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Abstract. We consider a model planar system with discontinuous right-hand
side possessing an attracting periodic orbit, and we investigate what happens to
a Euler discretization with stepsize τ of this system. We show that, in general,
the resulting discrete dynamical system does not possess an invariant curve,
in sharp contrast to what happens for smooth problems. In our context, we
show that the numerical trajectories are forced to remain inside a band, whose
width is proportional to the discretization stepsize τ . We further show that
if we consider an event-driven discretization of the model problem, whereby
the solution is forced to step exactly on the discontinuity line, then there is a
discrete periodic solution near the one of the original problem (for sufficiently
small τ). Finally, we consider what happens to the Euler discretization of the
regularized system rewritten in polar coordinates, and give numerical evidence
that the discrete solution now undergoes a period doubling cascade with respect
to the regularization parameter ǫ, for fixed τ .

1. Periodic orbit of a planar system with discontinuous right-hand side

under discretization. Regularized problem and period doubling cascade.

We consider the following model of discontinuous system of differential equations

d

dt

[
x
y

]
=





[
c d
−d c

] [
x
y

]
, y < m ,

[
−a b
−b −a

] [
x
y

]
, y > m ,

(1)

where a, b, c, d,m > 0. Without loss of generality, we can take m = 1, as we will
often do in this work. Motion always takes place forward in time, and thus proceeds
clockwise.

This sytem was studied in [4], where it was shown that, for a
b

> c
d
, (1) has

a globally (aside for the origin) asymptotically stable limit cycle of crossing type:
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it consists of two smooth arcs above and below the line y = m, connecting into
a periodic orbit transversed clockwise. Different bifurcation phenomena occurs as
c
d
decreases towards 0 and the limit cycle changes from crossing, to crossing and

sliding, to a sliding limit cycle.
In this work, we are interested in studying what happens to a Euler discretization

of (1), insofar as the above mentioned crossing limit cycle.
A common means of studying (1) is to replace it with a smooth system, a regu-

larization (e.g., see [8]). For this reason, in this work we will also consider the Euler
discretization of the following smooth regularization of (1):

d

dt

[
x
y

]
= (1− gǫ(z))

[
c d
−d c

] [
x
y

]
+ gǫ(z)

[
−a b
−b −a

] [
x
y

]
, (2)

where gǫ is an at least C1 transition function. In this paper, we work with

gǫ(z) =





1 z ≥ ǫ
1
2 + z

4ǫ

(
3− ( z

ǫ
)2
)

−ǫ < z < ǫ

0 z ≤ −ǫ

and z = y −m . (3)

(For the record, we have also used different choices of gǫ, for example a fifth degree
polynomial, and obtained essentially the same result as we report in this work).

For small ǫ, one may expect that solutions of (2) resemble those of (1). This is
effectively correct, and the following proposition holds.

Proposition 1. For ǫ ≥ ǫ0 > 0 sufficiently small, and a
b
> c

d
, system (2) admits

an asymptotically stable limit cycle. The limit cycle of (2) converges, as ǫ → 0, to
that of (1).

Proof. This is proven in [3] or [7].

Now, there are very refined general results on discretization of smooth dynamical
systems (e.g., see [6] or [2]). In particular, the following result holds.

Theorem 2. [2, 6] Let the smooth system ż = f(z), f ∈ Cq, q ≥ 1, have a hyperbolic
periodic orbit γ. Consider the discrete dynamical system obtained by a Runge Kutta
discretization of order p, p ≤ q, of the original problem: zk+1 = zk + τΦ(τ, zk, f),
k = 1, 2, . . . . Then, for sufficiently small τ , the discrete dynamical system has an
invariant closed curve Γ. Further, Γ has the same hyperbolicity type of the original
periodic orbit, and it is O(τp)-close to the original periodic orbit.

In this work we address the following questions.

(Q1) What survives of a result like Theorem 2 for the discontinuous dynamical
system (1)?

(Q2) In which form does a result like Theorem 2 survive for the smooth system (2)
as ǫ → 0?

We will provide answers to these questions relative to Euler method, the proto-
typical 1-step method. For example, for (1), the method reads

[
xk+1

yk+1

]
=





(
I + τ

[
c d
−d c

])[
xk

yk

]
, yk < m ,

(
I + τ

[
−a b
−b −a

])[
xk

yk

]
, yk > m ,

k = 0, 1, . . . , (4)



PERIODIC ORBITS OF PLANAR DISCONTINUOUS SYSTEM 2745

or more compactly as

[
xk+1

yk+1

]
=: Φ(τ)

[
xk

yk

]
=





S1(τ)

[
xk

yk

]
, yk < m ,

S2(τ)

[
xk

yk

]
, yk > m ,

(5)

with the provision that if y = m, then we will use S1 if x > c
d
m, and S2 if x < −a

b
m.

We do not consider the case −a
b
m ≤ x ≤ c

d
m, since this is a sliding segment and

we are only interested in solutions of (1) in a neighborhood of the crossing periodic
orbit.

Furthermore, we will also consider the broken line interpolant resulting from
Euler method; recall that this is nothing but the piecewise linear extension of Euler
method: [

xk

yk

]
+ s

[
xk+1 − xk

yk+1 − yk

]
, 0 ≤ s ≤ 1 , k = 0, 1, . . . .

We have to stress that, in spite of the deceiving simplicity of the model (1) and
of the discretization method, the previously posed questions (Q1) and (Q2) are not
at all trivial and the answers will be somewhat surprising.

In the remainder of this Section, first we look at what can be said when the system
is rewritten in polar coordinates. Then, we will show results of several numerical
experiments in support of our answers to questions (Q1) and (Q2). In Sections 2
and 3 we give our main theoretical results. Section 4 contains conclusions.

1.1. Polar coordinates. In our quest to answer questions (Q1) and (Q2) above,
it will be useful to consider the polar coordinates rewriting of system (1). Trivially,
in polar coordinates (1) rewrites as

(
ρ̇

θ̇

)
=





(
cρ
−d

)
, ρ sin θ < m ,

(
−aρ
−b

)
, ρ sin θ > m .

(6)

From this, it is immediate to obtain:

dρ

dθ
=

{
− c

d
ρ , ρ sin θ < m ,

a
b
ρ , ρ sin θ > m .

(7)

Clearly, a periodic solution of (1) corresponds to a 2π-periodic solution (function)
of (7).

Let N > 0 and choose a stepsize τ = 2π
N
. Let θn = θ0 + nτ , for any fixed θ0, and

consider Euler’s method with stepsize τ for (7). This gives the discontinuous map

ρn+1 =

{
(1 − τ c

d
)ρn , ρn sin θn < m ,

(1 + τ a
b
)ρn , ρn sin θn > m ,

(8)

with the agreement that, if ρn sin(θn) = m, we will take ρn+1 ={
(1− τ c

d
)ρn , ρn cos θn > c

d
m

(1 + τ a
b
)ρn , ρn cos θn < −a

b
m
. Now, notice that for each p > 0, the values

ρN+p must all belong to the same line θ = θp. As a consequence of this, if there is
an invariant closed curve for the map (8) then it must be a periodic point for the
map. This means that there must exist k1, k2,∈ N so that

(
1− τ

c

d

)k1
(
1 + τ

a

b

)k2

ρ0 = ρ0,
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Figure 1. Euler trajectory on (1) and blow-up.

which we rewrite it as −k1

k2
log(1 − τ c

d
) = log(1 + τ a

b
). For τ small, by taking the

Taylor expansions of the two logarithms we obtain

−
k1
k2

∞∑

n=1

(−1)n+1

n

(
−τ

c

d

)n

=
∞∑

n=1

(−1)n+1

n

(
τ
a

b

)n

. (9)

For these power series to be equal we need

k1
k2

=
a

b

d

c
,

k1
k2

= −
a2

b2
d2

c2
, ...

and this already gives a contradiction. Thus, the following theorem holds.

Proposition 3. The discontinuous map (8), with τ = 2π
N
, and N ∈ N, does not

have a periodic point.

Remark 4. As a consequence of Proposition 3, there cannot exist a τ̄ sufficiently
small such that for all τ ∈ (0, τ̄), Euler method applied to (7) has an invariant
closed curve. This already tells us that well known results for smooth systems do
not apply to discontinuous systems. But, it still does not tell us what survives of
those results.

1.2. Some experiments. Below, we report on some numerical experiments aiming
at understading the behavior of Euler method applied to (1).

Example 5. We consider (1), with parameter values m = 1, a = b = d = 1 and
c = 0.8, for which (1) admits an asymptotically stable crossing limit cycle (see [4]).
Next, we take a Euler discretization of (1) and see if (as it would be the case for a
smooth problem for sufficiently small stepsize, see Theorem 2) there is an attracting
invariant curve for the discrete map, near the limit cycle.

After discarding a transient, we observe that the numerical trajectory remains
near the limit cycle, but there does not seem to be a closed curve for the numerical
method. What we see is a “band-like region.” See Figure 1 for Euler method with
stepsize 5× 10−4 and 20000 steps and a blow up when we take 107 steps. The band
we see contains the periodic orbit of the system.

We made several more experiments with different random initial conditions and
stepsizes, validating the following observations.

(i) The “band” fills-in, although we are not able to discern a mechanism of how
it gets organized, which appears to be “chaotic.”
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Figure 2. Exchange mechanism of Euler trajectories on (1); few
iterates on the left figure, and many iterates on the right figure.

(ii) At the same time, decreasing τ shows that the bandwidth decreases linearly
with τ .

Based on the above, we formulate the following claim, which we will prove in
Section 3.

Claim 1. For any given τ > 0, bounded away from 0 and sufficiently small, and
any cross section of the periodic orbit of (1), the piecewise linear interpolant of the
Euler iterates –evaluated at the cross section– eventually remains in an interval of
finite width ω(τ). The width ω(τ) depends on τ and on the cross section but not on
the number of Euler iterates, and it decreases linearly in τ .

Our experiments highlighted also the following behavior, which will be rigorously
shown in Section 2, Lemma 12.

Claim 2. Euler method on the upper and lower pieces is “monotóne,” in the fol-
lowing sense.

(a) Upper part. Suppose that at y = 1 we have two different values of x, say x0

and x̂0, with x0 < x̂0, both negative, and we integrate with Euler method the
system (1), for as long as both yk and ŷk remain greater than 1. Call γt,τ
and γ̂t,τ the two broken line interpolants associated to the respective Euler
trajectories. Then, the Euler steps are monotone in the sense that the two
interpolants do not cross each other, and γt,τ is above γ̂t,τ (i.e., it is farther
away from the origin).

(b) Bottom part. Again, suppose that at y = 1 we have two different values of x,
say x0 and x̂0, with x0 < x̂0, both positive, and we integrate with Euler method
the system (1), for as long as yk and ŷk remain less than 1. Call γt,τ and γ̂t,τ
the two broken line interpolants associated to the respective Euler trajectories.
Then, the Euler steps are monotone in the sense that γt,τ and γ̂t,τ do not cross
each other, and γt,τ is below γ̂t,τ (i.e., it is farther away from the origin).

Now, assuming true Claim 2, the only mechanism by which Euler interpolants
can cross each other is due to the way that they cross the line y = 1, on the right
and the left. See Figure 2 for an illustration of this fact, relative to the left crossing
of y = 1. A similar mechanism occurs relative to the right crossing of y = 1.
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1.3. Discretization of regularized problem in polar coordinates. Next, con-
sider the one-parameter map obtained applying Euler’s method to (2) with stepsize
τ . Then, Proposition 1 and Theorem 2 tell us that, for ǫ ≥ ǫ0 > 0, and sufficiently
small, there exists a τ̄ǫ > 0 such that, for τ ∈ (0, τ̄ǫ), the discrete system admits
an invariant closed curve γτ

ǫ , which is O(τ) close to the periodic orbit of (2), and
converges to it as τ → 0. But, the caveat in this inference is in the term O(τ) which
hides a constant that becomes unbounded as ǫ → 0. So, what happens as ǫ becomes
smaller and smaller for a given τ?

Below, we give numerical evidence that, for τ fixed, the numerical method un-
dergoes a period doubling cascade as ǫ decreases.

Remark 6. In the literature on discretized smooth systems, there are several results
about possibly different behaviors between the original smooth dynamics, and the
discretized one; e.g., see the discussion and references on spurious fixed points in [9].
However, the phenomenon on which we report here is very different from any other
result of which we are aware; not only because of the nature of the phenomenon
occurring (period doubling), but particularly because its occurrence is intrinsically
caused by the discontinuous nature of the underlying system.

We first rewrite (2) in polar coordinates as

ρ̇ = ρ (c(1− gǫ(z))− agǫ(z))

θ̇ = −d(1− gǫ(z))− bgǫ(z)

where z = ρ sin(θ) − 1 ,

(10)

and then (since θ̇ < 0) we consider the following scalar equation

dρ

dθ
= f(ρ, θ) =

(c(1− gǫ(z))− agǫ(z))

(−d(1− gǫ(z))− bgǫ(z))
ρ, z = ρ sin(θ) − 1. (11)

The existence of a limit cycle for (2) ensures the existence of a periodic solution of
period 2π for (11). Now, let N > 0, N integer, take ∆ = 2π

N
and denote with φǫ

∆ the
map obtained applying Euler’s method with stepsize ∆ to (11). Our aim is to give
numerical evidence that φǫ

∆ undergoes a period doubling cascade as ǫ decreases.
We reason as follows.

A periodic orbit of period p for φǫ
∆, p a positive integer, is detected solving the

following (pN + 1)-dimensional nonlinear system for (ρ0, ρ1, . . . , ρpN+1)

ρ1 = ρ0 +∆f(ρ0, θ0)

...

ρpN = ρpN−1 +∆f(ρpN−1, θpN−1)

(12)

with θi = i∆, i = 0, . . . , pN (of course, modulus 2π). The system is closed by the
relation ρpN = ρ0. Upon recursively expressing ρpN in terms of the previous terms,
up to ρ0, quite clearly the entire process can be formulated as a scalar map

ρ+0 = Ψǫ
∆(ρ0) . (13)

We seek fixed points of this map, and at convergence we monitor the value of ∂
∂ρ0

Ψǫ
∆:

a value of −1 is taken as indication of a period doubling bifurcation.
In our implementation, we solve (11) clockwise in θ (i.e., for negative θ), in

agreement with the sign of θ̇ in (10). We use Euler’s method and stepsize ∆, and
we check for convergence of (ρ(kN) − ρ0) to zero, where k is a positive integer. If,
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ǫ Period Ratio
0.00621151300 2
0.005097818578 4
0.00488819181 8 5.312749...
0.00482735428 16 3.4456818...
0.00481444430 32 4.7124418...
0.00481166749 64 4.6492126...
0.00481107261 128 4.66784898...
0.00481094519 256 4.668691...

Table 1. Period doubling bifurcation values for Example 7. N = 512.

for k̄ > 0, we have (ρ(k̄N) − ρ0) → 0, then we infer that Ψǫ
∆ has a stable periodic

orbit of period k̄.
In practice, we use the explicit recursion (12) only to obtain reasonable initial

guesses for Newton’s method, which is then used directly to find the fixed point of
the map Ψǫ

∆. The algorithm is completed by a bisection search on ǫ in order to find
flip bifurcation values. We illustrate in the next example.

Example 7. In (1), we fix the values m = 1, and a = b = d = 1 and c = 0.8. We
know that system (1) admits an asymptotically stable crossing limit cycle and, for
ǫ > 0 and sufficiently small, also (2) admits an asymptotically stable limit cycle.

In what follows, we fix the stepsize ∆ = 2π
512 unless otherwise specified, and we

vary ǫ in order to detect bifurcation values. The results we obtain are summarized
in Table 1.

Denote with ǫk, k = 1, 2, . . . , the parameter values so that the fixed point ρ0
of the 2k−1st iterate of the map (13) undergoes a flip bifurcation (this betrays a
bifurcating periodic orbit of twice the period for (12)). In the last column of Table

1, we report the ratios
ǫk−ǫk−1

ǫk+1−ǫk
, for k = 2, . . . , 7. Quite clearly, these values are

getting closer and closer to the Feigenbaum constant δ ≃ 4.6692.
In Figure 3 we plot a zoom-in (otherwise, they are not distinguishable on this

scale) of the asymptotically stable periodic orbit of period 2N and the unstable
periodic orbit of period N for ǫ = 0.0055. The limit cycle of period 2N , in black, is
approximated by solving (11) backward in θ with Euler’s method and fixed stepsize
∆ = 2π

512 . We stop integrating when numerical convergence of (ρ2N − ρ0) to 0 is
reached. The unstable periodic orbit, in red, is obtained using Newton’s method to
solve (12) with p = 1.

Remark 8. When we change N from 512 to 513, qualitatively we obtain the same
results as those reported above. However, there are quantitative differences. For
example, the first period doubling (cfr. with Table 1) occurs at ǫ ≈ 0.008138977285.

In Figure 4 we plot in black the approximation of the limit cycle of (11) for
ǫ = 0.0065, obtained with the Matlab solver ode45 (and error tolerances 10−10).
We contrast this result with those of the Euler method discretization of (11). In
blue and red we plot the periodic orbit of period respectively N and 2N obtained
applying Euler’s method to (11) with stepsizes ∆ = 2π

512 and ∆ = 2π
256 . In the

latter case of ∆, the period doubling still occurs, but for larger values of ǫ. [As an
example, the first bifurcation value for N = 256 is ǫ ≃ 0.016092612976. Similarly,
for larger values of N , the first bifurcation value occurs at smaller values of ǫ; e.g.,
with N = 210, we find ǫ ≃ 0.003793886115.]
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Figure 3. Example 7. Blow-up of the asymptotically stable pe-
riodic orbit of period 2N and unstable periodic orbit of period N
for ǫ = 0.0055.

The next two computations motivated us to analyze Euler method with event
search, which we do in section 2.

(i) When we integrate (11) with the variable stepsize integrator ODE45 from
Matlab (and error tolerances of 10−10), for ǫ as small as ǫ = 5× 10−16 we al-
ways obtain an invariant curve, which for small values of ǫ is indistinguishable
from the limit cycle of the original discontinuous system. We believe that the
reason for this success lies in the fact that the adaptive integration reduces
the stepsize to the point of effectively forcing the method to step exactly on
the discontinuity line; see our analysis of Euler method with event search in
section 2.

(ii) If we convert (2) to shifted polar coordinates:

x1 = r cos(θ), x2 − 1 = r sin(θ), (14)

we obtain (similarly to before) a scalar DE of the type dr
dθ

= F (r, θ). On this
problem, repeating the experiments that led us to find period doubling in ǫ
for fixed N relative to (11), we do not find any evidence of period doubling,
at least none occurred for N = 512 and ǫ ≥ 10−6. Again, we believe that this
is due to the fact that –in these new variables, and for even N– we are forcing
the method to step exactly on the discontinuity line, in a similar way to what
an event-driven technique would do on the original discontinuous problem.
As we will show in section 2, in this case the numerical method is able to
accurately approximate the limit cycle.

To conclude the present sets of numerical experiments, we made one more com-
putation, aimed at dispelling the suspicion that the observed period doubling is due
to an artifact of fixing the initial angle at 0.

• Rather than discretizing (11) with N = 512 and ∆ = 2π/N , starting with
θ0 = 0, of course one could discretize starting with a different θ0. When
we take θ0 = k∆ (k = 1, . . . , 5, for example), of course we recover the very
same period doubling values of ǫ as with θ0 = 0. When we took θ0 = k

M
∆,

for k = 1, . . . , 5, and M = 6, again we obtained exactly (to 13 digits) the
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Figure 4. Example 7. Plot of the periodic orbit obtained with
Euler’s method versus the solution obtained with ode45; ǫ =
0.0065.

same period doubling values once more. This confirms that the origin of the
discretization has no impact on what we observed and reported in Table 1.

Based on the above numerical study, we formulate the following conjecture, rel-
ative to our model problem with m = 1, a = b = d = 1 and c = 0.8

Conjecture 3. For any bounded N and any θ0 and discretization points θk =
θ0 +

2π
N
k, k = 1, . . . , N , there exists ǫ(N) > 0 such that (13) has a period doubling

bifurcation at ǫ(N) > 0.

We only have numerical evidence in support of Conjecture 3, numerical evidence
based on using Newton’s method. Instead, the following Fact holds as a consequence
of Theorem 14 in Section 2.

Fact 4. If we consider the map obtained when using the shifted polar variables
(14), then, for any sufficiently large and even N , and ǫ > 0, the map has no period
doubling bifurcation.

2. Euler map with event location. In this section we consider Forward Eu-
ler’s method with event location (FWEL) applied to our discontinuous system (1),
rewritten here in more compact form

[
ẋ
ẏ

]
=

{
f−(x, y), h(x, y) < 0
f+(x, y), h(x, y) > 0

, (15)

where f− and f+ are our linear problems in (1), h(x, y) = y − m, and we let
Σ = {(x, y) ∈ R

2|h = 0}. We know that for a
b
> c

d
> c0

d0

1, (15) has a crossing

periodic orbit γ that intersects Σ in just two isolated points: w̄− = (x̄−,m) and

1 c0
d0

is a bifurcation value so that (1) has a crossing and sliding periodic orbit for c

d
<

c0
d0
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w̄+ = (x̄+,m) with x̄− > 0 > x̄+. We observe that for our problem, ∇h =

[
0
1

]
and

(∇h)T f±(x̄−,m) < 0 and (∇h)T f±(x̄+,m) > 0.
In what follows, we show that, for sufficiently small stepsize τ , FWEL applied

to (15) has an attractive periodic orbit, close to that of the original problem. We
show this result in two-stages: first, we show that there is a fixed point of a suitable
Poincarè map, then we show that the fixed point is asymptotically stable.

The following notation will be handy:

Σ+ = {w ∈ Σ|∇h(w)T f±(w) > 0} , Σ− = {w ∈ Σ|∇h(w)T f±(w) < 0} .

To set the stage, we consider a fixed stepsize τ and we take an initial condition[
x0

m

]
∈ Σ−, with x0 close to x̄−. Let w =

[
x
y

]
, so that w0 =

[
x0

m

]
and h(w0) = 0.

Algorithm 2.1: FWEL: Forward Euler with Event Location

(i) Starting at w0, compute the values wn+1 = wn + τf−(wn).

(ii) Let k1 = k1(w0) ∈ N be the first index for which h(wk1+1) > 0 and consider
the continuous extension wk1+1(δ) = wk1 + δf−(wk1 ), 0 ≤ δ ≤ τ .

(iii) Locate exactly 0 ≤ τ(x0) < τ such that for δ = τ(x0), we
have h(wk1+1(τ(x0))) = 0. Check that the transversality condition
∇h(wk1+1(τ(x0)))

T f±(wk1+1(τ(x0))) > 0 is satisfied2.

(iv) Resume forward Euler steps from ŵ0 = wk1+1(τ(x0)).

(v) Let k2 = k2(w0) ∈ N be the first index for which h(wk2+k1+1) > 0 and con-
sider the continuous extension wk2+k1+1(δ) = wk2+k1+δf+(wk2+k1), 0 ≤ δ ≤ τ .

(vi) Locate exactly 0 ≤ τ(x̂0) < τ such that h(wk2+k1+1(τ(x̂0))) = 0 and verify
that the transversality condition∇h(wk2+k1+1(τ(x̂0)))

T f±(wk2+k1+1(τ(x̂0))) >
0 is satisfied.

(vii) Go back to (i), with w0 = wk2+k1+1(τ(x̂0)).

As already noticed in Algorithm 2.1-(iii), there is a neighborhood Iw̄− of w̄−,
such that, for all x0 ∈ Iw̄− ∩ Σ− = Ix̄− , the corresponding wk1+1(τ(x0)) is in Σ+

(i.e. not in the sliding segment) for τ sufficiently small. Now, consider the map
P−
τ : Ix̄− → Σ+ defined as follows. P−

τ (w) is the point wk1+1(τ(x0)) on Σ obtained
performing steps (i)-(iii) above with w0 = w. This map is continuous and Lipschitz
with respect to x as we will prove in Lemma 9 below.

Lemma 9. The map P−
τ is continuous and Lipschitz with respect to x in Ix̄− .

Proof. We use the same notation as in steps (i)-(iii) above. It is obvious that wn

in (i) is smooth with respect to x0. We still need to show that wk1+1(τ(x0)) and
hence τ(x0) in (iii) is Lipschitz with respect to x0. We consider two cases.

[τ(x0) > 0 ] Consider the map M : I×R
2 → R defined asM(δ, w) = h(ω+δf−(ω)).

Notice that M(τ(x0), wk1) = 0 and ∂M
∂δ

|(τ(x0),wk1
) = ∇h(wk1+1(τ(x0)))

T
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f−(wk1 ) 6= 0, for τ(x0) (and hence τ) sufficiently small and x0 sufficiently
close to x̄−. Then, by the implicit function theorem, there exists a neighbor-
hood of τ(x0), Iτ(x0), a neighborhood of wk1 , Iwk1

, and a smooth function

δ : Iwk1
→ Iτ(x0), such that M(δ(w), w) = 0. This means that, for each

x0 ∈ I−x̄ and such that h(wk1+1) > 0, τ(x0) is a smooth function of x0 and so
is P−

τ .
[τ(x0) = 0 ] We make explicit the dependence on the initial condition x0 of the

quantities introduced in (i)-(iii): xn = xn(x0), etc.. The point (x0,m) is such
that h(wk1 (x0)) = 0 so that wk1+1(τ(x0)) = wk1 (x0). Then in any neighbor-
hood Ix0 of (x0,m) there are points x ∈ Ix0∩Σ

− such that h(wk1(x)) < 0, and
points x ∈ Ix0 ∩Σ− such that h(wk1(x)) > 0. In the latter case, instead of the
continuous extension wk1+1(δ(x)) in (ii), we need to consider the continuos
extension wk1(δ(x)). Let M be the map defined for the case [τ(x0) > 0] and
notice that M(0, wk1(x0)) = M(τ, wk1−1(x0)) = 0. Moreover for τ sufficiently
small ∂M

∂δ
|(0,wk1

(x0)) 6= 0, and ∂M
∂δ

|(τ,wk1−1(x0)) 6= 0. Then there are a neigh-

borhood of wk1 (x0), Iwk1
(x0), a neighborhood of 0, I0, and a smooth function

δ1 : Iwk1
(x0) → I0 such that M(δ1(w), w) = 0. Similarly, there are a neighbor-

hood of wk1−1(x0), Iwk1−1(x0), a neighborhood of τ , Iτ , and a smooth function

δ2 : Iwk1−1(x0) → Iτ , such that M(δ2(w), w) = 0. Notice that δ1(wk1 (x0)) = 0,

δ2(wk1−1(x0)) = τ and the two continuous extensions wk1+1(δ) and wk1(δ)
satisfy the following: wk1+1(δ1(wk1 (x0))) = wk1(δ2(wk1−1(x0))) = wk1 . For x
in a neighborhood of x0 and w0 = (x,m), we define the following function

wl(δ(w)) =

{
wk1+1(δ1(w)) h(wk1+1(x)) > 0, h(wk1(x)) ≤ 0
wk1(δ2(w)) h(wk1(x)) > 0, h(wk1−1(x)) ≤ 0

and this function is Lipschitz and not differentiable at the point x = x0.

Similarly to P−
τ , we define the map P+

τ : Σ+ → Σ− that associates to each point
on Σ+, the point on Σ− obtained performing steps (iv)-(vi) above with starting
point w = wk1+1(δ̄). This map is well defined in a neighborhood of x̄+ and it is
continuous and Lipschitz with respect to x. The proof is similar to the proof of
Lemma 9. The composite map Pτ : Σ− → Σ−, Pτ = P+

τ ◦ P−
τ is then well defined

in Ix̄− and is continuous with respect to x.
In what follows, we denote with Ix̄− the closure of the set Ix̄− .

Lemma 10. The set Ix̄− is invariant under Pτ , for τ sufficiently small.

Proof. Let P denote the Poincaré map of the continuous problem. Then, since γ
is globally asymptotically stable, P (Ix̄−) is a proper subset of Ix̄− and it is closed.

Let d = β(P (Ix̄−), Ix̄−), with β(A,B) = minb∈B ρ(A, b) and ρ(A, b) distance of the
point b from the set A. Then d is bounded away from 0. The statement of the
lemma follows upon noticing that the global error for FWEL is O(τ) (e.g., see [5]).

Then, for τ sufficiently small, dist(P (Ix̄−), Pτ (Ix̄−)) < d
2 , so that Pτ (Ix̄−) ⊂ Ix̄− .

Then Ix̄− is invariant under Pτ .

Using Lemma 9 and 10, we can prove the following.

Proposition 11. There exists τ̄ > 0, such that, for all τ < τ̄ , and bounded away
from 0, FWEL has a periodic orbit γτ in a neighborhood of γ.
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Proof. We apply Brouwer’s fixed point Theorem to the map Pτ . Then Pτ has a
fixed point, denote it with (x̄−

τ ,m). Moreover, let w̄−
τ = (x̄−

τ ,m) and consider
w1 = w̄−

τ + τf−(w̄−
τ ). Since f−(w̄−

τ ) 6= 0, then w1 6= w̄−
τ and w̄−

τ is not a spurious
fixed point of FWEL.

Next, we will show that γτ is attractive. Let (x̄−
τ ,m) and (x̄+

τ ,m) be the two
intersection points of γτ respectively with Σ− and Σ+, x̄−

τ > x̄+
τ . Moreover, for τ

sufficiently small, the following inequalities must be satisfied

x̄−
τ >

c

d
m, x̄+

τ < −
a

b
m. (16)

Let w̄−
0 = (x̄−

τ ,m)T and denote with w̄k the k-th iterate of FWEL with initial
condition w̄−

0 . Let N1(w̄
−
0 ) be such that h(w̄N1(w̄

−

0 )+1) > m and let τ−(x̄−
τ ) be

defined as in step (iii) of Algorithm 2.1. Then
[
x̄+
τ

m

]
= S−(τ

−(x̄−
τ ))S−(τ)

N1(w̄
−

0 )

[
x̄−
τ

m

]
, (17)

with S−(t) =

(
1 + tc td
−td 1 + tc

)
. Let w̄+

0 = (x̄+
τ ,m)T and denote with w̄+

k the k-th

iterate of FWE with initial condition w̄+
0 . Let N2(w̄

+
0 ) be such that h(w̄+

N2(w̄
+
0 )+1

) <

m and let τ+(x̄+
τ ) be defined as in step (vi) of Algorithm 2.1. Then

[
x̄−
τ

m

]
= S+(τ

+(x̄+
τ ))S+(τ)

N2(w̄
+
0 )

[
x̄+
τ

m

]
, (18)

with S+(t) =

[
1− ta tb
−tb 1− ta

]
.

More in general, given a vector (x−
0 ,m)T in a neighborhood of (x̄−

τ ,m)T , we
denote with (x+

0 ,m) the intersection point with Σ+ of the FWEL sequence with
initial point (x−

0 ,m)T . Let τ(x−
0 ) and τ(x+

0 ) be the intermediate stepsizes as defined
in (iii) and (vi) of Algorithm 2.1, respectively. Then, the transition matrix S(τ, x−

0 )
of FWEL that takes (x−

0 ,m)T back to Σ− is the following

S(τ, x−
0 ) = S+(τ(x

+
0 ))S+(τ)

N2(x
+
0 )S−(τ(x

−
0 ))S−(τ)

N1(x
−

0 )

=

(
Re(λ(τ, x−

0 ) Im(λ(τ, x−
0 )

−Im(λ(τ, x−
0 ) Re(λ(τ, x−

0 )

)
, (19)

with

λ(τ, x−
0 ) = λ+(τ(x

+
0 ))λ−(τ(x

−
0 ))λ+(τ)

N2(x
+
0 )λ−(τ)

N1(x
−

0 ), (20)

where λ−(t) = (1+ tc)+ i(td), λ+(t) = (1− ta)+ i(tb). Notice that S−(t) equals to
|λ−(t)| times a rotation matrix, with rotation angle ϕ−(t) = arctan( dt

1+ct
). Then the

transition matrix S(τ, x−) is given by a rotation matrix times |λ(τ, x−)|. Similarly
for S+(t). Moreover for x− = x̄−

τ , it must be λ(τ, x̄−
τ ) = 1 and S(τ, x̄−

τ ) = I. Let
now (x−

0 ,m)T be a point in Ix̄− and (x−
k ,m) = Pτ ((x

−
k−1,m)) = P k

τ ((x
−
0 ,m)). E.g.,

for k = 1, (x−
1 ,m) = S(τ, x−

0 )(x
−
0 ,m)T .

In order to show attractivity of γτ , we will show that, for x−
0 > x̄−

τ (resp.
x−
0 < x̄−

τ ), we have x̄−
τ < x−

1 < x−
0 (resp. x̄−

τ > x−
1 > x−

0 ). In this way the
sequence {x−

k } is monotone decreasing (resp. increasing) and bounded from be-
low (resp. above) and it hence must converge to a point x̄. Since it must be
(x̄,m) = limk→∞(x−

k ,m) = limk→∞ Pτ ((x
−
k−1,m)) = P ((x̄,m)), then x̄ = x̄−

τ . We
will show the following steps
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(a) Let x−
0 > x̄−

τ (resp. x−
0 < x̄−

τ ). Then x+
0 < x̄+

τ (resp. x+
0 > x̄+

τ ).
(b) If x−

0 > x̄−
τ (resp. x−

0 < x̄−
τ ) then N1(x

−
0 ) ≤ N1(x̄

−
τ ) (resp. N1(x

−
0 ) ≥ N1(x̄

−
τ )

).
(c) If x−

0 > x̄−
τ (resp. x−

0 < x̄−
τ ) and N1(x

−
0 ) = N1(x̄

−
τ ) then τ(x−

0 ) < τ(x̄−
τ )

(resp. τ(x−
0 ) > τ(x̄−

τ )).

Then, reasoning in a similar way, the next three steps can be proven as well.

(d) Let x+
0 < x̄+

τ (resp. x+
0 > x̄+

τ ). Then x−
1 > x̄−

τ (resp. x−
1 < x̄+

τ ).
(e) If x+

0 < x̄+
τ (resp. x+

0 > x̄+
τ ) then N2(x

+
0 ) ≥ N2(x̄

+
τ ) (resp. N2(x

+
0 ) ≤ N2(x̄

+
τ )

).
(f) If x+

0 < x̄+
τ (resp. x+

0 > x̄−
τ ) and N2(x

+
0 ) = N2(x̄

+
τ ) then τ(x+

0 ) > τ(x̄+
τ )

(resp. τ(x+
0 ) < τ(x̄+

τ )).

For x−
0 > x̄−

τ , (b) and (c) above imply that λ−(τ(x
−
0 ))λ−(τ)

N1(x
−

0 ) > λ−(τ(x̄
−
τ ))

λ−(τ)
N1(x̄

−

τ
), while items (e) and (f) imply that λ+(τ(x

+
0 ))λ+(τ)

N2(x
+
0 ) < λ+(τ(x̄

+
τ ))

λ+(τ)
N2(x̄

+
τ
). It follows that, for x−

0 > x̄−
τ , λ(τ, x

−
0 ) in (20) must be less than 1 and

hence x−
1 < x−

0 . Moreover items (a) and (d) imply x−
1 > x̄−

τ so that the claim is
proven.

The following Lemma suffices to show (a) above.

Lemma 12. Let (x0,m) and (x̂0,m) be such that x0, x̂0 > c
d
m, τ > 0 and con-

sider the Euler trajectories given by the points

[
xk

yk

]
= S−(τ)

k

[
x0

m

]
and

[
x̂k

ŷk

]
=

S−(τ)
k

[
x̂0

m

]
, k = 0, . . . , N + 1. Then, the line segments given by joining two con-

secutive points of each trajectory do not intersect.

Proof. We have

[
xk

yk

]
= S−(τ)

k

[
x0

m

]
, and

[
x̂k

ŷk

]
= S−(τ)

k

[
x̂
m

]
,

with S−(η) =

[
1 + ηc ηd
−ηd 1 + ηc

]
= |λ−(η)|

[
cos(ϕ−(η)) sin(ϕ−(η))
− sin(ϕ−(η)) cos(ϕ−(η))

]
, λ−(η) =

(1 + ηc) + i(ηd), ϕ(η) = arctan ηd
1+ηc

. Therefore, if we let L = log(S−(τ)), we are

sampling at integer times the solutions of the linear system

d

dt

[
x
y

]
= L

[
x
y

]
,with ICs

[
x0

m

]
or

[
x̂0

m

]
.

Now, since solutions of the differential equation cannot intersect, we know that the

(continuous) trajectories

[
x(t)
y(t)

]
= eLt

[
x0

m

]
and

[
x̂(t)
ŷ(t)

]
= eLt

[
x̂0

m

]
do not intersect.

If x0 > x̂0, then

[
x(t)
y(t)

]
stays outside the trajectory

[
x̂(t)
ŷ(t)

]
. In particular, the

points

[
xk

yk

]
, and

[
x̂k

ŷk

]
are distinct, the former lying on the trajectory

[
x(t)
y(t)

]
and

the latter on the trajectory

[
x̂(t)
ŷ(t)

]
. To verify the claim that the Euler segments do
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not intersect, consider these line segments. With 0 ≤ s, ŝ ≤ 1, we have
[
x(s)
y(s)

]
=

[
xk

yk

]
+ s

[
xk+1 − xk

yk+1 − yk

]
= S−(sτ)

[
xk

yk

]

[
x̂(ŝ)
ŷ(ŝ)

]
=

[
x̂k

ŷk

]
+ ŝ

[
x̂k+1 − x̂k

ŷk+1 − ŷk

]
= S−(ŝτ)

[
x̂k

ŷk

]
.

If these two segments intersect, there must be values of s, ŝ: 0 < s, ŝ < 1 (since end

points are distinct), where

[
x(s)
y(s)

]
=

[
x̂(ŝ)
ŷ(ŝ)

]
and this implies

[
xk

yk

]
= S−(sτ)

−1S−(ŝτ)

[
x̂k

ŷk

]
=

|λ−(ŝτ)|

|λ−(sτ)|

[
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

] [
x̂k

ŷk

]
, (21)

with ϕ = ϕ−(ŝτ) − ϕ−(sτ). Now notice that, for x0 > x̂0 > c
d
m, it must be∥∥∥∥

[
xk

yk

]∥∥∥∥ >

∥∥∥∥
[
x̂k

ŷk

]∥∥∥∥ and hence s > ŝ so that in (21) |λ
−
(ŝτ)|

|λ
−
(sτ)| > 1. At the same time

x0 > x̂0 implies that the angle between

[
x0

m

]
and

[
x̂0

m

]
is negative, we denote it

with θ. Now, θ must be equal to ϕ in (21), i.e. to the angle between

[
xk

yk

]
and

[
x̂k

ŷk

]
.

However s > ŝ implies that ϕ = ϕ−(ŝτ) − ϕ−(sτ) > 0. This is a contradiciton.

To show (b), we use same notations as in the proof of Lemma 12. Let x0 > x̂0

and let w =

[
xN1(x̂0)+1

yN1(x̂0)+1

]
and ŵ =

[
x̂N1(x̂0) + 1
ŷN1(x̂0)+1

]
. Then ‖w‖ > ‖ŵ‖ and moreover

the angle between ŵ and w is negative so that w is above ŵ. Then

[
xN1(x̂0)+1

yN1(x̂0)+1

]
is

above y = m and hence N1(x0) ≤ N1(x̂0).
Finally (c) is proven in the following Lemma.

Lemma 13. Let x−
0 > x̄−

τ and N1(x
−
0 ) = N1(x̄

−
τ ). Then τ(x−

0 ) < τ(x̄−
τ ).

Proof. Let S−(τ, x
−
0 ) = S(τ(x−

0 ))S(τ)
N1(x

−

0 ) (see (19)) and consider w+ = (x+
0 ,m)T

= S−(τ, x
−
0 )(x

−,m)T . Let w̄ = S−(τ, x
−
0 )(x̄

−
τ ,m)T . Then w̄ lies below w+ and

‖w̄‖ < ‖w+‖. It follows that w̄ does not intersect Σ+ and hence τ(x̄−
τ ) > τ(x−

0 ).

Theorem 14. There exists a τ̄ > 0, so that, for all τ < τ̄ , and bounded away from
0, FWEL has an attractive periodic orbit γτ . Moreover

lim
τ→0

x̄−
τ = x̄−.

Proof. Attractivity of γτ implies that γτ is an isolated periodic orbit. This together
with |Pτ (x̄

−)− x̄−| = O(τ), implies convergence of x̄−
τ to x̄−.

3. The band. Proof of Claim 1. In what follows let wk(τ) be the k-th element
of the FWE sequence with initial condition w0 and with stepsize τ . We denote
with γt,τ (w0) the broken line approximation with nodes wk(τ), k ≥ 0. A point z of
γt,τ (w) must satisfy the following: there exists t ∈ [0, τ) and k ≥ 0 such that

z =

{
S−(t)wk(τ), if h(wk(τ)) < m or wk(τ) ∈ Σ−

S+(t)wk(τ) if h(wk(τ)) > m or wk(τ) ∈ Σ+ ,
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O

(x̂−

1
,m)

w̄1

(x̄−

τ
,m)

w̄0

(x̂−

0
,m)

ŵ0

(x̃−

1
,m)(x̃−

0
,m)

w̃0

w̄
−1

Figure 5. In support of the proof of Claim 1. The red segment
contains the band.

with S−(t) =

(
1 + tc td
−td 1 + tc

)
and S+(t) =

(
1− ta td
−td 1− ta

)
. Take w0 = (x0,m)

∈ Σ− and consider the broken line interpolant γt,τ (w0).

Denote with w̄−
0 = (x̄−

τ ,m)T and w̄+
0 = (x̄+

τ ,m)T the intersection points of γτ
with Σ− and Σ+ respectively, where γτ is the periodic orbit of FWEL as described
in Section 2. Consider one Euler step with initial condition w̄0 = w̄−

0 and stepsize
τ : w̄1 = S−(τ)(x̄

−
τ ,m)T . Then

w̄1 =

(
x̄−
τ + τ(cx̄−

τ + dm)
m+ τ(−dx̄−

τ + cm)

)
,

and for τ sufficiently small and x̄−
τ > c

d
m (see (16)), the second component of w̄1

satisfies the following inequality: 0 < eT2 w̄1 < m. Then we can prolong w̄1 until it
intersects Σ− and we denote this intersection point as ŵ0 = (x̂−

0 ,m)T , see Figure
5. Then ŵ0 = αw̄1, where α is such that eT2 ŵ0 = m, i.e.,

α =
m

m+ τ(mc− dx̄−
τ )

> 1, (22)

because x̄−
τ > c

d
m.

The following inequalities are satisfied: ‖ŵ0‖ > ‖w̄1‖ and x̂−
0 > x̄−

τ . See Figure
5.

Moreover, since x̂−
0 = m

x̄−

τ
+τ(cx̄−

τ
+dm)

m+τ(−dx̄
−

τ +cm)
, then

x̂−
0 − x̄−

τ = τ
md

(
(x̄−

τ )
2 +m

)

m+ τ(−dx̄−
τ + cm)

= O(τ) . (23)

Consider the Euler iterates ŵk with initial condition ŵ0 and stepsize τ and take the
broken line approximation γt,τ (ŵ0) with nodes ŵk, k ≥ 0. Then γt,τ (ŵ0) meets Σ+

at a point that we denote as (x̂+
0 ,m)T , it crosses Σ+ and it meets Σ− again at a

point (x̂−
1 ,m).

In a similar way, we consider the vector w̄−1 = S−(τ)
−1w̄−. We denote with w̃0 =

(x̃−
0 ,m)T the intersection point of w̃−1 with Σ−. Then ‖w̃0‖ < ‖w̄−1‖, see Figure
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w̄1

w̄0 ŵ0

w̄N1(w̄0)+1

ŵN1(w̄0)+1

(x̄+

τ
,m)

O

w̄N1(w̄0)

ŵN1(w̄0)

Figure 6. In support of Lemma 15

5, and x̃−
0 < x̄−

τ , and x̃−
0 > 0 for small τ . Moreover, since x̃−

0 = m
x̄−

τ
+τ(cx̄−

τ
−dm)

m+τ(dx̄−

τ +cm)
,

then

x̄−
τ − x̃−

0 = τ
d
(
(x̄−

τ )
2 +m2

)

m+ τ(dx̄−
τ + cm)

= O(τ) .

We consider the Euler iterates w̃k with initial condition w̃0 and stepsize τ together
with the broken line approximation γt,τ (w̃0) with nodes w̃k. Then γt,τ (w̃0) meets

Σ+ at (x̃+
0 ,m)T , it crosses it, and meets Σ− again at (x̃−

1 ,m)T .

Lemma 15. With the above notation, for τ sufficiently small, it holds

x̂−
1 < x̂−

0 , x̃−
1 > x̃−

0 .

Proof. We will show that ‖(x̂−
1 ,m)‖ < ‖x̂−

0 ,m‖ and this implies x̂−
1 < x̂−

0 . The
argument to show x̃−

1 > x̃−
0 is much the same.

We will use the following notation. For a z0 ∈ Σ−, let zk, k ∈ N be the k-th
element of the sequence generated by FWE and denote with N1(z0) the first iterate
number such that eT2 zN1(z0)+1 > m and with N2(z0) the first iterate number such

that eT2 zN1(z0)+1+N2(z0)+1 < m .

Consider the broken line approximation γt,τ (z0). Then, for z0 = (x−
0 ,m)T

close to w̄0, γt,τ (z0) intersects Σ− between the iterates zN1(z0)+1+N2(z0) and

zN1(z0)+1+N2(z0)+1 at (x−
1 ,m)T . We have the following expression

[
x−
1

m

]
= S+(τ

+(z0))S+(τ)
N2(z0)S−(τ)

N1(z0)+1z0. (24)

For z = w̄0, let eT2 w̄N1(w̄0)+1 ≥ m and notice that eT2 ŵN1(w̄0) > m, since
ŵN1(w̄0) = αw̄N1(w̄0)+1, with α > 1 as in (22), see Figure 6.

It follows that N1(ŵ0) ≤ N1(w̄0)− 1, and this implies

|λ−(τ)|
N1(ŵ0)+1 < |λ−(τ(w̄))||λ−(τ)|

N1(w̄0), (25)

with λ−(η) = (1+ηc)+iηd and with τ(w̄) being the intermediate stepsize as defined
in Algorithm 2.1, (iii).
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Notice moreover that it must be N1(ŵ0) ≥ N1(w̄0) − 2. Indeed, assume by
contradiction that N1(ŵ0) = N1(w̄0) − 3. Then we must have eT2 ŵN1(w̄0)−2 =

αeT2 w̄N1(w̄0)−1 > m, with α as in (22). At the same time, eT2 w̄N1(w̄0) < m together
with w̄N1(w̄0) = S−(τ)w̄N1(w̄0)−1, implies

α(eT2 w̄N1(w̄0)−1) <
m

m+ τ(cm− dx̄−
τ )

m+ τd(eT1 w̄N1(w̄0)−1)

1 + τc

=
m

1 + τc

m+ τd(eT1 w̄N1(w̄0)−1)

m+ τ(cm− dx̄−
τ )

. (26)

Now, if we show that τd(eT1 w̄N1(w̄0) − 1) < τ(cm − dx̄−
τ ), then we have that

α(eT2 w̄N1(w̄0)−1) < m and hence a contradiction. To this end we just notice that, for

τ sufficiently small, d(eT1 w̄N1(w̄0)−1) is close to dx̄+
τ and τ(dx̄+

τ + dx̄−
τ ) < 0 < τcm.

Next, we move ŵN1(ŵ0)+1 forward by the same map used in (18) and we get a
new vector

ẑ = S+(τ
+(x̄+

τ ))S+(τ)
N2(w̄

+
0 )ŵN1(ŵ0)+1.

If we show that h(ẑ) > m, then it must be (see also (24) with z0 = ŵ0)

|λ+(τ
+(ŵ0))||λ+(τ)

N2(ŵ0)+1| < |λ+(τ
+(w̄+

0 ))||λ+(τ)
N2(w̄0)|. (27)

Consider first the caseN1(ŵ0) = N1(w̄0)−1. Then, ŵN1(ŵ0)+1 = S−(τ)
N1(ŵ0)+1ŵ0 =

S−(τ)
N1(w̄0)ŵ0, and, using the fact that the matrices S−(·) and S+(·) commute, we

get

ẑ = S+(τ+(x̄
+
τ ))S+(τ)

N2(w̄0)ŵN1(ŵ0)+1

= S+(τ+(x̄
+
τ ))S+(τ)

N2(w̄0)S−(τ)
N1(w̄0)ŵ0

= S−1
− (τ−(x̄

−
τ ))

[
S+(τ+(x̄

+
τ ))S+(τ)

N2(w̄0)S−(τ)
N1(w̄0)S−(τ

−(x̄−
τ ))

]
ŵ0,

from which (since the term in square brackets is the identity) S−(τ−(x̄
−
τ ))ẑ =

(x̂−
0 ,m)T . This last relation gives eT2 ẑ =

m+τ
−
(x̄−

τ
)(cm+dx̂

−

0 )

1+2τ
−
(x̄−

τ )c+(τ
−
(x̄−

τ ))2(c2+d2)
. From this,

we get eT2 ẑ > m if x̂−
0 > c

d
m + τ−(x̄

−
τ )

m
d
(c2 + d2) which is true for τ sufficiently

small.
If N1(ŵ0) = N1(w̄0) − 2, then ŵN1(ŵ0)+1 = S−(τ)

N1(w̄0)αw̄0, with α as in (22).
Then

ẑ =αS−(τ−(x̄
−
τ ))

−1[S+(τ+(x̄
+
τ ))S+(τ)

N2(w̄0)S−(τ−(x̄
−
τ ))S−(τ)

N1(w̄0)]w̄0

=αS−(τ−(x̄
−
τ ))

−1w̄0,

if and only if S
−
(τ

−
(x̄−

τ ))ẑ = α

[
x̄
−

τ

m

]
and this gives eT2 ẑ = α

m+τ
−
(x̄−

τ
)(cm+dx̄

−

τ
)

1+2τ
−

(x̄−

τ )c+(τ
−
(x̄−

τ ))2(c2+d2)
.

From this, we will surely get eT2 ẑ > m if x̄−
τ > c

d
m + τ−(x̄

−
τ )

m
d
(c2 + d2) which is

true for τ sufficiently small.
Inequality (25) and (27) together imply that (see equation (20)),

|λ+(τ(ŵ))||λ+(τ)
N2(ŵN1(ŵ0)+1)||λ−(τ)

N1(ŵ0)+1| < |λ(τ, x̄−
τ )| = 1.

The proof for w̃ carries on in a similar way.

Below, if w ∈ Σ−, we will denote with (x−
k ,m) and with (x+

k ,m), k ≥ 0, the
intersection points of γt,τ (w) respectively with Σ− and Σ+. The notation is chosen
so that (x±

k+1,m) (if it exists), is the intersection point immediately subsequent to

(x±
k ,m).
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Theorem 16. For any w ∈ Σ− and for τ sufficiently small, there exists K(τ) > 0
such that, for k > K(τ), the points x2k+1 are contained in [x̃−

1 , x̂
−
1 ].

Proof. Let w = (x−
0 ,m) ∈ Σ−. Following the same reasonings as in the proof of

Lemma 15 , if x−
0 > x̂1, then x−

1 < x−
0 . Moreover there must be a K > 0 such

that x−
2K+1 < x̂1. Indeed, if this were not the case, the sequence x−

2k+1 would be

montone decreasing and bounded below by x̂−
1 and hence it would converge to a

point x− ≥ x̂−
1 . Now, take w− = (x−,m) and consider the sequence of intersection

points of γt,τ (w
−) with Σ−. Because of Lemma 15, it must be x−

1 < x−. A
contradiction. The proof for x1 > x̃1 is similar.

The proof of Claim 1 follows from the fact that the interval ω(τ) relative to the
cross section y = m, satisfies ω(τ) ⊂ [x̃−

1 , x̂
−
1 ] and [x̃−

1 , x̂
−
1 ] = O(τ).

Corollary 17. The band-like region obtained applying Euler method to (1) contains
the periodic orbit of the method with event search γτ . Moreover it converges to γ as
τ goes to 0.

Proof. The proof follows upon noticing that x̄−
τ ∈ [x̃−

1 , x̂
−
1 ] and that γτ → γ as

τ → 0. This implies limτ→0 x̃
−
1 = limτ→0 x̂

−
1 = x̄−.

Example 18. Although we only analyzed planar problems, the “band” phenome-
non which we observed in those cases seems to be a general feature of discretizations
of discontinuous systems having a periodic orbit. To witness, below we show results
obtained for the well known Chua’s circuit in its discontinuous formulation. The
system is in R

3, and given by

dx

dt
=







−α− αm1 α 0

1 −1 1
0 −β 0


x+



α(m0 −m1)

0
0


 , x1 < −1 ,



−α− αm0 α 0

1 −1 1
0 −β 0


x , −1 < x1 < 1 ,



−α− αm1 α 0

1 −1 1
0 −β 0


x+



α(m1 −m0)

0
0


 , x1 > 1 ,

(28)

where we take α = 15.6, β = 50, m0 = −8/7, m1 = −5/7, for which it is known
that the discontinuous system has two crossing periodic orbits ( see [1], Sec 9.4).
Results obtained with Euler method (with constant stepsize) are in Figure 7.

4. Conclusions. In this work, we considered a model planar piecewise linear sys-
tem with an attracting periodic orbit, and studied what happens to a Euler dis-
cretization with stepsize τ of this piecewise linear system. In contrast to standard
results for smooth systems, we showed that the discrete system trajectories remain
inside a band, whose width is proportional to the discretization stepsize τ . (In the
smooth case, for τ sufficiently small, the discrete system has an invariant curve).

We also considered a smooth regularization of the piecewise linear system. After
rewriting it in polar coordinates, we considered its Euler discretization, and gave
evidence that the discrete solution undergoes a period doubling cascade with respect
to the regularization parameter ǫ, for fixed τ .
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Figure 7. Example 18: Euler approximation for τ = 0.03.

Finally, we proved that an event-driven Euler discretization of the model problem
has a discrete periodic solution near the one of the original problem, for sufficiently
small τ .

We have only considered the Euler discretization, the prototypical one-step
scheme, and a model piecewise linear system. Although it is possible that dif-
ferent discretizations, and systems, give somewhat different results, we expect that
our results are indicative of the following general paradigm.

(i) When considering discretization of discontinuous systems with an attractive
periodic orbit, the standard results from the smooth case do not carry over,
in particular the discretazion of the discontinuous system does not generally
have an invariant curve, which gets replaced by an invariant band.

(ii) However, when enforcing an event search, then the resulting event-driven-
method approximates periodic solutions to the order of the method.
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