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ABSTRACT. We consider a model planar system with discontinuous right-hand
side possessing an attracting periodic orbit, and we investigate what happens to
a Euler discretization with stepsize 7 of this system. We show that, in general,
the resulting discrete dynamical system does not possess an invariant curve,
in sharp contrast to what happens for smooth problems. In our context, we
show that the numerical trajectories are forced to remain inside a band, whose
width is proportional to the discretization stepsize 7. We further show that
if we consider an event-driven discretization of the model problem, whereby
the solution is forced to step exactly on the discontinuity line, then there is a
discrete periodic solution near the one of the original problem (for sufficiently
small 7). Finally, we consider what happens to the Euler discretization of the
regularized system rewritten in polar coordinates, and give numerical evidence
that the discrete solution now undergoes a period doubling cascade with respect
to the regularization parameter e, for fixed 7.

1. Periodic orbit of a planar system with discontinuous right-hand side
under discretization. Regularized problem and period doubling cascade.
We consider the following model of discontinuous system of differential equations

sl-f b '

b T <
—b —q y y Y m.,

where a, b, c,d,m > 0. Without loss of generality, we can take m = 1, as we will
often do in this work. Motion always takes place forward in time, and thus proceeds
clockwise.

This sytem was studied in [4], where it was shown that, for £ > £, (1) has
a globally (aside for the origin) asymptotically stable limit cycle of crossing type:
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it comnsists of two smooth arcs above and below the line y = m, connecting into
a periodic orbit transversed clockwise. Different bifurcation phenomena occurs as
S decreases towards 0 and the limit cycle changes from crossing, to crossing and
sliding, to a sliding limit cycle.

In this work, we are interested in studying what happens to a Euler discretization
of (1), insofar as the above mentioned crossing limit cycle.

A common means of studying (1) is to replace it with a smooth system, a regu-
larization (e.g., see [8]). For this reason, in this work we will also consider the Euler
discretization of the following smooth regularization of (1):
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(For the record, we have also used different choices of g, for example a fifth degree
polynomial, and obtained essentially the same result as we report in this work).

For small €, one may expect that solutions of (2) resemble those of (1). This is
effectively correct, and the following proposition holds.

Proposition 1. For e > ey > 0 sufficiently small, and § > 5, system (2) admits
an asymptotically stable limit cycle. The limit cycle of (2) converges, as € — 0, to
that of (1).

Proof. This is proven in [3] or [7]. O

Now, there are very refined general results on discretization of smooth dynamical
systems (e.g., see [6] or [2]). In particular, the following result holds.

Theorem 2. [2, 6] Let the smooth system 2 = f(z), f € C4, ¢ > 1, have a hyperbolic
periodic orbit vv. Consider the discrete dynamical system obtained by a Runge Kutta
discretization of order p, p < q, of the original problem: zpi1 = zx + 79(T, 2k, f),
k=1,2,.... Then, for sufficiently small T, the discrete dynamical system has an
inwvariant closed curve I'. Further, T' has the same hyperbolicity type of the original
periodic orbit, and it is O(7P)-close to the original periodic orbit. O

In this work we address the following questions.

(Q1) What survives of a result like Theorem 2 for the discontinuous dynamical
system (1)?

(Q2) In which form does a result like Theorem 2 survive for the smooth system (2)
as € — 07

We will provide answers to these questions relative to Euler method, the proto-
typical 1-step method. For example, for (1), the method reads

I+ , Y <m,
|:«Tk+1:| _ —d c]) |k k=01 (@)
Yk+1 —a b Tr Pty
(I+T[_b L e Y >m
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or more compactly as

SI(T) [Z::| y Y <M,

S

with the provision that if y = m, then we will use Sy if x > gm, and Sy if v < —gm.
We do not consider the case —3m < z < gm, since this is a sliding segment and
we are only interested in solutions of (1) in a neighborhood of the crossing periodic
orbit.

Furthermore, we will also consider the broken line interpolant resulting from
Euler method; recall that this is nothing but the piecewise linear extension of Fuler
method:

F’“} 1 F’““_ﬂ L 0<s<1, k=0,1,... .
Yk Ye+1 — Yk

We have to stress that, in spite of the deceiving simplicity of the model (1) and
of the discretization method, the previously posed questions (Q1) and (Q2) are not
at all trivial and the answers will be somewhat surprising.

In the remainder of this Section, first we look at what can be said when the system
is rewritten in polar coordinates. Then, we will show results of several numerical
experiments in support of our answers to questions (Q1) and (Q2). In Sections 2
and 3 we give our main theoretical results. Section 4 contains conclusions.

1.1. Polar coordinates. In our quest to answer questions (Q1) and (Q2) above,
it will be useful to consider the polar coordinates rewriting of system (1). Trivially,
in polar coordinates (1) rewrites as

O-f e

0 (—abp> , psinf >m .

From this, it is immediate to obtain:
@:{—agp, psing <m 7)
do 7P, psind>m.
Clearly, a periodic solution of (1) corresponds to a 2w-periodic solution (function)
of (7).
Let N > 0 and choose a stepsize 7 = %’T Let 6,, = 0y + nr, for any fixed 6y, and
consider Euler’s method with stepsize 7 for (7). This gives the discontinuous map

— (1 - T%)pn sy Pn sin@n <m,
prit = {(1 +7%)Pn s pnsind, >m (8)
with the agreement that, if p,sin(d,) = m, we will take p,y1 =

_rc c
{(1 T@)Pn s pncosty > gm Now, notice that for each p > 0, the values

(14+7%)pn , pncost, < —¢m’
pN+p must all belong to the same line § = 6,. As a consequence of this, if there is
an invariant closed curve for the map (8) then it must be a periodic point for the
map. This means that there must exist ki, k2, € N so that

c\k a\ k2
(1=73) (1r73) po=s
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FIGURE 1. Euler trajectory on (1) and blow-up.

which we rewrite it as —Z—; log(1 — 75) = log(1 + 7%). For 7 small, by taking the
Taylor expansions of the two logarithms we obtain
kl [e'e) (_1)n+1 ( C)" o0 (_1)n+1 ( a)n
- — ——7T=) = — (=) . 9
ey ; n " ; n b ©
For these power series to be equal we need
]{1 ad ]{1 a2 d2

Wb R R

and this already gives a contradiction. Thus, the following theorem holds.

Proposition 3. The discontinuous map (8), with T = QW”, and N € N, does not

have a periodic point. O
Remark 4. As a consequence of Proposition 3, there cannot exist a 7 sufficiently
small such that for all 7 € (0,7), Euler method applied to (7) has an invariant
closed curve. This already tells us that well known results for smooth systems do
not apply to discontinuous systems. But, it still does not tell us what survives of
those results.

1.2. Some experiments. Below, we report on some numerical experiments aiming
at understading the behavior of Euler method applied to (1).

Example 5. We consider (1), with parameter values m =1, a = b =d =1 and
¢ = 0.8, for which (1) admits an asymptotically stable crossing limit cycle (see [4]).
Next, we take a Euler discretization of (1) and see if (as it would be the case for a
smooth problem for sufficiently small stepsize, see Theorem 2) there is an attracting
invariant curve for the discrete map, near the limit cycle.

After discarding a transient, we observe that the numerical trajectory remains
near the limit cycle, but there does not seem to be a closed curve for the numerical
method. What we see is a “band-like region.” See Figure 1 for Euler method with
stepsize 5 x 10~ and 20000 steps and a blow up when we take 107 steps. The band
we see contains the periodic orbit of the system.

We made several more experiments with different random initial conditions and
stepsizes, validating the following observations.

(i) The “band” fills-in, although we are not able to discern a mechanism of how

it gets organized, which appears to be “chaotic.”
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FIGURE 2. Exchange mechanism of Euler trajectories on (1); few
iterates on the left figure, and many iterates on the right figure.

(ii) At the same time, decreasing 7 shows that the bandwidth decreases linearly
with 7.

Based on the above, we formulate the following claim, which we will prove in
Section 3.

Claim 1. For any given T > 0, bounded away from 0 and sufficiently small, and
any cross section of the periodic orbit of (1), the piecewise linear interpolant of the
Euler iterates —evaluated at the cross section— eventually remains in an interval of
finite width w(t). The width w(T) depends on T and on the cross section but not on
the number of Euler iterates, and it decreases linearly in T.

Our experiments highlighted also the following behavior, which will be rigorously
shown in Section 2, Lemma 12.

Claim 2. FEuler method on the upper and lower pieces is “monotone,” in the fol-
lowing sense.

(a) Upper part. Suppose that at y = 1 we have two different values of x, say xg
and Ty, with vo < Tg, both negative, and we integrate with Euler method the
system (1), for as long as both yi, and Yy remain greater than 1. Call v -
and A the two broken line interpolants associated to the respective Euler
trajectories. Then, the Fuler steps are monotone in the sense that the two
interpolants do not cross each other, and 7y, is above Yy (i.e., it is farther
away from the origin).

(b) Bottom part. Again, suppose that at y =1 we have two different values of x,
say xo and To, with xg < Xg, both positive, and we integrate with Euler method
the system (1), for as long as y and gy, remain less than 1. Call v, » and 7, »
the two broken line interpolants associated to the respective Fuler trajectories.
Then, the Euler steps are monotone in the sense that v and ;. » do not cross
each other, and 7y, is below Ay (i.e., it is farther away from the origin).

Now, assuming true Claim 2, the only mechanism by which Euler interpolants
can cross each other is due to the way that they cross the line y = 1, on the right
and the left. See Figure 2 for an illustration of this fact, relative to the left crossing
of y = 1. A similar mechanism occurs relative to the right crossing of y = 1.
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1.3. Discretization of regularized problem in polar coordinates. Next, con-
sider the one-parameter map obtained applying Euler’s method to (2) with stepsize
7. Then, Proposition 1 and Theorem 2 tell us that, for € > ¢y > 0, and sufficiently
small, there exists a 7. > 0 such that, for 7 € (0,7.), the discrete system admits
an invariant closed curve 7, which is O(7) close to the periodic orbit of (2), and
converges to it as 7 — 0. But, the caveat in this inference is in the term O(7) which
hides a constant that becomes unbounded as € — 0. So, what happens as ¢ becomes
smaller and smaller for a given 77

Below, we give numerical evidence that, for 7 fixed, the numerical method un-
dergoes a period doubling cascade as e decreases.

Remark 6. In the literature on discretized smooth systems, there are several results
about possibly different behaviors between the original smooth dynamics, and the
discretized one; e.g., see the discussion and references on spurious fixed points in [9].
However, the phenomenon on which we report here is very different from any other
result of which we are aware; not only because of the nature of the phenomenon
occurring (period doubling), but particularly because its occurrence is intrinsically
caused by the discontinuous nature of the underlying system.

We first rewrite (2) in polar coordinates as
p=p(c(l=ge(2)) —age(2))
0= —d(1- ge(2)) — bge(2) (10)
where z = psin(f) — 1 ,

and then (since § < 0) we consider the following scalar equation

dp (c(1 — ge(2)) — age(2)) :
a6 =00 = CaT g —ba () Z PO -1 ()
The existence of a limit cycle for (2) ensures the existence of a periodic solution of
period 2 for (11). Now, let N > 0, N integer, take A = QW” and denote with ¢% the
map obtained applying Euler’s method with stepsize A to (11). Our aim is to give
numerical evidence that ¢% undergoes a period doubling cascade as e decreases.
We reason as follows.
A periodic orbit of period p for ¢%, p a positive integer, is detected solving the
following (pN + 1)-dimensional nonlinear system for (po, p1,. - ., ppN+1)

p1 = po + Af(po,bo)
(12)

ppN = PpN-1+ Af(ppn—1,0pN-1)
with 6; = iA, i =0,...,pN (of course, modulus 27). The system is closed by the

relation p,n = po. Upon recursively expressing p,n in terms of the previous terms,
up to pg, quite clearly the entire process can be formulated as a scalar map

pe = Talpo) - (13)

We seek fixed points of this map, and at convergence we monitor the value of 8%0\112:
a value of —1 is taken as indication of a period doubling bifurcation.

In our implementation, we solve (11) clockwise in 6 (i.e., for negative 6), in

agreement with the sign of 6 in (10). We use Euler’s method and stepsize A, and

we check for convergence of (pgny — po) to zero, where k is a positive integer. If,
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€ Period Ratio
0.00621151300 2
0.005097818578 4
0.00488819181 8 5.312749...
0.00482735428 16 3.4456818...
0.00481444430 32 4.7124418...
0.00481166749 64 4.6492126...
0.00481107261 128 | 4.66784898...
0.00481094519 256 4.668691...
TABLE 1. Period doubling bifurcation values for Example 7. N = 512.

for k > 0, we have (P(ewy — Po) — 0, then we infer that W% has a stable periodic

orbit of period k.

In practice, we use the explicit recursion (12) only to obtain reasonable initial
guesses for Newton’s method, which is then used directly to find the fixed point of
the map W4 . The algorithm is completed by a bisection search on e in order to find
flip bifurcation values. We illustrate in the next example.

Example 7. In (1), we fix the values m =1, and a =b=d =1 and ¢ = 0.8. We
know that system (1) admits an asymptotically stable crossing limit cycle and, for
€ > 0 and sufficiently small, also (2) admits an asymptotically stable limit cycle.

In what follows, we fix the stepsize A = 52T”2 unless otherwise specified, and we
vary € in order to detect bifurcation values. The results we obtain are summarized
in Table 1.

Denote with €, K = 1,2,..., the parameter values so that the fixed point pg
of the 2F~1st iterate of the map (13) undergoes a flip bifurcation (this betrays a
bifurcating periodic orbit of twice the period for (12)). In the last column of Table
1, we report the ratios E’;:ﬁ;;, for kK = 2,...,7. Quite clearly, these values are
getting closer and closer to the Feigenbaum constant ¢ ~ 4.6692.

In Figure 3 we plot a zoom-in (otherwise, they are not distinguishable on this
scale) of the asymptotically stable periodic orbit of period 2N and the unstable
periodic orbit of period N for € = 0.0055. The limit cycle of period 2N, in black, is
approximated by solving (11) backward in 6 with Euler’s method and fixed stepsize
A = 52T”2 We stop integrating when numerical convergence of (pan — po) to 0 is
reached. The unstable periodic orbit, in red, is obtained using Newton’s method to

solve (12) with p = 1.

Remark 8. When we change N from 512 to 513, qualitatively we obtain the same
results as those reported above. However, there are quantitative differences. For
example, the first period doubling (cfr. with Table 1) occurs at € ~ 0.008138977285.

In Figure 4 we plot in black the approximation of the limit cycle of (11) for
e = 0.0065, obtained with the Matlab solver ode45 (and error tolerances 10719).
We contrast this result with those of the Euler method discretization of (11). In
blue and red we plot the periodic orbit of period respectively N and 2N obtained
applying Euler’s method to (11) with stepsizes A = 52T7’2 and A = %. In the
latter case of A, the period doubling still occurs, but for larger values of €. [As an
example, the first bifurcation value for V = 256 is € ~ 0.016092612976. Similarly,
for larger values of N, the first bifurcation value occurs at smaller values of ¢; e.g.,

with N = 219, we find € ~ 0.003793886115.]
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Ficure 3. Example 7. Blow-up of the asymptotically stable pe-
riodic orbit of period 2N and unstable periodic orbit of period N
for e = 0.0055.

The next two computations motivated us to analyze Euler method with event
search, which we do in section 2.

(i)

(i)

When we integrate (11) with the variable stepsize integrator ODE45 from
Matlab (and error tolerances of 10710), for € as small as e = 5 x 10716 we al-
ways obtain an invariant curve, which for small values of € is indistinguishable
from the limit cycle of the original discontinuous system. We believe that the
reason for this success lies in the fact that the adaptive integration reduces
the stepsize to the point of effectively forcing the method to step exactly on
the discontinuity line; see our analysis of Euler method with event search in
section 2.

If we convert (2) to shifted polar coordinates:

x1 =rcos(f), xa — 1 =rsin(0), (14)

we obtain (similarly to before) a scalar DE of the type 22 = F(r,0). On this
problem, repeating the experiments that led us to find period doubling in €
for fixed N relative to (11), we do not find any evidence of period doubling,
at least none occurred for N = 512 and € > 1076, Again, we believe that this
is due to the fact that —in these new variables, and for even N— we are forcing
the method to step exactly on the discontinuity line, in a similar way to what
an event-driven technique would do on the original discontinuous problem.
As we will show in section 2, in this case the numerical method is able to

accurately approximate the limit cycle.

To conclude the present sets of numerical experiments, we made one more com-
putation, aimed at dispelling the suspicion that the observed period doubling is due
to an artifact of fixing the initial angle at 0.

Rather than discretizing (11) with N = 512 and A = 27 /N, starting with
0y = 0, of course one could discretize starting with a different 6,. When
we take 0y = kA (k = 1,...,5, for example), of course we recover the very
same period doubling values of ¢ as with # = 0. When we took 6y = %A,
for k = 1,...,5, and M = 6, again we obtained exactly (to 13 digits) the



PERIODIC ORBITS OF PLANAR DISCONTINUOUS SYSTEM 2751

20

ode45

or —6&— Euler512

Euler256

—5F

-20 I I I I I I
-60 -50 -40 -30 -20 -10 0 10

FIGURE 4. Example 7. Plot of the periodic orbit obtained with
Euler’s method versus the solution obtained with ode45; ¢ =
0.0065.

same period doubling values once more. This confirms that the origin of the
discretization has no impact on what we observed and reported in Table 1.

Based on the above numerical study, we formulate the following conjecture, rel-
ative to our model problem with m =1, a=b=d =1 and ¢ = 0.8

Conjecture 3. For any bounded N and any 0y and discretization points 0 =
0o+ 27k, k=1,...,N, there exists e(N) > 0 such that (13) has a period doubling
bifurcation at e(IN) > 0.

We only have numerical evidence in support of Conjecture 3, numerical evidence
based on using Newton’s method. Instead, the following Fact holds as a consequence
of Theorem 14 in Section 2.

Fact 4. If we consider the map obtained when using the shifted polar variables
(14), then, for any sufficiently large and even N, and € > 0, the map has no period
doubling bifurcation.

2. Euler map with event location. In this section we consider Forward Eu-
ler’s method with event location (FWEL) applied to our discontinuous system (1),
rewritten here in more compact form

@ _ fi(xvy); h(iE,y)<O
M - {f+($7y), h(z,y) >0’ (15)
)

where f~ and f* are our linear problems in (1), h(z,y) y —m, and we let

Y = {(z,y) € R*)h = 0}. We know that for ¢ > £ > & L (15) has a crossing

periodic orbit v that intersects ¥ in just two isolated points: w~ = (Z~,m) and

1 ;—g is a bifurcation value so that (1) has a crossing and sliding periodic orbit for § < ;—g
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wt = (zt,m) with = > 0 > z+. We observe that for our problem, Vh = [(1)
(VR)T f£(z2=,m) < 0 and (VR)T f*(z+,m) > 0.

In what follows, we show that, for sufficiently small stepsize 7, FWEL applied
to (15) has an attractive periodic orbit, close to that of the original problem. We
show this result in two-stages: first, we show that there is a fixed point of a suitable
Poincare map, then we show that the fixed point is asymptotically stable.

The following notation will be handy:

YT ={w e B|Vh(w) fr(w) >0}, ¥~ = {w € X|Vh(w)” fr(w) <0} .
To set the stage, we consider a fixed stepsize 7 and we take an initial condition

[IO] € X7, with z¢ close to z—. Let w = [x], so that wg = {IO] and h(wg) = 0.
m Yy m

} and

Algorithm 2.1: FWEL: Forward Euler with Event Location

(i) Starting at wg, compute the values wy, 11 = wy, + 71~ (wy).

(ii) Let k1 = k1(wo) € N be the first index for which h(wg, +1) > 0 and consider
the continuous extension wy, +1(0) = wi, +0f (wg, ), 0 <6 < 7.

(i) Locate exactly 0 < 7(x9) < 7 such that for § = 7(z), we
have h(wg,+1(7(20))) = 0.  Check that the transversality condition
Vh(wg, +1(7(20)) T fE (w0, +1(7(20))) > 0 is satisfied?.

(iv) Resume forward Euler steps from @y = wg, +1(7(20))-

(v) Let ko2 = ka(wo) € N be the first index for which h(wg,+r,+1) > 0 and con-
sider the continuous extension wy, +, +1(0) = Wky+ky +0f T (Whytk, ), 0 < 5 < 7

(vi) Locate exactly 0 < 7(Zy) < 7 such that h(wk,+k,+1(7(Zo))) = 0 and verify
that the transversality condition VA(w, 11, +1(7(Z0)) " fF Wiy, +1(7(Z0))) >
0 is satisfied.

(vii) Go back to (i), with wo = Wky4k,+1(7(Z0)).

As already noticed in Algorithm 2.1-(iii), there is a neighborhood Ig- of w™,
such that, for all zg € I;- N X~ = I;—, the corresponding wy, +1(7(z0)) is in XT
(i.e. not in the sliding segment) for 7 sufficiently small. Now, consider the map
Po : Iz~ — 27T defined as follows. P=(w) is the point wy, +1(7(z0)) on ¥ obtained
performing steps (i)-(iii) above with wg = w. This map is continuous and Lipschitz
with respect to = as we will prove in Lemma 9 below.

Lemma 9. The map P is continuous and Lipschitz with respect to x in Iz .

Proof. We use the same notation as in steps (i)-(iii) above. It is obvious that w,

in (i) is smooth with respect to xg. We still need to show that wy,+1(7(x0)) and

hence 7(x¢) in (iii) is Lipschitz with respect to . We consider two cases.

[T(z0) > 0 ] Consider the map M : I x R? — R defined as M (6, w) = h(w+46f~(w)).
Notice that M(7(zo),wr,) = 0 and %—¥|(T(10)7wk1) = Vh(wg,+1(7(20)))T
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f(wg,) # 0, for 7(zo) (and hence 7) sufficiently small and x¢ sufficiently
close to 7. Then, by the implicit function theorem, there exists a neighbor-
hood of 7(x0), I;(z,), a neighborhood of wy, , Ly, , and a smooth function
0 ¢ Tw,, = Ir(ay), such that M(5(w),w) = 0. This means that, for each
xo € I and such that h(wg,1+1) > 0, 7(z0) is a smooth function of x¢ and so
is P~

[T(x0) =0 ] We make explicit the dependence on the initial condition xg of the
quantities introduced in (i)-(iii): @, = zn(x0), etc.. The point (xg, m) is such
that h(wg, (x0)) = 0 so that wy, +1(7(20)) = wy, (x¢). Then in any neighbor-
hood I, of (xg,m) there are points x € I,,NE~ such that h(wg, (z)) < 0, and
points © € I,, N~ such that h(wyg, (x)) > 0. In the latter case, instead of the
continuous extension wy,1+1(d(x)) in (ii), we need to consider the continuos
extension wy, (§(z)). Let M be the map defined for the case [T(x¢) > 0] and
notice that M (0, wy, (x¢)) = M (7, wk, —1(z¢)) = 0. Moreover for 7 sufficiently
small 88_]6\4|(0;wk1(10)) # 0, and %—¥|(7)wk171(10)) # 0. Then there are a neigh-
borhood of wg, (zo), Ly, (20)» @ neighborhood of 0, Iy, and a smooth function
61t Ly, (xg) = Lo such that M(d1(w), w) = 0. Similarly, there are a neighbor-
hood of wg, —1(xo), Ly, _y (20)» @ neighborhood of 7, I, and a smooth function
62t Ly, (x0) — Ir, such that M(d2(w), w) = 0. Notice that d1(wp, (z0)) = 0,
02(wg, —1(z0)) = 7 and the two continuous extensions wy, +1(d) and wg, (J)
satisfy the following: wy, +1(01(wg, (x0))) = w, (02(wk, —1(x0))) = wg, . For z
in a neighborhood of zy and wy = (x,m), we define the following function

[ (1)) A (@) > 0, b (@) <0
(@) = { B ) )

and this function is Lipschitz and not differentiable at the point z = x.
O

Similarly to P, we define the map P : ¥ — X~ that associates to each point
on XF, the point on X~ obtained performing steps (iv)-(vi) above with starting
point w = wy, +1(8). This map is well defined in a neighborhood of z+ and it is
continuous and Lipschitz with respect to . The proof is similar to the proof of
Lemma 9. The composite map Py : ¥~ — X7, P, = PF o P~ is then well defined
in I;- and is continuous with respect to x.

In what follows, we denote with I;- the closure of the set I;-.

Lemma 10. The set I~ is invariant under Py, for T sufficiently small.

Proof. Let P denote the Poincaré map of the continuous problem. Then, since
is globally asymptotically stable, P(I;-) is a proper subset of I and it is closed.
Let d = B(P(I;-), I-), with B(A, B) = minye g p(A,b) and p(A,b) distance of the
point b from the set A. Then d is bounded away from 0. The statement of the
lemma follows upon noticing that the global error for FWEL is O(7) (e.g., see [5]).
Then, for 7 sufficiently small, dist(P(I;-), Pr(I3-)) < %, so that P, (I;-) C Iz-.
Then I,- is invariant under P;. O

Using Lemma 9 and 10, we can prove the following.

Proposition 11. There exists T > 0, such that, for all T < 7, and bounded away
from 0, FWEL has a periodic orbit v in a neighborhood of .
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Proof. We apply Brouwer’s fixed point Theorem to the map P,. Then P; has a

fixed point, denote it with (Z.,m). Moreover, let W = (Z.,m) and consider
wy = w; +7f (w;). Since f~(w;) # 0, then wy # w; and w; is not a spurious
fixed point of FWEL. O

Next, we will show that v, is attractive. Let (-, m) and (z},m) be the two
intersection points of 7, respectively with ¥~ and X%, 27 > &}. Moreover, for 7
sufficiently small, the following inequalities must be satisfied

. > gm, Tf < —%m. (16)
Let w, = (Z;,m)T and denote with @y, the k-th iterate of FWEL with initial

condition @, . Let Ni(w, ) be such that h(le(w;)H) > m and let 77 (z;) be
defined as in step (iii) of Algorithm 2.1. Then

[xj] = 5_(r7 (z;))S- ()M (") {

m

7=

at (7)

m

1+tc td
—td 1+4te

with S_(t) = < ) Let wy = (z+,m)T and denote with @, the k-th

iterate of FWE with initial condition @y . Let Na(w, ) be such that h(u?j\’b( ,+)+1) <
Wo
m and let 77 (Z]) be defined as in step (vi) of Algorithm 2.1. Then
== 7+
Tr| _ + (7t Na(wd) [Tr
o] = s [ (15)
. 1—ta tb

More in general, given a vector (z;,m)T in a neighborhood of (z;,m)”, we
denote with (zg,m) the intersection point with * of the FWEL sequence with
initial point (x5, m)?. Let 7(zy ) and 7(xg ) be the intermediate stepsizes as defined
in (iii) and (vi) of Algorithm 2.1, respectively. Then, the transition matrix S(7, z;)
of FWEL that takes (2, ,m)” back to X~ is the following

S(ray) = Si(r(@d)S4 ()05 (r(2q))S- (1)1 o)

_ ( Re(A(1,zy )  Im(A(r, 3:0_)) (19)
—Im(\(7,25) Re(A(r,zy)/)”’

with

AT, @) = A (T(@g DA (g ) Ay (N)N2ED A (r)Nro0), (20)
where A_(t) = (14 tc) +i(td), Ay (t) = (1 —ta) +i(tb). Notice that S_(t) equals to
[A_(t)| times a rotation matrix, with rotation angle ¢_ (t) = arctan(%). Then the
transition matrix S(r,z7) is given by a rotation matrix times |A(7,z7)|. Similarly
for S;(t). Moreover for x~ = Z_, it must be A\(7,Z;) = 1 and S(7,Z,) = I. Let
now (zy,m)T be a point in I- and (z; ,m) = P;((z;_,,m)) = P¥((z;,m)). E.g.,
for k=1, (x7,m) = S(r, 25 )(zg ,m)T.

In order to show attractivity of 7, we will show that, for =, > Z; (resp.
xy < T;), we have T, < x] < x; (resp. T, > x] > x5 ). In this way the
sequence {z, } is monotone decreasing (resp. increasing) and bounded from be-
low (resp. above) and it hence must converge to a point Z. Since it must be
(Z,m) = limp_o0(zy, ,m) = limy—o0 Pr((z,_,,m)) = P((Z,m)), then z = 2. We
will show the following steps
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(a) Let xy > Z; (resp. xy < T,

(b) Ifxy >z, (resp. zy < Ty )
).

(c) If 2y > &7 (resp. z; < Z;) and Ni(zy) = Ni(Z7) then 7(zy) < 7(Z;7)
(resp. T(zg) > 7(z7)).

). Then zf < zF (resp. z§ > 7+ ).
then Nq(zg ) < N1(Z;) (resp. Ni(zy) > Ni(Z))

Then, reasoning in a similar way, the next three steps can be proven as well.
(d) Let xf < &t (resp. g > #F). Then ] > Z; (resp. ] < Z}).
(e) §f rg < &t (vesp. o > &+ ) then No(x]) > Nao(zF) (vesp. Na(zd) < Nao(zh)
(f) If i < 2t (vesp. zf > z7) and Na(zd) = Na(z}) then 7(xf) > 7(z})
(resp. T(zd) < 7(xF)).

For x5 > z7, (b) and (c) above imply that A_(7(xg ))A_(1)N1(=0) > A _(7(z7))
A_(7)N1@) while items (e) and (f) imply that A (7(z)) A+ (r)N2(@0) < Ay (7(zF))
Mg (1)N2(E0) 1t follows that, for xg > Z7, A1,y ) in (20) must be less than 1 and
hence #] < z;. Moreover items (a) and (d) imply z; > Z; so that the claim is
proven.

The following Lemma suffices to show (a) above.

Lemma 12. Let (xg,m) and (Zo,m) be such that x9,To > $m, 7 > 0 and con-

sider the Euler trajectories given by the points {xk} = S_(1)* [;CO] and {;Ek} =
Yk m Yk

~

S_(7)k [;Zg] ,k=0,...,N+1. Then, the line segments given by joining two con-

secutive points of each trajectory do not intersect.

)-sor o s

: _[1+me md | _ cos(p—(n))  sin(p—(n)) _
with 5-(n) = { —nd 1+nc] = -] [—sin(w—(n)) COS(cp—(n))]’ A-n) =

(1 + nc) + i(nd), ¢(n) = arctan #‘f}c. Therefore, if we let L = log(S_(7)), we are

sampling at integer times the solutions of the linear system

d 5
d [f”] L ﬁ with ICs [%] or ["”0} |
dt |y Y m m
Now, since solutions of the differential equation cannot intersect, we know that the
(continuous) trajectories {x(t)] =elt [iﬂ and [I(t)} =elt Bg] do not intersect.

Proof. We have

y(t) y(t)
If xg > 7o, then [x(t)] stays outside the trajectory F(t) ] In particular, the
y(t) y(t)
points {wk}, and [{k] are distinct, the former lying on the trajectory {x(t) } and
Yk Yk y(t)

o~

the latter on the trajectory Egﬂ . To verify the claim that the Euler segments do
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not intersect, consider these line segments. With 0 < 5,5 < 1, we have
[‘T(S)} _ Ik] Ts [ﬂﬂkﬂ - l’k] — S_(s7) {xk]
y(s)]  |ur Ykt1 = Yk Yk
[‘f@} - ?’“] +3 [55’““ - ?k] _S_(5r) F’“] .
y(s) LYk Yk+1 — Yk Yk
If these two segments intersect, there must be values of s,5: 0 < 5,5 < 1 (since end

»”;8] _ Egﬂ and this implies

Y Uk |IA_(s7)| [—sin(p) cos(e)| ¥k

points are distinct), where

with ¢ = ¢_(57) — ¢_(s7). Now notice that, for zo > Zo > $m, it must be

[kl egFd
Yk Yk

and hence s > § so that in (21) S (n] > L At the same time
o > Tp implies that the angle between ::;2 and i;)] is negative, we denote it

with 6. Now, # must be equal to ¢ in (21), i.e. to the angle between [zk} and [Qyik} .
k k

However s > § implies that ¢ = ¢_(57) — ¢_(s7) > 0. This is a contradiciton. O

To show (b), we use same notations as in the proof of Lemma 12. Let xg > &g

and let w — [W’W] and & — [@W@ + 1}. Then [[w|| > @] and morcover
le(/:E\o)Jrl le(/f[))+1

the angle between w and w is negative so that w is above w. Then [le@O)H} is
YN1(@o)+1
above y = m and hence Ny(x¢) < Ny (Zp).

Finally (c) is proven in the following Lemma.
Lemma 13. Let x; > z; and Ni(zg) = Ni(Z7). Then 7(zq ) < 7(Z7).

Proof. Let S_(1,25) = S(7(xy))S(7)N (o) (see (19)) and consider wT = (zf,m)”
= S_(r,25)(=,m)T. Let w = S_(7,25)(Z;,m)T. Then w lies below w* and
|w]| < |lwt]. It follows that w does not intersect £+ and hence 7(z;) > 7(z; ). O

Theorem 14. There exists a T > 0, so that, for all T < 7, and bounded away from
0, FWEL has an attractive periodic orbit .. Moreover

7113% T, =T .
Proof. Attractivity of v, implies that v, is an isolated periodic orbit. This together
with |P-(Z7) — Z~| = O(r), implies convergence of T~ to T~ . O

3. The band. Proof of Claim 1. In what follows let wy(7) be the k-th element
of the FWE sequence with initial condition wy and with stepsize 7. We denote
with 7 - (wo) the broken line approximation with nodes wy(7), k > 0. A point z of
~i,-(w) must satisfy the following: there exists ¢ € [0,7) and k > 0 such that

_ {S(t)wk(T), if h(wg (7)) < m or wy(r) € ¥~
Sy (w(r) if h(wg (7)) > m or wg(r) € 2T
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@)

FIGURE 5. In support of the proof of Claim 1. The red segment
contains the band.

with S_(f) = <1_+ be d ) and S, () = (:t“ td ) Take wo = (20, m)

td 1+tc d 1—ta
€ ¥~ and consider the broken line interpolant v, (wo).
Denote with w, = (z;,m)T and wy = (#+,m)T the intersection points of 7,

with ¥~ and X7 respectively, where v, is the periodic orbit of FWEL as described
in Section 2. Consider one Euler step with initial condition wy = w, and stepsize
7w = S_(7)(Z7,m)T. Then
By = z; +7(cx; +dm)

m+7(—dZ; +em) )’
and for 7 sufficiently small and z7 > §m (see (16)), the second component of w;
satisfies the following inequality: 0 < elw; < m. Then we can prolong w; until it
intersects ¥~ and we denote this intersection point as @y = (%, ,m)T, see Figure
5. Then @y = aw;, where «a is such that el'wy = m, i.e.,

m

= > 1, 22
“ m + 7(me — dz) (22)

T c
because T > £m.

The following inequalities are satisfied: |[@wol| > [|w:|| and Z; > Z;. See Figure
5.

L 547 (cas +d
Moreover, since T, = m Zetrled, tdm) o

m+7(—dzr +cm)’
_ md ((z7)? +m)

N — =0 . 23
Yo "% 7—m + 7(—=dzr +cm) (7) (23)

Consider the Euler iterates wy with initial condition wy and stepsize 7 and take the
broken line approximation 7 - (wo) with nodes @y, k > 0. Then v, ,(wo) meets ST
at a point that we denote as (g, m)T, it crosses X1 and it meets X~ again at a
point (7, m).

In a similar way, we consider the vector w_; = S_(7)"'w~. We denote with wy =
(5, m)T the intersection point of w_; with ¥~. Then ||wy|| < [[w_1], see Figure

1
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FIGURE 6. In support of Lemma 15

T

- ~ _ Z_47(ck —dm)
5,and 7, <2 (e Tem)

then

and z, > 0 for small 7. Moreover, since Z, = m

_ d((z7)* +m?
T -y =T ((T)__ ) =0(r) .
m + 7(dZr + cm)
We consider the Euler iterates wj, with initial condition wy and stepsize 7 together
with the broken line approximation v, -(wo) with nodes wy. Then v, (W) meets

Yt at (74, m)7T, it crosses it, and meets ¥~ again at (7, ,m)T.

Lemma 15. With the above notation, for T sufficiently small, it holds

T <%y, T; >7;.
Proof. We will show that [|(Z],m)| < ||Z,,m| and this implies | < Z;. The
argument to show z; > Z; is much the same.

We will use the following notation. For a zg € X7, let zi, £ € N be the k-th
element of the sequence generated by FWE and denote with Ny (zg) the first iterate
number such that eQTle(ZO)H > m and with Na(z) the first iterate number such
that egZNl(zo)+1+N2(Zo)+1 <m.

Consider the broken line approximation 7 ,(29). Then, for zo = (zg5,m)?
close to wo, 7V¢r-(20) intersects X~ between the iterates 2zn,(zo)4+14nNs(zo) and
2Ny (20)+14 N2 (20)+1 3t (T, m)T. We have the following expression

] = i Gansi s g, (24)
For z = wy, let €2T@N1(w0)+1 > m and notice that eQTﬁFN](ﬁ,O) > m, since

W, (o) = QWN, (w0)+1, With a > 1 as in (22), see Figure 6.
It follows that Ny (wy) < Ni(wo) — 1, and this implies

A= ()| EFE < A (7 (@) [ A (7)), (25)

with A_(n) = (14nc)+ind and with 7(@) being the intermediate stepsize as defined
in Algorithm 2.1, (iii).
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Notice moreover that it must be Ni(wp) > Ni(wp) — 2. Indeed, assume by
contradiction that Ni(@g) = Ni(wg) — 3. Then we must have €3 Wy, (m,)—2 =
aengl(mo),l > m, with a as in (22). At the same time, eQTle(u—,o) < m together
with WN, (@) = S_ (T)le(@())fl7 implies

m m—l—Td(elT@Nl(u—,O)_l)
m+ 7(cm — dTr) 1+7c
oom.m =+ Td(e?’lDNl(mo),l)

1+7c m+7(em —dzr)

a(egT@Nl(wo)—l) <

(26)

Now, if we show that 7d(ef Wy, (@) — 1) < 7(cm — dz;), then we have that
a(engl(mo),l) < m and hence a contradiction. To this end we just notice that, for
7 sufficiently small, d(e] W, (@y)—1) 18 close to dz and 7(dzf + dz;) < 0 < Tem.

Next, we move Wy, (5,)+1 forward by the same map used in (18) and we get a
new vector

2= S (T @)SH (NN By, ()41
If we show that h(Z) > m, then it must be (see also (24) with z¢o = @)
At (77 (@0)) [ A+ (1) V2T < Ay (77F ()| (1) M2 (0], (27)
Consider first the case N1 (@) = Ni(wo)—1. Then, D, (g)+1 = S— (7)N1 (@)1, =

S_(7)N1(@0) g, and, using the fact that the matrices S_(-) and S (-) commute, we
get

2 =S4 (14 (@) S+ (M) Dy, 30y 41
= Sy (74 (7)) S (r)N2(@0) §_ () Na(@o) g,
= 5717 (27)) [S4(r (51) S (1) S _ (1M1 5_ (7= (a7))] o,

from which (since the term in square brackets is the identity) S_(7—(Z;))zZ =
m+47_(Z)(cm+dz; ) .
127 a0 et (r o )2 (1) From this,
we get €32 > m if Ty > Sm+ 7_(Z;) 2 (c* + d*) which is true for 7 sufficiently
small.
If N1(@o) = N1(wo) — 2, then @y, (z)+1 = S—(1)V Py, with a as in (22).
Then

F=as_(r_ @;)) S (4 (@) S (1) V270 S (r_ (27 )) S (7)™ g

(g ,m)T. This last relation gives elz =

if and only if S_(7_(z7))Z =« [1;7;] and this gives e3 2 = « mtT— (&, )(emtds,)

Tt2r_ (27 et (r— (27 )2 (2 +d2)

From this, we will surely get €32 > m if 7 > Sm + 7_(z;)2(c* + d*) which is
true for 7 sufficiently small.
Inequality (25) and (27) together imply that (see equation (20)),
A (T (@) | A () M2 Ova@or )| A () M@+ < (7, 77)] = 1.

The proof for w carries on in a similar way. O

Below, if w € X7, we will denote with (z, ,m) and with (xk, m), k > 0, the
intersection points of v, ,(w) respectively with ¥~ and 3. The notation is chosen
so that (;vfﬂ, m) (if it exists), is the intersection point immediately subsequent to
(i, m)-
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Theorem 16. For any w € X~ and for 7 sufficiently small, there exists K(7) > 0
such that, for k > K(7), the points xop11 are contained in [T],T7 .

Proof. Let w = (z,,m) € ¥~. Following the same reasonings as in the proof of
Lemma 15 , if 2, > Z1, then 27 < z;. Moreover there must be a K > 0 such
that zop | < Z1. Indeed, if this were not the case, the sequence Ty, would be
montone decreasing and bounded below by 7 and hence it would converge to a

point = > z; . Now, take w~ = (z~,m) and consider the sequence of intersection
points of v -(w™) with £¥~. Because of Lemma 15, it must be z] < z=. A
contradiction. The proof for 1 > 7 is similar. O

The proof of Claim 1 follows from the fact that the interval w(7) relative to the
cross section y = m, satisfies w(7) C [z7,77 | and [Z7,Z7 ] = O(7). O

Corollary 17. The band-like region obtained applying Euler method to (1) contains
the periodic orbit of the method with event search .. Moreover it converges to v as
T goes to 0.

Proof. The proof follows upon noticing that z; € [#;,Z; ] and that v, — v as
7 — 0. This implies lim, ,oZ; =lim, ,0Z; =Z". O

Example 18. Although we only analyzed planar problems, the “band” phenome-
non which we observed in those cases seems to be a general feature of discretizations
of discontinuous systems having a periodic orbit. To witness, below we show results
obtained for the well known Chua’s circuit in its discontinuous formulation. The
system is in R?, and given by

—a—am; o 0 almg —my)
1 -1 1jz+ 0 , r; < —1,
0 8 0 0
dr —a—amg o 0
— = 1 -1 1{=x, —l<z <1, (28)
dt 0 "5 0
—a—am; a 0 a(my —mg)
1 -1 1|z+ 0 , ry >1,
0 8 0 0

where we take o = 15.6, 8 = 50, mg = —8/7, my = —5/7, for which it is known
that the discontinuous system has two crossing periodic orbits ( see [1], Sec 9.4).
Results obtained with Euler method (with constant stepsize) are in Figure 7.

4. Conclusions. In this work, we considered a model planar piecewise linear sys-
tem with an attracting periodic orbit, and studied what happens to a Euler dis-
cretization with stepsize 7 of this piecewise linear system. In contrast to standard
results for smooth systems, we showed that the discrete system trajectories remain
inside a band, whose width is proportional to the discretization stepsize 7. (In the
smooth case, for 7 sufficiently small, the discrete system has an invariant curve).

We also considered a smooth regularization of the piecewise linear system. After
rewriting it in polar coordinates, we considered its Euler discretization, and gave
evidence that the discrete solution undergoes a period doubling cascade with respect
to the regularization parameter ¢, for fixed 7.
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0.5

0.3 b

0.2 b

F1GURE 7. Example 18: Euler approximation for 7 = 0.03.

Finally, we proved that an event-driven Fuler discretization of the model problem
has a discrete periodic solution near the one of the original problem, for sufficiently
small 7.

We have only considered the Euler discretization, the prototypical one-step
scheme, and a model piecewise linear system. Although it is possible that dif-
ferent discretizations, and systems, give somewhat different results, we expect that
our results are indicative of the following general paradigm.

(i) When considering discretization of discontinuous systems with an attractive
periodic orbit, the standard results from the smooth case do not carry over,
in particular the discretazion of the discontinuous system does not generally
have an invariant curve, which gets replaced by an invariant band.

(ii) However, when enforcing an event search, then the resulting event-driven-
method approximates periodic solutions to the order of the method.
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