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Abstract

In this paper we consider the singular value decomposition (SVD) of a fundamental
matrix solution in order to approximate the Lyapunov and Exponential Dichotomy
spectra of a given system. One of our main results is to prove that SVD techniques
are sound approaches for systems with stable and distinct Lyapunov exponents.
We also show how the information which emerges with the SVD techniques can be
used to obtain information on the growth directions associated to given spectral
intervals.
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1 Introduction

Our goal in this work is to examine the feasibility of techniques based on the
Singular Value Decomposition (SVD) to approximate spectra of dynamical
systems, and at the same time to explore what additional information becomes
available when using SVD techniques, and how it can be used. The spectra of
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interest to us are the so-called Lyapunov and Exponential Dichotomy spec-
tra ΣL and ΣED, respectively, to be defined in Sections 2 and 3. As amply
documented elsewhere, these spectra address different concerns: In essence,
whereas ΣL is of use in analyzing variations of (1) below with respect to the
initial condition, ΣED is especially useful when the vector field f in (1) depends
on parameters, and we want to analyze variations with respect to the param-
eters. Finally, it must be appreciated that, although from a theoretical point
of view Lyapunov exponents and exponential dichotomy spectrum have been
studied for many years (e.g., see [1], [7], [18], [25]), it is generally impossible
to obtain these quantities analytically, and numerical methods are required
for their approximation. At the same time, to understand what a numerical
method can offer (and when it works) it is important to distinguish between
assumptions needed for the methods to work and assumptions needed for the
spectra to be robust in the first place. These considerations have guided us in
the present study.

To set the stage, consider the following initial value problem

ẋ = f(x) , t ≥ 0 , x(0) = x0 , (1)

where f : R
n → R

n is Lipschitz and continuously differentiable, and let φt(x0)
be the solution of (1). Some of the most powerful tools to analyze the nonlinear
system (1) rely on the spectral information associated to the linearized system
along φt(x0):

Φ̇(t, x0) = Df(φt(x0))Φ(t, x0) , Φ(0, x0) = I . (2)

Indeed, one of the most celebrated and powerful results we have at our dis-
posal to study (1) is the Oseledec’s Multiplicative Ergodic Theorem (MET),
[22]. The idea behind this remarkable theorem is well known, but worth stress-
ing once more. Roughly speaking, the MET is based on the realization that
for many systems of physical interest nearly all trajectories settle on a (low
dimensional) bounded attractor, and thus linearized analysis is feasible. More-
over, it is often the case that almost all trajectories on the attractor fill the
attractor densely. Thus, each trajectory is typical of the general behavior, and
linearized analysis along any of these typical trajectories will be conducive to
identical information. This is the idea of the MET. To be precise, one assumes
that the phase space of (1), call it M , is compact, and considers an invariant
measure ρ on M (the existence of ρ is ensured by the Krylov Bogoliubov The-
orem, see [27]). Then, the MET states that there is a measurable set B, with
ρ(B) = 1, such that for all x0 ∈ B, the following limit exists

lim
t→∞

(Φ(t, x0)
T Φ(t, x0))

1/2t = Λ(x0). (3)

If we let eλ1(x0), . . . , eλs(x0) be the eigenvalues of Λ(x0), then their logarithms
are called Lyapunov exponents, LEs for short, of (2). If ρ is ergodic, then the
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limit in (3) is the same for all x0 ∈ B and it makes sense to talk about the
LEs of the non linear system (1) with respect to the measure ρ; in [18], this
is called the measurable spectrum. The MET has found wide ranging and far
reaching applications, in finite and infinite dimensional settings, as a glance at
the extensive bibliography in [2] attests. As a result, Lyapunov exponents are
routinely used in applications, not only to measure stability of the given tra-
jectory, but also to estimate dimension of an attractor, entropy of a system,
to establish chaotic behavior, and they are also of use in studies of nonau-
tonomous bifurcations, as well as to assess continuability and/or bifurcations
of invariant manifolds; e.g., see [2,3,4,14,23].

At the same time, the MET suggests a way for the numerical approximation
of the LEs: If one could compute the singular value decomposition of the
fundamental matrix solution Φ(t, x0), Φ(t, x0) = U(t)Σ(t)V T (t), then, for large
t, the time average of the logarithms of the singular values will approach the
LEs. Indeed, methods based on both a continuous and a discrete version of the
SVD of the fundamental matrix Φ(t, x0) have been used in the literature (e.g.,
see [16], [15], and [26]), though theoretical justification on the use of these
methods is largely absent. Two exceptions are the work [21], which deals with
the linear algebraic aspects of a discrete SVD technique, and [12], which is an
initial attempt to justify SVD methods for approximation of ΣL. One of our
goals in this work is to put SVD techniques on safer ground, by continuing
and adapting the approach that the authors used in [12] for so-called QR
methods. Indeed, ever since the work [5], most people have favored a different
class of methods to approximate the LEs, based on the QR decomposition
of an appropriate fundamental matrix solution of the linearized problem. To
appreciate the issues involved, we need to quickly review the classical theory
of LEs.

Consider the linear system

Ẋ = A(t)X, t ≥ 0, (4)

where A : R
+ → R

n×n is continuous and bounded, and X is some fundamental
matrix solution (i.e., X(0) is invertible). For later reference, we will reserve the
notation Φ to indicate the principal matrix solution of (4): Φ(0) = I. Define
the following quantities

λs
j = lim sup

t→+∞

1

t
log ‖X(t)ej‖, λi

j = lim inf
t→+∞

1

t
log ‖X(t)ej‖ . (5)

[Here, and elsewhere in this work, the vector norm is always the 2-norm, and
the matrix norm is the induced norm. Also, the vectors ej, j = 1, . . . , n,
are the standard unit vectors.] When

∑n
j=1 λs

j (
∑n

j=1 λi
j) is minimized with

respect to all fundamental matrix solutions of the system, the λs
j (λi

j) are
called upper (lower) Lyapunov exponents and the corresponding X (i.e., X(0))
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is said to form a normal basis. Furthermore, for so-called regular systems, one
has λs

j = λi
j, for all j = 1, . . . , n. (In particular, under the assumptions of the

MET, (2) is regular, though one cannot say that Φ(0) is normal.) Now, if we
had a regular, and normal, fundamental matrix solution X, and further had
its unique QR decomposition X(t) = Q(t)R(t) for all t ≥ 0, with Q orthogonal
and R upper triangular with positive diagonal, then we could obtain the LEs
as

λj = lim
t→+∞

1

t
log Rjj(t) , j = 1 . . . , n .

This is the basic idea of the QR methods, though to obtain viable computa-
tional procedures, one must be careful. See [5] for the first algorithmic descrip-
tion of QR methods, and see [11,12] for more recent algorithmic developments
also for non-regular systems, and for approximation of both ΣL and ΣED.

Notice: As it turns out, regularity is not sufficient to guarantee stability of
the LEs, and this is the main reason that in this work we will instead assume
that (4) is integrally separated, a fact which is conducive to stability of ΣL.

Regardless of regularity, the main conceptual caveat of QR techniques is that
one needs to work with a normal fundamental matrix solution. Lyapunov him-
self had shown more than 100 years ago in his thesis, reprinted in [19], that
there always is a normal fundamental matrix solution. But, in practice, how
do we know if we are working with a normal fundamental matrix solution?
In particular, is the principal matrix solution Φ normal? To get around this
impasse, in [5] the authors argued that any randomly chosen initial condition
X(0, x0) will almost surely give a normal fundamental matrix solution for (2).
Still, we believe that the entire concept of normal fundamental matrix solution
is a somewhat artificial complication, since the LEs are intrinsic quantities of
the system we have, and we should be able to extract them from any funda-
mental matrix solution, regardless of it being normal. With SVD techniques,
we will prove that we can. This is one potential advantage of SVD over QR
techniques. Another important consequence of SVD methods is that –as we
will show– we are able to approximate not only the LEs, but also the set of
directions leading to specific LEs, and more generally the directions associated
to spectral intervals. Oversimplifying, the situation is similar to being able to
approximate not just the eigenvalues of a matrix, but also the eigenspaces. Of
course, these potential advantages come with a couple of price tags. The first,
and most relevant from the practical point of view, is that SVD techniques
are harder to implement than QR techniques. We refer to [8] for a discussion
of the delicate computational issues one has to face with SVD techniques, and
for a particular implementation. The other is that, at least so far, we are only
able to fully justify SVD techniques in case the original system has stable and
distinct LEs, and this is true also in case we want to obtain ΣED. [In some
cases, we can relax the assumption of distinct LEs, when the system has some
special symmetries, see [9], but not in general.] QR methods, instead, do not
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seem to suffer from the theoretical need of having distinct LEs, and have been
fully justified as techniques to approximate ΣL and ΣED, see [12] and especially
[13], for systems with stable LEs.

A plan of the paper is as follows. In Section 2, we review some of the classical
theory of LEs with particular attention to their stability. Most results in this
section are known, and our contributions are essentially related to the lower
exponents, in particular Theorem 2.6 and Proposition 2.10 are new. In Sec-
tion 3 we discuss ΣED. Our presentation is influenced by the seminal work of
Sacker and Sell, [25]. Our setup is different, though, since we need to work
on the half-line rather than the entire line, because many problems of prac-
tical interest just cannot be integrated backward in time (e.g., the famous
Lorenz system). As a consequence, we need to work with the adjoint problem
as well. Moreover, Theorem 3.2 and especially Theorems 3.9 and 3.11 and
Corollary 3.12 are new and quite useful to identify growth subspaces associ-
ated to the interval making up ΣED, in a way which will be conducive to their
approximation via SVD techniques. In Section 4 we discuss SVD methods.
We emphasize a continuous SVD framework, though the results apply equally
well to so-called discrete SVD techniques. The main result in this section is
Theorem 4.2, showing that SVD methods are capable to approximate ΣL as
long as the LEs are stable and distinct, regardless of which fundamental ma-
trix solution we consider. Analogously, Theorem 4.6 shows that we can get
ΣED from SVD techniques. Section 5 deals with the directional information
associated to ΣL and ΣED. We first show that the factor V in the SVD of
X converges exponentially fast to a constant matrix V , this is the content
of Lemma 5.2 and Theorem 5.4. Proposition 5.7 gives a constructive way to
obtain the integral separation constants which we need in our analysis. Also,
we further identify, see Theorems 5.8, 5.12, and 5.14, the columns of V with
appropriate growth directions for ΣL and ΣED. These are some of our main
results, and are all obtained under the assumption of stable and distinct LEs.
We finally give some concluding remarks.

2 Classical theory of Lyapunov exponents

Let f : R
+ → R be a non-vanishing function. The following quantities

χs(f) = lim sup
t→+∞

1

t
log |f(t)|, χi(f) = lim inf

t→+∞

1

t
log |f(t)| , (6)

are called upper, respectively lower, characteristic numbers of f , or equiva-
lently upper, lower, Lyapunov exponents of f . For short, we will write LE
to mean Lyapunov exponent. In a similar way, one defines upper and lower
LEs for vector valued functions, where the absolute values will be replaced
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by norms. All norms lead to the same LE, and we will always consider the
2-norm.

To elucidate the meaning of (6), the following characterization is useful. The
characterization for χs(f) is in [1], the one for χi(f) is immediate.

Lemma 2.1 Given a non-vanishing function f : R
+ → R, we have

• χs(f) = α ⇐⇒ ∀ε > 0, we have both

limt→∞
|f(t)|

exp((α+ε)t)
= 0 and lim supt→∞

|f(t)|
exp((α−ε)t)

= +∞.

• χi(f) = β ⇐⇒ ∀ε > 0, we have both

limt→∞
|f(t)|

exp((β−ε)t)
= +∞ and lim inft→∞

|f(t)|
exp((β+ε)t)

= 0.

Also the following properties will be handy later.

Property 2.2

(a) Let f1, . . . fn be n non vanishing scalar functions, then

χs(
n∑

j=1

fj) ≤ max
j=1,...,n

χs(fj)

where equality holds when the maximum characteristic exponent is attained
by only one function.

(b) Let χs(f) < 0 and define F (t) =
∫ +∞
t f(s)ds. Then, χs(F ) ≤ χs(f).

(c) Let χs(f) < 0 and define F (t) =
∑+∞

n=0 f(t + nτ), with τ > 0, fixed and
finite. Then, χs(F ) ≤ χs(f).

Proof The proofs of (a) and (b) are in [1, pp. 27 and 30]. We prove (c).
Let χs(f) = λ, then for all ε > 0 there exists T > 0 such that for all t ≥ T ,
|f(t)| ≤ e(λ+ε)t. For t ≥ T , F (t) ≤

∑+∞
n=0 |f(t + nτ)| ≤

∑+∞
n=0 e(λ+ε)(t+nτ) =

e(λ+ε)t ∑+∞
n=0(e

(λ+ε)τ )n, and if we choose ε such that (λ + ε) < 0, it follows
|F (t)| ≤ Ce(λ+ε)t with C = 1

1−e(λ+ε)τ . The statement now follows upon observ-
ing that χs does not depend on the chosen initial time. 2

2.1 Stability and integral separation

Now consider the linear system (4). In general, the LEs of (4) are not stable
(i.e., continuous) with respect to perturbation of the coefficients, though their
stability is essential for the success of any numerical method used for their
approximation. The standard definition of stability is the following.

Let λs
1 ≥ . . . ≥ λs

n be the upper LEs of system (4) and let γs
1 ≥ . . . ≥ γs

n be
the upper LEs of the (perturbed) system ẏ = [A(t) + B(t)]y. Then, (4) has
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stable upper LEs if for all ε > 0 there exists δε > 0 such that

‖B(t)‖ ≤ δε =⇒ |λs
j − γs

j | < ε, j = 1, . . . n .

An analogous definition can be given for stability of the lower LEs, see also
Proposition 2.7 below.

An important property of stable upper LEs is that they do not change when
the perturbation B is vanishing as t → +∞:

Property 2.3 [1]. If system (4) has stable upper (lower) LEs and B(t) → 0
for t → +∞, then λs

j = γs
j (λi

j = γi
j) for j = 1, . . . , n.

As we said, not all systems admit stable LEs. The most important class of
systems having stable LEs is that of integrally separated systems.

Definition 2.4 The system (4) is called integrally separated, if there exists a
fundamental matrix solution X of (4) and constants a > 0 and 0 < d ≤ 1
such that

‖X(t)ei‖

‖X(s)ei‖

‖X(s)ei+1‖

‖X(t)ei+1‖
≥ dea(t−s), ∀t, s, t ≥ s ≥ 0, (7)

and for all i = 1, . . . , n − 1.

It is important to notice that integral separation is an intrinsic property of a
given system, just like stability of the LEs.

As we will see shortly, integral separation is a fundamental property for the
justification of our technique. We will need to use several properties related
to integral separation, which we now recall.

Properties 2.5

1. [1, p.148]. Integrally separated systems have distinct and stable upper LEs.
2. [1, p. 172, 149]. If (4) has different upper LEs λs

1 > . . . > λs
n then they

are stable if and only if (4) is integrally separated. Moreover, an integrally
separated fundamental matrix solution, X, is normal, and thus one has λs

j =
lim supt→+∞

1
t
log ‖X(t)ej‖, j = 1, . . . , n.

3. [1, p.149]. Integral separation is preserved under Lyapunov transformations.
That is, under a smooth invertible change of variables Z = LX, with L,
L−1 and L̇ bounded. In the new variables, the coefficient matrix becomes
(LAL−1 + L̇L−1).

4. [1, p.149]. The diagonal system

ż = diag(d1(t), . . . , dn(t))z, (8)

is integrally separated if and only if its diagonal is integrally separated. That
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is, if the functions d1, . . . , dn are integrally separated, which means that there
exist a > 0 and d ≥ 0 such that

∫ t

s
[di(τ) − di+1(τ)]dτ ≥ a(t − s) − d, ∀t, s, t ≥ s ≥ 0, (9)

for i = 1, . . . , n − 1.
5. [1, p.172]. System (4) has distinct and stable upper LEs λs

1 > λs
2 > . . . > λs

n,
if and only if there exists a Lyapunov transformation L that reduces the given
system to a diagonal one with integrally separated diagonal.

6. [12]. An upper triangular system Ṙ = BR, where B is bounded and has
integrally separated diagonal, has an integrally separated fundamental matrix
solution.

7. [24]. Integral separation is a generic property in the Banach space of con-
tinuous and bounded coefficients’ functions with the sup-norm: d(A, B) =
supt ‖A − B‖∞.

We will also need a property of the lower characteristic number of the sum of
functions.

Theorem 2.6 Given non vanishing functions f1, f2, . . . , fn, such that

|fi(t)|/|fi+1(t)| ≥ deat , i = 1, 2, . . . , n − 1 ,

for some 0 < a and 0 < d ≤ 1, then we have

χi(
n∑

k=1

fk) = χi(f1) . (10)

Proof Under the stated assumption, χi(f1) > χi(f2) > . . . > χi(fn). In

particular, for all i = 1, . . . , n − 1, limt→+∞
1
t
log |fi+1(t)|

|fi(t)|
= 0. It then follows

χi

(
n∑

k=1

fk

)
= lim inf

t→+∞

1

t
log |

n∑

k=1

fk(t)|

= lim inf
t→+∞

1

t
log |f1(t)|

∣∣∣∣∣1 +
f2(t)

f1(t)
+ . . . +

fn(t)

f1(t)

∣∣∣∣∣

= lim inf
t→+∞

1

t
log |f1(t)| + lim

t→+∞

1

t
log

∣∣∣∣∣1 +
f2(t)

f1(t)
+ . . . +

fn(t)

f1(t)

∣∣∣∣∣

= χi(f1).

2

We now proceed to obtain some results on the lower LEs as well. To do this,
we will use the adjoint system

ẏ = −A(t)T y , (11)
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and we recall that if X is a fundamental matrix solution of (4) then X−T is a
fundamental matrix solution of (11).

Proposition 2.7 Suppose (4) is integrally separated and let µs
1 ≥ µs

2 . . . ≥ µs
n

be the upper LEs of the adjoint system (11). Then µs
1 = −λi

n, . . . , µs
n = −λi

1.
Moreover, the lower LEs are stable and distinct: λi

1 > λi
2 . . . > λi

n.

Proof We know that there is an integrally separated matrix solution, X.
Further, because of Properties 2.5-5, (4) is reducible to the integrally separated
diagonal system ż = diag[d1(t), . . . , dn(t)]z via a Lyapunov transformation,
Z = LX. Consider then X−T P = LT Z−1P where P is the permutation P =
[en, en−1, . . . , e1] and further let W = Z−1P . Thus, (11) is reducible to ẇ =
−[dn(t), . . . , d1(t)]w, which is integrally separated. Therefore:

µs
1 = lim sup

t→+∞

1

t
log e−

∫ t

0
dn(s)ds = lim sup

t→+∞

(
−

1

t

∫ t

0
dn(s)ds

)

= − lim inf
t→+∞

1

t

∫ t

0
dn(s)ds = −λi

n;

the equality for the other LEs can be proven analogously. Since the w-system
is integrally separated, we have µs

1 > µs
2 > · · · > µs

n and they are stable as
well. 2

Under the assumption of distinct and stable LEs, we now define the Lya-
punov spectrum ΣL of (4) as

ΣL =
n⋃

j=1

[λi
j, λ

s
j] . (12)

Because of Proposition 2.7, this definition of ΣL coincides with that given in
[13].

2.2 Directions leading to the LEs

To reach a complete understanding of stability of (4), the growth information
enclosed in ΣL must be complemented with appropriate geometrical informa-
tion on the subspaces of solutions which eventually achieve a specific growth.

For this reason, let λs
j, j = 1, . . . , p, be the distinct upper LEs of (4). For

j = 1, . . . , p, define the set Wj to be the set of all initial conditions w such
that for the solution Φ(t)w, t ≥ 0, we have χs(Φ(·)w) ≤ λs

j. That is:

Wj = {w ∈ R
n : χs(Φ(·)w) ≤ λs

j } , j = 1, 2, . . . , p . (13)

Of course, we can equivalently identify Wj with the space of all solutions whose
upper LE does not exceed λs

j.
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Proposition 2.8 [1]. Let nj be the greatest number of linearly independent
solutions x of (4) such that lim supt→+∞

1
t
log ‖x(t)‖ = λs

j. Then Wj is an
nj-dimensional linear subspace of R

n.

Remark 2.9 In [1], and to prove this fact Property 2.2-(a) is essential, it is
also showed that the Wj’s are a filtration of R

n. That is, if p is the number of
distinct upper LEs of the system, we have

R
n = W1 ⊃ W2 . . . ⊃ Wp ⊃ Wp+1 = {0}. (14)

Therefore, lim supt→+∞
1
t
log ‖Φ(t)w‖ = λs

j if and only if w ∈ Wj\Wj+1. Notice
that if we have n distinct upper LEs, then each Wj, j = 1, . . . , n, has dimension
(n − j + 1).

Let Vj be the orthogonal complement of Wj+1 in Wj, i.e.

Wj = Wj+1 ⊕ Vj, Vj ⊥ Wj+1.

Then R
n = V1⊕V2⊕. . .⊕Vp. Moreover, if w ∈ Vj then lim supt→+∞

1
t
log ‖Φ(t)w‖ =

λs
j. Notice that if we have distinct LEs, then dim(Vj) = 1 for all j = 1, . . . , n.

As we will see in Section 5, by the SVD technique we will be able to approxi-
mate these Vj’s.

We now show that the Wj’s, for integrally separated systems, characterize the
set of initial conditions leading to lower Lyapunov exponents as well.

Proposition 2.10 Assume (4) is integrally separated, and let Wj, j = 1, . . . , n,
be defined as above. Then, similarly to Proposition 2.8, for all j = 1, 2, . . . , n,
we have

Wj = {w ∈ R
n : χi(Φ(·)w) ≤ λi

j } . (15)

Proof Let X be an integrally separated fundamental matrix solution, and
let xi(t) = X(t)ei, i = 1, . . . , n, ∀t ≥ 0. Then, from (7), we have that for all
i = 1, . . . , n − 1, there is some constant c such that

‖xi(t)‖ ≥ ceat‖xi+1(t)‖ , ∀ t ≥ 0 .

This implies that the χs and the χi of the columns of X are different and
hence must attain the entire set of upper and lower LEs:

lim sup
t→+∞

1

t
log ‖xj(t)‖ = λs

j , lim inf
t→+∞

1

t
log ‖xj(t)‖ = λi

j , j = 1, 2, . . . , n .

By what we said in Remark 2.9, dim(Wn) = 1, and thus span(xn(0)) = Wn

and (15) follows in the case of j = n. Next, consider j = n − 1. In this case,
we know that dim(Wn−1) = 2 and that xn−1(0) ∈ Wn−1. Since the Wj’s are a
filtration, we must have that both vectors xn(0) and xn−1(0) are in Wn−1 and
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thus Wn−1 is their span (since they obviously are independent). So, if we now
take a vector w ∈ Wn−1, w 6= 0, we can write w = cnxn(0) + cn−1xn−1(0), and
we can assume cn−1 6= 0. So, we have

lim inf
t→+∞

1

t
log ‖Φ(t)w‖ = lim inf

t→+∞

1

t
log ‖cnxn(t) + cn−1xn−1(t)‖ =

lim inf
t→+∞

1

t
log

(
‖xn−1(t)‖ · ‖

cnxn(t)

‖xn−1(t)‖
+ cn−1

xn−1(t)

‖xn−1(t)‖
‖

)

and reasoning like in Theorem 2.6 we obtain that χi(Φ(·)w) = λi
n−1. The proof

follows by repeating this argument. 2

3 Exponential dichotomy spectrum

System (4) admits an exponential dichotomy in [0, +∞) if there exists a pro-
jection P and real numbers K ≥ 1, α > 0 s.t.

‖X(t)PX(s)−1‖ ≤ Ke−α(t−s), ∀t, s, t ≥ s ≥ 0,

‖X(t)(I − P )X(s)−1‖ ≤ Keα(t−s), ∀t, s, 0 ≤ t ≤ s,
(16)

where with X we denote any fundamental matrix solution of the system.
Let X = Φ, the principal matrix solution, then P selects a subspace in R

n

such that all solutions in it (respectively in the complementary subspace) are
uniformly exponentially decreasing (increasing); i.e, exponential dichotomy is
a generalization of the concept of hyperbolicity for autonomous systems.

Several properties of exponential dichotomy are useful. Two of them follow,
see [7,25].

• Let t0 > 0, then if (4) admits exponential dichotomy in [t0, +∞), it admits
exponential dichotomy in [0, +∞) as well, with same α.

• Let P̂ be a projection matrix with same range as P and suppose (4) ad-
mits an exponential dichotomy with projection P . Then it also admits an
exponential dichotomy with projection P ′ and same α. Therefore, one can
always choose P to be an orthogonal, symmetric, projection. We will freely
assume this to be the case.

Remark 3.1 By transposing the quantities in the norms in (16), and using
the fact that the projection is (or can be chosen to be) symmetric, we ob-
serve that if we let Q = I − P , then the adjoint problem has an exponential
dichotomy with same constants, but projection Q:

‖X−T (s)QXT (t)‖ ≤ Ke−α(s−t) , s ≥ t ≥ 0

‖X−T (s)(I − Q)XT (t)‖ ≤ Keα(s−t) , 0 ≤ s ≤ t .
(17)
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The exponential dichotomy spectrum of (4), denote it with ΣED(A), or
more simply ΣED when no ambiguity can arise, is the set of all real values λ
such that the shifted system

ẋ = (A(t) − λI)x, (18)

does not admit exponential dichotomy. The complement in R of ΣED(A) is
called the resolvent, which we denote by ρ. The following properties of ΣED

are well known (see [7,25]).

• ΣED is the union of m disjoint closed intervals, m ≤ n:

ΣED =
m⋃

i=1

[ai, bi] : a1 ≤ b1 < a2 ≤ b2 < · · · < am ≤ bm .

• ΣED is stable. This means that, however we take λ ∈ ΣED, and for any ε > 0,
there exists δε such that for the perturbed system

ż = [A(t) + C(t)]z, sup
t∈[0,+∞)

‖C(t)‖ ≤ δε,

there is α ∈ ΣED(A + C) with

|λ − α| < ε. (19)

About the stability of ΣED, more can be said in case the given perturbation
goes to zero. The following result has an analog for ΣL for systems with stable
LEs in [1, Theorem 5.2.1].

Theorem 3.2 Consider the following perturbation of (4), ẋ = [A(t)+B(t)]x,
for t ≥ 0, where limt→+∞ ‖B(t)‖ = 0. Then

ΣED(A + B) = ΣED(A).

Proof By contradiction, suppose that the two spectra are different. Then,
without loss of generality, we can assume that there exists λ ∈ ΣED(A) such
that λ /∈ ΣED(A+B). Let 0 < a = minγ∈ΣED(A+B) |λ−γ| and set ε = a

2
. Being

ΣED(A) stable, there exists δε such that there is an α ∈ ΣED(A + C) of the
perturbed system

ż = [A(t) + C(t)]z, sup
t∈[0,+∞)

‖C(t)‖ ≤ δε,

with |λ − α| < ε. Now let T > 0 be such that ‖B(t)‖ ≤ δε for all t ≥ T and
set C(t) = B(t) for t ≥ T . For t < T , C(t) = C(t), where C is such that
supt∈[0,T ] ‖C(t)‖ ≤ δε and C(T ) = B(T ). But, being C a perturbation finite
in time of B, ΣED(A + C) = ΣED(A + B) and this with (19) contradicts the
hypothesis that the two spectra are different. 2
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The setup below is adapted from that in [25]. We will now show, as we did for
the Lyapunov spectrum, that there are linear subspaces associated to ΣED. In
order to do so, let us define the following sets (stable and unstable sets):

Sµ = {w ∈ R
n| lim

t→+∞
e−µt‖Φ(t)w‖ = 0},

Uµ = {w ∈ R
n| lim

t→+∞
eµt‖Φ−T (t)w‖ = 0},

where Φ and Φ−T are the principal matrix solutions of (4) and (11), respec-
tively.

Sµ and Uµ satisfy the following

Property 3.3

(a) Sµ ∩ Uµ = {0}.
(b) If µ1 < µ2 then Sµ1 ⊆ Sµ2 and Uµ1 ⊇ Uµ2 .

Proof We just show (a), since (b) is easy to verify. For any given t > 0, and
for any w ∈ R

n, we have

‖w‖2 =
(
Φ−T (t)w

)T(
Φ(t)w

)
≤ ‖Φ(t)w‖‖Φ−T (t)w‖ . (20)

Now, if w ∈ Sµ, w 6= 0, then eµt 1
‖Φ(t)w‖

→ +∞ as t → +∞. From this and

(20) we have

1

‖w‖2
eµt‖Φ−T (t)w‖ ≥ eµt 1

‖Φ(t)w‖
→ +∞ , as t → +∞ ,

this implying w /∈ Uµ. In the same way we can show that if w ∈ Uµ then
w /∈ Sµ. 2

Theorem 3.4 Let µ ∈ ρ(A), and denote with Φµ and Φ−T
µ respectively the

principal matrix solution of system (18) (with λ = µ there) and of its adjoint.
Let Pµ and Qµ be the projections in (16) and (17) for Φµ and Φ−T

µ . Then

Range(Pµ) = Sµ , Range(Qµ) = Uµ.

Proof Take w = Pµc. Then, by setting s = 0 in the first of (16) we have

‖Φµ(t)w‖ = ‖Φµ(t)PµΦµ(0)c‖

≤ ‖Φµ(t)PµΦµ(0)‖‖c‖

≤ K‖c‖e−αt → 0 as t → +∞, (21)

and this implies w ∈ Sµ.

13



Similarly, let w = Qµb. Then, using t = 0 in the first of (17) we have

‖Φ−T
µ (s)w‖ = ‖Φ−T

µ (s)QµΦµ(0)b‖ ≤ K‖b‖e−αt → 0 as t → +∞ ,

and so w ∈ Uµ.
Finally, Sµ ∩ Uµ = {0} and dim(Range(Pµ)) + dim(Range(Qµ)) = n, so we
must have Range(Pµ) = Sµ and Range(Qµ) = Uµ. 2

The next two results are immediate.

Lemma 3.5 Let µ1 and µ2 ∈ ρ, µ1 < µ2. If Sµ1 = Sµ2 and Uµ1 = Uµ2 then
[µ1, µ2] ⊂ ρ and Sµ = Sµ1 , Uµ = Uµ1 , for every µ ∈ [µ1, µ2].

Corollary 3.6 Let µ1, µ2 ∈ ρ, µ1 < µ2, such that [µ1, µ2] ∩ ΣED 6= ∅. Then
Sµ2 ∩ Uµ1 6= {0}.

Choose now µ0 < µ1 < . . . < µm, µi ∈ ρ, i = 0, . . . , m, in such a way that
ΣED ∩ (µj−1, µj) = [aj, bj] 6= ∅. To every interval [aj, bj] we can associate a
linear subspace.

Theorem 3.7 Let Nj = Sµj
∩ Uµj−1

, for j = 1, . . . , m. Then Nj is a linear
subspace with dimNj ≥ 1. Moreover the following properties are true

(a) Nk ∩ Nl = {0}, for k 6= l.
(b) R

n = N1 ⊕ . . . ⊕Nm.

Proof That Nj is a linear subspace, follows from it being the intersection
of linear subspaces. That dimNj ≥ 1, follows from Corollary 3.6. In order to
prove (a), we can assume without loss of generality that k < l. Then Nk ⊆ Sµk

,
Nl ⊆ Uµl−1

⊆ Uµk
. But Sµk

∩ Uµk
= {0}, and the claim follows.

To prove (b), notice that Uµ0 = R
n. Then

R
n = Uµ0 ∩ (Sµ1 ⊕ Uµ1) = (Uµ0 ∩ Sµ1) ⊕ Uµ1 =

= N1 ⊕ Uµ1 ∩ (Sµ2 ⊕ Uµ2) = . . . = N1 ⊕ . . . ⊕Nm.

2

Next, we give a geometrical characterization of the subspaces Nj’s. The first
result is in [25] and shows the relation between the Lyapunov exponents and
the intervals [aj, bj].

Theorem 3.8 With same notation of Theorem 3.7, let w ∈ Nj and
lim supt→+∞

1
t
log ‖Φ(t)w‖ = χs, lim inft→+∞

1
t
log ‖Φ(t)w‖ = χi. Then

χs, χi ∈ [aj, bj].

Proof For a proof, see [25]. 2
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The following theorem characterizes the subspaces Nj’s as those subspaces of
initial conditions giving growth behavior between aj and bj, uniformly.

Theorem 3.9 With same notation of Theorem 3.7, we have w ∈ Nj, w 6= 0,
if and only if

‖Φ(t)w‖

‖Φ(s)w‖
≤ Kje

bj(t−s) , and
1

Kj−1
eaj(t−s) ≤

‖Φ−T (s)w‖

‖Φ−T (t)w‖
(22)

for all t, s: t ≥ s ≥ 0 and where Kj ≥ 1 and Kj−1 ≥ 1 are constants defined
in the proof below.

Proof

(⇒) If µj is in the resolvent, then the shifted system ẋ = (A(t)−µjI)x admits
an exponential dichotomy. Denote with Φµj

its principal matrix solution and
let Pj be the projection in (16) for X = Φµj

, and αj > 0, Kj ≥ 1, the associated
dichotomy constants. In the same way, denote with Qj−1 the projection for the
adjoint system corresponding to µ = µj−1, and Kj−1, αj−1 be the associated
dichotomy constants. Then, using Theorem 3.4, w ∈ Nj, w 6= 0, implies
w ∈ Sµj

= Range(Pj), w = Pjc, and for t ≥ s,

‖Φµj
(t)w‖

‖Φµj
(s)w‖

=
‖Φµj

(t)PjΦ
−1
µj

(s)Φµj
(s)Pjc‖

‖Φµj
(s)Pjc‖

≤ ‖Φµj
(t)PjΦ

−1
µj

(s)‖ ≤ Kje
−αj(t−s).

Then
‖Φµj

(t)w‖

‖Φµj
(s)w‖

≤ Kje
(µj−αj)(t−s) ≤ Kje

bj(t−s), since (see Lemma 3.5) µj can be

chosen in (bj, bj + αj).
Analogously, w ∈ Nj, w 6= 0, implies w ∈ Uµj−1

= Range(Qj−1) = Range(I −
Pj−1), w = Qj−1b. Then (see (17)) for s ≥ t ≥ 0

‖Φ−T
µj−1

(s)w‖

‖Φ−T
µj−1

(t)w‖
=

‖Φ−T
µj−1

(s)Qj−1Φ
T
µj−1

(t)Φ−T
µj−1

(t)Qj−1b‖

‖Φ−T
µj−1

(t)Qj−1b‖

≤ ‖Φ−T
µj−1

(s)Qj−1Φ
T
µj−1

(t)‖

≤ Kj−1e
−αj−1(s−t).

From the last inequality, for s ≥ t, we get

‖Φ−T (t)w‖

‖Φ−T (s)w‖
≥

1

Kj−1
e(µj−1+αj−1)(s−t) ≥

1

Kj−1
eaj(s−t),

since µj−1 can be chosen in (aj −αj−1, aj). So, we showed that w ∈ Nj implies
(22).

(⇐) Suppose now that w ∈ R
n is such that (22) holds. Using the first inequal-

ity in (22) with s = 0, we get that ‖Φµj
(t)w‖ → 0 as t → +∞. Likewise, using
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the second inequality in (22), with s = 0, gives ‖Φ−T
µj−1

(t)w‖ → 0 as t → +∞.
Therefore, w ∈ Sµj

∩ Uµj−1
. 2

Remark 3.10 One implication in Theorem 3.9 can be replaced by a simpler
one. In fact, if w ∈ Nj, we can replace (22) with

1

Kj−1

eaj(t−s) ≤
‖Φ(t)w‖

‖Φ(s)w‖
≤ Kje

bj(t−s) , t ≥ s ≥ 0 .

This is because if w ∈ Uµj−1
, w = Qj−1b, we can use the first of (17) for

s ≥ t ≥ 0, after transposing its argument. So doing we get:

‖Φµj−1
(t)w‖

‖Φµj−1
(s)w‖

=
‖Φµj−1

(t)Qj−1Φ
−1
µj−1

(s)Φµj−1
(s)w‖

‖Φµj−1
(s)w‖

≤ ‖Φµj−1
(t)Qj−1Φ

−1
µj−1

(s)‖ ≤ Kj−1e
−αj−1(s−t),

and thus ‖Φ(s)w‖
‖Φ(t)w‖

≥ 1
Kj−1

eaj(s−t) for s ≥ t.

A simple characterization of Nj can be given when the system is integrally
separated.

Theorem 3.11 Assume that (4) is integrally separated. Denote with Wk the
linear space associated to λs

k for the system (4), and with Lk the linear space
associated to µs

k for the system (11). Then

Sµ = Wk, Uµ = Ln−k+2,

where k is such that

λs
k < µ < λi

k−1, i.e. µi
n−k+1 > −µ > µs

n−k+2 .

Proof If w ∈ Sµ then e−µt‖Φ(t)w‖ → 0 for t → +∞. So,
lim supt→+∞

1
t
log ‖Φ(t)w‖ < µ and it follows that

lim supt→+∞
1
t
log ‖Φ(t)w‖ ≤ λs

k and w ∈ Wk.
Let now w ∈ Wk. Then, limt→+∞ e−(λs

k
+ε)t‖Φ(t)w‖ = 0 and this implies w ∈

Sµ. For Uµ, we proceed similarly. If w ∈ Uµ then eµt‖Φ−T (t)w‖ → 0 for
t → +∞. Thus lim supt→+∞

1
t
log ‖Φ−T (t)w‖ ≤ −µ, so that

lim supt→+∞
1
t
log ‖Φ−T (t)w‖ ≤ µs

n−k+2. 2

Using Proposition 2.7, the following is immediate.

Corollary 3.12 With same assumptions and notations as in Theorems 3.7
and 3.11,

Nj = Wk ∩ Ln−l+1 , j = 1, . . . , m ,

where the indices k and l, k < l, are such that

λs
k < µj < λi

k−1, λs
l+1 < µj−1 < λi

l.
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Example 3.13 Assume system (4) to be integrally separated and let X be
an integrally separated fundamental matrix solution. Let X(0) = X0, and so
X−T

0 P , with P = [en, . . . , e1] leads to an integrally separated fundamental
matrix solution for the adjoint system. In this context

Nj = span(X0[ek, . . . , en]) ∩ span(X−T
0 [e1, . . . , el]),

where k and l are chosen as in the statement of Corollary 3.12.

4 The SVD method

Next we examine a technique to approximate the spectra based upon the SVD
of a fundamental matrix solution of (4). As we said, the technique of choice to
approximate Lyapunov exponents (and more generally the spectra) has been
one based on the QR decomposition of the matrix solution ([5,11,12]), but
also methods based on the SVD of a fundamental matrix solution have been
used; e.g., see [15,16,26]. In these cited works, SVD methods have appeared
in two flavors: discrete and continuous. Though conceptually equivalent, each
has distinct advantages/disadvantages, some of which will be reviewed in [8].

Of course, SVD methods have a sound justification for approximating Lya-
punov exponents: The Multiplicative Ergodic Theorem, see (3). Indeed, in the
discrete SVD method one keeps the principal matrix solution at time t, say
Φ(t, x0) in (3), as a product of transition matrices on short subintervals, and
then seeks an SVD decomposition of this product without forming it (a well
written algorithmic description is in [26]). In principle, in the limit, this will
enable approximation of the Lyapunov exponents associated to the underly-
ing regular system, [21]. However, there is little general justification of SVD
methods for approximating ΣL and ΣED. Our goal in this section is to rectify
this situation, by strengthening and carrying forward the initial contribution
of [12]. We will take the viewpoint of a continuous SVD method, though of
course our analysis will justify use of a discrete SVD method as well.

The continuous method looks for a smooth SVD of a fundamental matrix
solution X: X(t) = U(t)Σ(t)V T (t), t ≥ 0, where U and V are orthogonal and
Σ = diag(σ1, . . . , σn). The existence of an SVD of X(t) at every instant t is
a well known fact, but it is not at all obvious that the factors can be taken
smooth in t (e.g., see [6], [10]). Still, if the singular values are distinct, an
SVD exists, as smooth as X, and differential equations for U , Σ and V can
be derived (e.g., see [12,28]). To be precise, given initial condition X(0) =
U(0)Σ(0)V T (0), then –if the singular values of X(t) are distinct for all t– we
have:
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σ̇i = Ciiσi , i = 1, . . . , n , where C = UT AU , (23)

U̇ = UH , (24)

V̇ = V K . (25)

Here, H and K are skew-symmetric functions whose entries for i > j are

hij =
cijσ

2
j − cjiσ

2
i

σ2
j − σ2

i

, kij =
(cij + cji)σiσj

σ2
j − σ2

i

.

Notice that if X(0) has distinct singular values, then U(0) and V (0) are
uniquely defined up to joint changes of sign for their columns.

In what follows, the precise value of X(0) will be irrelevant, and our results
will apply to any fundamental matrix solution. Indeed, our standing hypothesis
will be the integral separation of the singular values of any fundamental matrix
solution X of (4). I.e., if σ1(t) ≥ . . . ≥ σn(t) are the ordered singular values
of X(t), t ≥ 0, we will assume that there exist a > 0 and 0 < κ ≤ 1 such that

σj(t)

σj(s)

σj+1(s)

σj+1(t)
≥ κea(t−s), ∀j = 1, . . . , n − 1 , and ∀t ≥ s ≥ 0 . (26)

This assumption might seem somehow restrictive. However, we shall see shortly
that it is equivalent to require that the system admits stable and distinct LEs.

When (26) holds, parts (a) and (b) of the Proposition below are proved in
[12]. Part (c) is an easy consequence of (b).

Proposition 4.1 Let X be a fundamental matrix solution and assume that it
admits a smooth SVD, X = UΣV T , and that the diagonal of C = UT AU is
integrally separated. Then the following hold true.

(a) There exists a finite t ≥ 0, such that for all t ≥ t,

σj(t) > σj+1(t) , j = 1, . . . , n − 1 . (27)

(b) For t ≥ t in (a), let K = V T V̇ . Then

lim
t→+∞

K(t) = 0 , (28)

and the convergence of K to 0 is exponentially fast.
(c) Moreover,

lim
t→+∞

V (t) = V , (29)

where V is a constant orthogonal matrix.

In the next section, we shall examine the rate of convergence of V to V .
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Our next result is fundamental, and it justifies use of the SVD to obtain the
LEs.

Theorem 4.2 The system (4) has stable and distinct LEs if and only if for
any fundamental matrix solution X the singular values of X are integrally
separated. Moreover, if X is a fundamental matrix solution, the LEs of the
system can be obtained as

λs
j = lim sup

t→+∞

1

t
log σj(t) , λi

j = lim inf
t→+∞

1

t
log σj(t) , (30)

where with σj we denote the j-th ordered singular value of X.

In order to prove the theorem, the following lemma is needed.

Lemma 4.3 Let A, B ∈ R
n×n be two n×n non singular matrices. Let σ1(A) ≥

. . . ≥ σn(A) > 0, σ1(B) ≥ . . . ≥ σn(B) > 0 and σ1(AB) ≥ . . . ≥ σn(AB) > 0
be the ordered singular values of A, B and AB respectively. Then for all i =
1, . . . , n

σi(A)σn(B) ≤ σi(AB) ≤ σi(A)σ1(B).

Proof This is in [17]. In fact, in [17, Theorem 3.3.16] it is proven that
σi(AB) ≤ σi(A)σ1(B). Using this once more in the form σi(A) = σi((AB)B−1) ≤
σi(AB)σ1(B

−1) gives the remaining inequality. 2

Proof of Theorem 4.2. (⇒) Let the system have stable and distinct LEs. Then,
it admits an integrally separated fundamental matrix solution X. Moreover, by
Properties 2.5-5, there exists a Lyapunov transformation L such that X = LZ
where Z = diag(z1, . . . , zn) is the principal matrix solution of system (8). By
the integral separation of the di’s, there exist a > 0 and d ≥ 0 such that

zi(t)

zi(s)

zi+1(s)

zi+1(t)
= e

∫ t

s
(di(s)−di+1(s))ds ≥ ea(t−s)e−d , ∀t ≥ s ≥ 0 . (31)

Denote with σt
1(X) ≥ . . . ≥ σt

n(X) the ordered singular values of X(t) for all
t ∈ R

+. Then by Lemma 4.3, for all i = 1, 2, . . . , n, and all t ≥ s ≥ 0, we have

σt
i(X)

σs
i (X)

σs
i+1(X)

σt
i+1(X)

=
σt

i(LL−1X)

σs
i (LL−1X)

σs
i+1(LL−1X)

σt
i+1(LL−1X)

≥
σt

n(L)σs
n(L)

σt
1(L)σs

1(L)

zi(t)

zi(s)

zi+1(s)

zi+1(t)

≥ ea(t−s)e−d 1

κ(L(t))κ(L(s))
,

where i = 1, . . . , n− 1 and κ(L(t)) is the condition number of the matrix L(t)
in the spectral norm. Similarly for κ(L(s)), and we remark that κ(L(t)) ≥ 1,
for all t. Now, being L a Lyapunov transformation, 1/κ(L) is bounded away
from zero and the integral separation of the singular values of X follows by
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taking κ = e−d 1
κ(L(t))κ(L(s))

in (26). We still need to prove that for any funda-
mental matrix solution the singular values are integrally separated. Let X0 be
the initial condition for the given integrally separated fundamental matrix so-
lution X, i.e. X(0) = X0. Also, let X̃ be another fundamental matrix solution
corresponding to initial condition X̃0. Then, for all t, X̃(t) = X(t)X−1

0 X̃0 and

σt
i(X̃)

σs
i (X̃)

σs
i+1(X̃)

σt
i+1(X̃)

≥
σt

i(X)

σs
i (X)

σs
i+1(X)

σt
i+1(X)

1

(κ(X0)κ(X̃0))2
,

and integral separation of the singular values of X̃ follows by using κ̃ =
κ 1

(κ(X0)κ(X̃0))2
with κ as in the previous argument.

(⇐) The argument here is similar to one used in [12, Theorem 5.1], although
our assumptions are different than those in this cited result. Suppose that,
for any fundamental matrix solution of (4), the singular values are integrally
separated. Let X be any such fundamental matrix solution. Then, there exists
a time t = t(X) such that the singular values are distinct for all t ≥ t (see
Proposition 4.1-(a)). The equations for a smooth SVD of X, X = UΣV T can
then be given for t ≥ t. Let P = UT X = ΣV T , t ≥ t. Then P satisfies the
following differential equation

Ṗ = (diag(C) − ΣKΣ−1)P. (32)

Let E = ΣKΣ−1. Then, for i = 1, . . . , n, eii = kii = 0, while for i < j

eji = kji
σj

σi
= [cij + cji]

σiσj

σ2
i − σ2

j

σj

σi
= [cij + cji]

1
σ2

i

σ2
j

− 1
.

By the assumption of integral separation, it follows σi(t)/σj(t) ≥

σi(t)/σj(t)e
(j−i)a(t−t)κ(j−i) → +∞ for t → +∞. Then if we denote with low(E)

and upp(E) respectively the strictly lower and upper triangular part of E,
low(E) → 0 for t → +∞. Consider the following system

Ṗ = (diag(C) + upp(E))P. (33)

Because of the assumption that the singular values of X are integrally sepa-
rated, the diagonal of C is integrally separated and, by Properties 2.5-6 (33)
has an integrally separated fundamental matrix solution, i.e. distinct and sta-
ble LEs. By Property 2.3, system (32) must have distinct and stable LEs as
well, and the same is true for system (4) since U is a Lyapunov transformation.

Finally, being the LEs stable and distinct, we can consider the Lyapunov
spectrum of (4), as in (12). By what we just proved, ΣL of (33) and (4) are
the same. In [12, Theorem 5.1], it is shown that, under the assumption of
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integral separation of the diagonal of C, ΣL of (33) is obtained as

λs
j = lim sup

t→+∞

1

t

∫ t

0
cjj(τ)dτ λi

j = lim inf
t→+∞

1

t

∫ t

0
cjj(τ)dτ.

Then (30) follows from σj(t) = σj(t)e
∫ t

t
cjj(τ)dτ and the irrelevance for the LEs

of what happens up to the finite time t. 2

Remark 4.4 In order to prove Theorem 4.2, we relied on the continuous SVD
of the fundamental matrix solution. However, it must be stressed that this
result validates SVD-based techniques for the approximation of LEs no matter
which method is applied to find the SVD. As a consequence, it provides also
a justification for techniques based on the discrete SVD of any fundamental
matrix solution of the system.

Remark 4.5 Obviously, all fundamental matrix solutions with orthogonal
initial conditions have same singular values. In particular, the constants for
the integral separation a, κ, and the time t ≥ 0 after which the singular values
are distinct (see (26) and (27)), must be the same for all fundamental matrix
solutions with orthogonal initial conditions. Then, in the absence of better
reasons to the contrary, and to be consistent with nonlinear problems, we may
as well apply SVD techniques to the principal matrix solution Φ of system (4).

Theorem 4.2 suggests also how to evaluate ΣED under the hypothesis of stable
and distinct LEs, as the following result highlights.

Theorem 4.6 Assume (4) has stable and distinct LEs. Then it has the same
exponential dichotomy spectrum as the diagonal system

Σ̇ = diag(C)Σ.

Proof The proof is analogous to the one given for Theorem 4.2. Indeed, let X
be any fundamental matrix solution of (4). Then, after a certain time t ≥ 0,
it admits a smooth SVD, X = UΣV T . Since U is a Lyapunov transformation,
then (4) has same exponential dichotomy spectrum as (32), which is the same
as the exponential dichotomy spectrum of (33) because of Theorem 3.2. In
[12], under the hypothesis of integral separation of the diagonal of C, a fact
which we now know follows from having stable and distinct LEs, it is proven
that ΣED of (33) is the same as the exponential dichotomy spectrum of the
diagonal system Σ̇ = diag(C)Σ. 2
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5 Leading directions

In Section 2.2 we have seen how it is possible to associate a linear space Vj

to the LE λs
j and we defined the linear space Wj to be the set of all initial

conditions leading to an exponential growth less than, or equal to, λs
j. Our

goal in this section is to show how the spaces Vj and Wj (and thus also Nj

associated to ΣED) can be obtained from the SVD techniques. We will do this
under the same assumption used in Section 4 to justify the very feasibility of
the SVD technique: System (4) has stable and distinct Lyapunov exponents.

In this case, from Section 4 we know that there is a finite time t after which
the singular values of any fundamental matrix solution X are distinct, and
thus for t ≥ t there is a smooth SVD of X: X = UΣV T . In what follows,
without loss of generality, we will assume that t = 0 and we will consider the
principal matrix solution Φ.

Recall that we know, see (29), that V → V as t → +∞. On the other hand,
mere convergence would be of limited interest, since the entire approximation
process takes place on the half-line. In particular, for numerical purposes it
is important that convergence is rapid. For this reason, here below we will
show that convergence of V (t) to V , as t → +∞, is exponentially fast, and
we will give bounds on the exponential convergence rate. We will prove this
exponential rate of convergence without the assumption of regularity, using
stability of the LEs instead. In the regular case, the exponential convergence
rate expressed in Corollaries 5.3 and 5.5 below is already in the work [20];
an excellent exposition, and further references, can be found in the book [2],
in particular see Chapter 3 there. Although our technique is different than
those used in the regular case, and it is ultimately based on the equations
satisfied by the singular values, we also borrow some of the techniques used
for regular problems, by adapting them to our setting. We stress once more
that our motivation is dictated by using only those assumptions which are in
tune with the assumptions needed to ensure the success of a numerical method
to approximate the LEs.

For ease of notation, let us define αj
i (t) to be the component of vj in the

direction of vi(t). That is, let

αj
i (t) = vi(t)

T vj , i, j = 1, . . . , n , t ≥ 0 , (34)

where vj is the j-th column of V and vi(t) is the i-th column of V (t), for all
t ≥ 0. Obviously, αi

i(t) → 1 and αj
i (t) → 0, i 6= j, as t → +∞. To show

exponential convergence of V (t) to V , and to get bounds on the exponential
rates, we need two preliminary Lemmas. The first, Lemma 5.1 is essentially in
[20]; the result in [20] is for the regular case, but the proof for the non regular
case (the case we need) is identical and therefore omitted. The second Lemma,
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Lemma 5.2, is original.

Recall that a flag of type e = (1, . . . , 1) in R
n is a filtration W = (Wi)

n
i=1 such

that R
n = W1 ⊃ . . . ⊃ Wn and the sets Vi such that Wi = Wi+1 ⊕ Vi, have

dimension 1. We denote the space of all these flags with Fe(n).

Lemma 5.1 ([20]) Let ∆ = mini6=j |λs
i − λs

j|/(n − 1). Define

d(W (1),W(2)) = max

i 6= j

‖x‖ = ‖y‖ = 1

x ∈ V
(1)
i , y ∈ V

(2)
j

|(x, y)|∆/|λs
i
−λs

j
| (35)

where W (1),W(2) are two flags in Fe(n) and (x, y) = xT y is the inner product
in R

n. Then (35) is a metric in Fe(n).

We can express the metric defined in Lemma 5.1 in function of the orthog-
onal projections Pk into the linear subspaces Vk. Let vk be such that Vk =
span(vk), and ‖vk‖ = 1, then Pk = vkv

T
k . In the spectral norm, ‖P (1)

i P
(2)
j ‖ =

max‖x‖=1 ‖P
(1)
i P

(2)
j x‖ = max‖x‖=‖y‖=1(P

(1)
i P

(2)
j x, y) = max‖x‖=‖y‖=1(P

(1)
i x, P

(2)
j y),

so
max

‖x‖ = ‖y‖ = 1

x ∈ V
(1)
i , y ∈ V

(2)
j

(x, y) = ‖P (1)
i P

(2)
j ‖,

and the metric d of Lemma 5.1 can be expressed in the equivalent way:

d(W (1),W(2)) = max
i6=j

‖P (1)
i P

(2)
j ‖∆/|λs

i
−λs

j
|. (36)

Lemma 5.2 Assume system (4) has stable and distinct LEs, and as usual let
Φ be its principal matrix solution, and Φ = UΣV T be its smooth SVD. Let τ
be fixed, 0 < τ ≤ 1. For all i = 1, . . . , n, and for all t ≥ 0, let vi(t + τ) be the
i−th column of V (t + τ), and let

βj
i (t + τ) = vi(t + τ)T vj(t), ∀ i, j = 1, . . . , n .

Then, for all i, j = 1, . . . , n, we have

lim
t→∞

βi
i(t + τ) = 1 ,

j > i : χs(βj
i ) ≤ lim sup

t→+∞

1

t
log

σj(t)

σi(t)
, χi(βj

i ) ≤ lim inf
t→+∞

1

t
log

σj(t)

σi(t)
,

j < i : χs(βj
i ) ≤ lim sup

t→+∞

1

t
log

σi(t)

σj(t)
, χi(βj

i ) ≤ lim inf
t→+∞

1

t
log

σi(t)

σj(t)
.

(37)
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Furthermore, for all i, j = 1, . . . , n, i 6= j, the following bounds hold

χs(βj
i ) ≤ min

(
λs

j − λi
i,−a(j − i)

)
, j > i,

χs(βj
i ) ≤ min

(
λs

i − λi
j,−a(i − j)

)
, j < i,

χi(βj
i ) ≤ min

(
−|λi

j − λi
i|,−|λs

j − λs
i |
)
,

(38)

where a > 0 is the a in the integral separation condition (26).

Proof For all t ≥ 0, and j = 1, . . . , n, represent vj(t) in the basis (v1(t +
τ), . . . , vn(t + τ)), as

vj(t) =
n∑

i=1

βj
i (t + τ)vi(t + τ) . (39)

From (39) and (29) it follows that limt→∞ βi
i(t+τ) = limt→∞ vi(t+τ)T vi(t) = 1.

In order to evaluate the upper characteristic exponent of the βj
i ’s, rewrite

Φ(t + τ) as Φ(t + τ) = Φ(t + τ, t)Φ(t), where Φ(t + τ, t) is the solution at
t + τ of ∂

∂t
Φ = A(t)Φ, Φ(t, t) = I. Then, M‖Φ(t + τ)w‖ ≤ ‖Φ(t)w‖ and

L‖Φ(t)w‖ ≤ ‖Φ(t + τ)w‖, for all w ∈ R
n, where M−1 = supt≥0 ‖Φ(t + τ, t)‖

and L−1 = supt≥0 ‖Φ(t + τ, t)−1‖.

Case j > i.
Using (39) and Φ = UΣV T we get

σj(t) = ‖Φ(t)vj(t)‖ ≥ M‖Φ(t + τ)vj(t)‖

= M‖
n∑

k=1

βj
k(t + τ)Σ(t + τ)V T (t + τ)vk(t + τ)‖

= M‖
n∑

k=1

βj
k(t + τ)σk(t + τ)ek‖ ≥ M |βj

i (t + τ)|σi(t + τ). (40)

Using (40), we get

χs(βj
i ) = lim sup

t→+∞

1

t
log |βj

i (t)|

≤ lim sup
t→+∞

(
1

t
log σj(t) −

1

t
log σi(t + τ)

)
≤ λs

j − λi
i .

Observe that we do not know if the right hand side of this bound gives a
negative value, which we will need to be the case for χs(βj

i ). This is the reason
for the diversified bound in (38), which we now prove.

First look at the behavior of σi(t+τ)
σj(t)

. From (26) and
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σi(t+τ)
σi(t)

= exp
(∫ t+τ

t (UT AU)ii(s)ds
)
, we have

σi(t + τ)

σj(t)
=

σi(t + τ)

σi(t)

σi(t)

σj(t)
≥ e−‖A‖τea(j−i)tκj−i,

for all t ≥ 0. It follows

1

t
log

(
σi(t + τ)

σj(t)

)
≥

1

t
((j − i) log κ − ‖A‖τ) + a(j − i), ∀t ≥ 0 . (41)

Let now {tn} be a sequence such that limtn→+∞
1
tn

log(|βj
i (tn + τ)|) = χs(βj

i ),
then from (40) and (41) we obtain

−a(j − i) ≥ lim sup
tn→+∞

1

tn
log

σj(tn)

σi(tn + τ)
≥ χs(βj

i ) ,

which completes (38) for χs(βj
i ) in the case of j > i.

As far as the bounds for χi(βj
i ), from (40) we get

lim inf
t→+∞

1

t
log σj(t) ≥ lim inf

t→+∞

1

t
log |βj

i (t + τ)| + lim inf
t→+∞

1

t
log σi(t + τ)

and therefore
χi(βj

i ) ≤ λi
j − λi

i .

Alternatively, we can also get the bound

lim sup
t→+∞

1

t
log σj(t) ≥ lim sup

t→+∞

(
1

t
log σi(t + τ) +

1

t
log |βj

i (t + τ)|
)

≥ lim sup
t→+∞

1

t
log σi(t + τ) + lim inf

t→+∞

1

t
log |βj

i (t + τ)|

and therefore
χi(βj

i ) ≤ λs
j − λs

i ,

so that (37) and (38) are proven for j > i. Notice that we are guaranteed that
the bounds given for χi(βj

i ) are negative.

Case j < i.
Again, using (39) and the smooth SVD of X we get

σi(t + τ) =‖Φ(t + τ)vi(t + τ)‖ ≥ L‖Φ(t)vi(t + τ)‖

=L‖Σ(t)V T (t)vi(t + τ)‖ ≥ L|βj
i (t + τ)|σj(t),

(42)

and the bounds for χs(βj
i ) and χi(βj

i ) can be recovered by (42) with a proce-
dure analogous to the one for the case j > i. 2
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Corollary 5.3 With same hypotheses and notation of Lemma 5.2, if the LEs
exist as limits (i.e., (4) is regular), then for all i, j = 1, . . . , n, i 6= j, we have

χs(βj
i ) ≤ −|λi − λj|.

Proof The statement follows easily from the proof of Lemma 5.2 by noticing
that λj = λs

j = λi
j for all j = 1, . . . , n. 2 Lemma 5.2 is the stepping stone to

understand the rate of exponential convergence of V to V . The next theorem
gives bounds for χs(ejV

T (·)V ei).

Theorem 5.4 Let the same assumptions of Lemma 5.2 hold, let vj be the j-th
column of V , j = 1, . . . , n, and αj

i (t) given by (34), i, j = 1, . . . , n, and t ≥ 0.
Then, for all i, j = 1, . . . , n, i 6= j, we have

χs(αj
i ) ≤ A|λs

i − λs
j| , (43)

where A is given by A = maxk 6=l
χs(βl

k
)

|λs
k
−λs

l
|
and thus A < 0.

Moreover, for all j = 1, . . . , n,

χs(1 − αj
j) ≤ 2 max

i6=j
χs(αj

i ). (44)

Proof Rewrite vj in the basis (v1(t), . . . , vn(t)): vj =
∑n

i=1 αj
i (t)vi(t). Call re-

spectively W(t) and W the flags of the subspaces Wi(t) = span{vi(t), . . . , vn(t)}
and Wi = span{vi, . . . vn}. Then by Lemma 5.1 and the fact that d(W(t),W) →
0 as t → +∞ (since V (t) → V ), we have

d(W(t),W) ≤
∞∑

m=1

d(W(t + (m − 1)τ),W(t + mτ)) , (45)

where 0 < τ ≤ 1 is fixed. Consider the following orthogonal projections,
Pj(t) = vj(t)vj(t)

T and Pi(t + τ) = vi(t + τ)vi(t + τ)T , and notice that
‖Pj(t)Pi(t + τ)‖ = |vi(t + τ)T vj(t)| = |βj

i (t + τ)|. Then

d(W(t + (m − 1)τ),W(t + mτ)) = max
i6=j

‖Pj(t + (m − 1)τ)Pi(t + mτ)‖∆/|λs
i−λs

j |

= max
i6=j

|βj
i (t + mτ)|∆/|λs

i
−λs

j
|, (46)

and in the same way

d(W(t),W) = max
i6=j

‖Pj(t)Pi‖
∆/|λs

i
−λs

j
| = max

i6=j
|αj

i (t)|
∆/|λs

i
−λs

j
|. (47)

Using (46) and (47) we can rewrite (45) as

max
i6=j

|αj
i (t)|

∆/|λs
i
−λs

j
| ≤

∞∑

m=1

max
i6=j

|βj
i (t + mτ)|∆/|λs

i
−λs

j
| . (48)
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Now, χs(βj
i ) < 0 for all i 6= j and Property 2.2-(c) applies to (48), so that for

any j 6= i,
∆

|λs
i − λs

j|
χs(αj

i ) ≤ max
k 6=l

∆

|λs
k − λs

l |
χs(βl

k),

and (43) follows.
When i = j, we know from (29) that limt→+∞ αj

j(t) = limt→+∞ vj(t)
T vj = 1.

Moreover, 1 = ‖vj‖2 =
∑n

i=1(α
j
i (t))

2 so that χs(1 − (αj
j)

2) ≤ 2 maxi 6=j χs(αj
i ).

Then (44) follows by χs(1−(αj
j)

2) = χs
(
(1−αj

j)(1+αj
j)
)

= lim supt→+∞
1
t
log(1−

αj
j) + limt→+∞

1
t
log(1 + αj

j(t)) = χs(1 − αj
j). 2

Corollary 5.5 With same assumptions and notations of Theorem 5.4, if sys-
tem (4) is regular then for i 6= j we have

χs(αj
i ) ≤ −|λi − λj|.

Remark 5.6 Comparing the rate expressed in the above Corollary with the
rate (43) in the non regular case, we notice that in the non regular case there
may be a slower rate of convergence, in the sense that the value of A in (43)
may be close to 0.

An important component of Lemma 5.2 and Theorem 5.4 is the key role
played by the integral separation constant a > 0 in the rate of exponential
convergence of V to V ; see (43) and the bounds (38) for χs(βj

i ). It is therefore
of interest being able to estimate this constant a. The following Proposition
gives a way to estimate a. As it turns out, the technique of this Proposition
5.7 emerges as a natural byproduct of a way of computing the SVD of X in
the first place (see [8]).

Proposition 5.7 Let (4) have stable and distinct LEs, let Φ be its principal
matrix solution, Φ = UΣV T its smooth SVD, and let C = UT AU . For j =
1, . . . , (n − 1), denote with [aj, bj] the exponential dichotomy interval of the
scalar differential equation ẋ = (cjj(t) − cj+1,j+1(t))x. Then aj > 0 and the
constant a > 0 in formula (26) can be taken to be

a = min
j=1,...,n−1

aj.

Proof By Theorem 4.2, the singular values of the principal matrix solution
Φ are integrally separated and (26) is satisfied. Using (23), rewrite (26) as

∫ t

s
(cjj(τ)−cj+1,j+1(τ) − a)dτ ≥ log κ,

for all j = 1, . . . , n − 1, and for all t ≥ s ≥ 0 . (49)

Now, fix j. Because of integral separation, the scalar problem ẋ =
(
cjj(t) −

cj+1,j+1(t)
)
x, must have dichotomy interval strictly contained in the positive
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real axis. Moreover (see [12, Lemma 8.2]), the resolvent is the same as the
set of all µ’s such that one of the following two conditions is satisfied for all
t ≥ s ≥ 0

∫ t

s

[(
cjj(τ) − cj+1,j+1(τ)

)
− µ

]
dτ ≥ α(t − s) − b,

∫ t

s

[
µ −

(
cjj(τ) − cj+1,j+1(τ)

)]
dτ ≥ α(t − s) − b,

where α > 0 and b ≥ 0. In particular, for all µ’s satisfying the first inequality,
we must have that aj > µ. From this and (49) it follows that a ≤ aj, for all
j = 1, . . . , n − 1. 2

We are now ready to prove the main set of results of this Section. Recall the
definition of the subspaces Wj’s in (13), and that they form a filtration (14).

Theorem 5.8 Assume system (4) has stable and distinct LEs, and let Φ =
UΣV T be the smooth SVD of its principal matrix solution. Let V = {v1, . . . , vn}
be the limit of the factor V . Then we have

χs(Φ(·)vj) = λs
j , and χi(Φ(·)vj) = λi

j , j = 1, . . . , n .

That is, V is a normal basis for the upper and lower Lyapunov exponents.

Proof First of all, for all j = 1, . . . , n, we have

‖Φ(t)vj‖ = ‖




σ1(t)α
j
1(t)

...

σn(t)αj
n(t)



‖ ≥ σj(t)|α

j
j(t)| ,

so that

lim sup
t→+∞

1

t
log ‖Φ(t)vj‖ ≥ lim sup

t→+∞

1

t
log
(
σj(t)|α

j
j(t)|

)
= λs

j , and

lim inf
t→+∞

1

t
log ‖Φ(t)vj‖ ≥ lim inf

t→+∞

1

t
log
(
σj(t)|α

j
j(t)|

)
= λi

j .

(50)

From (50), the result follows for j = 1. Define L1 = span{v1} and observe
that, because of (50), we must have L1 ⊂ W1\W2. Next, let us continue the
proof just for the lim sup’s.

Define L2 = span{v1, v2} and take w ∈ L2, w 6= 0: w = c1v1 + c2v2. We have

‖Φ(t)w‖ = ‖




σ1(t)(c1α
1
1(t) + c2α

2
1(t))

...

σn(t)(c1α
1
n(t) + c2α

2
n(t))



‖ ≥ σ1(t)|c1α

1
1(t) + c2α

2
1(t)| .
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Now, if c1 6= 0, this gives

lim sup
t→+∞

1

t
log ‖Φ(t)w‖ ≥ lim sup

t→∞

(
1

t
log σ1(t) +

1

t
log |c1α

1
1(t) + c2α

2
1(t)|

)
= λs

1 ,

where the last equality follows from the fact that (c1α
1
1(t) + c2α

2
1(t)) ap-

proaches c1. In particular, if c1 6= 0, w /∈ W2. If, instead, c1 = 0, then we
still have from (50) lim supt→+∞

1
t
log ‖Φ(t)w‖ ≥ λs

2. But we cannot have
lim supt→+∞

1
t
log ‖Φ(t)v2‖ = λs

1 because

dim(W2) = n − 1 , and dim(L2) = 2 ,

and thus L2 ∩ W2 6= ∅, and the vector in this intersection must be v2. Thus,
lim supt→+∞

1
t
log ‖Φ(t)v2‖ = λs

2 and v2 ∈ W2\W3.

We consider one more step in this process, and the general case will follow
inductively. So, define L3 = span{v1, v2, v3} and take w ∈ L3, w 6= 0: w =
c1v1 + c2v2 + c3v3. We have

‖Φ(t)w‖ = ‖




σ1(t)(c1α
1
1(t) + c2α

2
1(t) + c3α

3
1(t))

...

σn(t)(c1α
1
n(t) + c2α

2
n(t) + c3α

3
n(t))



‖

≥ σ1(t)|c1α
1
1(t) + c2α

2
1(t) + c3α

3
1(t)| .

Now, if c1 6= 0, this gives (like before) lim supt→+∞
1
t
log ‖Φ(t)w‖ ≥ λs

1, and so
if c1 6= 0, w /∈ W2. If c1 = 0, but c2 6= 0, then lim supt→+∞

1
t
log ‖Φ(t)w‖ ≥ λs

2,
and so if c1 = 0, but c2 6= 0, w /∈ W3. Finally, if c1 = c2 = 0, then from (50)
lim supt→+∞

1
t
log ‖Φ(t)w‖ ≥ λs

3. But we cannot have lim supt→+∞
1
t
log ‖Φ(t)v3‖ >

λs
3 because

dim(W3) = n − 2 , and dim(L3) = 3 ,

and thus L3 ∩ W3 6= ∅, and all vectors w with nonzero component in v1 or v2

cannot be in this intersection, and so the only vector in the intersection must
be v3. Thus, lim supt→+∞

1
t
log ‖Φ(t)v3‖ = λs

3 and v3 ∈ W3\W4.

Continuing in this way, we obtain the result for the lim sup’s. The result for
the lim inf’s is identical, upon recalling Proposition 2.10. 2

Remark 5.9 Upon noticing that X(t) = U(t)Σ(t)V T (t) implies X−T (t) =
U(t)Σ−1(t)V T (t), for all t ≥ 0, and in the same situation of Theorem 5.8, the
matrix V [en, . . . , e1] is a normal basis for the adjoint problem.

Corollary 5.10 With same assumptions of Theorem 5.8, assume system (4)
is also regular. Then, for each j = 1, . . . , n,

lim
t→+∞

1

t
log ‖Φ(t)vj‖ = λj.
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Remark 5.11 Suppose that instead of the principal matrix solution, we had
considered another fundamental matrix solution X with initial conditions
X(0) = X0, and let X = UΣV T be the SVD of this X. Then, again, as
t → +∞, V (t) → Ṽ , and the columns of Ṽ now provide the appropriate
directional information relative to this new fundamental solution.

Theorem 5.12 With same assumptions of Theorem 5.8, let ΣED =
⋃m

i=1[aj, bj].
Then, for j = 1, . . . , m, we have

Nj = span{vk, . . . , vl} ,

where k and l, k < l, are such that

λs
l+1 < aj < λi

l, λs
k < bj < λi

k−1.

Proof The statement follows from Theorem 5.8, Corollary 3.12, and Remark
5.9. So, Wk = span(vk, . . . , vn) and Ln−l+1 = span(v1, . . . , vl). 2

Corollary 5.13 Under the same assumptions of Theorem 5.12, and assuming
that ΣED is made up by at least two intervals, we have that the subspaces Nj

and Nk are perpendicular to each other, for any j, k, j 6= k.

Proof The proof follows from the representation of the subspaces Nj given
in Theorem 5.12, since the vectors {v1, . . . , vn} are all mutually orthogonal. 2

A final interesting consequence of having (4) integrally separated is that not
only the system, but also the subspaces Nj’s are pairwise integrally separated.

Theorem 5.14 Under the same assumptions of Theorem 5.12, assume fur-
ther that ΣED does not reduce to a unique interval, and let y0 ∈ Nj and
z0 ∈ Np, j > p. Then, the functions y(t) = Φ(t)y0 and z(t) = Φ(t)z0, for all
t ≥ 0, are integrally separated functions.

Proof Consider the quotient ‖y(t)‖
‖y(s)‖

‖z(s)‖
‖z(t)‖

for all t ≥ s ≥ 0. Because of Remark
3.10, we thus have for all t ≥ s ≥ 0:

‖y(t)‖

‖y(s)‖

‖z(s)‖

‖z(t)‖
≥

1

Kj−1
eaj (t−s) 1

Kp
e−bp(t−s) =

1

Kj−1Kp
e(aj−bp)(t−s)

and integral separation follows, since aj > bp and Kj−1, Kp ≥ 1. 2

To complete this section, we stress that Theorem 5.8 tells us that, as long as
(4) has stable and distinct LEs, the initial conditions given by V form a normal
basis. But, in general, we cannot say that V leads to an integrally separated
fundamental matrix solution. The next result gives us a natural condition of
when this is true.
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Corollary 5.15 Suppose that (4) is integrally separated and that ΣED is given
by n disjoint subintervals: ΣED = ∪n

i=1[ai, bi], with a1 ≤ b1 < · · · < an ≤
bn. Then, the initial condition given by V leads to an integrally separated
fundamental matrix solution.

Proof This is an obvious consequence of Theorems 5.12 and 5.14. 2

6 Conclusions

In this paper we have considered the use of the SVD of a fundamental ma-
trix solution, in order to extract the Lyapunov and Dichotomy spectra of a
given system. Albeit SVD based techinques have been used before for approx-
imating Lyapunov exponents of (1) via the setup provided by the MET, a
thorough justification for their use to approximate spectra had not been pre-
viously undertaken. Although the MET of Oseledec may be indirectly used
in support of SVD methods, we have favored use of the assumption of stable
and distinct Lyapunov exponents, hence justified our analysis for integrally
separated linear systems. This is much more in tune with the practical success
of a numerical technique, and it has allowed us to take the theory for SVD
methods a step closer to that of QR methods, for which a thorough justifica-
tion for integrally separated fundamental matrix solutions had been already
done, see [12]. Still, comparison of the relative merits of SVD and QR meth-
ods was beyond our intention in this paper, and in fact our point of view is
that these techniques should complement and not replace each other. Thus,
it is important to appreciate what the SVD methods can offer that the QR
methods (at least, with our present understanding) do not. For example, we
have shown that SVD methods allow to obtain the set of directions associated
to the spectral intervals, via the matrix V . Possibly, also QR methods can be
used to obtain this directional information, and one may want to adapt our
results to QR methods, working with the matrix Z of [12, Lemma 7.4] rather
than V . This is yet to be done, and (even if theoretically feasible) a different
implementation of QR methods would be needed since such matrix Z is not
obtained with the usual implementation. On the other side, QR methods are
theoretically justified ([13]) as techniques to approximate spectral intervals as
long as the intervals are stable, a condition less stringent than that of hav-
ing stable and distinct Lyapunov exponents. Some further comments on the
relative merits of SVD versus QR techniques are in [8], to which we refer for
algorithmic aspects of SVD methods as well.

Our analysis in this paper has been for linear problems. This is unavoidable,
since the spectra we considered are defined for linear problems. So, what infor-
mation do these spectra give when one considers the nonlinear problem (1)?
What do we make of the MET, and of the measurable spectrum? Technically
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speaking, our results apply to the single linear system obtained by lineariza-
tion along the specific trajectory of initial condition x0. If this trajectory is on
an attractor with a uniquely defined invariant and ergodic measure, then the
spectral information we are obtaining is representative of the whole system.
Regretfully, there are not very many theoretical results on attractors with
a unique ergodic measure. Alternatively, one may need to take the point of
view of Johnson-Palmer-Sell, see [18], consider all invariant measures on the
attractor, and compute spectra with respect to each of these. In general, this
also seems to be a daunting task. The above notwithstanding, we ought to
appreciate the importance of our emphasis on the stability of the Lyapunov
exponents, rather than, say, of regularity for the linear system. In any given
situation, we will at best be able to accurately approximate the solution of
the nonlinear system, and thus we will at best obtain a linear system close
to the one we wanted to consider. This is why we have insisted on conditions
guaranteeing that these systems have close spectra.

There are several directions which need to be pursued to complete and extend
the present work. In particular, analysis of SVD methods assuming stable
(and not stable and distinct) Lyapunov exponents remains to be done. How
to estimate both constants in the integral separation relation (26), and not
just a, is also a problem of interest, since it ultimately helps to give upper
bounds on the value of t after which the singular values are guaranteed to
be distinct. Extension of the analysis to the case of only a few (dominant)
spectral intervals also needs to be carried out, as well as specialized analysis
for parameter dependent systems, to see how to setup continuation of SVD
factors in that context. Finally, there are a host of practical issues to be dealt
with, some of them tackled/reviewed in [8]. We are presently thinking about
some of these problems.
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