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1

Abstract In this work we examine the existence of periodic orbits for planar piecewise1

smooth dynamical systems with a line of discontinuity. Unlike existing works, we consider2

the case where the line does not contain the equilibrium point. Most of the analysis is for a3

family of piecewise linear systems, and we discover new phenomena which produce the birth4

of periodic orbits, as well as new bifurcation phenomena of the periodic orbits themselves.5

A model nonlinear piecewise smooth systems is examined as well.6

Keywords Piecewise smooth systems · Periodic orbits · Bifurcation · Filippov · Hopf7

Mathematics Subject Classification (1991) 34C29 · 37G158

1 Introduction9

An important mechanism for the appearance of periodic orbits in smooth dynamical systems10

is through a Hopf bifurcation, a well understood situation fundamentally characterized by11

having a pair of eigenvalues of the linearization at an equilibrium crossing the imaginary12

axis. Stability characterization and (local) bifurcation phenomena for the periodic orbits13

themselves are also well understood, and rely heavily on the use of Floquet multipliers and14

the Poincaré map. Likewise, also global bifurcation phenomena of the periodic orbits, e.g.15

homoclinic bifurcations, have been explored for a long time. All of these phenomena above16

are well understood, although they continue to be studied also for planar systems because of17

their importance in applications.18

In recent times, piecewise smooth systems have attracted considerable attention, both19

because of their ability to model dynamical behaviors arising in applications, and because of20
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their intrinsic mathematical interest; e.g., see [3]. Our specific interest is for planar piecewise21

smooth systems of the following type:22

ẋ =

{

f1(x), h(x) < 0,

f2(x), h(x) > 0,
(1)23

where x =
(

x

y

)

, f1, f2 are sufficiently smooth, f1,2(0) = 0, and also h : R
2 → R is24

a sufficiently smooth function. Further, we let ! = {(x, y) ∈ R
2, h(x, y) = 0}, and we25

assume that ∇h(x) $= 0 for all x ∈ !, so that ! is a simple smooth curve, separating (locally)26

the plane into two regions R1 and R2 where h(x) < 0, respectively h(x) > 0.27

For a system like (1), Filippov convexification method is a powerful first order technique28

which resolves the ambiguity of what to do when x ∈ !. In its simplest form, it relies on the29

following classification.30

(i) Crossing. At x0 ∈ !: (∇hT f1)(∇hT f2) > 0. The crossing is from below if ∇hT f1,2 >31

0, in which case the trajectory continues in R2 with vector field f2, and the crossing is32

from above if ∇hT f1,2 < 0, in which case the trajectory continues in R1 with vector33

field f1.34

(ii) Sliding. At x0 ∈ !: (∇hT f1)(∇hT f2) < 0. One has attractive sliding if ∇hT f1 > 0,35

and the trajectory moves on ! with Filippov vector field given by the convexification36

of f1, f2:37

ẋ = (1 − µ) f1 + µ f2 µ =
∇hT f2

∇hT ( f1 − f2)
. (2)38

Instead, one has repulsive sliding when ∇hT f1 < 0, in which case the problem is not39

well posed (a trajectory could slide according to (2), or continue in R1 or R2).40

(iii) Exit. At x0 ∈ !, for one –and only one– index i = 1, 2, ∇hT fi = 0, fi (x0) $= 0, and41

the function ∇hT fi changes sign for x ∈ ! through x0.42

Naturally, more things can happen at a point x ∈ !, and higher order corrections may be43

needed (e.g., see [4,6] for a host of bifurcations in planar Filippov systems), but the above44

scenario is sufficient for our purposes.45

Relative to systems like (1), there has been considerable interest in studying and approx-46

imating periodic orbits and their stability properties and bifurcations. In the present context,47

however, it is not even fully transparent what an appropriate extension of the Hopf bifurcation48

theorem should look like. As far as we know, a fully rigorous Hopf bifurcation theorem was49

recently proved in the important work [12], but see also the related works [5,7,8].50

A most important mathematical (and modeling) feature of the Hopf bifurcation theorem51

of [12] is that the curve ! is given by one of the coordinate axes [in particular, it contains52

the origin, isolated equilibrium for the system (1)]. That is, in [12], the authors consider the53

following problem depending on a real parameter λ:54

ẋ =

{

A1(λ)x + g1(x, λ), y < 0,

A2(λ)x + g2(x, λ), y > 0,
(3)55

with g1,2(x, λ) = O(x2 + y2) as (x, y) → 0, and where the matrices A1,2(λ) have a pair of56

complex conjugate eigenvalues α1,2(λ) ± iω1,2(λ). Ordinarily (that is, for smooth systems57

where A1 = A2, g1 = g2, etc.), Hopf bifurcation requires α(0) = 0, d
dλα|λ=0 $= 0, and58
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ω(0) $= 0. Relative to (3), in [12] Zou, Kuepper and Beyn prove that a Hopf bifurcation now59

takes place if60

B(0) = 1 B ′(0) $= 0, where B(λ) = exp
[

π
(

α1(λ)/ω1(λ) + α2(λ)/ω2(λ)
)]

.61

With respect to the same model (3), hence with the same assumption on the form of62

the discontinuity line, interesting bifurcation phenomena for the periodic orbits have been63

recently examined in [2], and also in [10,11], where the authors further considered a special64

planar system with an additional equilibrium (not on the line of discontinuity) and existence65

of homoclinic orbits to this equilibrium.66

Our goal in this work is to study periodic orbits for (1) when the function h(x) is a general67

line. Namely, we will consider the function h(x) in the form:68

h(x, y) = y − qx − m. (4)69

As we will see, this seemingly innocent generalization produces some totally new phenomena70

with respect to those observed in [12]. For example, depending on the coefficients of the linear71

terms, one may have or not have periodic orbits, and they may be with crossing or partially72

sliding behavior.73

To perform our analysis, we will use a combination of explicit solution formulas, and74

the Poincaré map, similarly to what is done in [2,10,12]. Unlike these other works, we will75

also use the characterization of stability for the periodic orbits relying on the multipliers76

associated to the fundamental matrix solution. Our results extend the existing theoretical77

results, and cover important situations arising in practical applications, where one has planar78

systems with a discontinuity line not containing equilibria (e.g., see [8,9]).79

Remark 1 As it is well understood, in dynamical systems studies it is important to consider80

models whose formulation is robust. For example, perturbing the horizontal line y = 0, and81

even restricting just to other horizontal lines, makes it necessary to consider the family of82

lines y = m (for m ! 0), as we will do in this work.83

A plan of the paper is as follows. In Sect. 2, we will consider the appropriate setting for the84

general piecewise linear problem and will set forth two models: a special (canonical) form,85

and a more general case. Section 3 is devoted to the complete analysis of the “canonical86

form”, while Sect. 4 is dedicated to specific instances of the general form. Finally, in Sect.87

5, we give an extension to the nonlinear case.88

2 Setting of the Problem89

Our main goal is to study periodic orbits for piecewise smooth planar systems with a line90

of discontinuity (not necessarily passing through the origin). As it turns out, the piecewise91

linear case is already sufficient to understand what we may observe in general and thus we92

will first restrict to this case.93

So, presently, the basic problem we consider is the following family of piecewise smooth94

linear systems [see (1)]:95

ẋ =

{

A1x, y − qx − m < 0,

A2x, y − qx − m > 0,
(5)96

with A1, A2 ∈ R
2×2, and the discontinuity line is ! = {(x, y) ∈ R

2, y − qx − m = 0}.97
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The (only) interesting case is when each of the coefficient matrices has complex conjugate98

eigenvalues, and the two linear systems (viewed separately) have a stable (respectively, unsta-99

ble) spiraling behavior toward (respectively, away from) the origin, consistently clockwise100

or counterclockwise. In this situation, stable and unstable periodic orbits appear also when101

the eigenvalues are not purely imaginary and different bifurcation phenomena, both local102

and global, can be observed. In light of these considerations, we thus make the following103

assumptions on piecewise linear systems like (5).104

Assumption 1 The eigenvalues of A1 are of the type {c ± id} and those of A2 are of the105

type {−a ± ib}, with a, b, c, d > 0.106

Assumption 2 Ai =

(

ai
11 ai

12

ai
21 ai

22

)

, ai
12 > 0, i = 1, 2. That is, each system (separately) has107

orbits spiraling clockwise. The case ai
12 < 0 with orbits that spiral anticlockwise is analogous.108

2.1 Canonical Form109

A great simplification takes place if we assume that the matrices A1,2 have the following110

form:111

A1 =
(

c d

−d c

)

, A2 =
(

−a b

−b −a

)

. (6)112

In this situation, without loss of generality, one can assume that h(x, y) = y − m. Indeed,113

given h(x, y) = y − qx − p, let θ = arctan(q) and consider the rotation matrix Q =114
(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)

. Then if (x, y) ∈ !, Q

(

x

y

)

=
(

x̂

p cos(θ)

)

=
(

x̂

m

)

. Since Q commutes115

with A1 and A2 in (6), the coefficient matrices are left unchanged by the coordinate change116
(

x

y

)

←− Q

(

x

y

)

.117

Remark 2 In [12], the authors further considered the case of m = 0. However, this is a118

restriction which we want to avoid since if we translate the line y = m to y = 0, the119

same translation will contribute a nonhomogeneity to the piecewise linear system. [And see120

Remark 1 as well].121

Henceforth, we thus refer to the following as the canonical form of the piecewise linear122

systems:123

(

ẋ

ẏ

)

=















(

c d

−d c

) (

x

y

)

, y < m,

(

−a b

−b −a

) (

x

y

)

, y > m,

with a, b, c, d > 0 . (7)124

Remark 3 As it will become clear in Sect. 3, it is the ratios a
b and c

d which are the relevant125

quantities, rather than the value of a, b, c and d per se. We will study the changes in dynamics126

with respect to these ratios, and the value of m.127

2.2 General Form128

Unfortunately, in general, one cannot transform both matrices in (5) to canonical form with129

the same coordinate transformation, hence the form (7) is restrictive. However, one can130
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always assume that one of the two matrices A1,2 in (5) is in canonical form and the other in131

real Schur form. This statement can be justified as follows.132

Let V be such that A1 = V

(

c d

−d c

)

V −1 and consider the change of variables x ←− V x.133

Then, without loss of generality, we assume A1 in (5) to be in the canonical form A1 =134
(

c d

−d c

)

. Next, let Q be a rotation matrix that takes A2 into real Schur form: A2 = QT QT ,135

T =
(

−a b
α

−αb −a

)

, and observe that Assumption 2 implies that α > 0. Now, since matrices136

of the form

(

α β

−β α

)

commute with one another, the further change of variable: x ←− Qx,137

will leave A1 in canonical form and take A2 into real Schur form. It follows that, without138

loss of generality, we can work with A1 in canonical form and A2 in real Schur form. Finally,139

consider two different time scalings in the two regions R1 and R2, τ1 = t
b , τ2 = t

d . The new140

system is now discontinuous with respect to time as well (if b $= d), but the orbits of this141

system are the same as the ones of the original system.142

Thus, we will consider the following family of systems as prototypes of the general form143

of piecewise linear systems with a line of discontinuity:144

(

ẋ

ẏ

)

=



















(

c d

−d c

) (

x

y

)

, y − qx − m < 0

(

−a b
α

−bα −a

) (

x

y

)

, y − qx − m > 0

(8)145

Notice that (8) depends on 5 values, namely a
b > 0, c

d > 0, α > 0, m and q , and it is not146

easy to perform an exhaustive analysis for these problems. For this reason, in Sect. 4 we will147

make some simplifications to the structure (8); namely, we will restrict to the case of q = 0,148

a = b = d = 1 and let c, α, and m, vary.149

Remark 4 Note that a smooth planar linear dynamical system is topologically equivalent150

to the system with coefficient matrix in canonical form. However, this is not true for planar151

piecewise linear dynamical systems. Indeed, new phenomena such as folds of periodic orbits,152

that do not appear in the canonical form, arise in the more general setting (8); see below.153

3 Canonical Form154

In this section we study piecewise linear systems in the canonical form (7). We use n to155

indicate the normal to the line !:156

! = {(x, y) : y = m} n =
(

0
1

)

.157

Obviously, the only equilibrium for the system is the origin.158

As we already remarked in Sect. 2, the dynamics of (7) depend on the values of a
b , c

d , and159

m. Our goal below is to explore the changes in dynamics in function of the two values c
d and160

m while leaving a
b fixed.161

As we will see, the value m = 0 is a bifurcation value for any value of c
d . The phenom-162

ena we will present, however, are totally different from the Hopf bifurcation phenomenon163

observed in [12]. In [12], m cannot be taken as a free parameter and the line of discontinu-164
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ity must contain the origin (the equilibrium). In the present paper, instead, we take m as a165

bifurcation parameter and observe quite different dynamical behaviors as m is varied.166

3.1 Case m = 0167

The case m = 0 has been studied already in [5,12]. We briefly summarize the main results168

for system (7).169

The solutions intersect ! transversally everywhere except at the origin: nT f1(x, y) =170

−dx and nT f2(x, y) = −bx . Take an initial condition on !, (x1, 0), x1 > 0. Then after171

time t1 = π
d , the solution trajectory eA1t

(

x1

0

)

meets ! again at (x2, 0), with x2 = −e
c
d π x1,172

crosses ! and enters R2 to meet ! again at time t1 + t2 = π
b + π

d at (x3, 0) with x3 =173

e(− a
b + c

d )π x1. Thus, in order for the solution to be periodic it must be a
b = c

d and since this174

condition is independent of x1, the periodic orbit is not isolated and it is stable. There is a175

family of periodic orbits that bifurcates from the origin as c
d − a

b crosses 0: the value c
d = a

b176

is a bifurcation value, the origin changes from a stable focus to an unstable focus through the177

appearence of a family of periodic orbits.178

3.2 Case m > 0179

For m > 0,! has an attractive sliding region. Take (x, m) ∈ !, then nT f1(x, m) = −dx+cm180

and nT f2(x, m) = −bx − am. Hence the sliding region on ! is S̄ (the closure of S) with181

S =
{

(x, y) ∈ !,−
a

b
m < x <

c

d
m

}

.182

The two points (− a
b m, m), ( c

d m, m) are tangential points, i.e. points x in the phase space183

such that (nT f1(x))(nT f2(x)) = 0. In [3, Chapter 19], these are called singular points of184

Class 2a. (A complete classification of singular points is in [3, Chapter 4].) The Filippov185

sliding vector field on S̄ is well defined [see (2)]:186

fF = (1 − µ) f1 + µ f2, µ =
nT f1

nT ( f1 − f2)
. (9)187

Hence188

fF (x) =
(x2 + m2)(ad + bc)

(cm − dx) + (bx + am)
, (10)189

which is always positive. Hence, once on S, the solution slides along ! and exits at c
d m to190

enter R1.191

There are three different types of periodic orbits that can occur in system (7): orbits192

that have isolated points in common with !, orbits that have a sliding segment in ! and193

a nonempty intersection with both regions R1 and R2, orbits that have a sliding segment194

on ! and empty intersection with one of the two regions R1, R2. Following [6], we call195

them respectively crossing periodic orbits, crossing and sliding periodic orbits, and sliding196

periodic orbits. We will see below that, for a given value of c
d , the existence of one type of197

periodic orbit rules out the possibility of existence for the other two. The system will either198

have one periodic orbit which attracts all initial conditions except the origin ( c
d < a

b ), or199

it will have no periodic orbits and all the solutions (except the origin) will be unbounded200

( c
d ≥ a

b ).201
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To detect the existence of periodic orbits, we need to study the intersections of the flow202

with !. We will use the following notation:203

S+ = {(x, y) ∈ S, x ≥ 0}, S− = {(x, y) ∈ S, x < 0}204

!+ =
{

(x, y) ∈ !, x ≥
c

d
m

}

, !− =
{

(x, y) ∈ !, x ≤ −
a

b
m

}

, (11)205

so that ! = !− ∪ S− ∪ S+ ∪ !+, and further let ϕi (t, x0, y0) be the solution of ẋ = Ai x,206

i = 1, 2, such that x(0) =
(

x0

y0

)

. Take an initial condition (x, m) ∈ !+. Then ϕ1(t, x, m)207

will reach ! again at unique first time t = t1(x). Define the return map208

P1 : !+ → !− ∪ S−, P1(x) = ϕ1(t1(x), x, m). (12)209

In the same way, let (x, m) ∈ !− and let t2(x) be the first time for which ϕ2(t2(x), x, m)210

meets ! again. Define the return map211

P2 : !− → S ∪ !+, P2(x) = ϕ2(t2(x), x, m). (13)212

Clearly, P1 and P2 are smooth maps, and when P1(x) ∈ !− we can define the composite213

(Poincaré) map214

P(x) = P2(P1(x)) : !+ → S ∪ !+, (14)215

which is again smooth, and it is explicitly given by:216

P(x) = e−at2(P1(x))+ct1(x)(cos(t̂)x + sin(t̂)m), (15)217

where t̂ = bt2(P1(x)) + dt1(x).218

Crossing Periodic Orbit219

We first explore the existence of crossing periodic orbits for (7), i.e., fixed points for220

the Poincaré map (14). To have a crossing periodic orbit, the corresponding trajectory must221

satisfy222

e−at̄2+ct̄1

(

cos(t̂) sin(t̂)

− sin(t̂) cos(t̂)

) (

x̄1

m

)

=
(

x̄1

m

)

, (16)223

with t̂ = bt̄2 + dt̄1 and t̄1 = t1(x̄1), t̄2 = t2(P1(x̄1)). Formula (16) requires that a rotation224

multiplied by the factor e−at̄2+ct̄1 takes the vector (x̄1, m), in itself. This is the case only if225

− at̄2 + ct̄1 = 0, bt̄2 + dt̄1 = 2π, (17)226

which gives the following values for t̄1 and t̄2:227

t̄1 =
a

ad + bc
2π quadt̄2 =

c

ad + bc
2π or228

dt̄1 = 2π
a
b

a
b + c

d

bt̄2 = 2π
c
d

c
d + a

b

. (18)229

Lemma 5 The following is a necessary condition for the existence of a crossing periodic230

orbit:231

a

b
>

c

d
. (19)232
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Proof Consider system (5) and take as initial condition a point

(

x1

0

)

. Then the trajectory233

meets y = 0 again after time t̄ = π
d . So, the return time to ! must be greater than t̄ . This234

together with the value for t̄1 in (18) implies a
b > c

d . -.235

For the remainder of this case m > 0, we will work under the assumption that (19) holds.236

Proposition 6 If a system (5) admits a crossing periodic orbit γ , then this is an isolated237

periodic orbit. No other crossing periodic orbit exists.238

Proof The trajectory at time t̄1 given by (18) must satisfy the following239

ect̄1

(

cos(dt̄1) sin(dt̄1)

− sin(dt̄1) cos(dt̄1)

)(

x̄1

m

)

=
(

x̄2

m

)

.240

In particular, from the second component of this equality we get the following expression241

for a unique value of x̄1, and in turn of x̄2:242

x̄1 =
cos(dt̄1) − e−ct̄1

sin(dt̄1)
m, x̄2 =

ect̄1 − cos(dt̄1)

sin(dt̄1)
m. (20)243

-.244

It will be handy to use a more compact notation for x̄1 and x̄2 in (20):245

x̄1 =
cos(w) − e−αzw

sin(w)
, x̄2 =

eαzw − cos(w)

sin(w)
, where246

z =
a

b
,

c

d
= αz, α ∈ (0, 1) ; w = dt̄1 =

2π z

z + αz
=

2π

1 + α
. (21)247

Observe that (20) is uniquely defined, and therefore, if a crossing periodic exists, it must248

be unique. Moreover, we have that a crossing periodic orbit exists whenever x̄1 and x̄2 are249

outside the sliding region S. The following proposition shows that if x̄1 ∈ !+ then x̄2 ∈ !−.250

Proposition 7 Let x̄1 and x̄2 be defined as in (20). If x̄1 ≥ c
d m then x̄2 < − a

b m.251

Proof Using the notation of (21), let g1(z,α) = x̄1 − c
d m = cos(w)−e−zαw

sin(w) m − αzm and252

g2(z,α) = x̄2 + a
b m = ezαw−cos(w)

sin(w) m +zm. We claim that g1(z,α) ≥ 0 implies g2(z,α) < 0.253

Since π < w < 2π , we have sin(w) < 0 and we can rewrite g1(z,α) ≥ 0 as254

cos(w) ≤ e−αzw + αz sin(w). (22)255

Now, g2(z,α) < 0 can be rewritten as eαzw − cos(w) + z sin(w) > 0 and, using (22),256

g2(z,α) < 0 if the following inequality is verified:257

eαzw − e−αzw + sin(w)z(1 − α) > 0. (23)258

We first show that for α ∈ (α∗, 1), α∗ = −2π +
√

4π2 + 1, we have259

eαzw − e−αzw − z(1 − α) > 0, (24)260

and hence (23). Then we show that for α ∈ (0,α∗] we have261

eαzw − e−αzw + sin(w)z > 0, (25)262
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and this will imply (23) since −α sin(w) > 0. We will use Taylor expansions. To show (24)263

we expand the exponentials with respect to their argument and we get264

2αzw + R(αzw) − z(1 − α) > 0,265

where R = O((αwz)2) indicates the reminder of the Taylor expansion of eαzw − e−αzw , and266

is always positive. For α > α∗, 2αw − (1 − α) > 0 (use w = 2π
1+α ), so that (24) is verified.267

To show that (25) is verified in (0,α∗] we use the Taylor expansion of eαzw with respect to268

its argument and the second degree Taylor polynomial of sin(w) about α = 0. We have269

eαzw − e−αzw =
4π zα

1 + α
+ R(α),270

with R(α) = O(α3) > 0, while271

z sin

(

2π

1 + α

)

= −2π zα + 2π zα2
272

+
α3

6

4π z

(1 + α0)4

(

cos(w0)
2π2

(1 + α0)2
+ sin(w0)

6π

1 + α
− 3 cos(w0)

)

,273

where the last quantity is z times the Lagrange reminder of the Taylor polynomial for the274

sine function, α0 ∈ (0,α∗) and w0 = 2π
1+α0

. We can bound from below the coefficient of z α3

6275

with the following quantity: R1 = 4π(−2π2 − 6π − 3). Now, given that R(α) is positive,276

we have277

eαzw − e−αzw + sin(w)z > z

(

2πα + 2πα3

1 + α
+

α3

6
R1

)

=: z R2(α).278

In the interval under study the function R2(α) is positive since R2(0) = 0 and d
dα R2(α) =279

2π+6πα2+4πα3

(1+α)2 + 1
2α2 R1, and this is positive in [0,α∗]. Hence (25) is verified as well and the280

proof is complete. -.281

Proposition 7 together with Proposition 6 insures that a unique crossing periodic orbit of282

(5) exists if x̄1 > c
d m.283

Corollary 8 Let t̄1 and t̄2 be defined as in (18) and x̄1 and x̄2 as in (20). If x̄1 ≥ c
d m then284

(5) admits a crossing periodic orbit γ with first return time to ! equal to t̄1 and with period285

t̄1 + t̄2. -.286

Remark 9 Proposition 7 tells us that, if x̄1 in (20) is such that x̄1 ≥ c
d m, then the system287

has an isolated crossing periodic orbit γ . Notice that for c
d →

(

a
b

)−
, t̄1 → π+ and hence,288

x̄1 in (20) goes to +∞. Since x̄1 is a continuous function of c
d , for c

d sufficiently large (and289

c
d < a

b ), the system has a crossing periodic orbit.290

Below, we show that γ is asymptotically stable for x̄1 ≥ c
d m. We do this by direct291

computation of the derivative of the Poincaré map; equivalently, we could have computed the292

Floquet multiplier(s) using the monodromy matrix, and we will use this approach in Sect. 4.293

Further, in Theorem 15 below we will show that γ attracts every initial condition except the294

origin.295

Definition 10 A periodic orbit γ is said to be stable and finitely reached if it is asymptotically296

stable and in an open neighborhood of γ there are orbits that reach γ in finite time.297
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Proposition 11 Let x̄1 in (20) be such that x̄1 ≥ c
d m. Then, the crossing periodic orbit γ is298

asymptotically stable. For x̄1 = c
d m, γ is stable and finitely reached.299

Proof We have x̄1 ≥ c
d m and x̄2 < − a

b m, and the Poincaré map P in (15) is well defined300

and differentiable in a neighborhood of x̄1. Let x1 ∈ !+, and let x2 = P1(x1) and x3 =301

P2(x2) = P(x1). To express d P
dx (x), the following identities will be handy302

x2 = ect1(x1) [cos (dt1(x1)) x1 + sin (dt1(x1)) m] , (26)303

m = ect1(x1) [− sin (dt1(x1)) x1 + cos (dt1(x1)) m] , (27)304

x3 = e−at2(x2) [cos(bt2(x2))x2 + sin(bt2(x2))m] , (28)305

m = e−at2(x2) [− sin(bt2(x2))x2 + cos(bt2(x2))m] . (29)306
307

We need to compute dx3
dx1

= dx3
dx2

dx2
dx1

. Using Eq. (27) and implicit differentiation we get308

dt1
dx1

= sin(dt1)e
ct1

cm−dx2
and differentiating (26) with respect to x1 we obtain the following309

dx2

dx1
= ect1

(

cx2 + dm

cm − dx2
sin(dt1) + cos(dt1)

)

. (30)310

In the same way we can compute dx3
dx2

differentiating Eq. (28) with respect to x2, use implicit311

differentiation in Eq. (29) to get dt2
dx2

, and obtain the following312

dx3

dx2
= e−at2

[

ax3 − bm

am + bx3
sin(bt2) + cos(bt2)

]

. (31)313

Moreover, using Eq. (17), we can derive the following handy identities314

cos(bt̄2) = cos(dt̄1), sin(bt̄2) = − sin(dt̄1), e−at̄2 = e−ct̄1 .315

On the periodic orbit the value of x3 will be again x̄1. So, we have316

dx3

dx1
(x̄1) =

[

−
ax̄1 − bm

am + bx̄1
sin(dt̄1) + cos(dt̄1)

] [

cx̄2 + dm

cm − dx̄2
sin(dt̄1) + cos(dt̄1)

]

317

=
a(−x̄1 sin(dt̄1) + cos(dt̄1)m) + b(cos(dt̄1)x̄1 + m sin(dt̄1))

am + bx̄1
318

+
c(− sin(dt̄1)x̄2 + cos(dt̄1)m) − d(sin(dt̄1)m + cos(dt̄1)x̄2)

cm − dx̄2
319

and using (26), (27), (29) and (20) we obtain320

D P(x̄1) =
(am + bx̄2

am + bx̄1

)(cm − dx̄1

cm − dx̄2

)

=
( x̄2 + a

b m

x̄2 − c
d m

)( x̄1 − c
d m

x̄1 + a
b m

)

. (32)321

On the crossing periodic orbit, x̄1 > c
d m and x̄2 < − a

b m, so that D P(x̄1) < 1 and γ is322

asymptotically stable.323

If x̄1 = c
d m, then D P(x̄1) = 0 and γ is stable and finitely reached. -.324

Sliding Periodic Orbit325

Assume now that system (7) admits a sliding periodic orbit γ1, and notice that γ1 will326

always exist for c
d m sufficiently small. Indeed, let x−1 be the counterimage of − a

b m on !327

under ϕ1(·, ·, ·). For c
d m < x−1, system (7) admits a sliding periodic orbit.328

In the next theorem we show that γ1 is stable and finitely reached and it attracts all initial329

conditions except the origin.330
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−8 −6 −4 −2 0 2 4 6
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−1
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1

2

3

−a/b x
−1

x
−2 x

−3

Fig. 1 Sliding periodic orbit and first elements of the sequence in the proof of Theorem 12

Theorem 12 Assume that system (5) has a sliding periodic orbit γ1. Then γ1 is stable and331

finitely reached and it attracts all initial conditions except the origin.332

Proof We first prove global stability. For (x, y) ∈ !, let t1(x) be the first return time333

of ϕ1(t, x, y) to !. The existence of γ1 implies that ϕ1(t1(
c
d m), c

d m, m) = (x̄, m), with334

c
d m > x̄ ≥ − a

b m. Then, let x−1 be the counterimage of − a
b m on ! under ϕ1(·, ·, ·); i.e., let335

x−1 be the point on ! such that ϕ1(τ1(x−1), x−1, m) = (− a
b m, m). Clearly x−1 ≥ c

d m and336

it must exist since ϕ1(·, ·, ·) is a diffeomorphism of R
2. Let x−2 be the point on ! such that337

ϕ2(τ2(x−2), x−2, m) = (x−1, m). Again the linearity of the vector field ensures existence338

of x−2. Moreover x−2 < − a
b m. This same reasoning can be applied to x−2 and we can339

generate two sequences {x−2k} and {x−2k−1} such that: ϕ2(τ2(x−2k), x−2k, m) = x−2k+1,340

ϕ1(τ1(x−2k−1), x−2k−1, m) = x−2k and x−2k−1 > x−2k+1, x−2k−2 < x−2k . See Fig. 1.341

Notice that the sequences can not possibly accumulate on a crossing periodic orbit γ , since342

γ , if it exists, is isolated and asymptotically stable. This implies global stability (except for343

the initial condition at the origin) of γ1. To prove that the orbit is stable and finitely reached,344

notice that any x0 in the region inside γ is such that ϕ(t1(x0), x0, m) ∈ S̄. Moreover any x0345

in [ c
d m, x−1] is such that ϕ1(t1(x0), x0, m) ∈ S̄. If x−1 = c

d m then any x0 ∈ [x−1, x−3] is346

such that ϕ2 ◦ ϕ1(t1(x0), x0, m) ∈ S̄. See Fig. 1. -.347

Crossing and Sliding Periodic Orbit348

We noticed above that for c
d small enough, system (7) has a sliding periodic orbit. Let349

c0
d0

be such that P1(
c0
d0

) = − a
b m, then for c

d in a right neighborhood of c0
d0

, system (7) has a350

crossing-and-sliding periodic orbit γ2 (see Fig. 2).351

Theorem 13 Assume that system (7) has a crossing-and-sliding periodic orbit γ2. Then γ2352

is stable and finitely reached and it attracts all initial conditions except the origin.353

Proof The proof is similar to the one in Theorem 12 for a sliding periodic orbit. Let x−2 be354

the point on !− such that ϕ2(τ2(x−2), x−2, m) = ( c
d m, m). The linearity of the vector field355

ensures existence of x−2. The rest of the proof is the same as in Theorem 12. Notice that356

123

Journal: 10884-JODY Article No.: 9380 TYPESET DISK LE CP Disp.:2014/7/2 Pages: 30 Layout: Small

A
u

th
o

r 
P

ro
o

f



un
co

rr
ec

te
d

pr
oo

f

J Dyn Diff Equat

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5
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b
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Fig. 2 Sliding and crossing periodic orbit

the sequences x−2k and x−2k−1 cannot accumulate on a crossing periodic orbit γ since this357

would contradict the asymptotic stability of γ . -.358

The proofs of Theorem 12 and 13 rule out the possibility that two different kind of periodic359

orbits coexist.360

Proposition 14 Assume that system (5) has a crossing, or a crossing-and-sliding, or a sliding,361

periodic orbit γ . Then γ is the unique periodic orbit of system (7). -.362

Theorems 12 and 13, and Proposition 14, allow to infer the following.363

Theorem 15 Assume that a system (7) admits a crossing periodic orbit γ . Consider any ini-364

tial condition different from the origin. Then the corresponding solution trajectory approaches365

γ . If x̄1 in (20) is such that x̄1 = c
d m then γ is also stable and finitely reached (from inside).366

Proof To prove this result we can select an initial condition on !. Indeed, any other initial367

condition will lead to a solution that meets ! in finite time.368

(i) x̄1 > c
d m.369

Without loss of generality, we can take the initial condition (x1, m), with c
d m ≤ x1 < x̄1.370

Indeed if x1 ∈ S, then the corresponding solution will slide on ! to exit ! at c
d m. Then,371

since a sliding orbit cannot exist, x2 = P1(x1) is such that − a
b m > x2 > x̄2 and372

x3 = P3(x2) is such that x3 < x̄1. We claim that x3 > x1. To prove this, we write the373

solution explicitly as374

e−a(t2−t1)+ct1 Q1 Q2

(

x1

m

)

=
(

x3

m

)

, (33)375

with Q1 =
(

cos(dt1) sin(dt1)

− sin(dt1) cos(dt1)

)

and Q2 =
(

cos(bt2) sin(bt2)

− sin(bt2) cos(bt2)

)

. Since x1 < x̄1376

and x2 > x̄2, the rotation that takes (x1, m) to (x2, m) must satisfy: dt̄1 < dt1. Indeed,377

if we denote with $ x1x2 the angle between the two vectors (x1, m), and (x2, m),,378

then $ x1x2 = dt1 and this must be greater than $ x̄1 x̄2 = dt̄1. Similarly, x2 > x̄2 and379
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x3 < x̄1 implies bt2 < bt̄2. Then −at2 + ct1 > −at̄2 + ct̄1 = 0 so that e−at2+ct1 > 1380

and ‖(x3, m)‖ > ‖(x1, m)‖, i.e. x3 > x1. Since γ is the unique crossing periodic orbit,381

for any x1 < x̄1, the corresponding solution approaches γ . Similarly, we can show that382

for any x1 > x̄1, x1 > x3 = P(x1) > x̄1, and, again, uniqueness of γ implies that for383

any x1 > x̄1, the corresponding solution approaches γ .384

(ii) x̄1 = c
d m.385

If x1 < x̄1 then the solution will slide on ! until it reaches x̄1 in finite time. Hence γ386

is stable and finitely reached from the inside. For x1 > x̄1, the proof is the same as for387

case i).388

This completes the proof of the theorem. -.389

All previous results have used condition (19): c
d < a

b . If this condition is not satisfied, all390

solutions (except the origin) are unbounded.391

Proposition 16 For c
d ≥ a

b , no periodic orbit exists, and all solutions of system (5) (except392

the origin) are unbounded.393

Proof Because of Lemma 5, there cannot be crossing periodic orbits. Next, if x1 ∈ S+
394

then the solution slides along ! until it reaches c
d m. Hence take x1 ≥ c

d m. Let (x2, m) =395

ϕ1(t1(x1), x1, m). It must be x2 < − c
d m, since ‖ϕ1(t, x1, m)‖ = ect is a monotone increasing396

function of t . Let (x3, m) = ϕ2(t2(x2), x2, m). We claim that x3 > x1. Indeed397

(

x3

m

)

= ect1(x1)−at2(x2)Q2(x2)Q1(x1)

(

x1

m

)

,398

with Q1(x) =
(

cos(dt1(x)) sin(dt1(x))

− sin(dt1(x)) cos(dt1(x))

)

and Q2(x) =
(

cos(bt2(x)) sin(bt2(x))

− sin(bt2(x)) cos(bt2(x))

)

.399

Since for m > 0 there exists ε0 > 0 such that dt1(x1) > π + ε0 and bt2(x2) < π − ε0, then400

ct1(x1)−at2(x2) > ( c
d − a

b )π + ε0(
1
b + 1

d ), and hence x3 > eε0( 1
b + 1

d )x1. Applying the same401

reasoning to x3 we generate a sequence {x2k+1} such that x2k+1 > ekε0( 1
b + 1

d )x1. This proves402

the theorem. -.403

Varying c
d404

Next, we study the behavior of the system as we vary the value of c
d , still holding a

b fixed.405

Looking at (21), this requires studying x̄1 as a function of c
d , hence of α.406

Proposition 17 Let x̄1 be defined by (21). If (7) has a crossing periodic orbit, then x̄1 is407

increasing as a function of α.408

Proof If there is a crossing periodic orbit γ , then x̄2(α) < − a
b m = −zm. Hence409

eαzw − cos(w) + z sin(w) > 0. (34)410

For the first derivative of x̄1 with respect to α we have411

d

dα
x̄1(α) =

2π
(1+α2)

(

1 + e−αzw(z sin(w) − cos(w))
)

sin(w)2
m, (35)412

which is positive because of (34). -.413

Notice that for c
d → ( a

b )−, x̄1 → +∞ [see (20) and (18)]. Hence Proposition 17, together414

with Corollary 8, ensure that (7) admits a crossing periodic orbit whose length goes to ∞415
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Fig. 3 Parameter values b = d = m = 1. Portion of the curve of crossing bifurcation values in a and c

when c
d → ( a

b )−. Because of Proposition 17, as c
d decreases, x̄1 decreases, and hence the416

length of the crossing periodic orbit decreases as well. Notice moreover that, if for a certain417

parameter value c̄
d̄

, system (7) admits a crossing-and-sliding periodic orbit γ2, then for c
d < c̄

d̄
,418

there is either a sliding-and-crossing periodic orbit or a sliding periodic orbit contained in the419

interior region of γ2, this rules out the existence of a crossing periodic orbit. It follows that420

there exists a c1
d1

such that: (i) x̄1 = c1
d1

m; (ii) for c
d > c1

d1
system (7) has a crossing periodic421

orbit; (iii) for c
d < c1

d1
( c

d > c0
d0

, see below) system (7) has a crossing-and-sliding periodic422

orbit. The parameter value c1
d1

is a crossing bifurcation value.423

Example 18 (Curve of Crossing Bifurcations). In Fig. 3, we show (a piece of) the curve of424

the crossing bifurcation value in the two parameters c
d and a

b . This is obtained looking at the425

solution curve of x̄1 − c
d m = 0, with x̄1 in (20).426

As c
d decreases, there is a parameter value c

d = c0
d0

such that P1(
c0
d0

m) = − a
b m. This is a427

buckling bifurcation: γ persists, but it becomes a sliding periodic orbit. See Fig. 4 obtained428

for a = b = d = 1 and for different values of c. The bold periodic orbit at the buckling429

bifurcation c 4 0.0634 is a sliding periodic orbit. The one at c = 0.1 is a sliding and crossing430

periodic orbit and the one at c = 0.03 is a sliding periodic orbit.431

Example 19 (Curve of Buckling Bifurcations) For the buckling bifurcation we do not have a432

close formula for the first return time t ( c
d m) to !. Hence we need to solve for t as well. The433

curve is obtained through continuation techniques applied to the following nonlinear system434

ect (cos(dt)
c

d
+ sin(dt)) =

a

b
435

ect (− sin(dt)
c

d
+ cos(dt)) = m.436

437

In Fig. 5, we plot (a piece of) the curve of the buckling bifurcation holding b = d = m = 1.438

Below we summarize the behavior of the system in the case of m > 0, as c
d varies. In439

Fig. 6 we plot the bifurcation diagram for this case. The top diagram represents the behavior440
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Fig. 4 Parameter values a = b = d = m = 1. As c decreases the sliding and crossing periodic orbit becomes
a sliding periodic orbit. The value c 4 0.0634 is the buckling bifurcation value
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a

c

Fig. 5 Parameter values b = d = m = 1. A piece of the curve of buckling bifurcation

of the origin, the only equilibrium of the system. The other plots, depict the stable periodic441

orbits that occur for different parameter values. Recall that the values c1/d1 and c0/d0 are442

those we have just defined above: x̄1 = c1
d1

m, P1(
c0
d0

m) = − a
b m.443

c
d < 0 The origin is a globally asymptotically stable focus for (7).444

c
d = 0 This is a bifurcation value for the origin: the origin is stable but not asymp-445

totically stable. There is a family of stable periodic orbits of radius ρ ≤ m:446

ρ(cos dt, sin dt). For ρ = m, the orbit is tangent to ! at (0, m) and it is stable447

and finitely reached from outside and stable from inside. This is a bifurcation448

value: a grazing bifurcation of periodic orbits. See Fig. 7.449
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d
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c0

d00
c1
d1

,CrossingBifurcation

Fig. 6 Bifurcation diagram for m > 0

c0
d0

> c
d > 0 The origin is an unstable focus. The periodic orbit tangent to ! in c

d = 0450

survives and it becomes a sliding periodic orbit. The orbit is stable and finitely451

reached from inside.452

c
d = c0

d0
This a buckling bifurcation value. See Fig. 4. The value c 4 0.0634 is a453

buckling bifurcation value.454

c1
d1

> c
d > c0

d0
The periodic orbit retains its stability but changes type and it becomes a455

crossing-and-sliding periodic orbit. See Fig. 4 with c = 0.1.456

c
d = c1

d1
This is a crossing bifurcation value.457

a
b > c

d > c1
d1

The system has a globally stable (except for the origin) crossing periodic458

orbit of constant period t̄1 + t̄2 as in (18), and length that approaches ∞ for459

c
d → ( a

b )−.460

c
d ≥ a

b There are no periodic orbits, all orbits are unbounded (see Proposition 16).461

3.3 Case m < 0462

To begin with, we observe that system (7) with m < 0 is equivalent to the case m > 0463

in backward time with counterclockwise rotation and with c
d replaced by a

b . So, we again464

consider the case of a
b fixed and let c

d vary. We use same notations as for the case m > 0.465

The system exhibits repulsive sliding on ! for c
d m ≤ x ≤ − a

b m. Let S = {x ∈ !, c
d m <466

x < − a
b m}, !+ = {x ∈ !, x ≥ − a

b m}, !− = {x ∈ !, x ≤ c
d m}. The origin is a467
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Fig. 7 Here, c
d = 0. Grazing bifurcation of periodic orbits. The orbit in bold is tangent to ! at (0, m)

stable focus and it is the only equilibrium point. The two points (− a
b m, m) and ( c

d m, m) are468

tangential points.469

Since the system exhibits repulsive sliding on S̄, the only orbits that may cross, or slide470

on, S̄ are those that start in S̄, although no orbit that slides on (a portion of) S̄ is uniquely471

defined in forward time. Nonetheless, the Filippov’s vector field (10) is still well defined and472

fF (x) < 0 for all x ∈ S.473

In order to study the crossing periodic orbits of the system, we reason as in the case m > 0,474

and we get the same quantities as in (18), (20), and the analog of Proposition 6 holds true as475

well. Notice that now dt̄1 < π so that we get the following Lemma (cfr. with Lemma 5).476

Lemma 20 The following is a necessary condition for the existence of a crossing periodic477

orbit:478

c

d
>

a

b
. (36)479

-.480

Proposition 21 Let (36) hold and suppose that system (7) has a crossing periodic orbit γ .481

Then γ is unstable.482

Proof Let x̄1 and x̄2 be defined as in (20). Take x1 > x̄1 and let x2 = P1(x1) and x3 = P2(x2).483

Then x2 < x̄2 and we claim that x3 > x1. Indeed484

(

x3

m

)

= ect1−at2 Q2 Q1

(

x1

m

)

,485

with Q1 =
(

cos(dt1) sin(dt1)

− sin(dt1) cos(dt1)

)

, Q2 =
(

cos(bt2) sin(bt2)

− sin(bt2) cos(bt2)

)

and t1 and t2 are first and486

second return time to !. Moreover, x1 > x̄1 and x2 < x̄2 imply that t1 > t̄1, while x2 < x̄2487

and x3 > x̄1 imply that t2 < t̄2. Hence ect1−at2 > 1 and x3 > x1. In a similar way we can488

show that γ is unstable from inside as well. -.489

As we will see below, system (7) exhibits crossing-and-sliding or sliding periodic orbits490

for c
d sufficiently large. In Fig. 8 the curve in bold is a sliding-and-crossing periodic orbit. It491
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Fig. 8 γ in bold is a sliding-and-crossing periodic orbit

starts at (− a
b m, m), slides on ! towards x̃1, it leaves ! and enters R1. It crosses ! again at492

x̃2 and enters R2 until it reaches ! at (− a
b m, m). The following identities are satisfied493

x̃2 = P−1
2

(

−
a

b
m

)

, x̃1 = P−1
1 (x̃2). (37)494

Remark 22 Notice that any solution of system (7) with initial condition on ! is not uniquely495

defined in forward time. This means that, if γ is a crossing-and-sliding or sliding periodic496

orbit, a solution of (7) with initial condition on γ can leave γ at any point that belongs to497

the intersection γ ∩ S̄. However, if we consider the time change τ → −t and we consider498

the system obtained taking the derivative with respect to τ , then γ is an invariant object for499

the new system. Notice that at (− a
b m, m) the sliding vector field fF is f2, and µ in (9) is500

equal to 1. However, µ̇ is different from zero at (− a
b m, m). Hence a solution with initial501

condition (− a
b m, m) might either stay in !, or leave ! tangentially to enter R2, or leave !502

transversally to enter R1.503

Proposition 23 Let (36) hold and suppose that a system (7) has a crossing-and-sliding or a504

sliding periodic orbit. Then they are unstable.505

Proof We will prove the theorem for γ crossing-and-sliding. The proof for γ sliding is506

analogous. Let γ be a crossing-and-sliding periodic orbit of (7). In Fig. 8 γ is in bold. It507

starts at (− a
b m, m), slides on ! towards x̃1, it leaves ! and enters R1. It crosses ! again508

at x̃2 and enters R2 until it reaches ! at (− a
b m, m). Consider now the solution that starts509

at (− a
b m, m) and, instead of sliding on !, enters R1 (a small piece of curve in Fig. 8). To510

show instability of γ , we need to show that this solution moves away from γ . We have511

x2 = P1(− a
b m) < P1(x̃1) = x̃2 so that x3 = P2((P1(− a

b m)) > − a
b m. We can apply the512

same reasoning to x3 so to generate two sequences {x2k} and {x2k+1} on ! with x2k+1 > x2k−1513

and x2k < x2k−2. Hence instability from outside is proven.514

In order to prove instability from the inside, we just need to notice that any initial condition515

in the region inside γ approaches the origin. Denote this region with -. Any solution with516

initial condition in R1 ∩ - cannot cross γ so that it must enter R2 ∩ -. Once in R2 ∩ -, the517

solution cannot meet ! again (since nT f2(x) > 0 on S̄) and hence it approaches the origin.518
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Fig. 9 Sliding and crossing periodic orbit. All the solutions inside the shaded region approach the origin

In Fig. 9, the region inside γ is filled in gray. The asterisks denote initial conditions in - and519

the corresponding solutions move towards the origin. -.520

The sequences {x2k} and {x2k+1} in the proof of Proposition 23 cannot accumulate on a521

crossing periodic orbit due to Proposition 21. Hence the following holds true.522

Proposition 24 System (7) with line of discontinuity y = m and m < 0, admits at most one523

periodic orbit. -.524

The sliding-and-crossing (or sliding) periodic orbit acts as a separatrix of the phase525

space. All the initial conditions inside it lead to the origin, while the solutions outside γ526

are unbounded.527

The following proposition establishes sufficient conditions for the existence of a crossing528

periodic orbit γ . Its proof follows from the observation that for any x ∈ !+, P1(x) ∈ !−,529

since nT A1x < 0 for x ∈ S ∪ !+.530

Proposition 25 Let (36) hold, and let t̄1, t̄2, x̄1 and x̄2 be defined as in (18), (20). If x̄1 >531

− a
b m, then (7) has a crossing periodic orbit γ . -.532

In order to study what happens at (or past) the value c
d = a

b , we set a
b = z, c

d = α a
b (with533

α > 1), and study x̄1 as a function of α, similarly to what we did in (21).534

Proposition 26 Let (36) hold. If the system admits a crossing periodic orbit, then the function535

x̄1 + a
b m is a decreasing function of c

d .536

Proof If γ exists, we have x̄2 < c
d m. Using same notations as in (21) and noticing that537

sin(w) > 0 we have538

eαzw − cos(w) > αz sin(w). (38)539

Let g1(z,α) = x̄1 + zm, so that ∂g1/∂α = dx̄1/dα, and this is given by (35). Using (38)540

then gives that (35) is negative. -.541
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Fig. 10 Crossing bifurcation curve. Parameter values b = d = 1, m = −1

Observe that when c
d → ( a

b )+, x̄1 → +∞ and the length of the periodic orbit γ tends542

to ∞, while for c
d → ∞, x̄1 → −∞. Hence, there must be a value of c

d , say c
d = c2

d2
, such543

that x̄1 = − a
b m. This is a crossing bifurcation value. Due to Proposition 26 this crossing544

bifurcation value must be unique.545

Example 27 (Curve of Crossing Bifurcations) In Fig. 10, we show a portion of the curve546

of the crossing bifurcation values in the two parameters c and a. The other parameters are547

b = d = 1, m = −1.548

Next, let c
d = c3

d3
be such that P2(

c3
d3

m) = − a
b m. Then, the solution that starts at (− a

b m, m)549

slides on !, exits ! for x = c3
d3

to enter R1 and reaches ! again for x = − a
b m: it is a sliding550

periodic orbit. Denote it with γ . As c
d increases beyond c3

d3
the repulsive sliding region S̄551

becomes larger, but γ is not affected by the parameter change: it starts at (− a
b m, m), slides552

on !, exits ! at x = c3
d3

to enter R1 and reaches ! again at x = − a
b m. Hence for c

d ≥ c3
d3

,553

the system admits a sliding periodic orbit γ that is independent on the value of c
d .554

The value c
d = c3

d3
for which P2(

c3
d3

m) = − a
b m is a buckling bifurcation.555

Example 28 (Curve of Buckling Bifurcations) In Fig. 11, we plot (part of) the curve of556

buckling bifurcation values in the two parameters c and a. The other parameter values are557

b = d = 1, m = −1.558

When (36) is violated, and a
b > c

d , the following proposition shows that the origin is559

globally asymptotically stable.560

Proposition 29 Assume c
d < a

b . Then the origin is globally stable for (7).561

Proof Let x1 ∈ !+, x2 = P1(x1) and x3 = P2(x2). Then, as in the proof of Proposition 21,562

we have563

(x2
3 + m2) = e2(ct1−at2)(x2

1 + m2),564
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Fig. 11 Buckling bifurcation curve. Parameter values b = d = 1, m = −1
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<
c
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<

c3
d3
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= c3

d3
,BucklingBifurcation

c

d
=a
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c

d
= c2

d2

c

d
= c3

d3

Fig. 12 Bifurcation diagram for the case m < 0

and ct1 − at2 <
(

c
d − a

b

)

π < 0. Hence x3 < x1. We repeat for x3 the reasoning we used565

for x1, and so on. Hence, we generate two sequences {x2k} and {x2k+1} with x2k > x2k−2566

and x2k+1 < x2k−1, with their differences bounded away from 0. Let x̄ be such that P2(x̄) =567

− a
b m. Then there exists a finite k such that x2k ≥ x̄ and hence ϕ2(t, x2k, m) approaches the568

origin for t → ∞. -.569

Below we summarize the behavior of the system as c
d varies, in this case of m < 0. Recall570

that the values c2/d2 and c3/d3 are such that, respectively: x̄1 = − a
b m, P2(

c3
d3

m) = − a
b m. In571

Fig. 12 we plot the bifurcation diagram for this case. The top diagram represents the behavior572

of the origin, the only equilibrium of the system. The boxed plot that corresponds to the value573
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Fig. 13 Crossing, crossing and sliding and sliding periodic orbit for different values of c and a = b = d = 1
and m = −1

c
d < a

b , depicts the behavior of the origin as a global stable focus. The other plots, depict the574

unstable periodic orbits that (might) occur for different parameter values.575

c
d ≤ a

b The origin is a global stable focus for (7). The value c
d = a

b is a bifurcation576

value.577

c2
d2

> c
d > a

b The origin is a locally stable focus and there is an unstable crossing periodic578

orbit γ acting as a separatrix: initial conditions in the region inside the periodic579

orbit have corresponding solutions that approach the origin, while initial con-580

ditions in the region outside γ lead to unbounded solutions. The period of γ is581

always finite while the orbit’s length decreases as c
d increases, and its length582

approaches ∞ when c
d → ( a

b )+. In Fig. 13 we plot the crossing periodic orbit583

γ with a continuous line corresponding to the value c = 1.4. All the other584

parameters are taken equal to 1.585

c
d = c2

d2
This is a crossing bifurcation value.586

c2
d2

< c
d ≤ c3

d3
The origin is a locally stable focus. There is a crossing-and-sliding periodic587

orbit γ which acts as separatrix: the solutions inside γ approach the origin, the588

solutions outside γ are unbounded. In Fig. 13 we plot the crossing and sliding589

periodic orbit γ with a dashed line. The corresponding value of c is 20.590

c
d = c3

d3
This is a buckling bifurcation.591

c
d ≥ c3

d3
The origin is a locally stable focus and the system has a sliding periodic orbit592

γ (that is the same for all the values of c
d ), which acts as separatrix for initial593

conditions that lead to trajectories approaching the origin and those leading594

to unbounded solutions. In Fig. 13 we plot the sliding periodic orbit γ with a595

dotted line. The corresponding value of c is 100.596

3.4 m as a Bifurcation Parameter597

The analysis in Sects. 3.3 and 3.2 allows us to study (7) using m as bifurcation parameter. In598

what follows we will distinguish between three cases c
d < a

b , c
d = a

b and c
d > a

b .599
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We stress that the value m = 0 will always be a bifurcation value, regardless of whether600

a
b " c

d ; cfr. with [12] where the authors assumed a
b = c

d when m = 0.601

0 <
c

d
<

a

b
602

m < 0 The origin is globally asymptotically stable.603

m = 0 There are no periodic orbits and the origin is still globally asymptotically stable.604

This is a Hopf bifurcation value.605

m > 0 The origin is unstable, and there is a unique, globally stable (except for the origin),606

periodic orbit. The periodic orbit might be a crossing, crossing-and-sliding, or sliding607

periodic orbit, respectively for c
d ≥ c1

d1
, c1

d1
> c

d > c0
d0

, or c0
d0

> c
d .608

c

d
=

a

b
609

m < 0 The origin is globally asymptotically stable.610

m = 0 This is a bifurcation value. The origin is stable but not asymptotically stable, and611

there is a family of stable periodic orbits.612

m > 0 The origin is unstable, there are no periodic orbits, and all orbits (except the origin)613

are unbounded.614

c

d
>

a

b
615

m < 0 The origin is (locally) asymptotically stable. An unstable periodic orbit acts as sep-616

aratrix of trajectories approaching the origin and those that become unbounded. The617

periodic orbit is either a crossing, or a crossing-and-sliding, or a sliding, periodic618

orbit, respectively for c
d ≤ c2

d2
, c2

d2
< c

d < c3
d3

, or c3
d3

≤ c
d .619

m = 0 This is a Hopf bifurcation value. The origin is unstable, all other orbits are unbounded.620

m > 0 The origin is unstable, and all other orbits are unbounded.621

4 General Form622

In this section we consider the general family of systems (8). Although our study of this case623

is far from complete, we believe that it is still of interest since it highlights completely new624

phenomena which cannot occur when the family of linear systems is in canonical form.625

In general, we cannot bring ! := {(x, y) : y −qx −m = 0} into a horizontal line without626

breaking the structure of the system. Hence, we need to work with h(x, y) = y − qx − m.627

Note that the sliding region for (8) is S̄ with S = {(x, m) ∈ !, − a
αb m < x < c

d m} and it is628

an attractive sliding region. On it, the Filippov sliding vector field (10) is well defined and is629

given by630

fF (x) =
(x2 + m2)ad + (αx2 + m2

α )bc + bdmx(α − 1
α )

(c + a)m + x(αb − d)
. (39)631

Unfortunately, these problems depend on five parameters: a
b , c

d , α, with a, b, c, d > 0,632

and on m and q , and are too difficult to analyze in such generality. For this reason, we make633

the following simplifications:634

m > 0 and h(x, y) = y − m, i.e. q = 0,635

and a = 1, b = 1, d = 1 . (40)636
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Note that, in the case (40), fF is easily seen to be always positive.637

To reiterate, we explore (8) by allowing just c and α to vary. Still, as we will see, even638

in this simplified case (40), the dynamical behavior of (8) is richer than that reflected by the639

system in canonical form (7). However, even in this seemingly simpler case, exact analytical640

expressions for the solution of the problem are out of reach, and we will use a combination641

of analysis and computer aided simulation to highlight what can happen.642

For c < a, we know that system (7) has a globally asymptotically stable periodic orbit.643

This might be a crossing, or crossing-and-sliding, or sliding, periodic orbit. The question is644

whether (8) retains the same dynamical behavior of the system in canonical form.645

The reasoning for the existence of crossing periodic orbits is similar to the one in (16). A646

simple computation shows that with T =
(

−a b
α

−αb −a

)

we have647

eT t = e−at

(

cos(bt) 1
α sin(bt)

−α sin(bt) cos(bt)

)

.648

Using this expression, we see that there is a crossing periodic orbit if there exists x̄1, t̄1 and649

t̄2 such that650

ect̄1 e−at̄2

(

cos(bt̄2)
sin(bt̄2)

α
−α sin(bt̄2) cos(bt̄2)

) (

cos(dt̄1) sin(dt̄1)

− sin(dt̄1) cos(dt̄1)

) (

x̄1

m

)

=
(

x̄1

m

)

. (41)651

Let x̄2 = P1(x̄1). Then we can write x̄1 and x̄2 in function of t̄1, as in (20), and we can use652

(41) to rewrite t̄2 in function of t̄1 and α as:653

t̄2(t̄1,α) =
1

b
arctan

α(x̄1 − x̄2)

1 + α2x1x2
654

=
1

b
arctan

α sin(dt̄1)
(

2 cos(dt̄1) − (e−ct̄1 + ect̄1)
)

sin(dt̄1)2 + α2
(

cos(dt̄1)(ect̄1 + e−ct̄1) − 1 − cos(dt̄1)2
) . (42)655

We are left with the problem of looking for the zeros of the following function of α and t̄1,656

f (t̄1,α) = α sin(bt̄2)(e
ct̄1 − cos(dt̄1)) − sin(dt̄1)(cos(bt̄2) − eat̄2), (43)657

with t̄2 as in (42) and bt̄2, dt̄1 $= π . In Fig. 14 we plot the curve of zeros of f (t̄1,α) as a658

function of α for different values of c < a = 1. Figure 15 is the same of Fig. 14 but it is659

obtained for c in [0.5 0.8306122]660

As it is clear from the plot, it is not true that there is a unique value of t̄1 for all values661

of α and c. To clarify, in Fig. 16 we plot t̄1 in function of α for c 4 0.83061. As it can be662

seen, not all values of t̄1 correspond to a crossing periodic orbit. The dashed line in the plot663

is the value of t̄1 such that the corresponding x̄1 is equal to c
d m and let us denote it as t

c
d m

1 .664

We claim that for t̄1 > t
c
d m

1 , there are no corresponding crossing periodic orbits and instead665

a crossing-and-sliding or sliding periodic orbit appears. Indeed, (41) is obtained regardless666

of the fact that the vector field fi (x) = Ai x is defined only in Ri , for i = 1, 2. Let us denote667

with ϕi (t, x, y), the solution of ẋ = Ai x with initial condition x = (x, y),. If we consider668

x̄1 in (20) as a function of t̄1, it is easy to verify that x̄1 is decreasing for t̄1 ∈ (π
d , 2π

d ). Hence669

x̄1(t̄1) < c
d m whenever t̄1 > t

c
d m

1 . It follows that ϕ1(t, x̄1, m) (computed regardless of the670

fact that f1 is only defined in R1) first enters R2 and it meets ! at a point x̄1/2 > c
d m, then671

it enters R1 and reaches ! again at time t̄1 and at the point x̄2 given in (20). At x̄2, (41)672

considers the solution of ẋ = A2x, ϕ2(t, x̄2, m), that at time t̄2 meets ! again at x̄1. The orbit673
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Fig. 14 Curve of t̄1 as a function of α for different values of c. Here a = b = d = m = 1
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Fig. 15 Curve of t̄1 as a function of α for different values of c. Here a = b = d = m = 1

obtained through the composition of the two flows is a closed curve and we denote it with ψ .674

If we consider instead the initial condition ( c
d m, m), since c

d m > x̄1, ϕ1(t,
c
d m, m), meets !675

at a point x̃2, with x̃2 > x̄2. Two cases may occur: (i) x̃2 ≥ − a
b m, then (8) has a sliding orbit676

γ contained in the interior region of ψ ; (ii) x̃2 < − a
b m, then ϕ2(t, x̃2, m) meets ! at a point677

x̃1 < x̄1 < c
d m and hence there is a crossing-and-sliding periodic orbit in the interior region678

of ψ .679

Remark 30 The plot in Fig. 16 allows to determine the number of periodic orbits that system680

(8) has for each value of α. If, for a given α, there are three corresponding values of t̄1 (α = 0.1681

for example), the system has three periodic orbits. If one of the values of t̄1 is greater than682

the crossing bifurcation value, then this means that there is a sliding or crossing-and-sliding683

periodic orbit.684
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Fig. 16 Plot of t̄1 in function of α for c 4 0.83061. Here a = b = d = m = 1. The dashed line in the plot is
the value of t1 at the crossing bifurcation
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Fig. 17 Behavior of system (8) close to the periodic orbits at the fold

From the picture in Fig. 16, it is clear that there are two fold bifurcations of periodic orbits.685

Example 31 (Fold of Periodic Orbits and Stability) Through standard fold location tech-686

niques, we have computed the fold points: there is one fold for α 4 0.1130986266212 and687

one for α 4 0.01036814335189. The periodic orbits at these two different parameter values688

are shown in Fig. 17. Consider first the case of α = 0.1130986266212 on the left of Fig. 17.689

The system has two crossing periodic orbits, in bold in the figure: in the figure, γ1 corresponds690

to the smaller value of t̄1 while γ2 corresponds to the value at the fold. Observe that γ2 is stable691

from inside and unstable from outside. The value of t̄1 at the fold is t̄1 4 3.82459032689332692

and, using this, we can compute x̄1, x̄2 and t̄2 explicitly.693

The stability properties of both orbits can be studied using the Poincaré map or, equiva-694

lently, via the monodromy matrix. We will use here the approach based on the monodromy695

matrix. We denote with x̄1 and x̄2 the two intersections of the periodic orbit with !+ and696

!− respectively and with t̄1 and t̄2 the first return time to !− and !+ respectively. To form697

the monodromy matrix we must take into account the saltation or jump matrices, i.e., fun-698
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Fig. 18 Periodic orbits of system (8) for a = b = d = m = 1, c 4 0.83061 and α = 0.1. The dotted curve
is the unstable periodic orbit, the other two are the stable ones

damental matrices at the discontinuity (see [1,3,7–9]). The fundamental matrix solution has699

the following expression700

X (T ) = S2102(t̄2, t̄1)S1201(t̄1, 0), (44)701

where 0 j (t, t0) is the principal matrix solution of Ẋ = A j X, X (t0) = I , at time t , and S12702

and S21 are the two saltation matrices, defined as703

S12 = I + [ f2(x̄2 m) − f1(x̄2 m)]
nT (x̄2 m)T

nT f1(x̄2 m)
,704

S21 = I + [ f2(x̄1 m) − f1(x̄1 m)]
nT (x̄1 m)T

nT f1(x̄1 m)
.705

Since both periodic orbits must give a multiplier equal to 1, the other multiplier is706

det(X (T )) = e2(−at̄2+ct̄1) det(S12) det(S21) for which we have the following explicit expres-707

sion708

det(X (T )) = e2(−at̄2+ct̄1)
x̄2 + a

αb m

x̄2 − c
d m

x̄1 − c
d m

x̄1 + a
bα m

. (45)709

For γ2, we obtain: λ1 4 1, and λ2 4 0.998052. On the right of Figure 17 is depicted the710

case for the second fold at α 4 0.01036814335189. We plot only one arc of the periodic711

orbit γ1 at the fold together with the sliding orbit γ2. The asterisks are two initial conditions712

that do not belong to the periodic orbits and the dotted lines are the corresponding solutions.713

From the plot we observe that γ1 is stable from the outside and unstable from the inside. At714

γ1, the corresponding value of t̄1 is t̄1 4 3.15511532823135 and x̄1 4 79.32564021634117.715

Computing the eigenvalues of the monodromy matrix we obtain λ1 4 1 and λ2 4 1.00009.716

Finally in Fig. 18 we plot the orbits of the system for α = 0.1. This value is between the717

two folds and, looking at Fig. 16 we expect the system to have three periodic orbits. Indeed718

we see the three orbits plotted in bold in Fig. 18. The dotted periodic orbit is unstable while719
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the two solid orbits are stable. The other orbits in the plot correspond to the initial conditions720

marked with the stars. The inner orbit is a crossing-and-sliding periodic orbit.721

5 A Model Nonlinear Problem722

In this section we consider a weak non linear perturbation of system (5) with A1,2 as in (6),723

namely724

ẋ =

{

A1x + εg1(x), y < m,

A2x + εg2(x), y > m,
(46)725

with g1 and g2 continuously differentiable functions and such that g1(0) = g2(0) = 0, ε726

sufficiently small and m ≥ m0 > 0 (and m0 uniformly bounded away from 0). As usual, let727

n = (0, 1)T denote the normal to ! = {(x, y) |y = m}.728

As long as we stay away from the bifurcation values of the underlying linear problem, for729

ε small these types of systems exhibit a behavior similar to the linear case.730

First of all, note that as long as ε is sufficiently small and εnT d
dx g1(x, y)

∣

∣

∣

∣

(− a
b m,m)

$= b731

and εnT d
dx g2(x, y)

∣

∣

∣

∣

( c
d m,m)

$= d , the Implicit Function Theorem guarantees that there is an732

attractive sliding region S̄ for system (46). We denote with xR and xL respectively the right733

and left endpoints of S, S = {(x, m)|xL < x < xR} and with !̃+ = {(x, m)|x ≥ xR} and734

!̃− = {(x, m)|x ≤ xL}. Clearly xR,L = xR,L(ε), and xR(0) = c
d m and xL(0) = − a

b m.735

In what follows we will study the behavior of system (46) as c
d varies. Below, the values736

c j

d j
( j = 0, 1) are the critical values for the linear problem (5) in Sect. 3.737

(a) Let c
d be such that: a

b > ā
b̄

≥ c
d ≥ c̄1

d̄1
> c1

d1
, where ā, b̄, c̄, d̄ , depend on ε, but are738

bounded away from 0 uniformly in ε.739

The linear system (5) has an hyperbolic crossing periodic orbit γ for c
d in this range. In740

Sect. 3 we already defined a Poincaré map for (5) and we denoted with x̄ its fixed point. We741

want to define a Poincaré map P̃ = P̃(x, ε) for the nonlinear problem (46) and show that742

there exists an ε0 > 0 such that for ε ∈ (0, ε0), P̃ has a fixed point. We will use the Implicit743

Function Theorem and the fact that x̄ is an hyperbolic fixed point of P . In what follows we744

will use some of the results and the notations of Sect. 3, in particular insofar as t̄1, x̄ , etc..745

We denote with ϕ̃1,2(t, x, y, ε) the flow of system (46) respectively for y < m and746

y > m. For ε = 0, ϕ̃1,2(t, x, y, 0) = ϕ1,2(t, x, y). We denote with t̃1,2(x, ε) the return747

time of ϕ̃1,2(t, x, m, ε) to !. Then t̃1,2(x, 0) = t1,2(x) and smoothness of t̃1,2 and ϕ̃1,2 with748

respect to x and ε implies that there exist an ε1 > 0 and a δ1 > 0 such that for all ε ∈ [0, ε1)749

and all x ∈ (x̄ − δ1, x̄ + δ1), t̃1,2(x, ε) is smooth and well defined and ϕ̃1(t̃1(x), x, ε) ∈ !̃−750

and ϕ̃2(t̃2(x), x, ε) ∈ !̃+.751

We can define the following maps for ε ∈ [0, ε1) and x ∈ (x̄ − δ1, x̄ + δ1)752

P̃1(x, ε) : !̃+ → !̃−, P̃1(x, ε) = ϕ1(t̃1(x, ε), x, ε),753

and754

P̃2(x, ε) : !̃− → !̃+, P̃2(x, ε) = ϕ2(t̃2(x, ε), x, ε).755
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Fig. 19 Crossing and sliding periodic orbits for the linear system (solid line) and for its nonlinear perturbation
(dotted line). The asterisk is the tangential exit point for the linear system, while the circle is the one for the
nonlinear system

We define the Poincaré map for system (46) as P̃(x, ε) : !̃+ → !̃+, P̃(x, ε) =756

P̃2(P̃1(x, ε), ε). Clearly P̃(x, 0) = P(x). Moreover P̃x (x, ε)

∣

∣

∣

∣

(x̄,0)

= Px (x̄) $= 1 since757

γ is hyperbolic. Hence there exists an ε0 ≤ ε1 such that for all ε ∈ (0, ε0) there is an758

x = x(ε) such that P̃(x(ε), ε) = x(ε). We proved the following theorem.759

Theorem 32 In this case (a), there exists ε0 > 0 such that for all ε ∈ [0, ε0) the system760

(46) has a unique continuous asymptotically stable crossing periodic orbit γ reducing to the761

crossing periodic orbit of the linear problem for ε = 0.762

(b) Now take c
d such that c1

d1
> c̃1

d̃1
≥ c

d ≥ c̃0

d̃0
> c0

d0
, where c̃0, d̃0, c̃1, d̃1, are uniformly763

bounded away from 0 in ε.764

System (5) has a crossing-and-sliding periodic orbit γ that is stable and finitely reached.765

This γ starts at ( c
d m, m), enters R1, crosses !− at ϕ1(t1(

c
d m), c

d m, m) = (x1, m), enters R2,766

meets S at ϕ2(t2(x1), x1, m) = (x2, m) and starts sliding on S until it reaches the tangential767

exit point ( c
d , m). Then, since ϕ̃1 and ϕ̃2 are smooth in ε and x , there exists an ε0 > 0 such768

that for all ε ∈ (0, ε0) t̃1(xR(ε), ε) is well defined and, for x̃2 = ϕ̃1(t̃1(xR(ε)), xR(ε), ε),769

then also t̃2(x̃2, ε) is well defined and ϕ̃2(t̃2(x̃2), x̃2, m) ∈ S. This implies the existence of a770

sliding and crossing periodic orbit also for the perturbed nonlinear system.771

Theorem 33 In this case (b), there exists ε0 > 0 such that for all ε ∈ [0, ε0) the system (46)772

has a unique continuous crossing and sliding periodic orbit γ reducing to the crossing and773

sliding periodic orbit of the linear problem for ε = 0.774

In Fig. 19 we plot the periodic orbit γ of the linear system and γ1 of the nonlinear system775

for a = b = d = m = 1, c = 0.1, ε = 0.1, g1(x) =
(

x y
1+y2

)

, g2(x) =
(

x2 x2 + y2
)

.776

(c) Finally, take c
d such that c0

d0
> c̄0

d̄0
≥ c

d ≥ η > 0, where c̄0, d̄0, and η are bounded away777

from 0 uniformly in ε.778
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Now system (5) with A1,2 has a sliding periodic orbit γ that is stable and finitely reached.779

This γ starts at ( c
d m, m), enters R1, meets S at ϕ1(t1(

c
d m, m), c

d m, m) = (x1, m) and starts780

sliding on S until it reaches ( c
d m, m) again. Now, ϕ̃1 and t̃1 are smooth in x and ε and781

ϕ̃1(t, x, y, 0) = ϕ1(t, x, y) and t̃1(x, 0) = t1(x). Hence, there exist an ε0 > 0 such that for782

all ε ∈ (0, ε0), t̃1(xR(ε)) is well defined and ϕ̃1(t̃1(xR(ε)), xR(ε), m, ε) ∈ S. From this, we783

get784

Theorem 34 In case (c), there exists ε0 > 0 such that for all ε ∈ [0, ε0) system (46) has785

a unique continuous sliding periodic orbit γ , reducing to the sliding periodic orbit of the786

linear problem for ε = 0.787
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