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Abstract

In this paper we consider the singular value decomposition (SVD) of a fundamental
matrix solution in order to approximate the Lyapunov and Exponential Dichotomy
spectra of a given system. One of our main results is to prove that SVD techniques
are sound approaches for systems with stable and distinct Lyapunov exponents.
We also show how the information which emerges with the SVD techniques can be
used to obtain information on the growth directions associated to given spectral
intervals.
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1 Introduction

Our goal in this work is to examine the feasibility of techniques based on the
Singular Value Decomposition (SVD) to approximate spectra of dynamical
systems, and at the same time to explore what additional information becomes
available when using SVD techniques, and how it can be used. The spectra of
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interest to us are the so-called Lyapunov and Exponential Dichotomy spec-
tra 3p, and Ygp, respectively, to be defined in Sections 2 and 3. As amply
documented elsewhere, these spectra address different concerns: In essence,
whereas Yy, is of use in analyzing variations of (1) below with respect to the
initial condition, Ygp is especially useful when the vector field f in (1) depends
on parameters, and we want to analyze variations with respect to the param-
eters. Finally, it must be appreciated that, although from a theoretical point
of view Lyapunov exponents and exponential dichotomy spectrum have been
studied for many years (e.g., see [1], [7], [18], [25]), it is generally impossible
to obtain these quantities analytically, and numerical methods are required
for their approximation. At the same time, to understand what a numerical
method can offer (and when it works) it is important to distinguish between
assumptions needed for the methods to work and assumptions needed for the
spectra to be robust in the first place. These considerations have guided us in
the present study.

To set the stage, consider the following initial value problem

where f : R"™ — R™ is Lipschitz and continuously differentiable, and let ¢*(z)
be the solution of (1). Some of the most powerful tools to analyze the nonlinear
system (1) rely on the spectral information associated to the linearized system

along ¢'(x):
D(t, o) = Df(¢'(20))D(t, x0) , P(0,20) =1 . (2)

Indeed, one of the most celebrated and powerful results we have at our dis-
posal to study (1) is the Oseledec’s Multiplicative Ergodic Theorem (MET),
[22]. The idea behind this remarkable theorem is well known, but worth stress-
ing once more. Roughly speaking, the MET is based on the realization that
for many systems of physical interest nearly all trajectories settle on a (low
dimensional) bounded attractor, and thus linearized analysis is feasible. More-
over, it is often the case that almost all trajectories on the attractor fill the
attractor densely. Thus, each trajectory is typical of the general behavior, and
linearized analysis along any of these typical trajectories will be conducive to
identical information. This is the idea of the MET. To be precise, one assumes
that the phase space of (1), call it M, is compact, and considers an invariant
measure p on M (the existence of p is ensured by the Krylov Bogoliubov The-
orem, see [27]). Then, the MET states that there is a measurable set B, with
p(B) = 1, such that for all g € B, the following limit exists

Jim (1, 20)" (6, 20)) /¥ = (o). ®)
If we let e* (@) . e*s@o) be the eigenvalues of A(zg), then their logarithms

are called Lyapunov exponents, LEs for short, of (2). If p is ergodic, then the



limit in (3) is the same for all zy € B and it makes sense to talk about the
LEs of the non linear system (1) with respect to the measure p; in [18], this
is called the measurable spectrum. The MET has found wide ranging and far
reaching applications, in finite and infinite dimensional settings, as a glance at
the extensive bibliography in [2] attests. As a result, Lyapunov exponents are
routinely used in applications, not only to measure stability of the given tra-
jectory, but also to estimate dimension of an attractor, entropy of a system,
to establish chaotic behavior, and they are also of use in studies of nonau-
tonomous bifurcations, as well as to assess continuability and/or bifurcations
of invariant manifolds; e.g., see [2,3,4,14,23].

At the same time, the MET suggests a way for the numerical approximation
of the LEs: If one could compute the singular value decomposition of the
fundamental matrix solution ®(t, zo), ®(t, ) = U(t)2(¢t)V7T(t), then, for large
t, the time average of the logarithms of the singular values will approach the
LEs. Indeed, methods based on both a continuous and a discrete version of the
SVD of the fundamental matrix ®(¢, zo) have been used in the literature (e.g.,
see [16], [15], and [26]), though theoretical justification on the use of these
methods is largely absent. Two exceptions are the work [21], which deals with
the linear algebraic aspects of a discrete SVD technique, and [12], which is an
initial attempt to justify SVD methods for approximation of Xp. One of our
goals in this work is to put SVD techniques on safer ground, by continuing
and adapting the approach that the authors used in [12] for so-called QR
methods. Indeed, ever since the work [5], most people have favored a different
class of methods to approximate the LEs, based on the QR decomposition
of an appropriate fundamental matrix solution of the linearized problem. To

appreciate the issues involved, we need to quickly review the classical theory
of LEs.

Consider the linear system
X—AWX, (=0, (4)

where A : RT — R™ " is continuous and bounded, and X is some fundamental
matrix solution (i.e., X (0) is invertible). For later reference, we will reserve the
notation & to indicate the principal matrix solution of (4): ®(0) = I. Define
the following quantities

A} = limsup ! log [| X (t)e;|, A% = lim inf 1 log | X (t)e;]| - (5)
t——+o00 t t—+oo ¢

[Here, and elsewhere in this work, the vector norm is always the 2-norm, and

the matrix norm is the induced norm. Also, the vectors e;, 7 = 1,...,n,

are the standard unit vectors.] When 37_; A3 (3}_; A%) is minimized with

respect to all fundamental matrix solutions of the system, the Aj ()\;) are

called upper (lower) Lyapunov exponents and the corresponding X (i.e., X(0))



is said to form a normal basis. Furthermore, for so-called regular systems, one
has A7 = )\;, for all j =1,...,n. (In particular, under the assumptions of the
MET, (2) is regular, though one cannot say that ®(0) is normal.) Now, if we
had a regular, and normal, fundamental matrix solution X, and further had
its unique QR decomposition X (t) = Q(t)R(t) for all ¢ > 0, with @ orthogonal
and R upper triangular with positive diagonal, then we could obtain the LEs
as

1 |
Aj= lim —logRy(t), j=1...,n.

This is the basic idea of the QR methods, though to obtain viable computa-
tional procedures, one must be careful. See [5] for the first algorithmic descrip-
tion of QR methods, and see [11,12] for more recent algorithmic developments
also for non-regular systems, and for approximation of both ¥;, and Ygp.

Notice: As it turns out, regularity is not sufficient to guarantee stability of
the LEs, and this is the main reason that in this work we will instead assume
that (4) is integrally separated, a fact which is conducive to stability of ..

Regardless of regularity, the main conceptual caveat of QR techniques is that
one needs to work with a normal fundamental matrix solution. Lyapunov him-
self had shown more than 100 years ago in his thesis, reprinted in [19], that
there always is a normal fundamental matrix solution. But, in practice, how
do we know if we are working with a normal fundamental matrix solution?
In particular, is the principal matrix solution ® normal? To get around this
impasse, in [5] the authors argued that any randomly chosen initial condition
X (0, o) will almost surely give a normal fundamental matrix solution for (2).
Still, we believe that the entire concept of normal fundamental matrix solution
is a somewhat artificial complication, since the LEs are intrinsic quantities of
the system we have, and we should be able to extract them from any funda-
mental matrix solution, regardless of it being normal. With SVD techniques,
we will prove that we can. This is one potential advantage of SVD over QR
techniques. Another important consequence of SVD methods is that —as we
will show— we are able to approximate not only the LEs, but also the set of
directions leading to specific LEs, and more generally the directions associated
to spectral intervals. Oversimplifying, the situation is similar to being able to
approximate not just the eigenvalues of a matrix, but also the eigenspaces. Of
course, these potential advantages come with a couple of price tags. The first,
and most relevant from the practical point of view, is that SVD techniques
are harder to implement than QR techniques. We refer to [8] for a discussion
of the delicate computational issues one has to face with SVD techniques, and
for a particular implementation. The other is that, at least so far, we are only
able to fully justify SVD techniques in case the original system has stable and
distinct LEs, and this is true also in case we want to obtain Ygp. [In some
cases, we can relax the assumption of distinct LEs, when the system has some
special symmetries, see [9], but not in general.] QR methods, instead, do not



seem to suffer from the theoretical need of having distinct LEs, and have been
fully justified as techniques to approximate ¥y, and Ygp, see [12] and especially
[13], for systems with stable LEs.

A plan of the paper is as follows. In Section 2, we review some of the classical
theory of LEs with particular attention to their stability. Most results in this
section are known, and our contributions are essentially related to the lower
exponents, in particular Theorem 2.6 and Proposition 2.10 are new. In Sec-
tion 3 we discuss YXgp. Our presentation is influenced by the seminal work of
Sacker and Sell, [25]. Our setup is different, though, since we need to work
on the half-line rather than the entire line, because many problems of prac-
tical interest just cannot be integrated backward in time (e.g., the famous
Lorenz system). As a consequence, we need to work with the adjoint problem
as well. Moreover, Theorem 3.2 and especially Theorems 3.9 and 3.11 and
Corollary 3.12 are new and quite useful to identify growth subspaces associ-
ated to the interval making up Ygp, in a way which will be conducive to their
approximation via SVD techniques. In Section 4 we discuss SVD methods.
We emphasize a continuous SVD framework, though the results apply equally
well to so-called discrete SVD techniques. The main result in this section is
Theorem 4.2, showing that SVD methods are capable to approximate ¥, as
long as the LEs are stable and distinct, regardless of which fundamental ma-
trix solution we consider. Analogously, Theorem 4.6 shows that we can get
Ygp from SVD techniques. Section 5 deals with the directional information
associated to 1, and Ygp. We first show that the factor V in the SVD of
X converges exponentially fast to a constant matrix V, this is the content
of Lemma 5.2 and Theorem 5.4. Proposition 5.7 gives a constructive way to
obtain the integral separation constants which we need in our analysis. Also,
we further identify, see Theorems 5.8, 5.12, and 5.14, the columns of V with
appropriate growth directions for ¥, and Xgp. These are some of our main
results, and are all obtained under the assumption of stable and distinct LEs.
We finally give some concluding remarks.

2 Classical theory of Lyapunov exponents

Let f: Rt — R be a non-vanishing function. The following quantities

s : 1 ; o1
X'(f) =limsup —log| /(1)) x'(f) = lminf Zlog|f(H)] . (6)
are called upper, respectively lower, characteristic numbers of f, or equiva-
lently upper, lower, Lyapunov exponents of f. For short, we will write LE
to mean Lyapunov exponent. In a similar way, one defines upper and lower
LEs for vector valued functions, where the absolute values will be replaced



by norms. All norms lead to the same LE, and we will always consider the
2-norm.

To elucidate the meaning of (6), the following characterization is useful. The
characterization for x*(f) is in [1], the one for x*(f) is immediate.

Lemma 2.1 Given a non-vanishing function f : Rt — R, we have

e \°(f) =a <= Ve>0, we have both

; [FACO] ; [FAC2]
limy o =p((arad) — 0 and limsup,_, D) = +00.

e X'(f) =8 <= Ve >0, we have both

: AG] i LAG]
im0 sp(—0n = T and lim inf,;_, oo ((5+90 — 0.

Also the following properties will be handy later.
Property 2.2

(a) Let fi,...fn be n non vanishing scalar functions, then

where equality holds when the maximum characteristic exponent is attained
by only one function.

(b) Let x*(f) < 0 and define F(t) = [;7° f(s)ds. Then, x*(F) < x*(f).

(c) Let x*(f) < 0 and define F(t) = 2% f(t + n7), with T > 0, fized and
finite. Then, x*(F) < x*(f).

Proof The proofs of (a) and (b) are in [1, pp. 27 and 30]. We prove (c).
Let x*(f) = A, then for all € > 0 there exists T > 0 such that for all ¢ > T,
[f(t)] < e For t > T, F(t) < S5 |f(t+ nr)| < 35Ot =
eQFt 5708 (eAF9T)n - and if we choose € such that (A + €) < 0, it follows
|F(t)] < CeP 9 with O = 1_6(% The statement now follows upon observ-
ing that y* does not depend on the chosen initial time. O

2.1 Stability and integral separation

Now consider the linear system (4). In general, the LEs of (4) are not stable
(i.e., continuous) with respect to perturbation of the coefficients, though their
stability is essential for the success of any numerical method used for their
approximation. The standard definition of stability is the following.

Let A\j > ... > A2 be the upper LEs of system (4) and let 7§ > ... > 72 be
the upper LEs of the (perturbed) system ¢ = [A(t) + B(t)]y. Then, (4) has



stable upper LEs if for all € > 0 there exists 6. > 0 such that
IBA)|| <0 = |\ =7l <€, j=1,...n.

An analogous definition can be given for stability of the lower LEs; see also
Proposition 2.7 below.

An important property of stable upper LEs is that they do not change when
the perturbation B is vanishing as ¢t — +o0:

Property 2.3 [1]. If system (4) has stable upper (lower) LEs and B(t) — 0
fort — +oo, then Xs =~5 (Xs =~3) forj=1,...,n.

As we said, not all systems admit stable LEs. The most important class of
systems having stable LEs is that of integrally separated systems.

Definition 2.4 The system (4) is called integrally separated, if there exists a
fundamental matriz solution X of (4) and constants a > 0 and 0 < d < 1
such that

IX el 1X@esel S s
IXG)el 1X Ot =

and for allt=1,...,n— 1.

It is important to notice that integral separation is an intrinsic property of a
given system, just like stability of the LEs.

As we will see shortly, integral separation is a fundamental property for the
justification of our technique. We will need to use several properties related
to integral separation, which we now recall.

Properties 2.5

1. [1, p.148]. Integrally separated systems have distinct and stable upper LEs.

2. [1, p. 172, 149]. If (4) has different upper LEs X\ > ... > X then they
are stable if and only if (4) is integrally separated. Moreover, an integrally
separated fundamental matriz solution, X, is normal, and thus one has \; =
limsup, ., 7log || X (t)e;]l, 1 =1,...,n.

3. [1, p.149]. Integral separation is preserved under Lyapunov transformations.
That is, under a smooth invertible change of variables Z = LX, with L,
L' and L bounded. In the new variables, the coefficient matriz becomes
(LAL™' + LL™Y).

4. [1, p.149]. The diagonal system

s = diag(di(t), .. ., dn(t))2, 8)

is integrally separated if and only if its diagonal is integrally separated. That



18, if the functions dy, . . ., d, are integrally separated, which means that there
exist a > 0 and d > 0 such that

/ Ndi(r) — den(P))dr > alt— ) —d, Vs, t>s>0,  (9)

fori=1,...,n—1.

5. [1, p.172]. System (4) has distinct and stable upper LEs X > A5 > ... > A5,
if and only if there exists a Lyapunov transformation L that reduces the given
system to a diagonal one with integrally separated diagonal.

6. [12]. An upper triangular system R = BR, where B is bounded and has

integrally separated diagonal, has an integrally separated fundamental matrix
solution.

7. [24]. Integral separation is a generic property in the Banach space of con-

tinuous and bounded coefficients’ functions with the sup-norm: d(A, B) =
sup, [|A — Bl|oc-

We will also need a property of the lower characteristic number of the sum of
functions.

Theorem 2.6 Given non vanishing functions f1, fa, ..., fn, such that

i@/ fin @] > de™ , i=1,2,...n—1,

for some 0 < a and 0 < d < 1, then we have

xi(é ) = (). (10)

Proof Under the stated assumption, x*(f1) > x‘(f2) > ... > x*(fu). In

particular, forall i =1,... n—1, lim; ., % log “;}*i(lt()t‘)' = 0. It then follows

. n . . 1 n
X' (Z fk> = I%m inf — log | Z fr(®)]
=1 —Foo t k=1

I falt) fa(t)
=i o 011+ 15 o+
=it o A0+l Flos Lt 7oyt fl(t)|

= Xi(fl)'
O

We now proceed to obtain some results on the lower LEs as well. To do this,
we will use the adjoint system

y=-At)"y, (11)



and we recall that if X is a fundamental matrix solution of (4) then X7 is a
fundamental matrix solution of (11).

Proposition 2.7 Suppose (4) is integrally separated and let p5 > p5 ... > pd
be the upper LEs of the adjoint system (11). Then pu§ = =X, ..., us = —\}.
Moreover, the lower LEs are stable and distinct: X\ > X5 ... > AL,

Proof We know that there is an integrally separated matrix solution, X.
Further, because of Properties 2.5-5, (4) is reducible to the integrally separated
diagonal system Z = diag[d;(t),...,d,(t)]z via a Lyapunov transformation,
Z = LX. Consider then X~ TP = LTZ~1P where P is the permutation P =
[eny €n_1,...,e1] and further let W = Z~'P. Thus, (11) is reducible to w =
—[dn(t),...,di(t)]w, which is integrally separated. Therefore:

1 t
uizhm&m—k%e7%%@s—1mmm)——/cl )ds)

t—+00 t——+o00

1 .
= —liminf — d (s)ds = =\, ;

t—+oo { Jo

the equality for the other LEs can be proven analogously. Since the w-system
is integrally separated, we have pf > p5 > --- > p and they are stable as
well. O

Under the assumption of distinct and stable LEs, we now define the Lya-
punov spectrum X, of (4) as

EJ (X, A5 (12)

Because of Proposition 2.7, this definition of ¥;, coincides with that given in
[13].

2.2 Directions leading to the LEs

To reach a complete understanding of stability of (4), the growth information
enclosed in X, must be complemented with appropriate geometrical informa-
tion on the subspaces of solutions which eventually achieve a specific growth.

For this reason, let A3, j = 1,...,p, be the distinct upper LEs of (4). For
J =1,...,p, define the set W; to be the set of all initial conditions w such
that for the solution ®(t)w, t > 0, we have x*(®(-)w) < A3. That is:

Of course, we can equivalently identify W; with the space of all solutions whose
upper LE does not exceed Aj.



Proposition 2.8 [1]. Let n; be the greatest number of linearly independent
solutions = of (4) such that limsup, ., ¢log|lz(t)|| = X;. Then W is an
n;-dimensional linear subspace of R™.

Remark 2.9 In [1], and to prove this fact Property 2.2-(a) is essential, it is
also showed that the W;’s are a filtration of R™. That is, if p is the number of
distinct upper LEs of the system, we have

R”leDWQ...DWpDWpH:{O}. (14)
Therefore, limsup, ., . +log ||®(t)w|| = A3 if and only if w € W;\W;,. Notice
that if we have n distinct upper LEs, then each W;, j = 1,...,n, has dimension
(n—j+1).

Let V; be the orthogonal complement of W;,; in W}, i.e.
W; =W; 1 &V}, Vi L Wi

Then R" = Vi®Va®. . .V, Moreover, if w € V; then limsup,_, , . 7 log ||®(t)w]|| =
A3. Notice that if we have distinct LEs, then dim(V}) =1 forall j =1,... n.

As we will see in Section 5, by the SVD technique we will be able to approxi-
mate these V;’s.

We now show that the W;’s, for integrally separated systems, characterize the
set of initial conditions leading to lower Lyapunov exponents as well.

Proposition 2.10 Assume (4) is integrally separated, and let W, j=1,...,n,
be defined as above. Then, similarly to Proposition 2.8, for all j =1,2,...,n,
we have

W, = {w e R : X{(®()w) < X . (15)

Proof Let X be an integrally separated fundamental matrix solution, and
let z;(t) = X(t)e;, ¢ = 1,...,n, ¥t > 0. Then, from (7), we have that for all
1=1,...,n— 1, there is some constant ¢ such that

z:(t)|| > ce™||zia(B)]|, VE>0.

This implies that the x* and the x* of the columns of X are different and
hence must attain the entire set of upper and lower LEs:

, 1 s 1 VR
ltrgfipglogllxj(t)ll = A7, liminf S logllz;(®)l = A7, j=1,2,...,n.
By what we said in Remark 2.9, dim(W,,) = 1, and thus span(z,(0)) = W,
and (15) follows in the case of j = n. Next, consider j = n — 1. In this case,
we know that dim(W,,_;) = 2 and that z,,_;(0) € W,_;. Since the W,’s are a
filtration, we must have that both vectors z,(0) and x,_1(0) are in W,,_; and

10



thus W,,_; is their span (since they obviously are independent). So, if we now
take a vector w € W,,_1, w # 0, we can write w = ¢,2,(0) + ¢,_12,-1(0), and
we can assume ¢,_1 # 0. So, we have

1
hm mf log |2(t)w| = I}/mjnf p log ||cnn (t) + cno1Tn-1(t)]| =

cnxn(t) Ty 1(t

[0 R PO

and reasoning like in Theorem 2.6 we obtain that x*(®(-)w) = A!_;. The proof
follows by repeating this argument. O

.1

3 Exponential dichotomy spectrum

System (4) admits an exponential dichotomy in [0, +00) if there exists a pro-
jection P and real numbers K > 1, a > 0 s.t.

IX(H)PX(s)7 M| < Ke %) Vis, t>s>0,

16
X - P)X(s) < Ke*, wis o<i<s OO

where with X we denote any fundamental matrix solution of the system.
Let X = &, the principal matrix solution, then P selects a subspace in R"
such that all solutions in it (respectively in the complementary subspace) are
uniformly exponentially decreasing (increasing); i.e, exponential dichotomy is
a generalization of the concept of hyperbolicity for autonomous systems.

Several properties of exponential dichotomy are useful. Two of them follow,
see [7,25].

o Let ty > 0, then if (4) admits exponential dichotomy in [tg, +00), it admits
exponential dichotomy in [0, 4+00) as well, with same «.

e Let P be a projection matrix with same range as P and suppose (4) ad-
mits an exponential dichotomy with projection P. Then it also admits an
exponential dichotomy with projection P’ and same «. Therefore, one can
always choose P to be an orthogonal, symmetric, projection. We will freely
assume this to be the case.

Remark 3.1 By transposing the quantities in the norms in (16), and using
the fact that the projection is (or can be chosen to be) symmetric, we ob-
serve that if we let ) = I — P, then the adjoint problem has an exponential
dichotomy with same constants, but projection Q:

IX~T(5)QXT (1) < Ke oY,

>¢>0
IX7(s)(I = QXT (1) < Ke™™ 0 <

- (17)
s<t.

11



The exponential dichotomy spectrum of (4), denote it with Ygp(A), or
more simply Ygp when no ambiguity can arise, is the set of all real values A
such that the shifted system

= (A(t) — M)z, (18)

does not admit exponential dichotomy. The complement in R of Xgp(A) is
called the resolvent, which we denote by p. The following properties of Xgp
are well known (see [7,25]).

e Ygp is the union of m disjoint closed intervals, m < n:
YED = U[al,bl] Doay Sbl <a2§bg <---<am§bm.

e Ygp is stable. This means that, however we take A € ¥gp, and for any € > 0,
there exists d, such that for the perturbed system

2= [A@1) +C@)lz, up IC@I < dc,

te[0,4-00
there is a € Ygp(A + C) with
A —al <e. (19)

About the stability of ¥gp, more can be said in case the given perturbation

goes to zero. The following result has an analog for >y, for systems with stable
LEs in [1, Theorem 5.2.1].

Theorem 3.2 Consider the following perturbation of (4), & = [A(t)+ B(t)]x,
fort >0, where lim;_, . ||B(t)|| = 0. Then

EED(A + B) = EED(A)

Proof By contradiction, suppose that the two spectra are different. Then,
without loss of generality, we can assume that there exists A € Ygp(A) such
that A ¢ Ygp(A+ B). Let 0 < @ = min,exg,,(at+p) |A — 7| and set € = §. Being
Yep(A) stable, there exists d. such that there is an a € Xgp(A + C) of the
perturbed system

z=[A@) + C)lz, sup [[C(@)]| <0,

te[0,+00)

with |\ — a| < e. Now let T" > 0 be such that ||B(t)|| < d. for all t > T and
set C(t) = B(t) fort > T. For t < T, C(t) = C(t), where C is such that
supc(o.71 [|C(t)|| < dc and C(T) = B(T). But, being C' a perturbation finite
in time of B, ¥gp(A + C) = Xgp(A + B) and this with (19) contradicts the

hypothesis that the two spectra are different. O

12



The setup below is adapted from that in [25]. We will now show, as we did for
the Lyapunov spectrum, that there are linear subspaces associated to Ygp. In
order to do so, let us define the following sets (stable and unstable sets):

Su={w eR"| lim e [|o(t)w] =0},

U, ={w e R lim e"||o~"(t)w| = 0},
where ® and ®~7T are the principal matrix solutions of (4) and (11), respec-
tively.
S, and U, satisfy the following

Property 3.3

(a) S, N, ={0}.
(b) If 1 < po then S, € S,, and U,, D U,, .

Proof We just show (a), since (b) is easy to verify. For any given ¢ > 0, and
for any w € R", we have

T

[wll? = (077 (1)) (@()w) < [o@w] et - (20)
Now, if w € §,, w # 0, then e”tm — +00 as t — 4o00. From this and
(20) we have

1

ut <I>_Tt > wt
e 1 0w 2 e

——F — +00, as t — +00 ,
[@(t)wl|

this implying w ¢ U,. In the same way we can show that if w € U, then
wé¢S,. O

Theorem 3.4 Let 11 € p(A), and denote with ®,, and ®," respectively the

principal matriz solution of system (18) (with A = u there) and of its adjoint.
Let P, and Q,, be the projections in (16) and (17) for ®, and ®,". Then

Range(P,) =S, , Range(Q,) = U,,.

Proof Take w = P,c. Then, by setting s = 0 in the first of (16) we have

|2, ()w] = [|9u(t) Pu®,(0)c]]
< 9w ()Pu®,(0) |l
< Klc[[e ™ —0 as t— +oo, (21)

and this implies w € §,,.
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Similarly, let w = @Q,b. Then, using ¢t = 0 in the first of (17) we have
12,7 (s)w|l = [, (5)Qu . (0)b]| < K[lblle™ — 0 as ¢ — +o0,

and so w € U,,.
Finally, S, NU, = {0} and dim(Range(P,)) + dim(Range(Q,)) = n, so we
must have Range(P,) = S, and Range(Q,) = U,,. O

The next two results are immediate.

Lemma 3.5 Let py and py € p, py < po. If S,y = S, and U,, = U, then
[:ulnu2] Cp and S,u = 8}11) u,u = Z/{m; fOT every [ € [:ulv/JQ]-

Corollary 3.6 Let juy, pa € p, 11 < fa, such that [u1, pe] N Xgp # 0. Then
Sn Uy # {0},

Choose now g < 1 < ... < fim, i € p, 2 = 0,...,m, in such a way that
YEp N (-1, ) = [aj,b5] # 0. To every interval [a;,b;] we can associate a
linear subspace.

Theorem 3.7 Let N; = S, NU,_,, for j=1,...,m. Then N; is a linear
subspace with dim N; > 1. Moreover the following properties are true

(a) Ny NN ={0}, for k # 1.
(b) R" =M, & ... D N,,.

Proof That N is a linear subspace, follows from it being the intersection
of linear subspaces. That dim N > 1, follows from Corollary 3.6. In order to
prove (a), we can assume without loss of generality that & < I. Then N} C S,,, ,
N U, , CU,. ButS, NU, = {0}, and the claim follows.

To prove (b), notice that U,, = R™. Then

R" :uuo N (Sm @um) = (uuo mSm) @um =
=MoU, NS, PUL)=...=N1D... BN,

O

Next, we give a geometrical characterization of the subspaces N’s. The first
result is in [25] and shows the relation between the Lyapunov exponents and
the intervals [a;, b;].

Theorem 3.8 With same notation of Theorem 3.7, let w € N; and

lim sup,_, , o 7 log |P(t)w|| = x*, liminf,_ ;o 7 log | (t)w|| = x*. Then

Xs, XZ - [aj,bj].
Proof For a proof, see [25]. O
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The following theorem characterizes the subspaces N;’s as those subspaces of
initial conditions giving growth behavior between a; and b;, uniformly.

Theorem 3.9 With same notation of Theorem 3.7, we have w € N, w # 0,
if and only if

[P (H)w]] by (1 (-5 - 27 (s)w]|
L S Ke J(t S) , and 6a’J (t 8) S -
[(s)w] = Kj [@=T(t)w]]

(22)

forallt,s:t > s >0 and where K; > 1 and K;_1 > 1 are constants defined
in the proof below.

Proof

(=) If p; is in the resolvent, then the shifted system @ = (A(t) — p; 1)z admits
an exponential dichotomy. Denote with @, its principal matrix solution and
let P; be the projection in (16) for X = ®,, , and a; > 0, K; > 1, the associated
dichotomy constants. In the same way, denote with @);_; the projection for the
adjoint system corresponding to u = p;—1, and K;_1,;_; be the associated
dichotomy constants. Then, using Theorem 3.4, w € Nj, w # 0, implies
w € S, = Range(P;), w = Pjc, and for t > s,

[P, @l _ 119, () 5Py (5) By (5) el
Dy, (s)w]] 1Py, (5) Pyl

< [ @y, (6) P, ()] < Kjem =2,

Then Illlizj:((?)zllll < Kjetima)t=s) < [ ebit=9) since (see Lemma 3.5) 17 can be
J

chosen in (b;,b; + o).

Analogously, w € Nj, w # 0, implies w € U, , = Range(Q;_1) = Range(/ —
P;_1), w= Qj_1b. Then (see (17)) for s >t >0

10,5 (Swll 1957, (5)Q51®,, ()T, (H)Q; 10|
125, ()wl] 1977, () Q10

<1, (5)Qi12, ()]

< Kj_le—ajfl(s—t)‘

From the last inequality, for s > t, we get

-7
||<I> (t)wH e(ujfl"l‘a]’fl)(s—t) > 1 eaj(s—t)’
[T (s)w] — Kja T K

since p;j_1 can be chosen in (a; — a1, a;). So, we showed that w € A implies
(22).

(<) Suppose now that w € R™ is such that (22) holds. Using the first inequal-
ity in (22) with s = 0, we get that ||®,, (t)w| — 0 as t — +o0. Likewise, using

15



the second inequality in (22), with s = 0, gives ||<I>/;£1 (t)w| — 0 as t — +o0.
Therefore, w € S, N"U,,_,. O

Remark 3.10 One implication in Theorem 3.9 can be replaced by a simpler
one. In fact, if w € Nj, we can replace (22) with

1 aj(t—s) < ||®(t)w|| < K'ebj(t_s)

— ¢ < < L t>s5>0.
Kj [®(s)w]| ’

This is because if w € Uy, ,, w = Q;_1b, we can use the first of (17) for
s >t >0, after transposing its argument. So doing we get:

[Py, (D] _ H(I)/ijl(t)Qj—lq);J{I(S)q)ujil(S)wH
[y, (s)w] 1@, , (s)w]
< ”(I)Hj—l (t)Qj—l(I)_l (S)H < [(j'_le_()lﬂ'*l(‘g_'f)7

Hj—1

[@(s)w|
and thus EOm

| > A et for s > t.

Kj,1

A simple characterization of N can be given when the system is integrally
separated.

Theorem 3.11 Assume that (4) is integrally separated. Denote with Wy, the
linear space associated to X; for the system (4), and with Ly the linear space
associated to p; for the system (11). Then

SM = Wka uu = Ln—k+2a
where k is such that

A < <Ny, B gy > > [y g -

Proof If w € S, then e #||®(t)w]|| — 0 for t — +o0. So,

lim sup,_, , o, 7 1og |®(t)w|| < p and it follows that

lim sup,_, , o, 7 log [|®(t)w]| < A} and w € W.

Let now w € Wj. Then, lim,_ . e~ AF9|®(t)w|| = 0 and this implies w €
S,. For U,, we proceed similarly. If w € U, then e*|d~"(tH)w| — 0 for
t — +00. Thus limsup,_, , 1 log||®~ 7 (¢t)w|| < —pu, so that

lim sup, o, 3 10g |27 (O)w]| < 15,y 1o. O

Using Proposition 2.7, the following is immediate.

Corollary 3.12 With same assumptions and notations as in Theorems 3.7
and 3.11,

/\/}:kaLn—l+1 3 jzl,...,m >
where the indices k and [, k <, are such that

Ab <y < Apn 41 < Hj—1 <AL
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Example 3.13 Assume system (4) to be integrally separated and let X be
an integrally separated fundamental matrix solution. Let X (0) = Xy, and so
X;TP, with P = [e,,...,e] leads to an integrally separated fundamental
matrix solution for the adjoint system. In this context

N; = span(Xoleg, ..., e,]) N span(X; Tler, ..., e]l),

where k and [ are chosen as in the statement of Corollary 3.12.

4 The SVD method

Next we examine a technique to approximate the spectra based upon the SVD
of a fundamental matrix solution of (4). As we said, the technique of choice to
approximate Lyapunov exponents (and more generally the spectra) has been
one based on the QR decomposition of the matrix solution ([5,11,12]), but
also methods based on the SVD of a fundamental matrix solution have been
used; e.g., see [15,16,26]. In these cited works, SVD methods have appeared
in two flavors: discrete and continuous. Though conceptually equivalent, each
has distinct advantages/disadvantages, some of which will be reviewed in [8].

Of course, SVD methods have a sound justification for approximating Lya-
punov exponents: The Multiplicative Ergodic Theorem, see (3). Indeed, in the
discrete SVD method one keeps the principal matrix solution at time ¢, say
d(t, z0) in (3), as a product of transition matrices on short subintervals, and
then seeks an SVD decomposition of this product without forming it (a well
written algorithmic description is in [26]). In principle, in the limit, this will
enable approximation of the Lyapunov exponents associated to the underly-
ing regular system, [21]. However, there is little general justification of SVD
methods for approximating ¥, and YXgp. Our goal in this section is to rectify
this situation, by strengthening and carrying forward the initial contribution
of [12]. We will take the viewpoint of a continuous SVD method, though of
course our analysis will justify use of a discrete SVD method as well.

The continuous method looks for a smooth SVD of a fundamental matrix
solution X: X (t) = U(t)X(t)VT(t), t > 0, where U and V are orthogonal and
Y, = diag(oy,...,0,). The existence of an SVD of X (¢) at every instant ¢ is
a well known fact, but it is not at all obvious that the factors can be taken
smooth in t (e.g., see [6], [10]). Still, if the singular values are distinct, an
SVD exists, as smooth as X, and differential equations for U, ¥ and V can
be derived (e.g., see [12,28]). To be precise, given initial condition X (0) =
U(0)X(0)VT(0), then —if the singular values of X (¢) are distinct for all ¢~ we
have:
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6, =Cyuo; , i=1,....,n,where C =UTAU, (23)
U= UH , (24)
V= VK . (25)

Here, H and K are skew-symmetric functions whose entries for ¢ > j are

2 2
Cij0; — CjiO; (cij + ¢ji)oio;

-
2 2 i 2 2
o5 — 0o; o5 —o;

hij -

Notice that if X(0) has distinct singular values, then U(0) and V(0) are
uniquely defined up to joint changes of sign for their columns.

In what follows, the precise value of X (0) will be irrelevant, and our results
will apply to any fundamental matrix solution. Indeed, our standing hypothesis
will be the integral separation of the singular values of any fundamental matrix
solution X of (4). Le., if o1(¢) > ... > 0,(t) are the ordered singular values
of X(t), t >0, we will assume that there exist @ > 0 and 0 < x < 1 such that

0(t) oj1(s)
i(8) 0j41(t)

> ke Yj=1,....n—1, and ¥t >s5>0. (26)

~—

Q

This assumption might seem somehow restrictive. However, we shall see shortly
that it is equivalent to require that the system admits stable and distinct LEs.

When (26) holds, parts (a) and (b) of the Proposition below are proved in
[12]. Part (c) is an easy consequence of (b).

Proposition 4.1 Let X be a fundamental matriz solution and assume that it
admits a smooth SVD, X = UXVT, and that the diagonal of C = UT AU is
integrally separated. Then the following hold true.

(a) There exists a finite t > 0, such that for all t >,
O'j(t)>0'j+1(t) , j=1,...,.n—1. (27)
(b) Fort>Tin (a), let K =VTV. Then

Jim K(5)=0. 23)
and the convergence of K to 0 is exponentially fast.
(¢) Moreover,
lim V(t) =V, (29)

t——+o0

where V is a constant orthogonal matriz.

In the next section, we shall examine the rate of convergence of V to V.
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Our next result is fundamental, and it justifies use of the SVD to obtain the
LEs.

Theorem 4.2 The system (4) has stable and distinct LEs if and only if for
any fundamental matriz solution X the singular values of X are integrally
separated. Moreover, if X is a fundamental matriz solution, the LEs of the
system can be obtained as

1 - 1
Aj = htrilfip p logo;(t) , A= lﬂlﬁél,f n logo;(t) , (30)

where with o; we denote the j-th ordered singular value of X.
In order to prove the theorem, the following lemma is needed.

Lemma 4.3 Let A, B € R™™™ be two nxn non singular matrices. Let o1(A) >
.2 0,(A)>0,01(B)>...>0,(B)>0and 01(AB) > ... > 0,(AB) > 0
be the ordered singular values of A, B and AB respectively. Then for all i =
1,....n

0i(A)o,(B) < 0;(AB) < 0;(A)o1(B).

Proof This is in [17]. In fact, in [17, Theorem 3.3.16] it is proven that
0;(AB) < 0;(A)o1(B). Using this once more in the form o;(A) = 0;((AB)B™') <
0;(AB)oy(B™!) gives the remaining inequality. O

Proof of Theorem 4.2. (=) Let the system have stable and distinct LEs. Then,
it admits an integrally separated fundamental matrix solution X. Moreover, by
Properties 2.5-5, there exists a Lyapunov transformation L such that X = LZ
where Z = diag(zy, ..., 2,) is the principal matrix solution of system (8). By
the integral separation of the d;’s, there exist a > 0 and d > 0 such that

zi(t) zit1(s) — e f:(di(s)—diﬂ(s))ds > palt=s) ,—d
zi(s) zit1(t) B ’
Denote with of(X) > ... > ¢! (X) the ordered singular values of X (¢) for all
t € R*. Then by Lemma 4.3, for alli = 1,2,...,n, and all ¢ > s > 0, we have
(X) 071 (X) _ oi(LLT'X) 03y (LLT'X) 0 (D)op(L) 2i(F) 2iga (s)
(X)ofa (X)) of(LLT'X) 0f 1 (LL7IX) = of(L)of(L) 2i(s) zia ()

(3

VtE>s>0.  (31)

~—

t
7
s

g
g;

> ea(t—s)e—d ’

R(L(t))R(L(s))
where i = 1,...,n—1 and k(L(t)) is the condition number of the matrix L(t)
in the spectral norm. Similarly for k(L(s)), and we remark that x(L(t)) > 1,
for all t. Now, being L a Lyapunov transformation, 1/x(L) is bounded away
from zero and the integral separation of the singular values of X follows by
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taking k = ~EOWEED )K ) . We still need to prove that for any funda-
mental matrlx solutlon tﬁe smgular values are integrally separated. Let X be
the initial condition for the given integrally separated fundamental matrix so-
lution X, i.e. X(0) = Xo. Also, let X be another fundamental matrix solution
corresponding to initial condition X,. Then, for all t, X () = X (t) X, ' X, and

oK) ot (X)  ot(X) ot (X) 1
o} oy

(X) ot (X) — 03 (X) 011 (X)) (k(Xo)r(Xo))?

and integral separation of the singular values of X follows by using K =

Km with x as in the previous argument.

(<) The argument here is similar to one used in [12, Theorem 5.1], although
our assumptions are different than those in this cited result. Suppose that,
for any fundamental matrix solution of (4), the singular values are integrally
separated. Let X be any such fundamental matrix solution. Then, there exists
a time ¢ = £(X) such that the singular values are distinct for all ¢ > ¢ (see
Proposition 4.1-(a)). The equations for a smooth SVD of X, X = UXV7T can
then be given for t > 7. Let P = UTX = XV7T t > £. Then P satisfies the
following differential equation

= (diag(C) — KX P. (32)

Let E =XKY ! Then, fori=1,...,n, e;; = ki; = 0, while for i < j

oj 0,0; Oj 1

j 95 9j
ej; = kji— = |cij + ¢ — = |¢ij + Cji) =
j iy, [cis y]aiz o2 o; [cis J]Ué )

o*
J

By the assumption of integral separation, it follows o;(t)/o;(t) >

0:(t)/o;(1)el=Dat=D =) — 00 for t — +o0. Then if we denote with low(E)
and upp(FE) respectively the strictly lower and upper triangular part of FE,
low(E) — 0 for t — +00. Consider the following system

= (diag(C) + upp(FE))P. (33)

Because of the assumption that the singular values of X are integrally sepa-
rated, the diagonal of C' is integrally separated and, by Properties 2.5-6 (33)
has an integrally separated fundamental matrix solution, i.e. distinct and sta-
ble LEs. By Property 2.3, system (32) must have distinct and stable LEs as
well, and the same is true for system (4) since U is a Lyapunov transformation.

Finally, being the LEs stable and distinct, we can consider the Lyapunov

spectrum of (4), as in (12). By what we just proved, ¥, of (33) and (4) are
the same. In [12, Theorem 5.1], it is shown that, under the assumption of
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integral separation of the diagonal of C', ¥, of (33) is obtained as

s 1 Lt P L
A= htrgfip A cj;(T)dr A= I%Lnjgglof T cj;(T)dr.

Then (30) follows from o, (t) = o;(f)e)s /7% and the irrelevance for the LEs
of what happens up to the finite time . O

Remark 4.4 In order to prove Theorem 4.2, we relied on the continuous SVD
of the fundamental matrix solution. However, it must be stressed that this
result validates SVD-based techniques for the approximation of LEs no matter
which method is applied to find the SVD. As a consequence, it provides also
a justification for techniques based on the discrete SVD of any fundamental
matrix solution of the system.

Remark 4.5 Obviously, all fundamental matrix solutions with orthogonal
initial conditions have same singular values. In particular, the constants for
the integral separation a, x, and the time ¢ > 0 after which the singular values
are distinct (see (26) and (27)), must be the same for all fundamental matrix
solutions with orthogonal initial conditions. Then, in the absence of better
reasons to the contrary, and to be consistent with nonlinear problems, we may
as well apply SVD techniques to the principal matrix solution ® of system (4).

Theorem 4.2 suggests also how to evaluate Ygp under the hypothesis of stable
and distinct LEs, as the following result highlights.

Theorem 4.6 Assume (4) has stable and distinct LEs. Then it has the same
exponential dichotomy spectrum as the diagonal system

> = diag(C)X.

Proof The proof is analogous to the one given for Theorem 4.2. Indeed, let X
be any fundamental matrix solution of (4). Then, after a certain time ¢ > 0,
it admits a smooth SVD, X = UXVT. Since U is a Lyapunov transformation,
then (4) has same exponential dichotomy spectrum as (32), which is the same
as the exponential dichotomy spectrum of (33) because of Theorem 3.2. In
[12], under the hypothesis of integral separation of the diagonal of C', a fact
which we now know follows from having stable and distinct LEs, it is proven
that Xgp of (33) is the same as the exponential dichotomy spectrum of the
diagonal system 3 = diag(C)¥. O

21



5 Leading directions

In Section 2.2 we have seen how it is possible to associate a linear space V;
to the LE A% and we defined the linear space W; to be the set of all initial
conditions leading to an exponential growth less than, or equal to, Aj. Our
goal in this section is to show how the spaces V; and W; (and thus also N
associated to Ygp) can be obtained from the SVD techniques. We will do this
under the same assumption used in Section 4 to justify the very feasibility of
the SVD technique: System (4) has stable and distinct Lyapunov exponents.

In this case, from Section 4 we know that there is a finite time ¢ after which
the singular values of any fundamental matrix solution X are distinct, and
thus for t > 7 there is a smooth SVD of X: X = UXVT. In what follows,
without loss of generality, we will assume that ¢ = 0 and we will consider the
principal matrix solution .

Recall that we know, see (29), that V' — V as t — +oo. On the other hand,
mere convergence would be of limited interest, since the entire approximation
process takes place on the half-line. In particular, for numerical purposes it
is important that convergence is rapid. For this reason, here below we will
show that convergence of V(t) to V, as t — oo, is exponentially fast, and
we will give bounds on the exponential convergence rate. We will prove this
exponential rate of convergence without the assumption of regularity, using
stability of the LEs instead. In the regular case, the exponential convergence
rate expressed in Corollaries 5.3 and 5.5 below is already in the work [20];
an excellent exposition, and further references, can be found in the book [2],
in particular see Chapter 3 there. Although our technique is different than
those used in the regular case, and it is ultimately based on the equations
satisfied by the singular values, we also borrow some of the techniques used
for regular problems, by adapting them to our setting. We stress once more
that our motivation is dictated by using only those assumptions which are in
tune with the assumptions needed to ensure the success of a numerical method
to approximate the LEs.

For ease of notation, let us define o(t) to be the component of T; in the
direction of v;(t). That is, let

Aty =v(t) 7y, i j=1,....n, t>0, (34)

where 7; is the j-th column of V and v;(t) is the i-th column of V(¢), for all
t > 0. Obviously, a/(t) — 1 and o?(t) — 0, i # j, as t — +oo. To show
exponential convergence of V(¢) to V, and to get bounds on the exponential
rates, we need two preliminary Lemmas. The first, Lemma 5.1 is essentially in
[20]; the result in [20] is for the regular case, but the proof for the non regular
case (the case we need) is identical and therefore omitted. The second Lemma,
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Lemma 5.2, is original.

Recall that a flag of type e = (1,...,1) in R" is a filtration W = (W;) such
that R = W; D ... D W, and the sets V; such that W; = W, & V;, have
dimension 1. We denote the space of all these flags with Fi(n).

Lemma 5.1 (/20)) Let A = min; [A; — A3|/(n — 1). Define

AW W) = max |(z, y) |2/ (35)
i #j
] = |lyll =1
e V*i(l)’y e ‘/;(2)

where W W) are two flags in F.(n) and (x,y) = 2Ty is the inner product
in R™. Then (35) is a metric in F.(n).

We can express the metric defined in Lemma 5.1 in function of the orthog-
onal projections P, into the linear Subspaces Vi.. Let v, be such that V, =
span(vg), and |Jug|| = 1, then P, = vpvf. In the spectral norm, ||PZ.(1)PJ.(2)|| =
Max|z|= 1||P( P( $|| = MaX|z||=|y|= 1(P( )P( )ZL' y) maX||x||:||y\|:1(Pi(1)l', Pj(z)y),
SO

max  (z,y) = |PVP?,

]l = llyll =1
e V;'(l),y € Vj(z)

and the metric d of Lemma 5.1 can be expressed in the equivalent way:

Lemma 5.2 Assume system (4) has stable and distinct LEs, and as usual let
® be its principal matriz solution, and ® = ULVT be its smooth SVD. Let T
be fizred, 0 <7 < 1. Foralli=1,...,n, and for all t > 0, let v;(t + T) be the
i—th column of V(t + 7), and let

Blt+1)=vt+1)Tut), Yij=1...n
Then, for alli,j =1,...,n, we have

lim Bit+71)=1,

. . s/ g . U](t) i ad . 1 Uj(t)
j>is XA < hfffip " log (D) X'(B7) < liminf ~ log o) " (37)
. . i . az( ) j s al(t)
. 5(37) < 13 < _
j<it X(A) < limsup - L log (1) X'(87) < liminf - log D)
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Furthermore, for all i,7 =1,...,n, i # j, the following bounds hold

in (A= AL —a(G—4)), j>i,
in (A = Aj, —a(i =), j<i, (38)

m
m 7

X () < min (== Xl =[x5 = A7),
where a > 0 is the a in the integral separation condition (26).

Proof For all ¢ > 0, and j = 1,...,n, represent v;(f) in the basis (v (t +
)y un(t+7)), as

n

v;(t) =Bt +T)vi(t+7) . (39)
i=1
From (39) and (29) it follows that lim; .. B(t+7) = limy_o v;(t+7)Tv;(t) = 1.
In order to evaluate the upper characteristic exponent of the ﬁij 's, rewrite
O(t+ 1) as Pt +7) = P(t + 7,t)P(t), where (¢ + 7,¢t) is the solution at
t+7of 2& = A(t)®, ®(t,t) = I. Then, M||®(t + T)w|| < [[®(t)w]| and
L|®(t)w|| < ||®(t + 7)w]|, for all w € R", where M~" = sup,5¢ [|®(t + 7, 1)
and L™! = sup,, ||P(t +7,8) 7.

Case j > 1.
Using (39) and ® = UXVT we get

oi(t) = [[®()v; ()| > M|®(t + 7)v,(2)]|
= M| kz_: Bt + )8t + 1)Vt + 7)ot + 7))
_ M| éﬂi(t +P)on(t+ Peall > MBI+ Dos(t + 7). (40)

Using (40), we get

. _ 1 .
x*(B]) = limsup — log | 5/ (t)]
t——4o0 t

1 1 ,

< Timsup <— log o;() — = log ou(f + 7)) <A - AL
t—-4oo t t

Observe that we do not know if the right hand side of this bound gives a

negative value, which we will need to be the case for x*(3}). This is the reason

for the diversified bound in (38), which we now prove.

First look at the behavior of U;:Z)T ). From (26) and
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J;(Zt(t,)ﬂ = exp (LHT(UTAU)M(S)dS), we have
oi(t+71)  oi(t+7)0i(t)

_ > e lAlrgai-it =i
a;(t) oi(t) (1)

for all ¢ > 0. It follows

plog () > LG - togrk ~ 4 +ali =), W0, ()

Let now {t¢,} be a sequence such that lim;, i log(|67(t, + 7)) = x*(3)),
then from (40) and (41) we obtain

1 (tn
—a(j —1i) > limsup — log _0stn)

> (3
P tn O'Z(tn—i—’?') - X (ﬁz)v

which completes (38) for (/) in the case of j > i.

As far as the bounds for x*(5), from (40) we get

1 1 ; 1
lim inf p log o;(t) > l}/mjLinf p log |57 (t+ 7)| + lgmjLinf p logo;(t+ 1)

t——+o0

and therefore o ' '
X(B]) SAj = A
Alternatively, we can also get the bound

1 1 1 ;
lim sup p log o;(t) > limsup (? logo;(t+7) + n log |3] (t + T>|>

t——+o00 t——+o0

1 1 ,
> limsup — log 0;(t + 7) + lim inf —log | 57 (¢t + 7)|
t——+oo t t—+o0 t

and therefore '

X(B) <A =N
so that (37) and (38) are proven for j > i. Notice that we are guaranteed that
the bounds given for x*(3/) are negative.

Case j < 1.
Again, using (39) and the smooth SVD of X we get

oi(t +7) =@ + T)vi(t + )| = LI ()vi(t + 7)|

LSOVt + 1) 2 LE Do), D

and the bounds for x*(3/) and x*(4/) can be recovered by (42) with a proce-
dure analogous to the one for the case j > 1. a
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Corollary 5.3 With same hypotheses and notation of Lemma 5.2, if the LEs
exist as limits (i.e., (4) is reqular), then for alli,j =1,...,n, i # j, we have

X (B]) < —|\i — Ajl-

Proof The statement follows easily from the proof of Lemma 5.2 by noticing
that \; = A\j = )\;» forall j=1,...,n. O Lemma 5.2 is the stepping stone to
understand the rate of exponential convergence of V to V. The next theorem
gives bounds for x*(e; VT (-)Ve;).

Theorem 5.4 Let the same assumptions of Lemma 5.2 hold, let v; be the j-th
column of V, j =1,...,n, and o’ (t) given by (34), 4,7 =1,...,n, andt > 0.
Then, for alli,j=1,...,n, 1% j, we have

X*(af) < A =X, (43)
where A is given by A = maxj % and thus A < 0.
Moreover, for all j =1,...,n,
X" (1= ) < 2max (o). (44)

Proof Rewrite 7, in the basis (v(t), ..., v,(t)): T; = X0, o (H)v;(t). Call re-
spectively W(t) and W the flags of the subspaces W;(t) = span{v;(t), ..., v,(t)}
and W; = span{v;, ... 7, }. Then by Lemma 5.1 and the fact that d(W(t), W) —
0 as t — 4oo (since V(t) — V), we have

AW, W) < 3 dOV(E + (m — 1)7), W(t +m7) | (45)

where 0 < 7 < 1 is fixed. Consider the following orthogonal projections,
P;i(t) = vj(t)v;(t)" and Py(t + 7) = wvi(t + T)vi(t + 7)*, and notice that
1P () Pi(t + 7)|| = [vilt + 7)Tv;(t)| = B/ (¢ + 7)|. Then

dOW(t + (m = 1)7), W(t +mr)) = max || P (¢ + (m — 1)) Fi(t + mr)|| A/

= max|§] (¢ + mr) |2/ (46)
i#]
and in the same way
dW(t), W) = max 125 () By AT = erh o ()AL (47)
i#] i#]

Using (46) and (47) we can rewrite (45) as

mgxlaf(t)lA/'Af‘*?‘ < m§x|ﬁf(t+m7)lA/‘AH3‘- (48)
1£] 17

m=1
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Now, x*(/3)) < 0 for all i # j and Property 2.2-(c) applies to (48), so that for

any j # i,
A

[Xf = X3]
and (43) follows.
When i = j, we know from (29) that lim; ;. o ( ) = limy— oo v (1) T0; = 1.
Moreover, 1 = ||7;]|2 = 7, (e (t))? so that (1 (ad)?) < 2max;; x*(ad).

2

; A
s J < sl

Then (44) follows by x*(1 ( 7?) = x (( »)(1+aj)) = limsup,_, , , 7 log(1—
j) + hmt—>+oo n log(1 + aj(t)) xX°(1— ) O

Corollary 5.5 With same assumptions and notations of Theorem 5.4, if sys-
tem (4) 1is reqular then for i # j we have

X' (ad) < —|A = Al

Remark 5.6 Comparing the rate expressed in the above Corollary with the
rate (43) in the non regular case, we notice that in the non regular case there
may be a slower rate of convergence, in the sense that the value of A in (43)
may be close to 0.

An important component of Lemma 5.2 and Theorem 5.4 is the key role
played by the integral separation constant a > 0 in the rate of exponential
convergence of V to V; see (43) and the bounds (38) for x*(3/). It is therefore
of interest being able to estimate this constant a. The following Proposition
gives a way to estimate a. As it turns out, the technique of this Proposition
5.7 emerges as a natural byproduct of a way of computing the SVD of X in
the first place (see [8]).

Proposition 5.7 Let (4) have stable and distinct LEs, let ® be its principal
matriz solution, ® = UXVT its smooth SVD, and let C = UTAU. For j =
1,...,(n = 1), denote with [a;,b;] the exponential dichotomy interval of the
scalar differential equation © = (cj;(t) — ¢jt1,+1(t))z. Then a; > 0 and the
constant a > 0 in formula (26) can be taken to be

Proof By Theorem 4.2, the singular values of the principal matrix solution
® are integrally separated and (26) is satisfied. Using (23), rewrite (26) as

t
/ (ij(7>_cj+1,j+1(7') —a)dr > logk,
forall j=1,...,n—1, andforall t>s>0. (49)

Now, fix j. Because of integral separation, the scalar problem & = (cjj(t) —

cj+1,j+1(t))x, must have dichotomy interval strictly contained in the positive
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real axis. Moreover (see [12, Lemma 8.2]), the resolvent is the same as the
set of all u’s such that one of the following two conditions is satisfied for all
t>s>0

J (e = sng () — dr > ale —5) —b
[l (e = cragm(n)]dr > at =) b,

where o > 0 and b > 0. In particular, for all p’s satisfying the first inequality,
we must have that a; > p. From this and (49) it follows that a < a;, for all
j=1,....n—1. O

We are now ready to prove the main set of results of this Section. Recall the
definition of the subspaces W;’s in (13), and that they form a filtration (14).

Theorem 5.8 Assume system (4) has stable and distinct LEs, and let & =
UXVT be the smooth SVD of its principal matriz solution. Let V = {vy,...,7,}
be the limit of the factor V.. Then we have

X(@();) =25 and X'(R();) =X, j=1...,n.

That is, V is a normal basis for the upper and lower Lyapunov exponents.

Proof First of all, for all j =1,...,n, we have
o1 (t)erd (t)
[@(&)z;] = | : | = o) ()]
o (t)d, (1)
so that

1 1 ;
lim sup + log || (1)1 = limsup - log (o;®)]ad(®)]) = A3, and

lim inf — log ()7 > lim inf - log(o; (1) a](1)]) = X}.

From (50), the result follows for j = 1. Define L, = span{7;} and observe
that, because of (50), we must have L; C W;\Wj. Next, let us continue the
proof just for the lim sup’s.

Define Ly = span{7y, Ty} and take w € Ly, w # 0: w = ¢,7; + ¢o0y. We have

o1(t)(c101(t) + e20i(1))
[P (E)wll = 1] : I > or(t)|cra(t) + eaei(t)] -

on(t)(cr00,(t) + c207,(1))
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Now, if ¢; # 0, this gives

) 1 ) 1 1 1 9 <
lim sup i log [|®(¢)w]| > lim sup (; log o1 (t) + p log |cra(t) + c2oz1(t)|> =\,
t——+00 t—00

where the last equality follows from the fact that (ciai(t) + coa?(t)) ap-
proaches ¢;. In particular, if ¢; # 0, w ¢ Wy, If, instead, ¢; = 0, then we
still have from (50) limsup,_ . 1log||®(t)w| > Aj. But we cannot have
limsup,_, o, 1 log ||®(¢)v2|| = A because

dim(Wy) =n—1, and dim(Ly) =2,

and thus Ly, N W5 # (), and the vector in this intersection must be T,. Thus,
lim sup,_ , o 3 log [|®(t)Da| = A5 and D, € Wo\Ws.

We consider one more step in this process, and the general case will follow
inductively. So, define Ly = span{v;,7s,73} and take w € L3, w # 0: w =
€171 + ¢coUs + ¢3U3. We have

o1 (t)(craq (t) + ca0i (t) + c3ai(t))
[®(t)wl]| = || : |

on(t)(cr0q,(t) + c205(t) + ez (1))
> o1 ()| crad (t) + c202(t) + csa(t)] .

Now, if ¢; # 0, this gives (like before) limsup,_, 1 log [[®(t)w|| > A{, and so
if ¢; #0, w ¢ Wy If ¢; = 0, but ¢ # 0, then limsup,_ , . 7 log [|P(t)w]| > A3,
and so if ¢; = 0, but ¢y # 0, w ¢ W3. Finally, if ¢; = ¢o = 0, then from (50)
limsup, ., +log [|®(t)w|| > Aj. But we cannot have limsup,_, , , 1 log || ®(¢)v3]| >
A5 because

dim(W3)=n—2, and dim(L3)=3,
and thus Lz N W3 # 0, and all vectors w with nonzero component in 7, or 7,
cannot be in this intersection, and so the only vector in the intersection must
be T3. Thus, limsup, ., 1 log||®(t)vs]| = A§ and 75 € W3\ Wi.

Continuing in this way, we obtain the result for the limsup’s. The result for
the liminf’s is identical, upon recalling Proposition 2.10. O

Remark 5.9 Upon noticing that X (¢) = U(¢)S(t)VT(t) implies X 7(t) =
U®)S~H(t)VT(t), for all t > 0, and in the same situation of Theorem 5.8, the

matrix Ve,, ..., e1] is a normal basis for the adjoint problem.

Corollary 5.10 With same assumptions of Theorem 5.8, assume system (4)
1s also reqular. Then, for each j =1,...,n,

" _
Jim = log |2()75]] = A
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Remark 5.11 Suppose that instead of the principal matrix solution, we had
considered another fundamental matrix solution X with initial conditions
X(0) = Xp, and let X = UXVT be the SVD of this X. Then, again, as
t — +oo, V(t) — V, and the columns of V now provide the appropriate
directional information relative to this new fundamental solution.

Theorem 5.12 With same assumptions of Theorem 5.8, let ¥gp = UL, [a;, bj].
Then, for j =1,...,m, we have

_/\G = Spal’l{ik, C ,@l} 5
where k and [, k <1, are such that
A < aj <\, A< bj <\,
Proof The statement follows from Theorem 5.8, Corollary 3.12, and Remark
5.9. So, W}, = span(y, ..., 0,) and L, ;11 = span(vy,..., 7). O

Corollary 5.13 Under the same assumptions of Theorem 5.12, and assuming
that Ygp is made up by at least two intervals, we have that the subspaces N
and Ny, are perpendicular to each other, for any j, k, j # k.

Proof The proof follows from the representation of the subspaces N given
in Theorem 5.12, since the vectors {7y, ...,7,} are all mutually orthogonal. O

A final interesting consequence of having (4) integrally separated is that not
only the system, but also the subspaces N’s are pairwise integrally separated.

Theorem 5.14 Under the same assumptions of Theorem 5.12, assume fur-
ther that Ygp does not reduce to a unique interval, and let yo € N; and
20 € Ny, j > p. Then, the functions y(t) = ®(t)yo and z(t) = P(t)zo, for all
t >0, are integrally separated functions.

Proof Consider the quotient ||||§((3|||| HE((;)H for all ¢ > s > 0. Because of Remark

3.10, we thus have for all t > s > 0:

ly@)I 1I=(s)]l > 1 o (t-5) ie_bp(t_s) 1 o(a5bp)(t=5)
[y 2@ — K- Ky K1k
and integral separation follows, since a; > b, and K,_;, K, > 1. a

To complete this section, we stress that Theorem 5.8 tells us that, as long as
(4) has stable and distinct LEs, the initial conditions given by V form a normal
basis. But, in general, we cannot say that V leads to an integrally separated
fundamental matrix solution. The next result gives us a natural condition of
when this is true.
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Corollary 5.15 Suppose that (4) is integrally separated and that Ygp is given
by n disjoint subintervals: Ygp = Ul [a;, b)), with a; < by < -+ < a, <

b,. Then, the initial condition given by V leads to an integrally separated
fundamental matriz solution.

Proof This is an obvious consequence of Theorems 5.12 and 5.14. O

6 Conclusions

In this paper we have considered the use of the SVD of a fundamental ma-
trix solution, in order to extract the Lyapunov and Dichotomy spectra of a
given system. Albeit SVD based techinques have been used before for approx-
imating Lyapunov exponents of (1) via the setup provided by the MET, a
thorough justification for their use to approximate spectra had not been pre-
viously undertaken. Although the MET of Oseledec may be indirectly used
in support of SVD methods, we have favored use of the assumption of stable
and distinct Lyapunov exponents, hence justified our analysis for integrally
separated linear systems. This is much more in tune with the practical success
of a numerical technique, and it has allowed us to take the theory for SVD
methods a step closer to that of QR methods, for which a thorough justifica-
tion for integrally separated fundamental matrix solutions had been already
done, see [12]. Still, comparison of the relative merits of SVD and QR meth-
ods was beyond our intention in this paper, and in fact our point of view is
that these techniques should complement and not replace each other. Thus,
it is important to appreciate what the SVD methods can offer that the QR
methods (at least, with our present understanding) do not. For example, we
have shown that SVD methods allow to obtain the set of directions associated
to the spectral intervals, via the matrix V. Possibly, also QR methods can be
used to obtain this directional information, and one may want to adapt our
results to QR methods, working with the matrix Z of [12, Lemma 7.4] rather
than V. This is yet to be done, and (even if theoretically feasible) a different
implementation of QR methods would be needed since such matrix Z is not
obtained with the usual implementation. On the other side, QR methods are
theoretically justified ([13]) as techniques to approximate spectral intervals as
long as the intervals are stable, a condition less stringent than that of hav-
ing stable and distinct Lyapunov exponents. Some further comments on the
relative merits of SVD versus QR techniques are in [8], to which we refer for
algorithmic aspects of SVD methods as well.

Our analysis in this paper has been for linear problems. This is unavoidable,
since the spectra we considered are defined for linear problems. So, what infor-
mation do these spectra give when one considers the nonlinear problem (1)?
What do we make of the MET, and of the measurable spectrum? Technically
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speaking, our results apply to the single linear system obtained by lineariza-
tion along the specific trajectory of initial condition zq. If this trajectory is on
an attractor with a uniquely defined invariant and ergodic measure, then the
spectral information we are obtaining is representative of the whole system.
Regretfully, there are not very many theoretical results on attractors with
a unique ergodic measure. Alternatively, one may need to take the point of
view of Johnson-Palmer-Sell, see [18], consider all invariant measures on the
attractor, and compute spectra with respect to each of these. In general, this
also seems to be a daunting task. The above notwithstanding, we ought to
appreciate the importance of our emphasis on the stability of the Lyapunov
exponents, rather than, say, of regularity for the linear system. In any given
situation, we will at best be able to accurately approximate the solution of
the nonlinear system, and thus we will at best obtain a linear system close
to the one we wanted to consider. This is why we have insisted on conditions
guaranteeing that these systems have close spectra.

There are several directions which need to be pursued to complete and extend
the present work. In particular, analysis of SVD methods assuming stable
(and not stable and distinct) Lyapunov exponents remains to be done. How
to estimate both constants in the integral separation relation (26), and not
just a, is also a problem of interest, since it ultimately helps to give upper
bounds on the value of ¢ after which the singular values are guaranteed to
be distinct. Extension of the analysis to the case of only a few (dominant)
spectral intervals also needs to be carried out, as well as specialized analysis
for parameter dependent systems, to see how to setup continuation of SVD
factors in that context. Finally, there are a host of practical issues to be dealt
with, some of them tackled/reviewed in [8]. We are presently thinking about
some of these problems.
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