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Abstract In this work we examine the existence of periodic orbits for planar piecewise
smooth dynamical systems with a line of discontinuity. Unlike existing works, we consider
the case where the line does not contain the equilibrium point. Most of the analysis is for a
family of piecewise linear systems, and we discover new phenomena which produce the birth
of periodic orbits, as well as new bifurcation phenomena of the periodic orbits themselves.
A model nonlinear piecewise smooth systems is examined as well.
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1 Introduction

An important mechanism for the appearance of periodic orbits in smooth dynamical systems
is through a Hopf bifurcation, a well understood situation fundamentally characterized by
having a pair of eigenvalues of the linearization at an equilibrium crossing the imaginary
axis. Stability characterization and (local) bifurcation phenomena for the periodic orbits
themselves are also well understood, and rely heavily on the use of Floquet multipliers and
the Poincaré map. Likewise, also global bifurcation phenomena of the periodic orbits, e.g.
homoclinic bifurcations, have been explored for a long time. All of these phenomena above
are well understood, although they continue to be studied also for planar systems because of
their importance in applications.

In recent times, piecewise smooth systems have attracted considerable attention, both
because of their ability to model dynamical behaviors arising in applications, and because of
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their intrinsic mathematical interest; e.g., see [3]. Our specific interest is for planar piecewise
smooth systems of the following type:

. f1(x), h(x) <0,
X = 1
H2(x), h(x) > 0,

where x = (f}), f1, f> are sufficiently smooth, fi2(0) = 0, and also & : R?Z — R is

a sufficiently smooth function. Further, we let ¥ = {(x, y) € RZ, h(x,y) = 0}, and we
assume that Vi(x) # Oforallx € ¥, so that X is a simple smooth curve, separating (locally)
the plane into two regions R and R where h(x) < 0, respectively i (x) > 0.

For a system like (1), Filippov convexification method is a powerful first order technique
which resolves the ambiguity of what to do when x € X. In its simplest form, it relies on the
following classification.

() Crossing. Atxg € Z: (VAT f1)(VAT f,) > 0. The crossing is from below if VAT fi 5 >
0, in which case the trajectory continues in R, with vector field f>, and the crossing is
from above if VAT f1.2 < 0, in which case the trajectory continues in R; with vector
field fi.

(i) Sliding. Atxg € : (VAT f1)(VhT f») < 0. One has attractive sliding if VAT | > 0,
and the trajectory moves on X with Filippov vector field given by the convexification

of f1, fa:

Vh' fo
VAT (fi — fo)’

Instead, one has repulsive sliding when VhT f1 < 0, in which case the problem is not
well posed (a trajectory could slide according to (2), or continue in R or Ry).

(iii) Exit. At xg € X, for one —and only one—index i = 1, 2, VhTﬁ =0, fi(xp) # 0, and
the function Vi f; changes sign for x € ¥ through xo.

Xx=0—-wfi+nufr n= 2)

Naturally, more things can happen at a point x € X, and higher order corrections may be
needed (e.g., see [4,6] for a host of bifurcations in planar Filippov systems), but the above
scenario is sufficient for our purposes.

Relative to systems like (1), there has been considerable interest in studying and approx-
imating periodic orbits and their stability properties and bifurcations. In the present context,
however, it is not even fully transparent what an appropriate extension of the Hopf bifurcation
theorem should look like. As far as we know, a fully rigorous Hopf bifurcation theorem was
recently proved in the important work [12], but see also the related works [5,7,8].

A most important mathematical (and modeling) feature of the Hopf bifurcation theorem
of [12] is that the curve X is given by one of the coordinate axes [in particular, it contains
the origin, isolated equilibrium for the system (1)]. That is, in [12], the authors consider the
following problem depending on a real parameter A:

. ArT(M)x +g1(x,4), ¥y <0, 3)

X =
Ay (WX + ga2(x, ), ¥y > 0,

with g1 2(x, 1) = O(x% 4+ y?) as (x, y) — 0, and where the matrices A1.2(2) have a pair of

complex conjugate eigenvalues o1 2(A) % iw; 2(A). Ordinarily (that is, for smooth systems
where A = Aj, g1 = &2, etc.), Hopf bifurcation requires «(0) = 0, j—kah:o # 0, and
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(0) # 0. Relative to (3), in [12] Zou, Kuepper and Beyn prove that a Hopf bifurcation now
takes place if

B(0)=1 B'(0) #0, where B()) = exp[m (o1 (M)/w1 (1) + az2(A)/w2(1))].

With respect to the same model (3), hence with the same assumption on the form of
the discontinuity line, interesting bifurcation phenomena for the periodic orbits have been
recently examined in [2], and also in [10, 11], where the authors further considered a special
planar system with an additional equilibrium (not on the line of discontinuity) and existence
of homoclinic orbits to this equilibrium.

Our goal in this work is to study periodic orbits for (1) when the function /(x) is a general
line. Namely, we will consider the function /(x) in the form:

h(x,y)=y—qgx—m. 4

As we will see, this seemingly innocent generalization produces some totally new phenomena
with respect to those observed in [ 12]. For example, depending on the coefficients of the linear
terms, one may have or not have periodic orbits, and they may be with crossing or partially
sliding behavior.

To perform our analysis, we will use a combination of explicit solution formulas, and
the Poincaré map, similarly to what is done in [2, 10, 12]. Unlike these other works, we will
also use the characterization of stability for the periodic orbits relying on the multipliers
associated to the fundamental matrix solution. Our results extend the existing theoretical
results, and cover important situations arising in practical applications, where one has planar
systems with a discontinuity line not containing equilibria (e.g., see [8,9]).

Remark 1 As it is well understood, in dynamical systems studies it is important to consider
models whose formulation is robust. For example, perturbing the horizontal line y = 0, and
even restricting just to other horizontal lines, makes it necessary to consider the family of
lines y = m (for m § 0), as we will do in this work.

A plan of the paper is as follows. In Sect. 2, we will consider the appropriate setting for the
general piecewise linear problem and will set forth two models: a special (canonical) form,
and a more general case. Section 3 is devoted to the complete analysis of the “canonical
form”, while Sect. 4 is dedicated to specific instances of the general form. Finally, in Sect.
5, we give an extension to the nonlinear case.

2 Setting of the Problem

Our main goal is to study periodic orbits for piecewise smooth planar systems with a line
of discontinuity (not necessarily passing through the origin). As it turns out, the piecewise
linear case is already sufficient to understand what we may observe in general and thus we
will first restrict to this case.

So, presently, the basic problem we consider is the following family of piecewise smooth
linear systems [see (1)]:

= (&)

Aix, y —gx —m < 0,
Axx, y —gx —m > 0,

with Ay, A, € R%*2_ and the discontinuity line is ¥ = {(x, y) € R?, y—gx —m = 0}.
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The (only) interesting case is when each of the coefficient matrices has complex conjugate
eigenvalues, and the two linear systems (viewed separately) have a stable (respectively, unsta-
ble) spiraling behavior toward (respectively, away from) the origin, consistently clockwise
or counterclockwise. In this situation, stable and unstable periodic orbits appear also when
the eigenvalues are not purely imaginary and different bifurcation phenomena, both local
and global, can be observed. In light of these considerations, we thus make the following
assumptions on piecewise linear systems like (5).

Assumption 1 The eigenvalues of A; are of the type {c¢ & id} and those of A, are of the
type {—a £ ib}, witha, b, c,d > 0.

i
ay 912

i
421 922 ,
orbits spiraling clockwise. The case aj, < 0 with orbits that spiral anticlockwise is analogous.

Assumption 2 A; = ( ) a’iz > 0,i = 1, 2. That is, each system (separately) has

2.1 Canonical Form

A great simplification takes place if we assume that the matrices A have the following

form:
c d —a b
Al:(—dc)’ Az:(—b—a)' (6)

In this situation, without loss of generality, one can assume that 4(x, y) = y — m. Indeed,
given h(x,y) = y — gx — p, let & = arctan(g) and consider the rotation matrix Q =

0) sin(® , ) AN
(_Czisrg(é) 22;((9))) Thenif (x, y) € %, Q (;) = (p C(fs(e)) = (2) Since Q commutes

with A1 and A in (6), the coefficient matrices are left unchanged by the coordinate change
() —2()
y y

Remark 2 1In [12], the authors further considered the case of m = 0. However, this is a
restriction which we want to avoid since if we translate the line y = m to y = 0, the
same translation will contribute a nonhomogeneity to the piecewise linear system. [And see
Remark 1 as well].

Henceforth, we thus refer to the following as the canonical form of the piecewise linear

systems:
c d\ (x
(x) —ac)\y) y=m
y) —a b X -
—b —a)\y)’ y=m

Remark 3 As it will become clear in Sect. 3, it is the ratios % and % which are the relevant
quantities, rather than the value of @, b, c and d per se. We will study the changes in dynamics
with respect to these ratios, and the value of m.

with a,b,c,d > 0. (7)

2.2 General Form

Unfortunately, in general, one cannot transform both matrices in (5) to canonical form with
the same coordinate transformation, hence the form (7) is restrictive. However, one can
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always assume that one of the two matrices A 2 in (5) is in canonical form and the other in
real Schur form. This statement can be justified as follows.

Let Vbesuchthat Ay =V (_cd f

Then, without loss of generality, we assume A; in (5) to be in the canonical form A; =

(_c d (cl) Next, let Q be a rotation matrix that takes A, into real Schur form: A, = QT Q7

) V! and consider the change of variables x <— Vx.

_gq b
T = ( oflb “a), and observe that Assumption 2 implies that @ > 0. Now, since matrices

of the form (_ozﬂ 5) commute with one another, the further change of variable: x «— QXx,

will leave A in canonical form and take Aj into real Schur form. It follows that, without
loss of generality, we can work with A1 in canonical form and A; in real Schur form. Finally,
consider two different time scalings in the two regions Ry and R, 71 = i, ) = é. The new
system is now discontinuous with respect to time as well (if b # d), but the orbits of this
system are the same as the ones of the original system.

Thus, we will consider the following family of systems as prototypes of the general form
of piecewise linear systems with a line of discontinuity:

c d\ (x
: (—dc)(y)’ y—gx—m <0
D26
—ba <o) \y) gx —m >

Notice that (8) depends on 5 values, namely § > 0, § > 0, « > 0, m and g, and it is not
easy to perform an exhaustive analysis for these problems. For this reason, in Sect. 4 we will
make some simplifications to the structure (8); namely, we will restrict to the case of ¢ = 0,
a=>b=d=1andletc, o, and m, vary.

®)

Remark 4 Note that a smooth planar linear dynamical system is topologically equivalent
to the system with coefficient matrix in canonical form. However, this is not true for planar
piecewise linear dynamical systems. Indeed, new phenomena such as folds of periodic orbits,
that do not appear in the canonical form, arise in the more general setting (8); see below.

3 Canonical Form

In this section we study piecewise linear systems in the canonical form (7). We use n to
indicate the normal to the line X:

X={(x,y): y=m} n:(?)

Obviously, the only equilibrium for the system is the origin.

As we already remarked in Sect. 2, the dynamics of (7) depend on the values of ¢, 5, and
m. Our goal below is to explore the changes in dynamics in function of the two values 5 and
m while leaving 7 fixed.

As we will see, the value m = 0 is a bifurcation value for any value of 7. The phenom-
ena we will present, however, are totally different from the Hopf bifurcation phenomenon
observed in [12]. In [12], m cannot be taken as a free parameter and the line of discontinu-
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ity must contain the origin (the equilibrium). In the present paper, instead, we take m as a
bifurcation parameter and observe quite different dynamical behaviors as m is varied.

3.1 Casem =0

The case m = 0 has been studied already in [5,12]. We briefly summarize the main results
for system (7).

The solutions intersect ¥ transversally everywhere except at the origin: n” fi(x, y) =
—dx and anz(x, y) = —bx. Take an initial condition on ¥, (x1,0), x; > 0. Then after

. . . X . . <
time t; = %, the solution trajectory At (Ol) meets X again at (x, 0), with xp = —ed™ x,

crosses X and enters R, to meet ¥ again at time t] + tp = % + % at (x3,0) with x3 =

eh Ty 1. Thus, in order for the solution to be periodic it must be % = % and since this
condition is independent of x1, the periodic orbit is not isolated and it is stable. There is a
family of periodic orbits that bifurcates from the origin as 5 — ¢ crosses 0: the value § =
is a bifurcation value, the origin changes from a stable focus to an unstable focus through the

appearence of a family of periodic orbits.

3.2 Casem >0
Form > 0, ¥ has an attractive sliding region. Take (x, m) € Z,therlanl (x,m) = —dx+cm
and n” f>(x, m) = —bx — am. Hence the sliding region on ¥ is S (the closure of S) with

§— 5 _@ c
—{(x,y)e ,—Zm<x<gm}.

The two points (—%m, m), (gm, m) are tangential points, i.e. points X in the phase space
such that (n” fi x) (T f2(x)) = 0. In [3, Chapter 19], these are called singular points of
Class 2a. (A complete classification of singular points is in [3, Chapter 4].) The Filippov
sliding vector field on S is well defined [see (2)]:

fr=(-whtufn ="l ©)
nT(fi — f2)
Hence
2 2
Frx) = (x*+m~)(ad + bc) (10)

(cm — dx) + (bx + am)’

which is always positive. Hence, once on S, the solution slides along ¥ and exits at 7m to
enter Rj.

There are three different types of periodic orbits that can occur in system (7): orbits
that have isolated points in common with X, orbits that have a sliding segment in ¥ and
a nonempty intersection with both regions R; and R», orbits that have a sliding segment
on ¥ and empty intersection with one of the two regions Ry, R». Following [6], we call
them respectively crossing periodic orbits, crossing and sliding periodic orbits, and sliding
periodic orbits. We will see below that, for a given value of 7, the existence of one type of
periodic orbit rules out the possibility of existence for the other two. The system will either
have one periodic orbit which attracts all initial conditions except the origin (5 < %), or
it will have no periodic orbits and all the solutions (except the origin) will be unbounded
(7=7%):
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202 To detect the existence of periodic orbits, we need to study the intersections of the flow
203 with X. We will use the following notation:

ST ={(x,y) €S, x>0}, S ={(x,yeS, x<0
205 E"':[(x,y)eE, ngm}, Z‘:{(x,y)ez, xf—%m}, (11)

206 sothat L = X~ US™ USTUXT, and further let ¢; (¢, xo, yo) be the solution of X = A;x,
207 1 = 1,2, such that x(0) = (io). Take an initial condition (x, m) € 7. Then ¢ (¢, x, m)
0

G
]
]
S
(=W}
-
o
=
+—
=
<

208 will reach X again at unique first time # = #;(x). Define the return map
209 P :=t > 27UST, Pi(x)= ¢t (x), x, m). (12)

210 In the same way, let (x, m) € £~ and let #5(x) be the first time for which ¢, (#2(x), x, m)
211 meets ¥ again. Define the return map

212 P:Y” —» SUZST, Pyx) = ga(tr(x), x, m). (13)

213 Clearly, P; and P, are smooth maps, and when Pj(x) € ¥~ we can define the composite
212 (Poincaré) map

21 P(x)=Py(Pi(x)): &F - SUET, (14)
216 which is again smooth, and it is explicitly given by:

217 P(x) = e~ 42PN (co5(7)x + sin(f)m), (15)
218 where 7 = btr (P (x)) + dty (x).

219 Crossing Periodic Orbit

220 We first explore the existence of crossing periodic orbits for (7), i.e., fixed points for
221 the Poincaré map (14). To have a crossing periodic orbit, the corresponding trajectory must
222 satisfy

—aby+chy cos(f) sin(f)\ (¥ _[(x
22 ¢ (— sin(f) cos(®) ) \m ) ~ \m )’ (16)
24 with 7 = bty + df; and 7 = 11(X1), i, = H(P1(x1)). Formula (16) requires that a rotation
225 multiplied by the factor e ~¢2+¢I takes the vector (¥1, m) ' in itself. This is the case only if

226 —ath+ct1 =0, bty +df) =2, (17)

227 which gives the following values for 7] and 7,:

_ a _ c
= ——2m dty = ——2m or
e ! ad + bc quadtz ad + bc
a <
220 diy =27 —t— b =27 —4—. (18)
743 T+3

220 Lemma 5 The following is a necessary condition for the existence of a crossing periodic
231 orbit:

19)

282

ST
Ul e
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Proof Consider system (5) and take as initial condition a point ()8

meets y = 0 again after time 7 = %. So, the return time to X must be greater than 7. This
together with the value for 71 in (18) implies § > . O

). Then the trajectory

For the remainder of this case m > 0, we will work under the assumption that (19) holds.

Proposition 6 If a system (5) admits a crossing periodic orbit y, then this is an isolated
periodic orbit. No other crossing periodic orbit exists.

Proof The trajectory at time 7; given by (18) must satisfy the following
o cos(dn) sin(dn)\ (*1) _ (*2
—sin(dt)) cosdt)) ) \m) — \m )"~

In particular, from the second component of this equality we get the following expression
for a unique value of X1, and in turn of Xj:

_ cos(diy) — e~<h _ el — cos(di)
Xl = ——FT7—=——m, X) = ———F————"ni. (20)
sin(dt;) sin(dt;)
O
It will be handy to use a more compact notation for X; and x> in (20):
cos(w) — e” 4w _ % — cos(w)
Xl =—————, Xy = ———, where
sin(w) sin(w)
a.¢ €, 1) i = T @1
= -, — =0z, o . , W= = = .
Thoa” ™ 'Ti¥az 1+a

Observe that (20) is uniquely defined, and therefore, if a crossing periodic exists, it must
be unique. Moreover, we have that a crossing periodic orbit exists whenever x; and x, are
outside the sliding region S. The following proposition shows thatif X € = * then X, € ™.

Proposition 7 Let x| and %, be defined as in (20). If X1 > §m then X < —¢m.

Proof Using the notation of (21), let g;(z, ®) = x1 — gm = W

g (z,a) = )Ez—i—%m = %(Css(w)m—l—zm.Weclaimthatgl(z, a) > 0implies g2(z, o) < O.

Since m < w < 2m, we have sin(w) < 0 and we can rewrite g1 (z, &) > 0 as

m — ozm and

—ozw

cos(w) <e + azsin(w). (22)

Now, g2(z, ) < 0 can be rewritten as e**"” — cos(w) + zsin(w) > 0 and, using (22),
g2(z, a) < 0 if the following inequality is verified:

e — e Lsin(w)z(1 —a) > 0. (23)
We first show that for o € (a*, 1), a* = =27 + /472 + 1, we have
YW — o7 _ (1 —a) > 0, (24)

and hence (23). Then we show that for @ € (0, a*] we have

e¥W — 7% 4 sin(w)z > 0, (25)
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and this will imply (23) since —« sin(w) > 0. We will use Taylor expansions. To show (24)
we expand the exponentials with respect to their argument and we get

20zw + R(axzw) — z(1 —a) > 0,

where R = O ((awz)?) indicates the reminder of the Taylor expansion of e**¥ — e=*W and
is always positive. For o > a*, 2aw — (1 —«) > 0 (use w = 1Jra) so that (24) is verified.
To show that (25) is verified in (0, &*] we use the Taylor expansion of e¢*** with respect to
its argument and the second degree Taylor polynomial of sin(w) about o = 0. We have

4z
oazZw _ —QzZw — R ,
e e T o + R(x)
with R(ar) = O(a?) > 0, while
zsin| —— )| = 2nwza + 27z
1+
+a3 4z ()22 +,()67‘r 3 cos(wo)
— — | COS(w sin(w — I COS(w B
6 (1+ag)* (1 + )2 YT+ 0

where the last quantity is z times the Lagrange reminder of the Taylor po]ynomial for the
sine function, ag € (0, ™) and wy = 1

with the following quantity: Ry = 47 (— 271 — 6 — 3). Now, given that R(«) is positive,
we have
2 2 3 3
et — 7 4 sin(w)z > z Zret 4 T ON + a—R] =: 7Ry ().
14+« 6
In the interval under study the function R, () is positive since R»(0) = 0 and iR2 (o) =

% + 0{2R 1, and this is positive in [0, «*]. Hence (25) is verified as well and the

proof is complete. O

Proposition 7 together with Proposition 6 insures that a unique crossing periodic orbit of
(5) exists if X1 > Zm.

Corollary 8 Let 1) and ty be defined as in (18) and X\ and % as in (20). If Xy > Gm then
(5) admits a crossing periodic orbit y with first return time to ¥ equal to t| and with period
1+ 6. ]

Remark 9 Proposition 7 tells us that, if x; in (20) is such that x; > im then the system

has an isolated crossing periodic orbit y. Notice that for § — (%)_ fi — 7 and hence,
x1 in (20) goes to +o0. Since X is a continuous function of 5 ¢, for § 7 sufficiently large (and
7 < %), the system has a crossing periodic orbit.

Below, we show that y is asymptotically stable for X; > Zm. We do this by direct
computation of the derivative of the Poincaré map; equivalently, we could have computed the
Floquet multiplier(s) using the monodromy matrix, and we will use this approach in Sect. 4.
Further, in Theorem 15 below we will show that y attracts every initial condition except the
origin.

Definition 10 A periodic orbit y is said to be stable and finitely reached if it is asymptotically
stable and in an open neighborhood of y there are orbits that reach y in finite time.
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Proposition 11 Let x1 in (20) be such that X1 > %m. Then, the crossing periodic orbit y is
asymptotically stable. For X\ = 5m, y is stable and finitely reached.

Proof We have x| > 9m and X, < —%m, and the Poincaré map P in (15) is well defined
and differentiable in a neighborhood of %;. Let x; € £, and let x = P;(x) and x3 =
P> (x) = P(x1). To express %(x), the following identities will be handy

xy = ¢V [cos (dt) (x1)) x1 + sin (dt; (x1)) m], (26)

m = 1) [—sin (diy (x1)) x| + cos (dt1(x1)) m], 27)

x3 = e 202 [cos(bry(x2))x2 + sin(biy (x2))m] , (28)

m = e~ 202 [_sin(bty (x2))x2 + cos(bty (x2))m] . (29)
dx; _ dxsdx

We need to compute o = . Using Eq. (27) and implicit differentiation we get

dn __ sin(dr)el

dx cm—dx)

dxy dx|
and differentiating (26) with respect to x; we obtain the following

d . d
@ _ Pl cry +dm sin(dty) + cos(dty) ) . (30)
dxy cm — dxy

In the same way we can compute % differentiating Eq. (28) with respect to x;, use implicit

differentiation in Eq. (29) to get j—g, and obtain the following
5 _ o [ BB G s) + cosbra) 31
—=e sin cos .
dx; am + bxs A 2

Moreover, using Eq. (17), we can derive the following handy identities
cos(bir) = cos(diy), sin(bh) = —sin(di;), e 92 =N,

On the periodic orbit the value of x3 will be again x1. So, we have

@(21) = [—M sin(dt) + cos(dt_l):| [M sin(df;) + cos(dt_l)]
dxy am + bx; cm — dxy
a(—x sin(dt;) + cos(dt;)m) + b(cos(dt))x; + m sin(dt;))
- am + bx;
c(—sin(dt))x, + cos(dt;)m) — d(sin(dt))m + cos(dt1)x2)
+ cm — dxy
and using (26), (27), (29) and (20) we obtain
. am + bxy\ rem — dxi Xo 4 §my (X1 — Sm
bp@ay = (am + bil)(cm — d)?z) - ()22 - %m)<i1 + %m) ' (32)

On the crossing periodic orbit, x; > gm and xp < —%m, so that DP(x;) < 1 and y is
asymptotically stable.
If x; = ﬁm then DP(x1) = 0 and y is stable and finitely reached. ]

Sliding Periodic Orbit

Assume now that system (7) admits a sliding periodic orbit y;, and notice that y; will
always exist for gm sufficiently small. Indeed, let x_; be the counterimage of —%m on X
under ¢ (-, -, -). For gm < x_1, system (7) admits a sliding periodic orbit.

In the next theorem we show that y is stable and finitely reached and it attracts all initial
conditions except the origin.
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Fig. 1 Sliding periodic orbit and first elements of the sequence in the proof of Theorem 12

Theorem 12 Assume that system (5) has a sliding periodic orbit y,. Then Yy is stable and
finitely reached and it attracts all initial conditions except the origin.

Proof We first prove global stability. For (x,y) € X, let #;(x) be the first return time
of g1 (¢, x, y) to X. The existence of y; implies that ¢y (t1(3m), gm, m) = (X, m), with
%m > x> —%m. Then, let x_; be the counterimage of —%m on X under ¢ (-, -, -); i.e., let
x_1 be the point on X such that ¢y (ty(x_1), x_1, m) = (=%m, m). Clearly x_; > gm and
it must exist since ¢ (-, -, -) is a diffeomorphism of R?. Let x_> be the point on ¥ such that
@2(12(x_2), x_2,m) = (x_1, m). Again the linearity of the vector field ensures existence
of x_». Moreover x_» < —%m. This same reasoning can be applied to x_» and we can
generate two sequences {x_ax} and {x_ox_1} such that: ¢y (2(x_2¢), X—2k, M) = X_2k+1,
o1(t1(x—2k—1), X—2k—1,m) = X_op and X k| > X_ 241, X_2k—2 < X_2t. See Fig. 1.
Notice that the sequences can not possibly accumulate on a crossing periodic orbit y, since
y, if it exists, is isolated and asymptotically stable. This implies global stability (except for
the initial condition at the origin) of y;. To prove that the orbit is stable and finitely reached,
notice that any xo in the region inside y is such that ¢(t{(xg), xo, m) € S. Moreover any xo
in [$m, x_1] is such that @ (¢ (x0), X0, m) € S.Ifx_ = Sm then any xo € [x_1,x_3] is
such that > o @1 (t1 (x0), x0, m) € S. See Fig. 1. o

Crossing and Sliding Periodic Orbit

We noticed above that for 5 small enough, system (7) has a sliding periodic orbit. Let
fl—g be such that P; (2—8) = —%m, then for § in a right neighborhood of %’ system (7) has a
crossing-and-sliding periodic orbit y» (see Fig. 2).

Theorem 13 Assume that system (7) has a crossing-and-sliding periodic orbit y,. Then y,
is stable and finitely reached and it attracts all initial conditions except the origin.

Proof The proof is similar to the one in Theorem 12 for a sliding periodic orbit. Let x_» be

the point on X~ such that ¢ (12(x_2), x_2,m) = (gm, m). The linearity of the vector field
ensures existence of x_». The rest of the proof is the same as in Theorem 12. Notice that
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Fig. 2 Sliding and crossing periodic orbit

the sequences x_»; and x_ox—1 cannot accumulate on a crossing periodic orbit y since this
would contradict the asymptotic stability of y. O

The proofs of Theorem 12 and 13 rule out the possibility that two different kind of periodic
orbits coexist.

Proposition 14 Assume that system (5) has a crossing, or a crossing-and-sliding, or a sliding,
periodic orbit y. Then y is the unique periodic orbit of system (7). O

Theorems 12 and 13, and Proposition 14, allow to infer the following.

Theorem 15 Assume that a system (7) admits a crossing periodic orbit y. Consider any ini-
tial condition different from the origin. Then the corresponding solution trajectory approaches
y. If %1 in (20) is such that X; = Sm then y is also stable and finitely reached (from inside).

Proof To prove this result we can select an initial condition on 2. Indeed, any other initial
condition will lead to a solution that meets X in finite time.
(i) )21 > %m
Without loss of generality, we can take the initial condition (x1, m), with %m < x| < Xi.
Indeed if x; € S, then the corresponding solution will slide on X to exit X at §m. Then,
since a sliding orbit cannot exist, x, = Pj(x1) is such that —%m > xp > Xy and
x3 = P3(x7) is such that x3 < x1. We claim that x3 > x;. To prove this, we write the

solution explicitly as
TN 0, 0y (’,j;) = (f;) : (33)

. cos(dty) sin(dty) cos(btp) sin(bty)
with 0y = (— sin(dr;) cos(dtl)) and Q> = (— sin(bry) cos(bry)
and x; > Xy, the rotation that takes (x1, m) to (x2, m) must satisfy: df; < dt;. Indeed,
if we denote with Zxjx, the angle between the two vectors (xp, m)T and (xp, m) T,
then Zx1x, = dt; and this must be greater than /X X, = df;. Similarly, x, > X, and

). Since x1 < X
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x3 < X) implies bty < bty. Then —aty + ct; > —aty + cf; = 0 so that e~42F¢1 > ]
and [|(x3, m)| > ||(x1, m)]|,i.e. x3 > x1. Since y is the unique crossing periodic orbit,
for any x; < X1, the corresponding solution approaches y . Similarly, we can show that
for any x; > x1, x; > x3 = P(x1) > X1, and, again, uniqueness of y implies that for
any x| > X1, the corresponding solution approaches y.
(i) Xy = gm.

If x; < x1 then the solution will slide on X until it reaches x| in finite time. Hence y
is stable and finitely reached from the inside. For x; > X1, the proof is the same as for
case i).

This completes the proof of the theorem. O

All previous results have used condition (19): % < % If this condition is not satisfied, all
solutions (except the origin) are unbounded.

Proposition 16 For 5 > 7, no periodic orbit exists, and all solutions of system (5) (except
the origin) are unbounded.

Proof Because of Lemma 35, there cannot be crossing periodic orbits. Next, if x; € ST
then the solution slides along ¥ until it reaches gm. Hence take x; > gm. Let (xo,m) =
o1(t1(x1), x1, m). Itmustbe xp < —(%m,since llo1(t, x1, m)|| = e’ is amonotone increasing

function of 7. Let (x3, m) = @2(t2(x2), x2, m). We claim that x3 > x. Indeed

("3) = 1007202 0y (1) Q1 (x1) (’,;1) ,

m

. _ cos(dti(x)) sin(dty(x)) _ cos(bty(x)) sin(brr(x))
with 010) = (— sin(dt (x)) cos(dr (x))) and Qa(x) = (— sin(b2(x)) cos(btz(x)))'
Since for m > 0 there exists €9 > 0 such that df; (x1) > m + €9 and bt (x2) < 7w — €0, then
cti(x1) —at(x2) > (5 —5)7 +eo(% + %), and hence x3 > eeO(%Jré)xl. Applying the same
reasoning to x3 we generate a sequence {x2x1} such that xo541 > eke(’(%"'&)xl. This proves
the theorem. m]

Varying 7
Next, we study the behavior of the system as we vary the value of £, still holding % fixed.
Looking at (21), this requires studying x; as a function of 5, hence of «.

Proposition 17 Let x| be defined by (21). If (7) has a crossing periodic orbit, then x| is
increasing as a function of o.

Proof If there is a crossing periodic orbit y, then X3 («) < —%m = —zm. Hence

e — cos(w) + zsin(w) > 0. (34)
For the first derivative of x; with respect to « we have
(14 e~ (z sin(w) — cos(w)))

sin(w)?

2
(1+a?)

d
—Xi(a) = m, (35)
da

which is positive because of (34). O

Notice that for 5 — (5)7, X1 — +00 [see (20) and (18)]. Hence Proposition 17, together
with Corollary 8, ensure that (7) admits a crossing periodic orbit whose length goes to oo
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Fig. 3 Parameter values b = d = m = 1. Portion of the curve of crossing bifurcation values in ¢ and ¢

when 5 — (%)‘. Because of Proposition 17, as 5 decreases, x| decreases, and hence the
length of the crossing periodic orbit decreases as well. Notice moreover that, if for a certain
parameter value g, system (7) admits a crossing-and-sliding periodic orbit y, then for 5 < %,
there is either a sliding-and-crossing periodic orbit or a sliding periodic orbit contained in the
interior region of y», this rules out the existence of a crossing periodic orbit. It follows that
there exists a 2—‘1 such that: (i) x| = fi—‘lm; (ii) for § > (% system (7) has a crossing periodic
orbit; (iii) for f? < ET; (% > Z—g, see below) system (7) has a crossing-and-sliding periodic
orbit. The parameter value chll is a crossing bifurcation value.

Example 18 (Curve of Crossing Bifurcations). In Fig. 3, we show (a piece of) the curve of
the crossing bifurcation value in the two parameters g and %. This is obtained looking at the
solution curve of x; — gm = 0, with x; in (20).

As § decreases, there is a parameter value § = 2—8 such that Pl(ngm) = —%¢m. Thisisa
buckling bifurcation: y persists, but it becomes a sliding periodic orbit. See Fig. 4 obtained
fora = b = d = 1 and for different values of c¢. The bold periodic orbit at the buckling
bifurcation ¢ 2~ 0.0634 is a sliding periodic orbit. The one at ¢ = 0.1 is a sliding and crossing
periodic orbit and the one at ¢ = 0.03 is a sliding periodic orbit.

Example 19 (Curve of Buckling Bifurcations) For the buckling bifurcation we do not have a
close formula for the first return time t(gm) to 2. Hence we need to solve for ¢ as well. The
curve is obtained through continuation techniques applied to the following nonlinear system

e”(cos(dt)% + sin(d?)) = %

< (— sin(dt)g + cos(dt)) = m.
In Fig. 5, we plot (a piece of) the curve of the buckling bifurcation holdingb = d = m = 1.

Below we summarize the behavior of the system in the case of m > 0, as 5 varies. In
Fig. 6 we plot the bifurcation diagram for this case. The top diagram represents the behavior
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Fig.4 Parameter valuesa = b = d = m = 1. As c decreases the sliding and crossing periodic orbit becomes
a sliding periodic orbit. The value ¢ ~ 0.0634 is the buckling bifurcation value

0.7

0.5+ 4

0.4} 1

021 1

0.1+1 1

Fig. 5 Parameter values b = d = m = 1. A piece of the curve of buckling bifurcation

of the origin, the only equilibrium of the system. The other plots, depict the stable periodic
orbits that occur for different parameter values. Recall that the values ¢ /d; and co/dp are
those we have just defined above: x| = Z—im, Pl(%m) =—5m.

< 0 The origin is a globally asymptotically stable focus for (7).

= 0 This is a bifurcation value for the origin: the origin is stable but not asymp-
totically stable. There is a family of stable periodic orbits of radius p < m:
p(cosdt, sindt). For p = m, the orbit is tangent to ¥ at (0, m) and it is stable
and finitely reached from outside and stable from inside. This is a bifurcation
value: a grazing bifurcation of periodic orbits. See Fig. 7.

ISWENSWLY
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Fig. 6 Bifurcation diagram for m > 0

450 2—3 > 5 > 0 The origin is an unstable focus. The periodic orbit tangent to ¥ in § = 0

451 survives and it becomes a sliding periodic orbit. The orbit is stable and finitely
452 reached from inside.

453 7= Z—g This a buckling bifurcation value. See Fig. 4. The value ¢ >~ 0.0634 is a
454 buckling bifurcation value.

455 fl—'l > 9> f]—g The periodic orbit retains its stability but changes type and it becomes a
456 crossing-and-sliding periodic orbit. See Fig. 4 with ¢ = 0.1.

457 7= 2—‘1 This is a crossing bifurcation value.

ws  p >G> “Ti The system has a globally stable (except for the origin) crossing periodic
459 orbit of constant period #; + 1, as in (18), and length that approaches oo for
460 % — (%)7-

461 5 > % There are no periodic orbits, all orbits are unbounded (see Proposition 16).

w2 3.3 Casem <0

43 To begin with, we observe that system (7) with m < 0 is equivalent to the case m > 0
464 in backward time with counterclockwise rotation and with 5 replaced by %. So, we again
465 consider the case of  fixed and let 5 vary. We use same notations as for the case m > 0.

466 The system exhibits repulsive sliding on X for gm <x< —%m. LetS={x € X, %m <
w7 X < —gm}, >t={xeX x> —ym}, 7 = {x € ¥, x < gm}. The origin is a
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Fig.7 Here, L‘7 = 0. Grazing bifurcation of periodic orbits. The orbit in bold is tangent to X at (0, m)

stable focus and it is the only equilibrium point. The two points (—%m, m) and (7m, m) are
tangential points.

Since the system exhibits repulsive sliding on S, the only orbits that may cross, or slide
on, S are those that start in S, although no orbit that slides on (a portion of) S is uniquely
defined in forward time. Nonetheless, the Filippov’s vector field (10) is still well defined and
fr(x) <Oforallx € S.

In order to study the crossing periodic orbits of the system, we reason as in the case m > 0,
and we get the same quantities as in (18), (20), and the analog of Proposition 6 holds true as
well. Notice that now df; < 7 so that we get the following Lemma (cfr. with Lemma 5).

Lemma 20 The following is a necessary condition for the existence of a crossing periodic
orbit:

(36)

o
SRS

[m}

Proposition 21 Let (36) hold and suppose that system (7) has a crossing periodic orbit y.
Then y is unstable.

Proof Letx; and x, be defined as in (20). Take x| > xj andletx, = Pj(x1) andx3 = P>(x2).
Then x, < X, and we claim that x3 > x;. Indeed

(jjj) = M0, 0 (jj;) ,

. cos(dty) sin(dty) cos(brp) sin(bty)
with 0 = (— sin(d1)) cos(dtl))’ Q2 = (— sin(bta) cos(btz)
second return time to X. Moreover, x; > X1 and x < X, imply that #; > 71, while xp < X
and x3 > X imply that #, < 7. Hence ¢ 72 > 1 and x3 > x;. In a similar way we can
show that y is unstable from inside as well. O

) and #; and t, are first and

As we will see below, system (7) exhibits crossing-and-sliding or sliding periodic orbits
for 5 sufficiently large. In Fig. 8 the curve in bold is a sliding-and-crossing periodic orbit. It
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Fig. 8 y in bold is a sliding-and-crossing periodic orbit

starts at (—%m, m), slides on X towards X, it leaves X and enters R;. It crosses X again at
X» and enters R, until it reaches X at (—%m, m). The following identities are satisfied

~ _ a - 1~
By =Py (—Bm) . F =P (E). (37)

Remark 22 Notice that any solution of system (7) with initial condition on ¥ is not uniquely
defined in forward time. This means that, if y is a crossing-and-sliding or sliding periodic
orbit, a solution of (7) with initial condition on y can leave y at any point that belongs to
the intersection y N S. However, if we consider the time change t — —t and we consider
the system obtained taking the derivative with respect to 7, then y is an invariant object for
the new system. Notice that at (—%m, m) the sliding vector field fr is f>, and w in (9) is
equal to 1. However, 1 is different from zero at (—%m, m). Hence a solution with initial
condition (—%m, m) might either stay in X, or leave X tangentially to enter Ry, or leave X
transversally to enter Rj.

Proposition 23 Let (36) hold and suppose that a system (7) has a crossing-and-sliding or a
sliding periodic orbit. Then they are unstable.

Proof We will prove the theorem for y crossing-and-sliding. The proof for y sliding is
analogous. Let y be a crossing-and-sliding periodic orbit of (7). In Fig. 8 y is in bold. It
starts at (—%m, m), slides on X towards X1, it leaves ¥ and enters R;. It crosses ¥ again
at Xp and enters R, until it reaches X at (—%m, m). Consider now the solution that starts
at (—%m, m) and, instead of sliding on X, enters R; (a small piece of curve in Fig. §). To
show instability of y, we need to show that this solution moves away from y. We have
Xy = Pi(=%m) < Pi(¥1) = Xz so that x3 = P2((Py(—%m)) > —§m. We can apply the
same reasoning to x3 so to generate two sequences {xzx } and {x2z41} on X with xox 11 > X2k—1
and x2; < x2¢—2. Hence instability from outside is proven.

In order to prove instability from the inside, we just need to notice that any initial condition
in the region inside y approaches the origin. Denote this region with I'. Any solution with
initial condition in Ry N " cannot cross y so that it must enter R N [". Once in R, N T, the
solution cannot meet ¥ again (since n” f>(x) > 0 on ) and hence it approaches the origin.
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Fig. 9 Sliding and crossing periodic orbit. All the solutions inside the shaded region approach the origin

In Fig. 9, the region inside y is filled in gray. The asterisks denote initial conditions in I" and
the corresponding solutions move towards the origin. O

The sequences {xz;} and {x2¢41} in the proof of Proposition 23 cannot accumulate on a
crossing periodic orbit due to Proposition 21. Hence the following holds true.

Proposition 24 System (7) with line of discontinuity y = m and m < 0, admits at most one
periodic orbit. O

The sliding-and-crossing (or sliding) periodic orbit acts as a separatrix of the phase
space. All the initial conditions inside it lead to the origin, while the solutions outside y
are unbounded.

The following proposition establishes sufficient conditions for the existence of a crossing
periodic orbit . Its proof follows from the observation that for any x € =T, Pj(x) € £,
sincenT Ajx <Oforx e SUXT.

Proposition 25 Let (36) hold, and let 1}, b, X1 and X, be defined as in (18), (20). If x| >
- %m, then (7) has a crossing periodic orbit y . O

In order to study what happens at (or past) the value 5 = 7, we set § =z, § = aj (with
o > 1), and study x| as a function of &, similarly to what we did in (21).

Proposition 26 Let (36) hold. If the system admits a crossing periodic orbit, then the function
¥1 + §m is a decreasing function of 3.

Proof 1If y exists, we have x; < gm. Using same notations as in (21) and noticing that
sin(w) > 0 we have

e — cos(w) > azsin(w). (38)
Let g1(z, ) = X1 + zm, so that dg;/da = dx;/do, and this is given by (35). Using (38)
then gives that (35) is negative. O
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Fig. 10 Crossing bifurcation curve. Parameter valuesb =d =1, m = —1

Observe that when 5 — (%)+, X1 — oo and the length of the periodic orbit y tends

to oo, while for 5 — 00, X] — —o0. Hence, there must be a value of &, say g = Z such
that X, = —%m. This is a crossing bifurcation value. Due to Proposition 26 this crossing

bifurcation value must be unique.

Example 27 (Curve of Crossing Bifurcations) In Fig. 10, we show a portion of the curve
of the crossing bifurcation values in the two parameters ¢ and a. The other parameters are
b=d=1,m=-1.

Next,let 5 = “ be such that Py(3 m) = —m. Then, the solution that starts at (— 3 m, m)
slides on X, exits E for x = to enter R; and reaches X again for x = bm itis a sliding
periodic orbit. Denote it W1th y. As 5 increases beyond 5 ” the repulsive sliding region §

becomes larger, but y 1s not affected by the parameter change it starts at (—3m, m), slides

on X, exits X at x = d3 to enter R and reaches ¥ again at x = —7m Hence for % > %,
the system admits a sliding periodic orbit y that is independent on the value of 3.
The value 5 = d3 3 for which Pp($ am) = gm is a buckling bifurcation.

Example 28 (Curve of Buckling Bifurcations) In Fig. 11, we plot (part of) the curve of
buckling bifurcation values in the two parameters ¢ and a. The other parameter values are
b=d=1,m=-1.

When (36) is violated, and § > ¢, the following proposition shows that the origin is
globally asymptotically stable.

Proposition 29 Assume § < . Then the origin is globally stable for (7).

Proof Letx; € 1, xp = Pi(x1) and x3 = P>(x7). Then, as in the proof of Proposition 21,
we have

(X% +m2) — ez(c‘tl—atz)(xlz +m2)’
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Fig. 12 Bifurcation diagram for the case m < 0

and ct] —atr < (3 — %) m < 0. Hence x3 < x1. We repeat for x3 the reasoning we used
for x1, and so on. Hence, we generate two sequences {xp;} and {xox41} with xor > x>
and xox41 < X2k—1, with their differences bounded away from 0. Let x be such that P, (x) =
—<m. Then there exists a finite k such that xp; > X and hence > (¢, x2x, m) approaches the
origin for t — oo. O

Below we summarize the behavior of the system as 3 varies, in this case of m < 0. Recall
that the values ¢;/d> and c¢3/d3 are such that, respectively: x| = — %m, PZ(%’") = —%m. In
Fig. 12 we plot the bifurcation diagram for this case. The top diagram represents the behavior
of the origin, the only equilibrium of the system. The boxed plot that corresponds to the value
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Fig. 13 Crossing, crossing and sliding and sliding periodic orbit for different values of canda = b =d =1
andm = —1

st4 5 < 7, depicts the behavior of the origin as a global stable focus. The other plots, depict the

s7s  unstable periodic orbits that (might) occur for different parameter values.

576 2 < % The origin is a global stable focus for (7). The value 5 = 7 is a bifurcation
577 value.

578 % > 2 > % The origin is a locally stable focus and there is an unstable crossing periodic
579 orbit y acting as a separatrix: initial conditions in the region inside the periodic
580 orbit have corresponding solutions that approach the origin, while initial con-
581 ditions in the region outside y lead to unbounded solutions. The period of y is
582 always finite while the orbit’s length decreases as 5 increases, and its length
583 approaches oo when 5 — (%)*. In Fig. 13 we plot the crossing periodic orbit
584 y with a continuous line corresponding to the value ¢ = 1.4. All the other
585 parameters are taken equal to 1.

586 5 = l% This is a crossing bifurcation value.

587 % < g < z% The origin is a locally stable focus. There is a crossing-and-sliding periodic
588 * orbit y which acts as separatrix: the solutions inside y approach the origin, the
589 solutions outside y are unbounded. In Fig. 13 we plot the crossing and sliding
590 periodic orbit y with a dashed line. The corresponding value of c¢ is 20.

591 9= 2—2 This is a buckling bifurcation.

502 7= ‘% The origin is a locally stable focus and the system has a sliding periodic orbit
503 y (that is the same for all the values of g), which acts as separatrix for initial
504 conditions that lead to trajectories approaching the origin and those leading
595 to unbounded solutions. In Fig. 13 we plot the sliding periodic orbit y with a
596 dotted line. The corresponding value of ¢ is 100.

se7 3.4 m as a Bifurcation Parameter

ses  The analysis in Sects. 3.3 and 3.2 allows us to study (7) using m as bifurcation parameter. In

so9  what follows we will distinguish between three cases 57 < %, 3 = % and 5 > %.

@ Springer

:é: Journal: 10884-JODY Article No.: 9380 [_]TYPESET [ DISK [_]LE [_]CP Disp.:2014/7/2 Pages: 30 Layout: Small



G
]
]
S
(=W}
-
o
=
+—
=
<

600
601

602

603
604
605
606
607

608

609

610
611
612
613

614

615

616
617
618
619
620

621

622

623
624
625
626
627
628
629

630

631

632

633

634

635

636

;-,-‘: Journal: 10884-JODY Article No.: 9380 [ JTYPESET [_|DISK [JLE [_]CP Disp.:2014/7/2 Pages: 30 Layout: Small

J Dyn Diff Equat

We stress that the value m = 0 will always be a bifurcation value, regardless of whether

55 cfr. with [12] where the authors assumed § = § whenm = 0.

=<
< d’

a
b
c a
0<-<-—
d b
m < 0 The origin is globally asymptotically stable.
m = 0 There are no periodic orbits and the origin is still globally asymptotically stable.
This is a Hopf bifurcation value.
m > 0 The origin is unstable, and there is a unique, globally stable (except for the origin),
periodic orbit. The periodic orbit might be a crossing, crossing-and-sliding, or sliding

P : : [ B G )} Qo ¢
periodic orbit, respectively for dZdrd > d> % > a
c a
d b

m < 0 The origin is globally asymptotically stable.
m = 0 This is a bifurcation value. The origin is stable but not asymptotically stable, and
there is a family of stable periodic orbits.
m > 0 The origin is unstable, there are no periodic orbits, and all orbits (except the origin)
are unbounded.
c a

~ s =
d b

m < 0 The origin is (locally) asymptotically stable. An unstable periodic orbit acts as sep-
aratrix of trajectories approaching the origin and those that become unbounded. The
periodic orbit is either a crossing, or a crossing-and-sliding, or a sliding, periodic
orb.itt respectiw_aly forﬁ < %, ‘% < 3 < %, or ;—2 <g. '

m = 0 ThisisaHopfbifurcation value. The origin is unstable, all other orbits are unbounded.

m > 0 The origin is unstable, and all other orbits are unbounded.

4 General Form

In this section we consider the general family of systems (8). Although our study of this case
is far from complete, we believe that it is still of interest since it highlights completely new
phenomena which cannot occur when the family of linear systems is in canonical form.

In general, we cannot bring ¥ := {(x, y) : y—gx —m = 0} into a horizontal line without
breaking the structure of the system. Hence, we need to work with 2(x,y) =y — gx — m.
Note that the sliding region for (8) is Swith S = {(x,m) € =, —Of‘—bm <x < %m} and itis
an attractive sliding region. On it, the Filippov sliding vector field (10) is well defined and is
given by

2 +m?ad + (ax? + %z)bc + bdmx(a — é)
(c+a)ym + x(ab —d) '

Sr(x) = (39)

Unfortunately, these problems depend on five parameters: 7, 7, @, with a, b, c,d > 0,

and on m and ¢, and are too difficult to analyze in such generality. For this reason, we make
the following simplifications:

m>0 and h(x,y)=y—m, ie. g=0,
and a=1, b=1, d=1. (40)
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Note that, in the case (40), fF is easily seen to be always positive.

To reiterate, we explore (8) by allowing just ¢ and « to vary. Still, as we will see, even
in this simplified case (40), the dynamical behavior of (8) is richer than that reflected by the
system in canonical form (7). However, even in this seemingly simpler case, exact analytical
expressions for the solution of the problem are out of reach, and we will use a combination
of analysis and computer aided simulation to highlight what can happen.

For ¢ < a, we know that system (7) has a globally asymptotically stable periodic orbit.
This might be a crossing, or crossing-and-sliding, or sliding, periodic orbit. The question is
whether (8) retains the same dynamical behavior of the system in canonical form.

The reasoning for the existence of crossing periodic orbits is similar to the one in (16). A

—q b
simple computation shows that with T = ¢ o ) we have
—ab —a

Tt _ —ar [ cos(bt) ésin(bt)
€ =€\ _asintr) cosbr) )

Using this expression, we see that there is a crossing periodic orbit if there exists X1, ; and
1> such that

ocli g—aiy - cos(bir) % cos(dn) sin(dh) (1) _ (% . @)
—a sin(bfp) cos(bty)) \—sin(dty) cos(dty) ) \m m
Let X, = P;(x1). Then we can write X; and X, in function of 71, as in (20), and we can use
(41) to rewrite 7, in function of #; and « as:

- = 1 a(x1 —Xx2)
n(t, o) = , arctan e
1 a sin(dt)) (2 cos(dty) — (¢l 4 ¢t ))
= — arctan — _ _ _ _ o
b sin(d1)? + a2 (cos(df) (et + e=<1) — 1 — cos(di1)?) (42)

We are left with the problem of looking for the zeros of the following function of « and 77,
f(f1, @) = asin(bh) (e — cos(dir)) — sin(df ) (cos(bh) — ), 43)

with 7, as in (42) and b1y, df; # 7. In Fig. 14 we plot the curve of zeros of f (7], @) as a
function of « for different values of ¢ < a = 1. Figure 15 is the same of Fig. 14 but it is
obtained for ¢ in [0.5 0.8306122]

As it is clear from the plot, it is not true that there is a unique value of 7; for all values
of a and c. To clarify, in Fig. 16 we plot 7] in function of « for ¢ >~ 0.83061. As it can be
seen, not all values of 7] correspond to a crossing periodic orbit. The dashed line in the plot

is the value of 7} such that the corresponding X; is equal to 7m and let us denote it as tl

We claim that for 7; > t1 , there are no corresponding crossing periodic orbits and instead
a crossing-and-sliding or sliding periodic orbit appears. Indeed, (41) is obtained regardless
of the fact that the vector field f;(x) = A;x is defined only in R;, fori = 1, 2. Let us denote
with ¢; (7, x, y), the solution of X = A;x with initial condition x = (x, y) . If we consider
X1 1n (20) as a function of 71, it 1s easy to verify that x; is decreasing for 7 € (7 z. e <7). Hence

x1(f) < gm whenever f; > tl " 1t follows that @1(t, X1, m) (computed regardless of the
fact that f is only defined in Ry) first enters R and it meets ¥ at a point X1,2 > %m, then
it enters R and reaches X again at time #; and at the point X given in (20). At x, (41)
considers the solution of X = AX, @2 (¢, X2, m), that at time 7, meets X again at X|. The orbit
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Fig. 15 Curve of 7] as a function of « for different values of c. Herea =b=d =m =1

obtained through the composition of the two flows is a closed curve and we denote it with /.
If we consider instead the initial condition (gm, m), since %m > X1, ¢1(t, %m, m), meets X
at a point X», with X, > X. Two cases may occur: (i) Xp > — %m, then (8) has a sliding orbit
y contained in the interior region of ¥/; (i) X < — %m, then ¢ (¢, X», m) meets X at a point
X1 < X1 < gm and hence there is a crossing-and-sliding periodic orbit in the interior region

of .

Remark 30 The plot in Fig. 16 allows to determine the number of periodic orbits that system
(8) has for each value of «. If, for a given «, there are three corresponding values of 7} (o« = 0.1
for example), the system has three periodic orbits. If one of the values of 7 is greater than
the crossing bifurcation value, then this means that there is a sliding or crossing-and-sliding
periodic orbit.
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Fig. 16 Plot of 7] in function of « for ¢ >~ 0.83061. Here a = b = d = m = 1. The dashed line in the plot is
the value of #1 at the crossing bifurcation
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Fig. 17 Behavior of system (8) close to the periodic orbits at the fold

From the picture in Fig. 16, it is clear that there are two fold bifurcations of periodic orbits.

Example 31 (Fold of Periodic Orbits and Stability) Through standard fold location tech-
niques, we have computed the fold points: there is one fold for « ~ 0.1130986266212 and
one for & >~ 0.01036814335189. The periodic orbits at these two different parameter values
are shown in Fig. 17. Consider first the case of o = 0.1130986266212 on the left of Fig. 17.
The system has two crossing periodic orbits, in bold in the figure: in the figure, y; corresponds
to the smaller value of 7 while y; corresponds to the value at the fold. Observe that y; is stable
from inside and unstable from outside. The value of 77 at the fold is r; ~ 3.82459032689332
and, using this, we can compute X1, X, and 7, explicitly.

The stability properties of both orbits can be studied using the Poincaré map or, equiva-
lently, via the monodromy matrix. We will use here the approach based on the monodromy
matrix. We denote with ¥; and ¥, the two intersections of the periodic orbit with ¥+ and
3.~ respectively and with 71 and 7, the first return time to £~ and X7 respectively. To form
the monodromy matrix we must take into account the saltation or jump matrices, i.e., fun-
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Fig. 18 Periodic orbits of system (8) fora =b =d =m =1, ¢ >~ 0.83061 and « = 0.1. The dotted curve
is the unstable periodic orbit, the other two are the stable ones

damental matrices at the discontinuity (see [1,3,7-9]). The fundamental matrix solution has
the following expression

X(T) = $1P2(12, 1) S12P1(11, 0), (44)

where @ (¢, ) is the principal matrix solution of X=A X, X(t) = I, attime ¢, and Sy
and S»; are the two saltation matrices, defined as

nT (xp m)T

nt fi(xa m)’

n @& m)”

nl fi(x m)’

Since both periodic orbits must give a multiplier equal to 1, the other multiplier is

det(X (T)) = e2(-a92+¢11) det(S),) det(Sy;) for which we have the following explicit expres-
sion

Spp=1+[/202 m)— fi(xa m)]

So1 =1+ [fa(x1 m) — fi(xy m)]

det(X(T)) = ainrei) 2 T Lm F—m

Xo—Sm X+ &m0 “5)

For y», we obtain: A1 >~ 1, and A =~ 0.998052. On the right of Figure 17 is depicted the
case for the second fold at @ >~ 0.01036814335189. We plot only one arc of the periodic
orbit y; at the fold together with the sliding orbit y». The asterisks are two initial conditions
that do not belong to the periodic orbits and the dotted lines are the corresponding solutions.
From the plot we observe that y; is stable from the outside and unstable from the inside. At
y1, the corresponding value of 7 is f; >~ 3.15511532823135 and x| =~ 79.32564021634117.
Computing the eigenvalues of the monodromy matrix we obtain A1 ~ 1 and A, ~ 1.000009.
Finally in Fig. 18 we plot the orbits of the system for & = 0.1. This value is between the
two folds and, looking at Fig. 16 we expect the system to have three periodic orbits. Indeed
we see the three orbits plotted in bold in Fig. 18. The dotted periodic orbit is unstable while
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the two solid orbits are stable. The other orbits in the plot correspond to the initial conditions
marked with the stars. The inner orbit is a crossing-and-sliding periodic orbit.

5 A Model Nonlinear Problem

In this section we consider a weak non linear perturbation of system (5) with A > as in (6),
namely

Aix+egi(x), y < m,
X:{ 1 81 y (46)

Axx +ega(x), y > m,

with g1 and g, continuously differentiable functions and such that g1(0) = g2(0) = 0, €
sufficiently small and m > mo > 0 (and m¢ uniformly bounded away from 0). As usual, let
n = (0, 1)T denote the normal to £ = {(x, y) |y =m}.

As long as we stay away from the bifurcation values of the underlying linear problem, for
€ small these types of systems exhibit a behavior similar to the linear case.

First of all, note that as long as ¢ is sufficiently small and en” % g1(x,y) *b

bm m)

and en” % g2 (x,y) # d, the Implicit Function Theorem guarantees that there is an
(Gm,m)
attractive sliding region S for system (46). We denote with xg and x;, respectively the right
and left endpoints of S, S = {(x, m)|xy < x < xgr} and with fbr = {(x,m)|x > xgr} and
Y = {(x,m)|x < xz}.Clearly xg ; = xR, (€), and xg(0) = Gm and x7(0) = —3m.
In what follows we will study the behavior of system (46) as § varies. Below, the values
Z—j (j =0, 1) are the critical values for the linear problem (5) in Sect. 3.

(a) Let 5 be such that: § > a > g = ;—1 > L%, where a, b, ¢, d, depend on ¢, but are
bounded away from O uniformly in €.

S

The linear system (5) has an hyperbolic crossing periodic orbit y for § in this range. In
Sect. 3 we already defined a Poincaré map for (5) and we denoted with x its fixed point. We
want to define a Poincaré map P = P(x €) for the nonlinear problem (46) and show that
there exists an €p > 0 such that for € € (0, €q), P has a fixed point. We will use the Implicit
Function Theorem and the fact that x is an hyperbolic fixed point of P. In what follows we
will use some of the results and the notations of Sect. 3, in particular insofar as 7, X, etc..

We denote with @1 2(t, x, y, €) the flow of system (46) respectively for y < m and
y > m. Fore = 0, ¢12(t,x,y,0) = ¢12(t, x,y). We denote with f1,g(x, €) the return
time of @ 2(t, x, m, €) to ¥. Then 7 »(x, 0) = #; »(x) and smoothness of 7] » and @; » with
respect to x and € implies that there exist an €; > 0 and a §; > O such that for all € € [0, €])
and all x € (X — 81, X 4 81), 71.2(x, €) is smooth and well defined and @1 (71 (x), x, €) € S_
and @ (72(x), x, €) € 4.

We can define the following maps for € € [0, €;) and x € (x — 81, X + 81)

Pi(x,€) : 2y — Z_, Pi(x,€) = ¢1(f1(x, €), x, €),
and

Py(x,€) : - — Ty, Pa(x,€) = ga(br(x, €), x, €).
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Fig.19 Crossing and sliding periodic orbits for the linear system (solid line) and for its nonlinear perturbation
(dotted line). The asterisk is the tangential exit point for the linear system, while the circle is the one for the
nonlinear system

756~ We define the Poincaré map for system (46) as IS(x,e) : fbr — f)+, f’(x,e) =

757 Isz(lsl(x, €), €). Clearly 13(x, 0) = P(x). Moreover st(x, €) = Py(x) # 1 since
X,

7ss  y is hyperbolic. Hence there exists an €9 < € such that for all € € (0, €p) there is an

759 X = x(€) such that P(x (€), €) = x(€). We proved the following theorem.

760 Theorem 32 [In this case (a), there exists €9 > 0 such that for all € € [0, €o) the system
761 (46) has a unique continuous asymptotically stable crossing periodic orbit y reducing to the
762 crossing periodic orbit of the linear problem for € = 0.

763 (b) Now take § such that Z—‘I > 2—' > 9> 27 > 2—8, where &y, dy, €1, dy, are uniformly
1 o

764 bounded away from 0 in €.

765 System (5) has a crossing-and-sliding periodic orbit y that is stable and finitely reached.

76 This y starts at (3m, m), enters Ry, crosses X~ at ¢ (11 (§m), gm, m) = (x1, m), enters Ry,
767 meets S at g2 (t2(x1), x1, m) = (xz, m) and starts sliding on S until it reaches the tangential
768 €Xit point (%, m). Then, since ¢; and ¢, are smooth in € and x, there exists an €y > 0 such
70 that for all € € (0, €p) 71 (xg(€), €) is well defined and, for X, = @ (71 (xg(€)), xg(€), €),
770 then also 7(X2, €) is well defined and @, (72(X2), X2, m) € S. This implies the existence of a
771 sliding and crossing periodic orbit also for the perturbed nonlinear system.

772 Theorem 33 In this case (b), there exists € > 0 such that for all € € [0, €q) the system (46)
773 has a unique continuous crossing and sliding periodic orbit y reducing to the crossing and
774 sliding periodic orbit of the linear problem for € = 0.

775 In Fig. 19 we plot the periodic orbit y of the linear system and y; of the nonlinear system
e fora=b=d=m=1,c=0.1,e =0.1, g1(x) = (x %yz), X)) = (x2 x% + )’2)-

7

N
J

(c) Finally, take 5 such that 2—8 > > 3 > n > 0, where cg, c?o, and n are bounded away
778 from O uniformly in €.
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Now system (5) with A > has a sliding periodic orbit y that is stable and finitely reached.
This y starts at (5m, m), enters Ry, meets S at ¢y (¢ (5m, m), gm,m) = (x1, m) and starts
sliding on S until it reaches (5m, m) again. Now, ¢; and f; are smooth in x and € and
@1(t,x,y,0) = @1 (t, x,y) and f1 (x, 0) = 1 (x). Hence, there exist an €y > 0 such that for
all € € (0, €p), 1 (xg(€)) is well defined and @ (7] (xg (€)), xgr(€), m, €) € S. From this, we
get

Theorem 34 In case (c), there exists €9 > 0 such that for all € € [0, €g) system (46) has
a unique continuous sliding periodic orbit y, reducing to the sliding periodic orbit of the
linear problem for e = 0.

Acknowledgments This work was perfomed while the second author was on leave from the University of
Bari, Bari, Italy, and in visit to the School of Mathematics of the Georgia Institute of Technology, whose
support is gratefully acknowledged. The first author is grateful to the University of Jilin, Changchun, China,
where he spent part of the Summer 2013 as Tang Aoqing Professor.

References

1. Dieci, L., Lopez, L.: Fundamental matrix solutions of piecewise smooth differential systems. Math.

Comput. Simul. 81, 932-953 (2011)
2. Du, Z., Li, Y., Zhang, W.: Bifurcation of periodic orbits in a class of planar Filippov systems. Nonlinear
Anal. 69(10), 3610-3628 (2008)
3. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Mathematics and Its Appli-
cations. Kluwer, Dordrecht (1988)
4. Guardia, M., Seara, T.M., Teixeira, M.A.: Generic bifurcations of low codimension of planar filippov
systems. J. Differ. Equ. 250(4), 1967-2023 (2011)
5. Kiipper, T., Moritz, S.: Generalized Hopf bifurcation for non-smooth planar systems. R. Soc. Lond. Philos.
Trans. Ser. A 359(1789), 2483-2496 (2001). Non-smooth mechanics
6. Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int.
J. Bifurc. Chaos Appl. Sci. Eng. 13(8), 2157-2188 (2003)
7. Leine, R.I.: Bifurcations in Discontinuous Mechanical Systems of Filippov’s type. PhD thesis, Techn.
Univ. Eindhoven, The Netherlands (2000)
8. Leine, R.I.: Bifurcations of equilibria in mechanical systems. Physica D 223, 121-137 (2006)
9. Mueller, P.C.: Calculation of Lyapunov exponents for dynamic systems with discontinuities. Chaos,
Solitons Fractals 5, 167-1681 (1995)
10. Pi, D., Yu, J.: On the sliding bifurcation of a class of planar Filippov systems. Int. J. Bifurc. Chaos Appl.
Sci. Eng. 23(3), 1350040 (2013)
11. Pi, D.,Zhang, X.: The sliding bifurcations in planar piecewise smooth differential systems. J. Dyn. Differ.
Equ. 25(4), 1001-1026 (2013)
12. Zou, Y., Kuepper, T., Beyn, W.-J.: Generalized hopf bifurcation for planar Filippov systems continuous
at the origin. J. Nonlinear Sci. 16, 159-177 (2006)
@ Springer

:é: Journal: 10884-JODY Article No.: 9380 [_]TYPESET [ DISK [_]LE [_]CP Disp.:2014/7/2 Pages: 30 Layout: Small



G
]
]
S
(=W}
-
o
=
+—
=
<

Journal: 10884
Article: 9380

Author Query Form

@ Springer

the language of science

Please ensure you fill out your response to the queries raised below
and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check
your typeset proof carefully against the queries listed below and mark the necessary changes
either directly on the proof/online grid or in the ‘Author’s response’ area provided below

Query

Details required

Author’s response

the proof.

1. Please confirm whether the mail id
elia@math.gatech.edu should appear in



Paul Wollan

Paul Wollan



Paul Wollan

Paul Wollan
Please use:
cinzia.elia@uniba.it


