ∈ Ṽ . Then, there exists cz ≥ 1 such that czz ∈ ∂V ◦, or in
other words

cyy ∈ ∂V ◦,

where

cy := c y
‖y‖δ

δ

‖y‖ .

Since cyy ∈ ∂V ◦, then there exists i = 1, . . . , 8 such that v⊤i (cyy) = 1. If, by contradic-
tion, cy < 1, then

v⊤i y =
1

cy
> 1,

which implies y /∈ V ◦, that is not the case. Thus cy ≥ 1.
Let now d ≥ 1 be such that dy ∈ ∂V ◦. Therefore

d
cz
cy

z ∈ ∂V ◦,

and from an argument similar to the above one, it follows that d cz
cy

≥ 1. Since the map

(2.11) is well defined, then dcz
cy

= cz , and so d = cy.

Therefore the map

V ◦ \ {0} −→ [1,∞)

y 7−→ cy

is well defined and continuous. �

Corollary 2.11. Let δ > 0 be such that Bδ(0) ( V ◦. Then it holds that

sup
y∈V ◦
y 6=0

cy
‖y‖
δ

= max
z∈∂Bδ(0)

cz .

Proof. First, by construction we have that

c y
‖y‖δ

= cy
‖y‖
δ

.

Let now

MV := sup
y∈V ◦
y 6=0

cy
‖y‖
δ

,

MB := max
z∈∂Bδ(0)

cz,
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and note that MB is well defined because of Weierstrass’ Theorem, since ∂Bδ(0) is
compact. If y ∈ V ◦, y 6= 0, then y

‖y‖δ ∈ ∂Bδ(0), and thus

cy
‖y‖
δ

= c y
‖y‖δ

≤ MB ,

from which
MV ≤ MB .

If z ∈ ∂Bδ(0), then z ∈ V ◦, and therefore

cz = cz
‖z‖
δ

≤ MV ,

from which
MB ≤ MV ,

and this concludes the proof. �

Remark 2.12. From Corollary 2.11, we have that

µ := sup
y∈V ◦
y 6=0

cy
‖y‖
δ

is finite, since it is equal to maxz∈∂Bδ(0) cz, that is the maximum of a continuous function
(see Remark 2.9) on a compact set. Therefore

µ = max
y∈V ◦
y 6=0

cy
‖y‖
δ

.

3. Proof of main results

Proof of Theorem 1.1. To prove that 0 ∈ intV , using Lemma 2.7, we will prove that V ◦

is bounded. Let δ > 0 such that Bδ(0) ( Ṽ , and let (see Remark 2.12)

µ := max
y∈V ◦
y 6=0

cy
‖y‖
δ

= max
z∈∂Bδ(0)

cz.

Pick now y ∈ V ◦, y 6= 0, but otherwise arbitrary. Therefore, since cy ≥ 1,

‖y‖ ≤ ‖cyy‖ = cy
‖y‖
δ

δ = c y
‖y‖δ

δ ≤ µδ,

and we conclude that
V ◦ ⊆ Bµδ(0),

that is V ◦ is bounded.
Therefore V contains 07 in its interior: so there exists R > 0 such that

BR (07) ( V.

Since the volume function is monotonically increasing by inclusion (see [2, 10]), and

volV = |detM |,
then

0 < volBR (07) ≤ vol V = |detM |.
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Thus, the matrix (see (1.5))

M =




W
∆
d⊤

1
⊤




is invertible, which concludes the proof of Theorem 1.1. �

Proof of Theorem 1.2. From Theorem 1.1, (1.6) has a unique solution λM . We want to
show that

(3.1) 07 =
8∑

i=1

λivi , λi > 0 ,
8∑

i=1

λi = 1 .

From the above proof of Theorem 1.1, it follows that the vectors vi, i = 1, . . . , 8, are
affinely independent, and that V = conv {vi, i = 1, . . . , 8} is a 7-simplex containing the
origin in its interior. Therefore, for sure

07 =

8∑

i=1

αivi , αi ≥ 0 ,

8∑

i=1

αi = 1 .

Now, by contradiction, suppose that one of the αi’s is 0, without loss of generality say
α8 = 0. Then

07 =
7∑

i=1

αivi , αi ≥ 0 ,
7∑

i=1

αi = 1 .

But then 07 ∈ conv {v1, . . . , v7}, that is 07 ∈ ∂V , and this contradicts that 07 ∈ int(V ).
Therefore, (3.1) holds, the unique solution of Mλ = e8 has all positive components,

and the proof of Theorem 1.2 is completed. �

For completeness, we notice that the solution λM of (1.6) can be written using Madj,
the adjugate of M , as

λM =
1

detM
Madj(8, :)

⊤ ,

where

Madj(8, :)
⊤ = −




det

[ w2 w3 w4 w5 w6 w7 w8

∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

−d2 −d3 d4 −d5 d6 d7 −d8

]

− det

[ w1 w3 w4 w5 w6 w7 w8

∆1 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

d1 −d3 d4 −d5 d6 d7 −d8

]

det

[ w1 w2 w4 w5 w6 w7 w8

∆1 ∆2 ∆4 ∆5 ∆6 ∆7 ∆8

d1 −d2 d4 −d5 d6 d7 −d8

]

− det

[ w1 w2 w3 w5 w6 w7 w8

∆1 ∆2 ∆3 ∆5 ∆6 ∆7 ∆8

d1 −d2 −d3 −d5 d6 d7 −d8

]

det

[ w1 w2 w3 w4 w6 w7 w8

∆1 ∆2 ∆3 ∆4 ∆6 ∆7 ∆8

d1 −d2 −d3 d4 d6 d7 −d8

]

− det

[ w1 w2 w3 w4 w5 w7 w8

∆1 ∆2 ∆3 ∆4 ∆5 ∆7 ∆8

d1 −d2 −d3 d4 −d5 d7 −d8

]

det

[ w1 w2 w3 w4 w5 w6 w8

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆8

d1 −d2 −d3 d4 −d5 d6 −d8

]

− det

[ w1 w2 w3 w4 w5 w6 w7

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7

d1 −d2 −d3 d4 −d5 d6 d7

]




.

As a side result, this expression shows that any seven of the vi’s are linearly independent
vectors (we knew that they were affinely independent).
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Remark 3.1. Our proof of Theorem 1.1 (from which Theorem 1.2 followed as well)
hinged on the fact that the vectors v̂i, i = 1, . . . , 8, were affinely independent, and that
the associated vectors ṽi’s were so as well (see Lemma 2.5). For us, affine independence
of the v̂i’s and ṽi’s was a consequence of nodal attractivity of Σ, and this was the
only property we have used that came from the dynamics of the differential system
under study. Because of these considerations, the result (i.e., invertibility of the matrix

M =




W
∆
d⊤

1⊤


) would still hold true every time one has a matrix W leading to affinely

independent vectors v̂i’s and ṽi’s. This includes many more cases of attractive Σ than
just that of nodally attractive Σ.

4. Extension to co-dimension 4 and higher

In this section, we propose the extension of the moments solution to any co-dimension
p ≥ 1, under nodal attractivity conditions. Before doing that, we introduce the diffe-
rential problem associated to it.

Consider the piecewise smooth system

(4.1) x′(t) = fi(x), x ∈ Ri, i = 1, . . . , 2p,

where the regions Ri’s are open, disjoint and connected sets of Rn, so that Rn =
⋃

Ri,
and on each region Ri the function fi is smooth.

The regions Ri’s are separated by manifolds defined as 0-sets of C2 scalar functions
hi: Σi := {x ∈ Rn : hi(x) = 0}, i = 1, . . . , p. Assume that the normals ∇hi’s are
linearly independent on (hence in a neighborhood of) Σ, and let

(4.2) Σ :=

p⋂

i=1

Σi

be the co-dimension p manifold of interest to us. Letting

wj
i := ∇hj(x)

⊤fi(x), i = 1, . . . , 2p, j = 1, . . . , p,

we associate the matrix W = (wj
i ) ∈ Rp×2p to (4.1). As before, the linear system to

solve in order to determine a sliding vector field on Σ is given by

(4.3)

[
W
1
⊤

]
λ =

[
0p
1

]
.

Obviously, this is an underdetermined linear system, and in Lemma 4.3 and Corollary
4.4 we will see that

[
W
1
⊤
]
has rank p + 1, under appropriate attractivity conditions of

Σ. It is this system that we will regularize according to the moments’ technique. Once
more, we stress that we are interested in admissible solutions of (4.3), hence positive
and smoothly varying with x ∈ Σ.

Let us first recall the sign pattern of W characterizing nodally attractive conditions,
as in [8].
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Definition 4.1. We say that Σ in (4.2) is nodally attractive, or equivalently that W
satisfies nodally attractive conditions, if the sign pattern of W is given by the following
recursion relations:

S(1) =
[
1 −1

]
,

S(k) =

[
1
⊤
2k−1 −1

⊤
2k−1

S(k−1) S(k−1)

]
, k = 2, . . . , p.

In [8], the authors proved that –when Σ is nodally attractive– there always exits
a multilinear (interpolant) solution λ to the system Wλ = 0. For later reference, we
summarize this result without proof.

Lemma 4.2 ([8]). Suppose that W ∈ Rp×2p satisfies nodally attractive conditions.
Then, for any p ≥ 1, there exist α1, . . . , αp, all in (0, 1), such that the vector λ ∈ R2p

defined as

λ =




(1−α1)(1−α2)...(1−αp−1)(1−αp)
(1−α1)(1−α2)...(1−αp−1)αp

(1−α1)(1−α2)...αp−1(1−αp)
(1−α1)(1−α2)...αp−1αp

...
(1−α1)α2...(1−αp−1)(1−αp)

...
(1−α1)α2...αp−1αp

α1(1−α2)...(1−αp−1)(1−αp)
...

α1α2...αp−1αp




solves the system Wλ = 0p, and
∑2p

i=1 λi = 1. �

With the help of Lemma 4.2 we can prove the following.

Lemma 4.3. For any k ≥ 1, consider W (k) ∈ Rk×2k satisfying the sign pattern of
Definition 4.1. Then

rankW (k) = k .

Proof. The proof is by induction on k. The case k = 1 is in [9] (k = 2 is in [6], and
k = 3 is Corollary 2.3).

Let us assume the result true for k, and let us consider W (k+1) with sign pattern given
as in Definition 4.1. Let us pick w1, . . . , w2k , the first half of the columns of W (k+1).
By Lemma 4.2, there exist λ1, . . . , λ2k ∈ (0, 1), such that

2k∑

i=1

λi




w2
i
...

wk+1
i


 = 0k ,

and since w1
i > 0 for i = 1 . . . , 2k, we also have

2k∑

i=1

λiw
1
i > 0 .
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Using this linear combination to replace the (k+1)-st column of W (k+1) gives the matrix

Ŵ (k+1) :=


w1 · · · wk

> 0
0
...
0


 .

Now, we have that

sign
(
det Ŵ (k+1)

)
= sign


det




w2
1 · · · w2

k
...

...

wk+1
1 · · · wk+1

k





 6= 0 ,

where the last inference comes from the inductive hypothesis, since




w2
1 · · · w2

k
...

...

wk+1
1 · · · wk+1

k




has the sign pattern of the first k columns of W (k), which is supposed to be full rank.
This in turn implies that rankW (k+1) = k + 1. �

Finally, we have

Corollary 4.4. For any k ≥ 1, consider W̃ (k) :=

[
W (k)

1
⊤

]
, where W (k) ∈ Rk×2k satisfies

the sign pattern of Definition 4.1. Then rank W̃ (k) = k + 1, hence ker
(
W̃ (k)

)
is (2k −

k − 1)-dimensional.

Proof. The case k = 1 is elementary. So, proceeding by induction, let k ≥ 2 be fixed
and –using Lemma 4.2, and because of the nodally attractive sign pattern– consider
multilinear interpolant solutions λ(1) and λ(2) associated, respectively, to the submatri-

ces




w2
1 · · · w2

2k
...

...

wk+1
1 · · · wk+1

2k

1 · · · 1


, and




w2
2k+1

· · · w2
2k+1

...
...

wk+1
2k+1

· · · wk+1
2k+1

1 · · · 1


, of W̃

(k+1). Note that λ(1) =




∗
...
∗
0
...
0




and λ(2) =




0
...
0
∗
...
∗



. Then W̃ (k+1)λ(1) =




> 0
0
...
0
1



, W̃ (k+1)λ(2) =




< 0
0
...
0
1



.
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From inductive hypothesis, since the two submatrices



w2
1 · · · w2

2k
...

...

wk+1
1 · · · wk+1

2k

1 · · · 1


 and




w2
2k+1

· · · w2
2k+1

...
...

wk+1
2k+1

· · · wk+1
2k+1

1 · · · 1




are full rank k + 1 having the same sign pattern as W̃ (k) =

[
W (k)

1
⊤

]
, using Lemma 2.1

gives

rank

[
W (k+1)

1
⊤

]
= k + 2 .

�

Remark 4.5. On account of Corollary 4.4, for nodally attractive Σ, it follows that the
linear system (4.3), [

W
1
⊤

]
λ =

[
0p
1

]
,

has rank p+ 1, therefore providing a family of solutions depending on (2p − p− 1) free
parameters. From Lemma 4.2, one possibility to fix these is by using the multilinear
interpolant approach. Needless to say (as already observed in Example 1.6 for the case
of p = 3), there is severe lack of uniqueness of solutions in this case. Below, we will
propose the moments regularization.

The moments regularization requires to append a matrix ∆ of signed partial distances

and a row d⊤ of full distances of w1, . . . , w2p to

[
W
1
⊤

]
. The matrix ∆ will manage all

the subslidings at lower co-dimensions: they happen from co-dimension 2 all the way
to co-dimension p− 1. Therefore, we have

p−1∑

k=2

(
p

k

)
= 2p − p− 2

rows of partial distances: thus ∆ ∈ R(2p−p−2)×2p . Adding the row d⊤, gives 2p − p − 1
extra equations, as desired.

In order to decide the sign pattern of ∆, it is necessary to recognize the entire sub-
structures of lower co-dimensions nested within it when a partial distance is selected:
then, the sign of each entry is determined by the sign product of the components con-
sidered to compute the partial distance. This is better explained by looking at Example
4.6 below for the case of co-dimension 4, which clearly indicates how one will proceed
in general. About the sign pattern of d⊤, our proposal is to consider the following
recursion:

R1 :=

[
1

−1

]
,

Rk+1 :=

[
Rk

−Rk

]
, k = 1, . . . , p − 1,
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and then define

(4.4) d := Rp



‖w1‖
...

‖w2p‖


 .

Observe that this sign pattern is the same as considering the sign product of all the
components in the vectors

[
wi

]
, i = 1, . . . , 2p.

Example 4.6. In co-dimension 4, the sign pattern of W is given by

sign(W ) =

[+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + + − − − −
+ + − − + + − − + + − − + + − −
+ − + − + − + − + − + − + − + −

.

]

We split ∆, the matrix of partial distances, as

∆ =

[
sign(∆III)⊙∆III

sign(∆II)⊙∆II

]
,

where ⊙ is the Hadamard (componentwise) product, ∆III contains the rows of partial

distances over three components of wj
i at the time, and ∆II contains the rows of partial

distances over two components of wj
i at the time. Therefore, choosing components 2, 3, 4

for the first row, 1, 3, 4 for the second row, 1, 2, 4 for the third row, 1, 2, 3 for the fourth
row, we get that the sign pattern of ∆III is

sign(∆III) =

[+ − − + − + + − + − − + − + + −
+ − − + + − − + − + + − − + + −
+ − + − − + − + − + − + + − + −
+ + − − − − + + − − + + + + − −

]
,

with

∆III =




δ2,3,4(1) · · · δ2,3,4(16)
δ1,3,4(1) · · · δ1,3,4(16)
δ1,2,4(1) · · · δ1,2,4(16)
δ1,2,3(1) · · · δ1,2,3(16)


 ,

where, for any h = 1, . . . , 16 and suitably chosen i, j, k = 1, 2, 3, 4,

δi,j,k(h) :=
√

(wh
i )

2 + (wh
j )

2 + (wh
k )

2 .

Notice that the sign pattern of the first row in ∆III is determined this way: since we are
considering components 2, 3, 4, then we look at second, third and fourth row of W ; those
rows present the sign pattern from co-dimension 3 in columns 1, . . . , 8 and 9, . . . , 16:
we then select the sign pattern of d from the co-dimension 3 case in the corresponding
columns. The same (selecting the corresponding suitable columns) has to be done for
the other rows.

The same rationale needs to be followed for determining the sign pattern of ∆II,
using the sign pattern of d from the co-dimension 2 case (that is

[
+ − − +

]
) in the

corresponding columns giving the co-dimension 2 sign pattern, after we have selected
the components to compute the partial distance. Therefore, the sign pattern of ∆II is

sign(∆II) =




+ + + + − − − − − − − − + + + +
+ + − − + + − − − − + + − − + +
+ − + − + − + − − + − + − + − +
+ + − − − − + + + + − − − − + +
+ − + − − + − + + − + − − + − +
+ − − + + − − + + − − + + − − +


 ,
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with

∆II =




δ1,2(1) · · · δ1,2(16)
δ1,3(1) · · · δ1,3(16)
δ1,4(1) · · · δ1,4(16)
δ2,3(1) · · · δ2,3(16)
δ2,4(1) · · · δ2,4(16)
δ3,4(1) · · · δ3,4(16)




,

where, for any h = 1, . . . , 16 and suitably chosen i, j = 1, 2, 3, 4,

δi,j(h) :=
√

(wh
i )

2 + (wh
j )

2 .

Finally, according to (4.4),

sign(d⊤) = [+ − − + − + + − − + + − + − − + ] .

Putting everything together, the sign pattern of the moments matrix M4 in co-dimension
4 is 



+ + + + + + + + − − − − − − − −
+ + + + − − − − + + + + − − − −
+ + − − + + − − + + − − + + − −
+ − + − + − + − + − + − + − + −
+ − − + − + + − + − − + − + + −
+ − − + + − − + − + + − − + + −
+ − + − − + − + − + − + + − + −
+ + − − − − + + − − + + + + − −
+ + + + − − − − − − − − + + + +
+ + − − + + − − − − + + − − + +
+ − + − + − + − − + − + − + − +
+ + − − − − + + + + − − − − + +
+ − + − − + − + + − + − − + − +
+ − − + + − − + + − − + + − − +
+ − − + − + + − − + + − + − − +
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




.

The proof of invertibility of this matrix, and the fact that the solution of M4λM =

[
015
1

]

has all positive components, proceed precisely like the case of co-dimension 3 proved in
this paper. In particular, the proof of Theorem 1.1 when p = 4 holds unchanged, aside
from the obvious changes in the dimensions (we have now 16 vectors v̂′is, etc.).

5. Conclusions

In this work, we have proposed an extension of the moments’ method to the case
of a co-dimension 3 discontinuity manifold Σ. Under the assumption that Σ is nodally
attractive, we have proven that the resultingmoments matrix is nonsingular, and further
that the unique solution provided by the moments system is admissible, i.e., we recovered
a unique convex combination and a unique Filippov sliding vector field on Σ. As far as we
know, this is the first instance of a constructive technique providing a unique admissible
sliding vector field on a nodally attractive discontinuity manifold of co-dimension 3.

We have also proposed the extension of the moments method to higher co-dimension,
explicitly providing details on how to construct the moments’ matrix in the co-dimension
4 case, and justification of its invertibility.
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