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Abstract

In this work we consider algorithms based on the Singular Value Decomposition
(SVD) to approximate Lyapunov and Exponential Dichotomy spectra of dynamical
systems. We review existing contributions, and propose new algorithms of the con-
tinuous SVD method. We present implementation details for the continuous SVD
method, and illustrate on several examples the behavior of continuous (and also
discrete) SVD method. This paper is the companion paper of [14].
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1 Introduction

Investigation of a dynamical system, discrete or continuous, linear or nonlin-
ear, deterministic or random, quite often requires information on the spectrum
of the system. In this work, we will be specifically concerned with continuous
deterministic dynamical systems:

ẋ = f(x) , t ≥ 0 , x(0) = x0 , (1)
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where f : R
n → R

n is Lipschitz and continuously differentiable, and we let
φt(x0) be the solution of (1), which we will assume to describe a bounded
trajectory. Some powerful tools to analyze the nonlinear system (1) rely on
the spectral information associated to the linearized system along φt(x0):

Φ̇(t, x0) = Df(φt(x0))Φ(t, x0) , Φ(0, x0) = I . (2)

For the sake of generality, we will henceforth consider the linear non-autonomous
system

Ẋ = A(t)X, t ≥ 0, (3)

where A : R
+ → R

n×n is continuous and bounded, and X is some fundamental
matrix solution (i.e., X(0) is invertible). For later reference, we will reserve
the notation Φ to indicate the principal matrix solution of (3): Φ(0) = I.

Our concern in this work will be to approximate the Lyapunov and the Expo-
nential Dichotomy (or Sacker-Sell) spectra, ΣL and ΣED respectively, of (3).
These spectra will be defined shortly. For the moment, let us recall that these
spectra play a fundamental role in classical stability studies (e.g., see [24],
[12]); for example, study of variation with respect to the initial conditions for
the nonlinear system ẋ = f(x) leads naturally to study the Lyapunov spec-
trum, whereas study of variation with respect to parameters for ẋ = f(λ, x)
leads more naturally to the Exponential Dichotomy spectrum. Remarkably,
and at first glance surprisingly, these well understood asymptotic features of a
system reflect in many other contexts and ΣL and ΣED are of use in perturba-
tion and continuation of invariant manifolds (e.g.,see [46]), in shadowing and
other error statements associated to numerical integration (see [38]), and of
course spectral information is routinely used as indicator of chaotic behavior
(see [36] for a very nice and accessible discussion of various issues on this), to
extract entropy and other statistics of a dynamical systems (again, see [36]),
to estimate dimension of attractors (e.g., [11]), as well as a tool for studying
bifurcation theory of random dynamical systems [3], and of nonautonomous
systems [20,27].

Many studies where spectra are used are computational in nature. This is un-
avoidable, of course, since differential equations cannot be solved exactly in
the first place. In particular, some researchers ([23,22,43]) used an approach
for approximating Lyapunov exponents based on the Singular Value Decom-
position (SVD) of the linearized flow (i.e., of the fundamental matrix solution
of the linearized problem). Albeit not as popular as methods based on the QR
factorization of the matrix solution, the SVD approach presents some distinct
potential advantages, as we will review in the course of this work.

The SVD approach has been traditionally motivated by the Multiplicative Er-
godic Theorem (MET) of Oseledec, [35], and see Section 1.1.2 below. In [14],
instead (and see also [16]), we have justified SVD methods based upon the
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integral separation of the underlying linear system: This helps understand-
ing how SVD methods will work in practice, and forms the backing for our
algorithmic development. Still, regardless of the point of view one adopts to
justify SVD techniques, we must warn that it is not easy at all to implement
an SVD method. Our main purpose in this work is precisely that of proposing
new algorithms for SVD methods, and give implementation details and show
performance on a few examples.

A plan of this paper is as follows. In the remainder of this introduction, we
review the concepts of Lyapunov and Exponential Dichotomy spectra, ΣL and
ΣED. We will also review an alternative to SVD methods for approximation
of spectra, namely QR techniques. For reasons of brevity, we will give only a
very brisk review, and refer to our companion paper [14] and the cited litera-
ture for details and theoretical justifications. In Section 2 we discuss the basic
continuous and discrete SVD methods and their strengths and limitations. In
Section 3 we present our new continuous SVD algorithm, and give implemen-
tation details. Finally, in Section 4 we show performance of SVD techniques
on several linear and nonlinear examples.

1.1 Theoretical Background

To define ΣL, we follow the classical definitions of Lyapunov, see [33]. Consider
(3), and define the following quantities

λs
j = lim sup

t→+∞

1

t
log ‖X(t)ej‖ , λi

j = lim inf
t→+∞

1

t
log ‖X(t)ej‖ . (4)

Here, and everywhere else, the vector norm is always the 2-norm, and the
matrix norm is the induced norm; the vectors ej, j = 1, . . . , n, are the standard
unit vectors. When

∑n
j=1 λs

j (respectively,
∑n

j=1 λi
j) is minimized with respect

to all fundamental matrix solutions of the system, the λs
j (resp., λi

j) are called
upper (lower) Lyapunov exponents (LEs for short) and the corresponding X
(i.e., X(0)) is said to form a normal basis. [The existence of a normal basis was
established by Lyapunov himself, see [33]. Presently, we observe that there are
several normal bases.] For so-called regular systems, one has λs

j = λi
j, for all

j = 1, . . . , n. Naturally, we can rephrase (4) in terms of the principal matrix
solution. That is, if X(0) is a normal basis, letting xj, j = 1, . . . , n, be its
columns, then the upper/lower Lyapunov exponents are given by

λs
j = lim sup

t→+∞

1

t
log ‖Φ(t)xj‖ , λi

j = lim inf
t→+∞

1

t
log ‖Φ(t)xj‖ . (5)
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The Lyapunov spectrum is defined to be

ΣL =
n⋃

j=1

[λi
j, λ

s
j] . (6)

The Exponential Dichotomy, or Sacker-Sell, spectrum of (3), denote it with
ΣED, is the set of all real values λ such that the shifted system

ẋ = (A(t)− λI)x, (7)

does not admit exponential dichotomy (see [41]). Recall that (3) admits an ex-
ponential dichotomy in [0, +∞) if there exists a projection P and real numbers
K ≥ 1, α > 0 s.t. for any fundamental matrix solution X we have

‖X(t)PX(s)−1‖ ≤ Ke−α(t−s), ∀t, s, t ≥ s ≥ 0 ,

‖X(t)(I − P )X(s)−1‖ ≤ Keα(t−s), ∀t, s, 0 ≤ t ≤ s .
(8)

ΣED is the union of m disjoint closed intervals, m ≤ n:

ΣED =
m⋃

i=1

[ai, bi] : a1 ≤ b1 < a2 ≤ b2 < · · · < am ≤ bm . (9)

In general, ΣED is always stable with respect to perturbations, by virtue of
the “Roughness Theorem” for Exponential Dichotomies (see [12]). ΣL, instead,
enjoys only conditional stability. Necessary and sufficient conditions for ΣL to
be stable are given in [2]. In case in which the Lyapunov exponents are distinct,
the necessary and sufficient condition for stability of ΣL is that (3) be integrally
separated. This means that there exists a fundamental matrix solution X of
(3) and constants a > 0 and 0 < d ≤ 1 such that for all i = 1, . . . , n− 1, we
have

‖X(t)ei‖
‖X(s)ei‖

‖X(s)ei+1‖
‖X(t)ei+1‖

≥ dea(t−s), ∀t, s, t ≥ s ≥ 0 . (10)

1.1.1 Directions: Growth Subspaces

Just like eigenvalues of a matrix have geometrical informations associated to
them, the eigendirections, the growth factors in ΣL and ΣED can be supple-
mented by geometrical information on the subspaces of solutions which achieve
a specific growth. This is an important point with far reaching ramifications.
Consider first ΣL, and the upper Lyapunov exponents. Let λs

j, j = 1, . . . , p, be
the distinct upper LEs of (3), of multiplicities dj, j = 1, . . . , p. For j = 1, . . . , p,
define Wj to be the set of all initial conditions w such that for the solution
Φ(t)w, we have lim supt→∞

1
t
log ‖Φ(t)w‖ ≤ λs

j. These Wj’s are (d1 + · · ·+ dj)-
dimensional linear spaces corresponding to the max number of linearly inde-
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pendent solutions with exponent equal to λs
j. The Wj’s form a filtration of R

n:
R

n = W1 ⊃ W2 . . . ⊃ Wp ⊃ Wp+1 = {0}, and

y(t) ∈ Wj\Wj+1 ⇐⇒ lim sup
t→∞

1

t
log(‖y(t)‖) = λs

j . (11)

Alternatively, if we let Vj be the orthogonal complement of Wj+1 in Wj, i.e.
Wj = Wj+1 ⊕ Vj, Vj ⊥ Wj+1, then R

n = V1 ⊕ V2 ⊕ . . . ⊕ Vp, and if w ∈ Vj

then lim supt→∞
1
t
log ‖Φ(t)w‖ = λs

j. Notice that if we have distinct LEs, then
dim(Vj) = 1 for all j = 1, . . . , n, and we will simply write vj for the normalized
directions in this case. In [14], we have shown that the vj’s, for integrally
separated systems, characterize the set of initial conditions leading to lower
Lyapunov exponents as well.

Also to each interval of ΣED one can associate linear spaces Nj, j = 1 . . . , m;
see [41]. In [14] we proved that these are the subspaces of initial conditions
giving growth behavior between aj and bj of (9), uniformly. That is, w ∈ Nj,
w 6= 0, if and only if for some constants Kj ≥ 1 and Kj−1 ≥ 1 we have

‖Φ(t)w‖
‖Φ(s)w‖ ≤ Kje

bj(t−s) , and
1

Kj−1

eaj(t−s) ≤ ‖Φ
−T (s)w‖

‖Φ−T (t)w‖

for all t, s: t ≥ s ≥ 0. For integrally separated systems, in [14] we proved that
the Nj’s are spanned by the vectors vk’s associated to the Lyapunov exponents
inside the interval [aj, bj].

1.1.2 Nonlinear case

When dealing with the nonlinear system (1), the spectra must be understood
as being associated to the linearized problem (2). Therefore, in general, they
will depend on the initial condition x0. However, many nonlinear systems of
practical interest have solutions which eventually settle on an attractor. In this
case, important measure theoretic statements can be made for the spectra. The
MET 1 , says that if the flow of (1) is taking place on a compact manifold
and µ is an ergodic invariant measure for the manifold, then there is a set B
of full measure such that if x0 belongs to B, then the Lyapunov exponents
become independent of x0, and further exist as limits. Similarly, ΣED becomes
independent of x0. In such cases, one can properly speak of ΣL and ΣED for the
nonlinear system (1). We recall that an important consequence of the MET is
that the Lyapunov exponents are given by the logarithms of the eigenvalues
of the following limit matrix Λ(x0) (this limit exists for almost any initial
condition x0 with respect to an invariant measure, and further the limit Λ(x0)

1 The largest part of [3] is devoted to this remarkable theorem.
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becomes independent of x0 when the measure is ergodic):

lim
t→∞

(Φ(t, x0)
T Φ(t, x0))

1/2t = Λ(x0) . (12)

1.2 Computational Background

The outstanding difficulty in approximating spectra is to avoid direct integra-
tion of fundamental matrix solutions, since solution modes tend to align in
the direction of fastest growth. Any successful method will need to avoid this
phenomenon.

Two families of techniques have been explored, based on the QR and SVD
decompositions of the fundamental matrix solution. The general idea is to
transform the problem to one with a simpler structure, triangular or diagonal,
and to extract the spectral information from the diagonal subsystems. For
numerical reasons one favors use of orthogonal transformations. For simplicity,
we describe the case in which we want to approximate all spectral intervals. In
Section 2.3, we outline the modifications which are needed in case we want to
approximate only a few dominant spectral intervals. Below, we describe QR
methods, in the next Chapter we describe the SVD methods.

For a fundamental matrix solution X, the idea is to obtain the decomposition
X = QR with Q orthogonal and R upper triangular with positive diagonal:
Rii > 0. There are two classes of methods: discrete and continuous QR meth-
ods. Both are widely used, especially the discrete method, and there are even
public domain codes based on these methods; e.g., see [6,10,16,22] and the
bibliography in the technical report [19], which also serves as a user’s guide
for available public domain codes.

1.2.1 Discrete QR

Let t0 = 0, X0 = Q0R0, and let t0 < t1 < t2 < . . . , be the points of the
computational grid (it could be an equispaced grid, tk = kh, for k = 0, 1, . . . ,
for given h > 0, but more typically uneven grids are used).

For a general grid point tk+1, we want the QR factorization of X at tk+1. In
terms of transition matrices, we can write

X(tk+1) = Φ(tk+1, tk) · · ·Φ(t2, t1)Φ(t1, t0)Q0R0 .

Recall that, for j = 0, 1, . . . , Φ(tj+1, tj) is the solution at tj+1 of the problem

d

dt
Φ(t, tj) = A(t)Φ(t, tj) , Φ(tj, tj) = I .
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Thus, to obtain the QR factorization of X(tk+1) one can proceed as follows

Φ(t1, t0)Q0 = Q1R1 , Φ(t2, t1)Q1 = Q2R2 , . . . ,

so that
X(tk+1) = Qk+1Rk+1 . . . R1R0 . (13)

Approximation to the (upper) Lyapunov exponents can be obtained from

λs
i = lim sup

tk→∞

1

tk

k∑

j=0

log(Rj)ii , i = 1, . . . , n .

Approximation of the endpoints of the spectral intervals of ΣED can also be
based solely on the diagonal of R; for details, see [19] and [16].

Remark 1.1 Observe that it is easy to proceed from the QR factorization of
X at tk+1 to the QR factorization at tk+2, and so forth.

1.2.2 Continuous QR

Let t0 = 0, X0 = Q0R0. The method consists in defining and integrating
a differential equation for Q. Differentiating the relation X = QR, one gets
Q̇R + QṘ = A(t)QR. Multiplying this by QT on the left gives

Ṙ = B(t)R , R(0) = R0 , where B(t) := QT A(t)Q− S ,

and we have formally set S := QT Q̇. Similarly,

Q̇ = AQ−QB = QS , Q(0) = Q0 .

Observe that S is skew-symmetric and B must be upper triangular, and so

Sij =





(QT (t)A(t)Q(t))ij, i > j,

0, i = j,

−Sji, i < j.

The upper LEs can be obtained from

λs
i = lim sup

t→∞

1

t

∫ t

0
(QT (s)A(s)Q(s))iids

= lim sup
t→∞

1

t

∫ t

0
Bii(s)ds , i = 1, . . . , n .

Remark 1.2 Needless to say, one needs to integrate all relevant differential
equations numerically, and there are several subtleties involved; e.g., to main-
tain orthogonality of the computed Q in the continuous QR method. For
details about state of the art implementations of discrete and continuous QR
methods, we again refer to the report [19].
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2 SVD methods

Even here there are discrete and continuous methods. The discrete SVD
method is based on the so–called product SVD algorithm, which has found
applications also in contexts different than approximation of Lyapunov expo-
nents, and it has thus attracted the attention of several researchers in compu-
tational linear algebra; to witness, while the works [1,34,43] investigate discrete
SVD methods for the purpose of approximation of Lyapunov exponents, the
works [7,8,25,44] study discrete SVD methods for completely different appli-
cations. We would also like to draw attention to the work of Lust, [32], who
developed codes for the so-called periodic Schur decomposition, a close relative
to the discrete SVD method, for extracting Floquet multipliers. In the context
of approximation of Lyapunov exponents, algorithms based on the continuous
SVD method have been much less explored; the work [23] is an early exam-
ple, and our work [15] is a specific continuous SVD method for a structured
problem. The only work of which we are aware which considers both contin-
uous and discrete SVD methods for approximation of Lyapunov exponents of
regular systems is the review [21]. No work of which we are aware considers
SVD methods (discrete or continuous) for approximation of the lim inf’s and
lim sup’s in ΣL, nor of ΣED.

2.1 Discrete SVD

The setup is similar to that of the discrete QR method, see Section 1.2.1. We
want the SVD factorization of Φ(t) at tk+1. Since

Φ(tk+1) = Φ(tk+1, tk) · · ·Φ(t2, t1)Φ(t1, t0) ,

the task is how to compute the SVD of Φ(tk+1) without forming the product
explicitly (both to avoid catastrophic overflows and numerical dependency
of the columns). The basic tool is the so-called periodic (or product) Schur
decomposition.

For simplicity, let the above product be rewritten as

Φ(k+1)Φ(k) · · ·Φ(2)Φ(1) .

The periodic Schur decomposition consists in applying the classical QR (or
Schur) algorithm simultaneously to

(
Φ(k+1)Φ(k) · · ·Φ(2)Φ(1)

)T (
Φ(k+1)Φ(k) · · ·Φ(2)Φ(1)

)
,

and to (
Φ(k+1)Φ(k) · · ·Φ(2)Φ(1)

)(
Φ(k+1)Φ(k) · · ·Φ(2)Φ(1)

)T
,
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by doing one QR factorization at the time. A synthetic description of this
process, which avoids explicitly forming the above products, is given in [43]
and goes as follows.

Algorithm 2.1 Product SVD.

- Initialize: U1 = I, V1 = I, Φ
(p)
1 = Φ(p) for p = 1, 2, . . . , k + 1.

- (Iterate) For i = 1, 2, . . . ,

Q
(0)
i ← I

For p = 1, . . . , k + 1

C
(p)
i ← Φ

(p)
i Q

(p−1)
i ,

C
(p)
i = Q

(p)
i R

(p)
i . [QR factorization]

- (Update) If i is odd, then Ui+1 ← UiQ
(k+1)
i , else Vi+1 ← ViQ

(k+1)
i

- (Reverse) For p = 1, 2, . . . , k + 1 replace Φ
(p)
i+1 ←

(
R

(k+1−p+1)
i

)T

Iterating the above process to the limit, as for the Schur algorithm, and calling
U (k+1) and V (k+1) the obtained (approximations to the) limits of Ui and Vi,

respectively, and R(p) the associated limiting triangular factors of R
(p)
i , p =

1, 2, . . . , k + 1, one eventually finds the product SVD factorization as

U (k+1)R(k+1)R(k) . . . R(2)R(1)(V (k+1))T , (14)

where the product of the triangular factors is diagonal (cfr. with the discrete
QR case, where the product of the triangular factors in (13) remains triangu-
lar). Of course, only the diagonal of the factors in (14) needs to be monitored
for extracting spectral information. In particular, approximation to the (up-
per) Lyapunov exponents can be obtained from

λs
i = lim sup

tk→∞

1

tk

k∑

j=0

log(R(j))ii , i = 1, . . . , n .

Remarks 2.2 Several observations are in order.

(i) It is not clear how to exploit knowledge of the SVD of Φ(tk+1) to obtain the
SVD of Φ at a later time, say of Φ(tk+2). Or, better, one possible source of
computational savings is in bypassing the first cycle of QR factorizations.
In fact, in the initialization phase of Algorithm 2.1, we can set V1 = V (k+1),
Φ

(p)
1 = R(p), p = 1, 2, . . . , k+1, and Φ

(k+2)
1 = Φ(k+2). This will save one sweep

of QR factorizations. No additional computational savings appear possible.
(ii) It is not easy to see how to avoid storing a lot of matrices, albeit by virtue

of the above point (i), we can assume that they are all (but a few of them)
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triangular. For a product of length N , we therefore need to store about
N(n2 + n)/2 floating point numbers. As a consequence, the technique is
not feasible for large problems and long products, because of high memory
requirement.

(iii) On the surface, the method does not seem to require distinct singular values
at any given time. However, this is misleading. Indeed, available theoreti-
cal justifications for algorithms to approximate spectra based on the SVD
decomposition require this assumption (see [14]). Moreover, the finite pre-
cision error analysis of Oliveira & Stewart (see [34]) of the product SVD
algorithm needs an even more stringent assumption.

(iv) In Section 4, Example 4.3, we approximate the directions leading to the
different LEs via the discrete SVD. Our implementation is not particularly
sophisticated, although shifting strategies to accelerate convergence of the
periodic Schur decomposition have been used, but it is nevertheless indica-
tive of the behavior of discrete SVD methods.

2.2 Continuous SVD

To avoid the drawbacks of the discrete SVD method, see especially Remarks
2.2-(i,ii), we have turned our attention to continuous SVD techniques whereby
we seek a smooth SVD of Φ: Φ(t) = U(t)Σ(t)V T (t), for all t.

In general, it is well understood that a smooth SVD will not exist, at least not
with the same degree of smoothness of Φ, see [13, Theorem 3.6]. However, in
[13, Theorem 4.3], the authors showed that generic one parameter functions
(for us, fundamental solutions) have distinct singular values. Moreover, if the
singular values are distinct, and thus ordered for all t: σ1(t) > . . . > σn(t),
then the SVD factors are as smooth as Φ itself, and one can write differential
equations for U, Σ, V . Now, assuming that the singular values are distinct, the
differential equations for the factors U, Σ, V have been derived many times
before; e.g., see [13,14,16,21,23,47]. They read

σ̇ = diag(C)σ , σ = diag(Σ) , C := UT AU ,

U̇ = UH ,

V̇ = V K ,

(15)
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where H and K are antisymmetric with entries (for i, j = 1, . . . , n, i 6= j)

Hij =
cijσ

2
j + cjiσ

2
i

σ2
j − σ2

i

,

Kij =

(
cij + cji

)
σiσj

σ2
j − σ2

i

.

(16)

The solutions of these differential equations, for given initial conditions U0,
Σ0, V0, will provide the sought smooth SVD. To support these differential
equations models, we also recall that in [14, Theorems 4.2 and 4.6] we proved
the following results:

Facts 2.3 Let system (3) have stable and distinct Lyapunov exponents (equiv-
alently, the original problem has the property of integral separation). Then:
(1) the singular values of any fundamental matrix solution will be distinct for
t ≥ t, where t is finite (its value depends on the fundamental matrix); (2) from
the singular values one can obtain ΣL and ΣED, in particular approximation
to the (upper) Lyapunov exponents can be obtained from

λs
i = lim sup

t→∞

1

t
log σi(t) , i = 1, . . . , n ; (17)

(3) finally, the orthogonal function V converges exponentially fast to a con-
stant matrix V whose columns are the directions of Section 1.1.1. In [14,
Theorem 5.4] we showed that the rate of exponential convergence is

α = A max
1≤i≤n−1

(λs
i+1 − λs

i ) , 0 < A ≤ 1 , (18)

and A = 1 for regular systems (see [14, Corollary 5.5]).

Remarks 2.4 The following observations are in order.

(i) A major benefit of the continuous SVD formulation, versus the discrete
SVD approach, is that the memory requirements are minimal, and it is
(in principle) straightforward to pass from the SVD at one point to the
SVD at some later point: Just keep on integrating the differential equations.
Moreover, we observe that if all one needs are the Lyapunov exponents, then
we do not need to find V ; see (15).

(ii) But, there are also some potential difficulties when adopting a continuous
SVD method as in (15).

(a) If σi and σj get very close to each other, then H and K will change rapidly,
and U and V will become harder to find.

(b) For long time integration, some of the σi’s will most likely overflow, in-
hibiting accurate numerical integration of (15).
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(c) In theory, even for systems with stable Lyapunov exponents, the σi’s will
be distinct only for sufficiently large time, that is for t ≥ t of Facts 2.3.

In Section 3, we will discuss in which way we overcame these difficulties.

2.3 Few Intervals

In several circumstances, it will not be necessary to approximate the entire
spectrum of the system, say all of its Lyapunov exponents, but only a few of the
most dominant intervals will suffice. For example, to estimate the entropy of a
system only the positive Lyapunov exponents are necessary, while to estimate
the dimension of an attractor only those leading to a positive sum are needed;
see [37]. Furthermore, many systems possess special symmetries which reflect
in symmetries in the spectrum (either ΣL or ΣED), thus making it possible
to recover approximation of the entire spectrum by approximating only part
of it. E.g., in the important case of a Hamiltonian system, we only need to
approximate half of the spectrum, because of its symmetry with respect to
the origin. In all such cases, the SVD approaches can be modified so to avoid
finding the SVD of the entire matrix solution Φ.

So, let us suppose that we want to approximate only p, with p < n, most
dominant spectral intervals of (3). Let us also assume that X0 ∈ R

n×p are
initial conditions in the p most dominant directions of the spectral intervals.
Then, we will consider the function X(t) = Φ(t)X0 ∈ R

n×p, for all t, and will be
seeking the (reduced) SVD of X: X(t) = U(t)Σ(t)V T (t), where U(t) ∈ R

n×p,

UT (t)U(t) = Ip, Σ(t) ∈ R
p×p, Σ(t) = diag

(
σ1(t), . . . , σp(t)

)
, and V (t) ∈ R

p×p,

V T (t)V (t) = Ip, for all t. From the singular values σ1, . . . , σp, we will be able
to extract the desired dominant spectral information.

Remark 2.5 A natural mathematical question is how to select the initial
conditions X0 so that the growth factors (i.e., the spectral intervals) extracted
from X(t) = Φ(t)X0 will indeed be the p most dominant ones. Of course, if
we knew the matrix V , limit of the functions V (t) of which in Remark 2.4-(i),
we could certainly choose X0 = V 1:p; i.e., the first p columns of V will do.
Since we do not know V , we actually choose p random vectors in R

n. This is
the accepted practice; see [6,21]. The reason for the practical success of this
approach is that the probability that the columns of X0 have no component
in the directions of the first p most dominant directions is 0. [In practice, we

may as well confide in numerical errors and just take X0 =
(

Ip

0

)
.]

We now discuss how the discrete and continuous SVD methods need to be
modified to achieve the desired reduced SVD.
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2.3.1 Discrete SVD: Reduced Case

We want the reduced SVD factorization of X(t) at t = tk+1, avoiding to work
with square matrices in R

n×n. We can achieve this as follows. Observe that

X(tk+1) = Φ(tk+1, tk) · · ·Φ(t2, t1)Φ(t1, t0)X0 , X0 ∈ R
n×p ,

and the task is how to compute the SVD of X(tk+1) (which is in R
n×p) without

forming products and without finding the transition matrices Φ(tj, tj−1). The
procedure we suggest below is very simple, and it is analogous to what one
does with the discrete QR method.

Let X0 = Q0R0, with Q0 ∈ R
n×p, QT

0 Q0 = Ip and R0 upper triangular in
R

p×p with positive diagonal. Let X(t, t0) = Φ(t, t0)Q0, for t ∈ [t1, t0]. Then,
recursively solve these problems:

For j = 1, . . . , k + 1, solve

∂tX(t, tj−1) = A(t)X(t, tj−1) , tj−1 ≤ t ≤ tj , X(tj−1, tj−1) = Qj−1 ,

let X(tj, tj−1) = QjRj , End

where in the QR factorizations above we have Qj ∈ R
n×p, QT

j Qj = Ip, and
Rj ∈ R

p×p, upper triangular with positive diagonal. At the end of this process,
we obtain that

X(tk+1) = Qk+1Rk+1 · · ·R2R1R0 ,

and so we can focus on finding the SVD factorization of the product Rk+1 · · ·
R2R1R0, where all matrices are now square (p, p), and triangular. The pro-
cedure now is identical to the general square case, see Algorithm 2.1. The
memory requirements have been reduced, but they are still very demanding:
For a product of length N , we need to store N triangular factors in R

p×p for
a total of N(p2 + p)/2 floating point numbers.

2.3.2 Continuous SVD: Reduced Case

We derive differential equations for the reduced SVD. The derivation is straight-
forward. Recall that we have Ẋ = A(t)X. From the relation X = UΣV T ,
differentiating both sides, we obtain AUΣV T = U̇ΣV T + UΣ̇V T + UΣV̇ T .
Letting again σ = diag(Σ), C = UT AU , and K = V T V̇ , H = UT U̇ , we obtain
the following set of differential equations

σ̇ = diag(C)σ , σ = diag
(
σ1, . . . , σp

)

U̇ = UH + (I − UUT )AU ,

V̇ = V K ,

(19)
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where H and K are antisymmetric with entries specified in (16) (for i, j =
1, . . . , p, i 6= j).

Remark 2.6 An alternative to the differential equations (19) consists in the
following two step strategy. [We have not implemented this strategy, but it
may be an interesting approach since with this technique one can use tried
and true codes for the continuous QR as a building block; see [19].]

(i) Find the continuous QR factorization of X: X = QR. Here, Q will satisfy
Q̇ = AQ−QB = AQ−Q(QT AQ−S), where B, S are defined as in Section
1.2.2, but are now (p× p) matrices.

(ii) Use the continuous SVD method on the new problem Ṙ = B(t)R, which is
now a square problem of reduced dimensionality. On this square problem
one would proceed just as we did in Section 2.2, obtaining (15) with B
replacing A there.

2.4 QR vs SVD

Consider again the square case, that is when we want all spectral intervals.
As we have reviewed, there are two distinct classes of methods, based on the
QR and the SVD of a matrix solution. We believe that QR and SVD meth-
ods have some distinct advantages with respect to each other, and we view
these methods as complementing each other. In general terms, QR methods
are superior in terms of overall simplicity of implementation and general jus-
tification (see [18]), as long as the fundamental matrix on which they are used
is a normal matrix solution. SVD methods, instead, have the advantage of
working, in principle, with any matrix solution, but are more complicated to
implement, and presently fully justified only for integrally separated systems,
in which case they also provide an orthogonal representation for the growth
subspaces (the directions of Section 1.1.1).

3 A new continuous SVD algorithm

In this section we discuss new SVD algorithms for the approximation of sta-
bility spectra of system (3). We will take the point of view that the entire
spectra are desired, though the techniques below are easily modified in case
we only desire a few most dominant spectral intervals; see Section 2.3.

As already remarked, to obtain feasible results, we need the assumption of sta-
ble and distinct LEs. Hence, from now on, this will be assumed to be the case.
In particular, all theoretical results of [14, Sections 4 and 5] apply (see Facts
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2.3), and we may as well consider the SVD for the principal matrix solution
Φ, since the spectra are independent of the matrix solution we consider.

3.1 A new continuous SVD formulation

We need to address the potential difficulties of the continuous SVD method
(15) expressed in points (a,b,c) of Remarks 2.4-(iii). First, let us address points
(a) and (c).

The equations (15) for the SVD require distinct singular values. Now, recall
Facts 2.3, we know that this will be the case for t ≥ t, though of course we do
not know t before hand for a specific problem. Still, suppose we are looking
at t ≥ t. In this case, the singular values are more than merely distinct, they
are exponentially separated. In fact, see [14], we will have that

σj(t)

σj+1(t)
≥ eat, ∀j = 1, . . . , n− 1, and ∀t ≥ t ,

for some constant a > 0. Therefore, for t ≥ t, point (a) of Remarks 2.4-(iii)
does not apply.

Consider now the point (c) of Remarks 2.4-(iii). The concern here is that the
singular values may coincide for some 0 < t < t, since we know that they are
distinct past t. However, this also turns out to be not a true concern in practice.
To appreciate why, we need to appeal to a genericity statement. That is, we
consider generic 2 full rank functions (for us, fundamental matrix solutions).
Then, from the proof of [13, Theorem 4.3], we know that functions with two
equal singular values form a stratified manifold with strata of dimension less
than or equal to n2−2; thus, having two equal singular values is a co-dimension
2 phenomenon and generic one-parameter (here, t) functions do not have two
equal singular values. In practice, we just integrate for the fundamental matrix
solution Φ on a small interval, say we solve Φ̇ = A(t)Φ, up to t = tε, compute
the algebraic SVD of Φ(tε) and initialize the factors for the continuous SVD
method at tε. In all problems we have solved, this straightforward procedure
was successful.

Remark 3.1 Of course, there are many problems with special symmetries
(hence, not generic) for which singular values coalesce. If we are aware of these
symmetries, then special SVD procedures may be possibly used to avoid the
difficulties caused by coalescing singular values; e.g., see Example 4.5 below,
and see [15].

2 with respect to the Whitney topology
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Now let us turn our attention to the most serious difficulty, point (b) of Re-
marks 2.4-(iii). This is a true concern, since naive implementation of (15)
does indeed lead to overflow problems very quickly. To overcome this issue, we
change variables. Rather than working with the singular values σj’s, we work
with the variables

νj(t) =
σj+1(t)

σj(t)
, j = 1, . . . , n− 1, νn(t) = log(σn(t)) . (20)

Observe that, being the singular values arranged in decreasing order, for j =
1, . . . , n− 1, we have

0 < νj(t) < 1 .

The differential equations for the νj’s become

ν̇j = (cj+1,j+1 − cjj)νj, j = 1, . . . , n− 1 ,

ν̇n = cnn .
(21)

As it turns out, see Section 3.1.1 below, it will be even more convenient for
us to work with the logarithms of the νj’s, j = 1, . . . , n − 1. That is, we will
integrate the equations

d

dt
(log νj) = cj+1,j+1 − cjj, j = 1, . . . , n− 1,

ν̇n = cnn .
(22)

Finally, we need to rewrite equations (16) in terms of the variables νj’s. To do
so, define the following quantities, for j > i:

νij(t) =
σj(t)

σi(t)
=

i∏

k=j−1

νk(t).

Note that these can be evaluated directly from the νi’s. The equations for the
entries of H and K are now rewritten as

Hij =
cijνij + cji

ν2
ij − 1

, j > i , Hij = −Hji , j < i

Kij =
cij + cji

ν2
ij − 1

νij , j > i , Kij = −Kji , j < i .
(23)

We finally summarize the skeleton of our continuous SVD algorithm:

• Integrate for Φ up to time tε. Compute the SVD of Φ(tε) and initialize U, V ,
and the variables νi’s at tε.
• For t ≥ tε solve the differential equations (22) along with the differential

equations for U and V ,

U̇ = UH , V̇ = V K , (24)
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where H and K are given in (23). If needed, but see below, the singular
values can be obtained from the νj’s by means of equation (20). As already
remarked, if we need to approximate only the stability spectra and no in-
formation about the growth subspaces is needed, then we can avoid solving
the differential equations for V .

3.1.1 Complete algorithm for computing stability spectra

We now give details of how we approximate the stability spectra ΣL and
ΣED and the corresponding leading directions. Since the leading directions,
see Facts 2.3, can be recovered from the columns of V , in Section 3.1.3 we
will only clarify how we detect that V has converged in finite precision to its
limiting value.

First of all, let us appreciate that we integrate (22), and thus we have always
available the quantities

bj(t) =
1

t
log νj(t), j = 1, . . . , n− 1,

bn(t) =
1

t
νn(t) .

(25)

Approximation of ΣL. Now, as far as the approximation of ΣL is concerned,
if the system is regular, i.e., the Lyapunov exponents exist as limits, then we
will simply approximate the Lyapunov exponents as

λj ≈ λj(T ) :=
1

T
log σj(T ) , j = 1, . . . , n , (26)

for some (large) value of T > 0. In terms of the quantities in (25), which is
what we really compute, we have

λn(T ) = bn(T )

λj(T ) = λj+1(T )− bj(T ), j = n− 1, . . . , 1 .
(27)

When the system is not regular, we approximate limsups and liminfs following
the same approach of [16]. The idea is to mimic the definition:

λs
j = lim sup

t→+∞

1

t
log σj(t) = lim

τ→+∞
sup
t≥τ

1

t
log σj(t).

So we pick τ > 0 large, T >> τ , and we use the approximations (as usual,
reformulated in terms of the bj’s of (25))

λs
j ≈ max

τ≤t≤T

1

t
log σj(t) , λi

j ≈ min
τ≤t≤T

1

t
log σj(t) , (28)
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which will give us approximations to the lim sup’s and lim inf’s to be used in
the approximation of ΣL.

Approximation of ΣED. To approximate ΣED, we rely on Steklov averages.
First of all, in [14, Theorem 4.6], it is shown that ΣED of (3) is the same as
ΣED of the diagonal problem

Σ̇ = diag(C)Σ , C = UT AU .

At this point, we can proceed as the authors did in [16], that is we use the
characterization of ΣED as

ΣED =
n⋃

j=1

[αS
j , βS

j ], αS
j = inf

t≥0

1

S

∫ t+S

t
cjj(s)ds, βS

j = sup
t≥0

1

S

∫ t+S

t
cjj(s)ds,

with S sufficiently large. We finally mimic this characterization to obtain ap-
proximate αS

j and βS
j by fixing S and T >> S, and computing the following

quantities

αS
j ≈ min

0≤t≤T

1

S

∫ t+S

t
cjj(s)ds, βS

j ≈ max
0≤t≤T

1

S

∫ t+S

t
cjj(s)ds. (29)

In Section 4, we give some indication of the values of S and T used in practice.

3.1.2 Implementation

Here we give details of how we implemented our continuous SVD method for
(3). The modifications needed for the nonlinear problem (1) are straightfor-
ward.

We need to integrate (22) along with (24). To form H and K via (23), the
simplest thing is to exponentiate log(νj) to get the νj, j = 1, . . . , n − 1, and
thus the νij’s: We have done precisely this.

The ODEs (22) and (24), and (1), are integrated with a 4-th order Runge-
Kutta scheme: the 3/8-th rule of [26], henceforth labeled RK38. We use variable
stepsize by controlling the local error either on the νi’s or on the orthogonal
factor U . Error control is implemented in the standard way explained in [26].
To keep U and V orthogonal, at every step, we replace the approximations
returned by RK38 with the orthogonal factors obtained from the QR factor-
izations of these approximations, and we use the modified Gram-Schmidt al-
gorithm for this scope.

To update the bj’s at every step, see (25), is simple. Let log νm
j be the approx-

imation of log νj(tm), j = 1, . . . , n− 1, obtained with RK38 at time t = tm:
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log νm
j = log νm−1

j + appm
j , j = 1, . . . , n− 1,

νm
n = νm−1

n + appm
n ;

then, we update bj from (25).

We recap our continuous SVD algorithm for extracting spectra relative to (3).

Algorithm 3.2 Continuous SVD Method.

- Initialize. For tε given, use RK38 to integrate Φ̇ = A(t)Φ up to time tε.
Compute the SVD there: Φ(tε) = U0Σ0V

T
0 .

- Use U0 and V0 as initial conditions for equations (24). The initial conditions
for (21) are given by (20) for t = tε, with σj(tε) being the j-th diagonal element
of Σ0.

- Solve (22) and (24) using (23). While solving these differential equations,
update the bj’s.

- Approximate the spectra as explained in Section 3.1.1.

Remark 3.3 For the nonlinear problem (1), we integrate for the trajectory
φt(x0) also using RK38. Error control is now performed always on the tra-
jectory, and (additionally) on the variables νj’s and/or the factor U . Also,
we integrate for the trajectory alone for a while before beginning to approx-
imate the spectra; this is very standard practice and it is done to make sure
trajectories have passed a possible transient behavior.

3.1.3 Obtaining V

As we have already remarked, V converges exponentially fast to V : ‖V (t) −
V ‖ ≤ ce−αt, where α is given in (18); notice that for regular systems, α is
the distance between the two closest exponents. Obviously, after some finite
time T , V (t), t ≥ T will be numerically identical to V . That is, if we let EPS

be the machine precision, then ‖V (t) − V ‖ ≤ EPS, ∀t ≥ T . In practice, we
use the computed approximations of the Lyapunov exponents to predict and
refine the estimate of α in this convergence inequality, and from this to predict
the value T such that e−αT = EPS. To be precise, we begin estimating α as
soon as the distance between two consecutive approximations to V , say Vk

and Vk+1 approximations at tk and tk +h, is less than or equal to 10 EPS: α =
minj=1,...,n−1(bj(tk + h)), with the bj’s defined in (25). We set T = 1

α
log(EPS),

set Ṽ = Vk+1 and declare Ṽ to be our approximation to V . We then continue
approximating V up to T . If the computed approximations to V , until T ,
remain within 10 EPS of our current Ṽ , we accept Ṽ as approximation to V ;
otherwise, we update Ṽ , T , and α.
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4 Examples

Here we show performance of our SVD algorithms on five problems of different
nature. Our goals are to illustrate the following features: (a) ability to approx-
imate both ΣL and ΣED for linear and nonlinear problems, (b) possibility, and
limitations, of computing directions’ growth on linear and nonlinear problems
of moderate size, (c) how the algorithms are adapated for computing spectra
of Hamiltonian systems.

Example 4.1 This is a regular linear system with LEs: 1, 0,−2,−10. The
coefficient matrix A is such that an orthogonal change of variables Q, reduces
it to the sum of a diagonal matrix and a perturbation that goes to zero for t
that tends to +∞:

QT AQ−QT Q̇ = diag(1, 0,−2,−10) + B(t), t ≥ 0,

where

B(t) =




sin(t)
t2+2

+ 1
(t+1)2

log(t+0.1)
t+0.2

1
t+0.1

t
t2+1

log(t+0.2)
t2+3

1
t+1

+ log(cos(
√

t
t+1

))
√

t
t2+1

cos(t)
t+1

1
t+0.2

log(t+0.1)
t+2

cos(t)
t2+2

+ sin(t)
t+1

t
t2+1

t
t2+1

t
t2+1

sin(t)
t+1

log(t+0.1)
t+1

+ t
t2+1




.

Since limt→+∞ ‖B(t)‖ = 0, ΣL is stable ([14], Theorem 3.2, pg.12). The com-
putation of the LEs for this system is easy, hence we chose to omit the results
we obtained. Our scope here is to verify how reliable is the computation of
the matrix V . In particular, we want to check the exponential convergence of
V to V and how well the columns of V approximate the growth directions.

Since this is a regular problem, and the minimal distance between the LEs is
1, from (18) the expected value of T for which ‖V T (T )V −I‖ ≤ EPS is T ' 36.

We use the continuous SVD Algorithm 3.2, integrating all relevant differential
equations with RK38 and constant stepsize. To monitor the convergence to V
we proceed as in Section 3.1.3.

In agreement with our expectations, and according to the procedure outlined
in Section 3.1.3, after time ' 34, the computed matrix V does not change
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anymore, i.e. we have numerically converged to an orthogonal matrix Ṽ . But
is this Ṽ a good approximation of V ? To verify this, we check if the exponential
behavior of Φṽi is close to λi, where ṽi is the i-th column of Ṽ . In Figure 1,
we plot 1

t
log ‖Φ(t)ṽ2‖ in function of time. The different curves correspond

to different stepsizes. Since ṽ2 is an asymptotic direction, we only expect to
be approaching λ2 = 0 as time increases. This is clearly achieved, all the
more accurately for more accurate computations (smaller stepsize). However,
eventually, unavoidable roundoff errors will lead us in the direction of the
dominant LE.
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Figure 1. Example 4.1: Plot of 1
t log ‖Φ(t)v2‖.

Example 4.2 (Lorenz 40) This non linear system was proposed in [30,31]
as a model of an atmospheric variable with values xj at N equally spaced
points around a circle of constant latitude:

ẋk = (xk+1 − xk−2)xk−1 − xk + 8 , k = 0, 1, . . . , N − 1 , (mod N) . (30)

We take the standard value of N = 40, for which reported results give 13 posi-
tive LEs and Lyapunov dimension δ of the attractor ≈ 27 ([30,31]). [This is the

Kaplan-Yorke dimension: δ = k+
∑k

i=1
λi

|λk+1| , where k is given by k :
∑k

i=1 λi ≥ 0,

but
∑k+1

i=1 λi < 0.] Notice that one LE (λ14 here) must be equal to zero since
the direction of the vector field is preserved. That is, for initial condition x0

on the attractor, then Φt(x0)f(x0) = f(ϕt(x0)). For our computations, we ob-
tain x0 by integrating equation (30) for random IC up to t = 104. The results
displayed in Table 1, 2 and 3 are obtained by means of Algorithm 3.2. To solve
the ODEs, we used RK38 with constant stepsize h = 10−3 and tε = h as well.
ΣL is computed as a continuous spectrum, the values chosen for T and τ are
shown in the tables as well. For the computation of ΣED we chose same final
time T, and time windows of size S. In Table 2, we show the obtained values
for the LE that we expect to be zero (λ14); in Table 1 and 3 we display the val-
ues obtained for the 13th and 15th spectral intervals, respectively. The given
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Table 1
Example 4.2: h = 10−3

T S, τ λi

13
λs

13
α13 β13

1.0E + 3 1.0E+ 2 0.01157 0.04103 −0.02226 0.12155

1.0E + 4 1.0E+ 3 0.02427 0.04085 0.00508 0.06914

2.0E + 4 2.0E+ 3 0.02427 0.03955 0.01867 0.06556

3.0E + 4 3.0E+ 3 0.02713 0.03955 0.02225 0.05721

1.0E + 5 1.0E+ 4 0.03379 0.03955 0.02215 0.04176

Table 2
Example 4.2: h = 10−3

T S, τ λi

14
λs

14
α14 β14

1.0E+ 3 1.0E + 2 −5.04E− 3 5.81E− 3 −4.2E− 2 5.1E− 2

1.0E+ 4 1.0E + 3 −4.75E− 3 1.74E− 3 −7.5E− 3 8.1E− 3

2.0E+ 4 2.0E + 3 −3.04E− 3 9.54E− 4 −5.3E− 3 5.5E− 3

3.0E+ 4 3.0E + 3 −1.04E− 3 6.77E− 4 −3.5E− 3 3.0E− 3

1.0E+ 5 1.0E + 4 −5.8E− 4 2.0− 4 −1.5E− 3 1.5E− 3

Table 3
Example 4.2: h = 10−3

T S,τ λi

15
λs

15
α15 β15

1.0E + 3 1.0E+ 2 −0.14011 −0.07104 −0.14917 0.02417

1.0E + 4 1.0E+ 3 −0.08558 −0.07132 −0.10115 −0.04927
2.0E + 4 2.0E+ 3 −0.08558 −0.07426 −0.09440 −0.05603
3.0E + 4 3.0E+ 3 −0.08192 −0.07426 −0.09396 −0.06215
1.0E + 5 1.0E+ 4 −0.08337 −0.07650 −0.08911 −0.07927

results give numerical evidence of stability of the LEs. Indeed for T = 104 and
S = 103, and for all larger values, the three computed exponential dicothomy
intervals are disjoint, and the same is in fact true for all other intervals (all
40 of them). Hence ΣED is given by the union of n disjoint intervals, each of
them containing an interval of ΣL. This and stability of ΣED imply stability of
ΣL. Apparently, as T increases, the Lyapunov intervals tend to points (recall
the MET).

Also, we verify convergence of the computed matrix V to a matrix Ṽ , using
the same technique as in Section 3.1.3. The expected value of time, t, for which
convergence to Ṽ has been achieved is such that et mini(λi+1−λi) = 10−15, which
is ' 1156.

22



Table 4
Example 4.2: T = 104, ‖f(x0)‖ = 121.247

TOL T ‖Ṽ T
u f(x0)‖ ‖Ṽ T

s f(x0)‖
1.0E− 6 956 2.10E− 1 121.247

1.0E− 9 1416 6.89E− 4 121.247

1.0E− 12 1765 2.64E− 6 121.247

In order to check how reliable is the approximation Ṽ to V , we did the following
experiment. Partition V = (V u, V s), where V u comprise the columns of V
leading to positive LEs, and V s those leading to 0 or negative LEs. Since
Φt(x0)f(x0) = f(ϕt(x0)), and the phase space is compact, then f(x0) must
belong to span(V s). The results displayed in Table 4 are obtained for final
T = 104. We used Algorithm 3.2 with variable stepsize and error control on
the νi’s. The chosen tolerance for the local error is denoted with TOL in the
table. It is clear how the component of f(x0) in the subspace spanned by the
columns of Ṽu is going to zero as we increase accuracy in our computations.

Example 4.3 (Rössler) This is the system

ẋ = −y − z , ẏ = x + ay , ż = b + z(x− c) ,

and values of interest from [42] are a = b = 2/10, c = 5.7.

For these values of the parameters, the system has an attractor with a positive
LE. As we already noticed in Example 4.2, one LE must be equal to zero. In
Tables 5 and 6 we show the intervals of ΣL computed using Algorithm 3.2
using error tolerance TOL = 1.E− 6. As indication of the workload, in Table 5,
we report also on the number of total steps needed ISTEP, and the CPU time in
seconds TIME. From the obtained approximation for ΣL, there is little doubt
that ΣL is a point spectrum.

Table 5
Example 4.3: approximation of [λi

1, λ
s
1] with Algorithm 3.2

τ T λi

1
λs

1
ISTEP TIME

1.0E+ 3 1.0E+ 5 0.07085 0.07633 2.3E + 6 42

1.0E+ 4 1.0E+ 6 0.07092 0.07374 2.3E + 7 417

Table 6
Example 4.3: approximation of [λi

2, λ
s
2], [λi

3, λ
s
3] with Algorithm 3.2

τ T λi

2
λs

2
λi

3
λs

3

1.0E+ 3 1.0E + 5 −2.0E− 3 1.8E− 3 −5.40154 −5.38118
1.0E+ 4 1.0E + 6 −2.6E− 4 2.2E− 4 −5.39721 −5.39382
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Following the procedure described in Section 3.1.3, we observe numerical con-
vergence of V to an orthogonal matrix Ṽ . To check how well this matrix Ṽ
approximates V , we proceed as we did in Examples 4.1 and 4.2. In Figure
2 we plot 1

t
log ‖Φ(t)ṽ2‖ for three different Ṽ computed with three different

values of TOL. If Ṽ is accurate, we should expect this to be close to λ2 = 0.
Indeed, the more accurate the computations are (the different value of TOL are
indicated in the legend), the longer we remain close to 0.
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Figure 2. Example 4.3. Plot of 1
t log ‖Φṽ2‖: Ṽ from continuous SVD.

In Table 7 we show the value of the component of f(x0) in the direction of ṽ1

and also T. The norm of f(x0) is 8.375.

Table 7
Example 4.3: directions

TOL T |ṽT
1 f(x0)|

1.0E− 6 506 1.5E− 4

1.0E− 7 543 1.8E− 5

1.0E− 8 576 2.1E− 6

1.0E− 9 510 2.2E− 7

1.0E− 10 533 2.6E− 8

1.0E− 11 569 2.7E− 9

1.0E− 12 569 2.7E− 10

Finally, for this example, we include results on the approximation of V ob-
tained with the discrete SVD method. We made experiments with constant
stepsize h = 10−2 and then with h/2, using same ICs for the trajectory as we
used for the continuous SVD method. Again we observe convergence of V to a
matrix Ṽ and an estimate of T between 550 and 600. But the main news now
is that if we verify how good is this approximation of Ṽ to V , by verifying if
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1
t
log ‖Φ(t)ṽ2‖ stays close to λ2 = 0, we notice that this is indeed true and for

a noticeably longer time than in the continuous case; cfr. Figure 3 with Figure
2.
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Figure 3. Example 4.3. Plot of 1
t log ‖Φṽ2‖: Ṽ from discrete SVD.

Example 4.4 (Hill equation with quasi periodic forcing) This is the Hill’s
equation with quasi-periodic potential

ẍ + (a2 + bp(t))x = 0, (31)

where p = p(t) = cos(t) + cos(γt), γ = 1+
√

5
2

, and a and b are parameters. We
write this as the Hamiltonian system

ẋ = y , ẏ = (a2 + bp(t))x .

Hamiltonian systems have the property that ΣL and ΣED are symmetric with
respect to the origin. More specifically, the singular values of the linearized
problem (which is symplectic), arise as pairs σ and 1/σ. Hence we can just
compute half of the spectrum to recover all of it.

The Hill equation with quasi periodic potential is studied in [9]. There, the
authors rewrite (31) as a 4 dimensional non linear dynamical system, by intro-
ducing the new variables t, γt. Their purpose is to study the linear behavior of
the invariant 2-torus T

2 × {0, 0}. However, we are just interested in the com-
putation of the Lyapunov spectrum of (31) and to this end it suffices to study
the linear system. In Table 8 we show approximation to λ1 for a = 0.413 and
b = 0.4. We use Algorithm 3.2 together with RK38 with variable stepsize. We
check the error on the exponents (IPAR = 0) or on the matrix U (IPAR = 1)
and we choose the tolerance for the local error equal to TOL = 10−12. By look-
ing at the intervals in the Table, the Lyapunov spectrum appears to be a point
spectrum.
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Table 8
Example 4.4: approximation of [λi

1, λ
s
1] for a = 0.413, b = 0.4.

τ T IPAR λi

1
λs

1
ISTEP IREJ TIME

1.0E + 3 1.0E + 4 0 0.00971 0.01180 1.2E + 6 1.1E+ 4 7.3

1.0E + 3 1.0E + 4 1 0.00971 0.01180 3.0E + 6 2.0E+ 2 8.9

1.0E + 4 1.0E + 5 0 0.01017 0.01040 1.2E + 6 1.1E+ 4 42.3

1.0E + 4 1.0E + 5 1 0.01018 0.01040 3.0E + 7 1.9E+ 3 52

1.0E + 5 1.0E + 6 0 0.01023 0.01025 3.9E + 7 1.1E+ 6 301

1.0E + 5 1.0E + 6 1 0.01023 0.01025 3.0E + 8 1.9E+ 4 299

Figure 4 shows plots of λ1 as a function of a2 for b = 0.2 and b = 0.6 (on the
left and right, respectively). These plots are in agreement with those in [9].
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Figure 4. Example 4.4: Plot of the dominant LE as a function of a2.

Example 4.5 (Hènon-Heiles) This Hamiltonian system is often used as
test problem for computation of Lyapunov exponents; e.g., see [29]. We simply
compute the reduced SVD corresponding to half of the spectrum (this also
avoids potential difficulties with the double Lyapunov exponent at 0).

We have the Hamiltonian

H(q1, q2, p1, p2) =
1

2
(p2

1 + p2
2) +

1

2
(q2

1 + q2
2) + q2

1q2 −
1

3
q3
2 ,

and the associated dynamical system ẋ = J∇H(x(t)). That is, we have

q̇1 = p1

q̇2 = p2

ṗ1 = −q1(1 + 2q2)

ṗ2 = −q2 − q2
1 + q2

2.

(32)
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We must make sure that the integration for the solution of (32) be done
with a symplectic scheme, otherwise the aforementioned symmetries in the
spectra will not be maintained. On the other hand, extraction of the spectral
information can be done as explained in Section 3.

So, for (32), and more generally for Hamiltonian problems, we have imple-
mented the following strategy. Suppose h is the stepsize with which we want
to proceed for the SVD methods, to go from ti to ti+1. Then, we integrate
(32) with the 4th order Gauss-Runge-Kutta scheme, which is symplectic, with
stepsize h/2, obtaining (4th order accurate) approximations to the solution at
ti, ti+1/2, ti+1. [The scheme is implicit, and we solve the nonlinear systems by
an inexact Newton’s method keeping the Jacobian evaluated –and factored–
at the initial value]. We then use these approximations to setup the linearized
problem, and use the “classical” 4th order Runge-Kutta scheme (which re-
quires information at the initial point, mid-point, and final point), RK4, to
solve the differential equations needed for the SVD method. The end result is
a 4th order method.

For (32), for comparison with the results in [29], we performed two experiments
with the initial conditions (IC) in Table 9 with q1 always given by 0:

Table 9
Initial conditions.

IC q2 p2 p1

1 0.20 0.14 0.442417

2 0.25 0.30 0.328506

In Table 10 we show the approximate Lyapunov exponents obtained for final
time T. To solve the ODEs, we implemented RK4 with constant stepsize h =
10−2. Our results compare well with the ones in [29].

5 Conclusions

To approximate Lyapunov and Dichotomy spectra, ΣL and ΣED, we have pre-
sented algorithms based on the SVD of the linearized system. These methods
are backed up by a solid theory for problems with stable and distinct Lyapunov
exponents (integrally separated problems). We have shown how to overcome
possible pitfalls of SVD methods, and shown practical performance of the
techniques on several examples.

In our experience, SVD based methods handle satisfactorily small to moderate
sized problems (say, of dimension up to 100), for approximation of ΣL and ΣED.
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Table 10

IC T λ1 λ2

1 1.0E2 1.3E− 1 4.9E− 2

1 1.0E3 7.6E− 2 7.3E− 3

1 1.0E4 4.5E− 2 1.0E− 3

1 1.0E5 3.9E− 2 1.1E− 4

2 1.0E2 6.8E− 2 6.2E− 2

2 1.0E3 5.8E− 2 7.2E− 3

2 1.0E4 6.0E− 2 9.0E− 4

2 1.0E5 4.9E− 2 1.1E− 4

For large problems, more effort is needed to obtain efficient techniques. One
of the main appeals of SVD techniques is the ability to recover not just the
spectra, but also the geometric information on the growth subspaces. As far
as we know, our methods are the first ones who have been able to approximate
these subspaces.

Careful comparison with QR methods has not been carried out, but it is
certainly of interest and may be the subject of future investigation.

6 Appendix

Here below are the tableaux of the Runge-Kutta schemes we used. The last
two rows in the table for RK38 are the additional stage and weights needed to
form the lower order scheme used for error control.

0 0 0 0 0 0

1
3

1
3

0 0 0 0

2
3
−1

3
1 0 0 0

1 1 −1 1 0 0

1
8

3
8

3
8

1
8

0

1 1
8

3
8

3
8

1
8

0

1
12

1
2

1
4

0 1
6

3/8-th Runge-Kutta 4-3 pair: RK38.
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0 0 0 0 0

1
2

1
2

0 0 0

1
2

0 1
2

0 0

1 0 0 1 0

1
6

2
6

2
6

1
6

1/2−
√

3/6 1/4 1/4−
√

3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4

1/2 1/2

Classical 4th order Runge-Kutta and Gauss Runge-Kutta of order 4.
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