

Dear Author,

Here are the proofs of your article.

- You can submit your corrections **online**, via **e-mail** or by **fax**.
- For **online** submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof PDF and **email** the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the **journal title**, **article number**, and **your name** when sending your response via e-mail or fax.
- **Check** the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- **Check** the questions that may have arisen during copy editing and insert your answers/ corrections.
- **Check** that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the *Edited manuscript*.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please **do not** make changes that involve only matters of style. We have generally introduced forms that follow the journal's style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections **within 48 hours**, we will send you a reminder.
- Your article will be published **Online First** approximately one week after receipt of your corrected proofs. This is the **official first publication** citable with the DOI. **Further changes are, therefore, not possible.**
- The **printed version** will follow in a forthcoming issue.

Please note

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: [http://dx.doi.org/\[DOI\]](http://dx.doi.org/[DOI]).

If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: <http://www.link.springer.com>.

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned.

Metadata of the article that will be visualized in OnlineFirst

ArticleTitle	Periodic Orbits for Planar Piecewise Smooth Systems with a Line of Discontinuity	
Article Sub-Title		
Article CopyRight	Springer Science+Business Media New York (This will be the copyright line in the final PDF)	
Journal Name	Journal of Dynamics and Differential Equations	
Corresponding Author	Family Name Particle Given Name Suffix Division Organization Address Email	Elia C. School of Mathematics Georgia Tech Atlanta, GA , 30332, USA cinzia.elia@uniba.it
Author	Family Name Particle Given Name Suffix Division Organization Address Email	Dieci L. School of Mathematics Georgia Tech Atlanta, GA , 30332, USA dieci@math.gatech.edu
Schedule	Received Revised Accepted	6 November 2013 29 May 2014
Abstract	In this work we examine the existence of periodic orbits for planar piecewise smooth dynamical systems with a line of discontinuity. Unlike existing works, we consider the case where the line does not contain the equilibrium point. Most of the analysis is for a family of piecewise linear systems, and we discover new phenomena which produce the birth of periodic orbits, as well as new bifurcation phenomena of the periodic orbits themselves. A model nonlinear piecewise smooth systems is examined as well.	
Keywords (separated by '-')	Piecewise smooth systems - Periodic orbits - Bifurcation - Filippov - Hopf	
Mathematics Subject Classification (1991) (separated by '-')	34C29 - 37G15	
Footnote Information		

Periodic Orbits for Planar Piecewise Smooth Systems with a Line of Discontinuity

L. Dieci · C. Elia

Received: 6 November 2013 / Revised: 29 May 2014
© Springer Science+Business Media New York 2014

1

1 **Abstract** In this work we examine the existence of periodic orbits for planar piecewise
2 smooth dynamical systems with a line of discontinuity. Unlike existing works, we consider
3 the case where the line does not contain the equilibrium point. Most of the analysis is for a
4 family of piecewise linear systems, and we discover new phenomena which produce the birth
5 of periodic orbits, as well as new bifurcation phenomena of the periodic orbits themselves.
6 A model nonlinear piecewise smooth systems is examined as well.

7 **Keywords** Piecewise smooth systems · Periodic orbits · Bifurcation · Filippov · Hopf

8 **Mathematics Subject Classification (1991)** 34C29 · 37G15

9 1 Introduction

10 An important mechanism for the appearance of periodic orbits in smooth dynamical systems
11 is through a Hopf bifurcation, a well understood situation fundamentally characterized by
12 having a pair of eigenvalues of the linearization at an equilibrium crossing the imaginary
13 axis. Stability characterization and (local) bifurcation phenomena for the periodic orbits
14 themselves are also well understood, and rely heavily on the use of Floquet multipliers and
15 the Poincaré map. Likewise, also global bifurcation phenomena of the periodic orbits, e.g.
16 homoclinic bifurcations, have been explored for a long time. All of these phenomena above
17 are well understood, although they continue to be studied also for planar systems because of
18 their importance in applications.

19 In recent times, piecewise smooth systems have attracted considerable attention, both
20 because of their ability to model dynamical behaviors arising in applications, and because of

L. Dieci · C. Elia (✉)
School of Mathematics, Georgia Tech, Atlanta, GA 30332, USA
e-mail: cinzia.elia@uniba.it

L. Dieci
e-mail: dieci@math.gatech.edu

21 their intrinsic mathematical interest; e.g., see [3]. Our specific interest is for planar piecewise
22 smooth systems of the following type:

$$23 \quad \dot{\mathbf{x}} = \begin{cases} f_1(\mathbf{x}), h(\mathbf{x}) < 0, \\ f_2(\mathbf{x}), h(\mathbf{x}) > 0, \end{cases} \quad (1)$$

24 where $\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$, f_1, f_2 are sufficiently smooth, $f_{1,2}(0) = 0$, and also $h : \mathbb{R}^2 \rightarrow \mathbb{R}$ is
25 a sufficiently smooth function. Further, we let $\Sigma = \{(x, y) \in \mathbb{R}^2, h(x, y) = 0\}$, and we
26 assume that $\nabla h(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in \Sigma$, so that Σ is a simple smooth curve, separating (locally)
27 the plane into two regions R_1 and R_2 where $h(\mathbf{x}) < 0$, respectively $h(\mathbf{x}) > 0$.

28 For a system like (1), Filippov convexification method is a powerful first order technique
29 which resolves the ambiguity of what to do when $\mathbf{x} \in \Sigma$. In its simplest form, it relies on the
30 following classification.

31 (i) *Crossing*. At $\mathbf{x}_0 \in \Sigma$: $(\nabla h^T f_1)(\nabla h^T f_2) > 0$. The crossing is from below if $\nabla h^T f_{1,2} >$
32 0, in which case the trajectory continues in R_2 with vector field f_2 , and the crossing is
33 from above if $\nabla h^T f_{1,2} < 0$, in which case the trajectory continues in R_1 with vector
34 field f_1 .
35 (ii) *Sliding*. At $\mathbf{x}_0 \in \Sigma$: $(\nabla h^T f_1)(\nabla h^T f_2) < 0$. One has *attractive sliding* if $\nabla h^T f_1 > 0$,
36 and the trajectory moves on Σ with Filippov vector field given by the convexification
37 of f_1, f_2 :

$$38 \quad \dot{\mathbf{x}} = (1 - \mu)f_1 + \mu f_2 \quad \mu = \frac{\nabla h^T f_2}{\nabla h^T (f_1 - f_2)}. \quad (2)$$

39 Instead, one has *repulsive sliding* when $\nabla h^T f_1 < 0$, in which case the problem is not
40 well posed (a trajectory could slide according to (2), or continue in R_1 or R_2).

41 (iii) *Exit*. At $\mathbf{x}_0 \in \Sigma$, for one –and only one– index $i = 1, 2$, $\nabla h^T f_i = 0$, $f_i(\mathbf{x}_0) \neq 0$, and
42 the function $\nabla h^T f_i$ changes sign for $\mathbf{x} \in \Sigma$ through \mathbf{x}_0 .

43 Naturally, more things can happen at a point $\mathbf{x} \in \Sigma$, and higher order corrections may be
44 needed (e.g., see [4,6] for a host of bifurcations in planar Filippov systems), but the above
45 scenario is sufficient for our purposes.

46 Relative to systems like (1), there has been considerable interest in studying and approx-
47 imating periodic orbits and their stability properties and bifurcations. In the present context,
48 however, it is not even fully transparent what an appropriate extension of the Hopf bifurcation
49 theorem should look like. As far as we know, a fully rigorous Hopf bifurcation theorem was
50 recently proved in the important work [12], but see also the related works [5,7,8].

51 A most important mathematical (and modeling) feature of the Hopf bifurcation theorem
52 of [12] is that the curve Σ is given by one of the coordinate axes [in particular, it contains
53 the origin, isolated equilibrium for the system (1)]. That is, in [12], the authors consider the
54 following problem depending on a real parameter λ :

$$55 \quad \dot{\mathbf{x}} = \begin{cases} A_1(\lambda)\mathbf{x} + g_1(\mathbf{x}, \lambda), y < 0, \\ A_2(\lambda)\mathbf{x} + g_2(\mathbf{x}, \lambda), y > 0, \end{cases} \quad (3)$$

56 with $g_{1,2}(\mathbf{x}, \lambda) = \mathcal{O}(x^2 + y^2)$ as $(x, y) \rightarrow 0$, and where the matrices $A_{1,2}(\lambda)$ have a pair of
57 complex conjugate eigenvalues $\alpha_{1,2}(\lambda) \pm i\omega_{1,2}(\lambda)$. Ordinarily (that is, for smooth systems
58 where $A_1 = A_2$, $g_1 = g_2$, etc.), Hopf bifurcation requires $\alpha(0) = 0$, $\frac{d}{d\lambda}\alpha|_{\lambda=0} \neq 0$, and

59 $\omega(0) \neq 0$. Relative to (3), in [12] Zou, Kuepper and Beyn prove that a Hopf bifurcation now
60 takes place if

61 $B(0) = 1 \quad B'(0) \neq 0, \quad \text{where} \quad B(\lambda) = \exp[\pi(\alpha_1(\lambda)/\omega_1(\lambda) + \alpha_2(\lambda)/\omega_2(\lambda))].$

62 With respect to the same model (3), hence with the same assumption on the form of
63 the discontinuity line, interesting bifurcation phenomena for the periodic orbits have been
64 recently examined in [2], and also in [10, 11], where the authors further considered a special
65 planar system with an additional equilibrium (not on the line of discontinuity) and existence
66 of homoclinic orbits to this equilibrium.

67 Our goal in this work is to study periodic orbits for (1) when the function $h(\mathbf{x})$ is a **general**
68 line. Namely, we will consider the function $h(\mathbf{x})$ in the form:

69
$$h(x, y) = y - qx - m. \quad (4)$$

70 As we will see, this seemingly innocent generalization produces some totally new phenomena
71 with respect to those observed in [12]. For example, depending on the coefficients of the linear
72 terms, one may have or not have periodic orbits, and they may be with crossing or partially
73 sliding behavior.

74 To perform our analysis, we will use a combination of explicit solution formulas, and
75 the Poincaré map, similarly to what is done in [2, 10, 12]. Unlike these other works, we will
76 also use the characterization of stability for the periodic orbits relying on the multipliers
77 associated to the fundamental matrix solution. Our results extend the existing theoretical
78 results, and cover important situations arising in practical applications, where one has planar
79 systems with a discontinuity line not containing equilibria (e.g., see [8, 9]).

80 *Remark 1* As it is well understood, in dynamical systems studies it is important to consider
81 models whose formulation is robust. For example, perturbing the horizontal line $y = 0$, and
82 even restricting just to other horizontal lines, makes it necessary to consider the family of
83 lines $y = m$ (for $m \neq 0$), as we will do in this work.

84 A plan of the paper is as follows. In Sect. 2, we will consider the appropriate setting for the
85 general piecewise linear problem and will set forth two models: a special (canonical) form,
86 and a more general case. Section 3 is devoted to the complete analysis of the “canonical
87 form”, while Sect. 4 is dedicated to specific instances of the general form. Finally, in Sect.
88 5, we give an extension to the nonlinear case.

89 **2 Setting of the Problem**

90 Our main goal is to study periodic orbits for piecewise smooth planar systems with a line
91 of discontinuity (not necessarily passing through the origin). As it turns out, the piecewise
92 linear case is already sufficient to understand what we may observe in general and thus we
93 will first restrict to this case.

94 So, presently, the basic problem we consider is the following family of piecewise smooth
95 linear systems [see (1)]:

96
$$\dot{\mathbf{x}} = \begin{cases} A_1 \mathbf{x}, & y - qx - m < 0, \\ A_2 \mathbf{x}, & y - qx - m > 0, \end{cases} \quad (5)$$

97 with $A_1, A_2 \in \mathbb{R}^{2 \times 2}$, and the discontinuity line is $\Sigma = \{(x, y) \in \mathbb{R}^2, y - qx - m = 0\}$.

98 The (only) interesting case is when each of the coefficient matrices has complex conjugate
 99 eigenvalues, and the two linear systems (viewed separately) have a stable (respectively, unsta-
 100 ble) spiraling behavior toward (respectively, away from) the origin, consistently clockwise
 101 or counterclockwise. In this situation, stable and unstable periodic orbits appear also when
 102 the eigenvalues are not purely imaginary and different bifurcation phenomena, both local
 103 and global, can be observed. In light of these considerations, we thus make the following
 104 assumptions on piecewise linear systems like (5).

105 **Assumption 1** The eigenvalues of A_1 are of the type $\{c \pm id\}$ and those of A_2 are of the
 106 type $\{-a \pm ib\}$, with $a, b, c, d > 0$.

107 **Assumption 2** $A_i = \begin{pmatrix} a_{11}^i & a_{12}^i \\ a_{21}^i & a_{22}^i \end{pmatrix}$, $a_{12}^i > 0$, $i = 1, 2$. That is, each system (separately) has
 108 orbits spiraling clockwise. The case $a_{12}^i < 0$ with orbits that spiral anticlockwise is analogous.

109 2.1 Canonical Form

110 A great simplification takes place if we assume that the matrices $A_{1,2}$ have the following
 111 form:

$$112 A_1 = \begin{pmatrix} c & d \\ -d & c \end{pmatrix}, \quad A_2 = \begin{pmatrix} -a & b \\ -b & -a \end{pmatrix}. \quad (6)$$

113 In this situation, without loss of generality, one can assume that $h(x, y) = y - m$. Indeed,
 114 given $h(x, y) = y - qx - p$, let $\theta = \arctan(q)$ and consider the rotation matrix $Q =$
 115 $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$. Then if $(x, y) \in \Sigma$, $Q \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \hat{x} \\ p \cos(\theta) \end{pmatrix} = \begin{pmatrix} \hat{x} \\ m \end{pmatrix}$. Since Q commutes
 116 with A_1 and A_2 in (6), the coefficient matrices are left unchanged by the coordinate change
 117 $\begin{pmatrix} x \\ y \end{pmatrix} \leftarrow Q \begin{pmatrix} x \\ y \end{pmatrix}$.

118 **Remark 2** In [12], the authors further considered the case of $m = 0$. However, this is a
 119 restriction which we want to avoid since if we translate the line $y = m$ to $y = 0$, the
 120 same translation will contribute a nonhomogeneity to the piecewise linear system. [And see
 121 Remark 1 as well].

122 Henceforth, we thus refer to the following as the **canonical form** of the piecewise linear
 123 systems:

$$124 \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{cases} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, & y < m, \\ \begin{pmatrix} -a & b \\ -b & -a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, & y > m, \end{cases} \quad \text{with } a, b, c, d > 0. \quad (7)$$

125 **Remark 3** As it will become clear in Sect. 3, it is the ratios $\frac{a}{b}$ and $\frac{c}{d}$ which are the relevant
 126 quantities, rather than the value of a, b, c and d per se. We will study the changes in dynamics
 127 with respect to these ratios, and the value of m .

128 2.2 General Form

129 Unfortunately, in general, one cannot transform both matrices in (5) to canonical form with
 130 the same coordinate transformation, hence the form (7) is restrictive. However, one can

131 always assume that one of the two matrices $A_{1,2}$ in (5) is in canonical form and the other in
 132 real Schur form. This statement can be justified as follows.

133 Let V be such that $A_1 = V \begin{pmatrix} c & d \\ -d & c \end{pmatrix} V^{-1}$ and consider the change of variables $\mathbf{x} \leftarrow V\mathbf{x}$.
 134 Then, without loss of generality, we assume A_1 in (5) to be in the canonical form $A_1 = \begin{pmatrix} c & d \\ -d & c \end{pmatrix}$. Next, let Q be a rotation matrix that takes A_2 into real Schur form: $A_2 = QTQ^T$,
 135 $T = \begin{pmatrix} -a & \frac{b}{\alpha} \\ -\alpha b & -a \end{pmatrix}$, and observe that **Assumption 2** implies that $\alpha > 0$. Now, since matrices
 136 of the form $\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$ commute with one another, the further change of variable: $\mathbf{x} \leftarrow Q\mathbf{x}$,
 137 will leave A_1 in canonical form and take A_2 into real Schur form. It follows that, without
 138 loss of generality, we can work with A_1 in canonical form and A_2 in real Schur form. Finally,
 139 consider two different time scalings in the two regions R_1 and R_2 , $\tau_1 = \frac{t}{b}$, $\tau_2 = \frac{t}{d}$. The new
 140 system is now discontinuous with respect to time as well (if $b \neq d$), but the orbits of this
 141 system are the same as the ones of the original system.
 142

143 Thus, we will consider the following family of systems as prototypes of the **general form**
 144 of piecewise linear systems with a line of discontinuity:

$$145 \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{cases} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, & y - qx - m < 0 \\ \begin{pmatrix} -a & \frac{b}{\alpha} \\ -\alpha b & -a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, & y - qx - m > 0 \end{cases} \quad (8)$$

146 Notice that (8) depends on 5 values, namely $\frac{a}{b} > 0$, $\frac{c}{d} > 0$, $\alpha > 0$, m and q , and it is not
 147 easy to perform an exhaustive analysis for these problems. For this reason, in Sect. 4 we will
 148 make some simplifications to the structure (8); namely, we will restrict to the case of $q = 0$,
 149 $a = b = d = 1$ and let c , α , and m , vary.

150 *Remark 4* Note that a smooth planar linear dynamical system is topologically equivalent
 151 to the system with coefficient matrix in canonical form. However, this is not true for planar
 152 piecewise linear dynamical systems. Indeed, new phenomena such as folds of periodic orbits,
 153 that do not appear in the canonical form, arise in the more general setting (8); see below.

154 3 Canonical Form

155 In this section we study piecewise linear systems in the canonical form (7). We use n to
 156 indicate the normal to the line Σ :

$$157 \Sigma = \{(x, y) : y = m\} \quad n = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

158 Obviously, the only equilibrium for the system is the origin.

159 As we already remarked in Sect. 2, the dynamics of (7) depend on the values of $\frac{a}{b}$, $\frac{c}{d}$, and
 160 m . Our goal below is to explore the changes in dynamics in function of the two values $\frac{c}{d}$ and
 161 m while leaving $\frac{a}{b}$ fixed.

162 As we will see, the value $m = 0$ is a bifurcation value for any value of $\frac{c}{d}$. The phenom-
 163 ena we will present, however, are totally different from the Hopf bifurcation phenomenon
 164 observed in [12]. In [12], m cannot be taken as a free parameter and the line of discontinu-

165 ity must contain the origin (the equilibrium). In the present paper, instead, we take m as a
 166 bifurcation parameter and observe quite different dynamical behaviors as m is varied.

167 **3.1 Case $m = 0$**

168 The case $m = 0$ has been studied already in [5, 12]. We briefly summarize the main results
 169 for system (7).

170 The solutions intersect Σ transversally everywhere except at the origin: $n^T f_1(x, y) =$
 171 $-dx$ and $n^T f_2(x, y) = -bx$. Take an initial condition on Σ , $(x_1, 0)$, $x_1 > 0$. Then after
 172 time $t_1 = \frac{\pi}{d}$, the solution trajectory $e^{A_1 t} \begin{pmatrix} x_1 \\ 0 \end{pmatrix}$ meets Σ again at $(x_2, 0)$, with $x_2 = -e^{\frac{c}{d}\pi} x_1$,
 173 crosses Σ and enters R_2 to meet Σ again at time $t_1 + t_2 = \frac{\pi}{b} + \frac{\pi}{d}$ at $(x_3, 0)$ with $x_3 =$
 174 $e^{(-\frac{a}{b} + \frac{c}{d})\pi} x_1$. Thus, in order for the solution to be periodic it must be $\frac{a}{b} = \frac{c}{d}$ and since this
 175 condition is independent of x_1 , the periodic orbit is not isolated and it is stable. There is a
 176 family of periodic orbits that bifurcates from the origin as $\frac{c}{d} - \frac{a}{b}$ crosses 0: the value $\frac{c}{d} = \frac{a}{b}$
 177 is a bifurcation value, the origin changes from a stable focus to an unstable focus through the
 178 appearance of a family of periodic orbits.

179 **3.2 Case $m > 0$**

180 For $m > 0$, Σ has an attractive sliding region. Take $(x, m) \in \Sigma$, then $n^T f_1(x, m) = -dx + cm$
 181 and $n^T f_2(x, m) = -bx - am$. Hence the sliding region on Σ is \bar{S} (the closure of S) with

$$182 S = \left\{ (x, y) \in \Sigma, -\frac{a}{b}m < x < \frac{c}{d}m \right\}.$$

183 The two points $(-\frac{a}{b}m, m)$, $(\frac{c}{d}m, m)$ are *tangential points*, i.e. points \mathbf{x} in the phase space
 184 such that $(n^T f_1(\mathbf{x}))(n^T f_2(\mathbf{x})) = 0$. In [3, Chapter 19], these are called *singular points* of
 185 Class 2a. (A complete classification of singular points is in [3, Chapter 4].) The Filippov
 186 sliding vector field on \bar{S} is well defined [see (2)]:

$$187 f_F = (1 - \mu)f_1 + \mu f_2, \quad \mu = \frac{n^T f_1}{n^T (f_1 - f_2)}. \quad (9)$$

188 Hence

$$189 f_F(x) = \frac{(x^2 + m^2)(ad + bc)}{(cm - dx) + (bx + am)}, \quad (10)$$

190 which is always positive. Hence, once on S , the solution slides along Σ and exits at $\frac{c}{d}m$ to
 191 enter R_1 .

192 There are three different types of periodic orbits that can occur in system (7): orbits
 193 that have isolated points in common with Σ , orbits that have a sliding segment in Σ and
 194 a nonempty intersection with both regions R_1 and R_2 , orbits that have a sliding segment
 195 on Σ and empty intersection with one of the two regions R_1 , R_2 . Following [6], we call
 196 them respectively *crossing periodic orbits*, *crossing and sliding periodic orbits*, and *sliding*
 197 *periodic orbits*. We will see below that, for a given value of $\frac{c}{d}$, the existence of one type of
 198 periodic orbit rules out the possibility of existence for the other two. The system will either
 199 have one periodic orbit which attracts all initial conditions except the origin ($\frac{c}{d} < \frac{a}{b}$), or
 200 it will have no periodic orbits and all the solutions (except the origin) will be unbounded
 201 ($\frac{c}{d} \geq \frac{a}{b}$).

To detect the existence of periodic orbits, we need to study the intersections of the flow with Σ . We will use the following notation:

$$\begin{aligned} S^+ &= \{(x, y) \in S, x \geq 0\}, \quad S^- = \{(x, y) \in S, x < 0\} \\ \Sigma^+ &= \left\{(x, y) \in \Sigma, x \geq \frac{c}{d}m\right\}, \quad \Sigma^- = \left\{(x, y) \in \Sigma, x \leq -\frac{a}{b}m\right\}, \end{aligned} \quad (11)$$

so that $\Sigma = \Sigma^- \cup S^- \cup S^+ \cup \Sigma^+$, and further let $\varphi_i(t, x_0, y_0)$ be the solution of $\dot{\mathbf{x}} = A_i \mathbf{x}$, $i = 1, 2$, such that $\mathbf{x}(0) = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$. Take an initial condition $(x, m) \in \Sigma^+$. Then $\varphi_1(t, x, m)$ will reach Σ again at unique first time $t = t_1(x)$. Define the return map

$$P_1 : \Sigma^+ \rightarrow \Sigma^- \cup S^-, \quad P_1(x) = \varphi_1(t_1(x), x, m). \quad (12)$$

In the same way, let $(x, m) \in \Sigma^-$ and let $t_2(x)$ be the first time for which $\varphi_2(t_2(x), x, m)$ meets Σ again. Define the return map

$$P_2 : \Sigma^- \rightarrow S \cup \Sigma^+, \quad P_2(x) = \varphi_2(t_2(x), x, m). \quad (13)$$

Clearly, P_1 and P_2 are smooth maps, and when $P_1(x) \in \Sigma^-$ we can define the composite (Poincaré) map

$$P(x) = P_2(P_1(x)) : \Sigma^+ \rightarrow S \cup \Sigma^+, \quad (14)$$

which is again smooth, and it is explicitly given by:

$$P(x) = e^{-at_2(P_1(x))+ct_1(x)}(\cos(\hat{t})x + \sin(\hat{t})m), \quad (15)$$

where $\hat{t} = bt_2(P_1(x)) + dt_1(x)$.

Crossing Periodic Orbit

We first explore the existence of crossing periodic orbits for (7), i.e., fixed points for the Poincaré map (14). To have a crossing periodic orbit, the corresponding trajectory must satisfy

$$e^{-a\bar{t}_2+c\bar{t}_1} \begin{pmatrix} \cos(\hat{t}) & \sin(\hat{t}) \\ -\sin(\hat{t}) & \cos(\hat{t}) \end{pmatrix} \begin{pmatrix} \bar{x}_1 \\ m \end{pmatrix} = \begin{pmatrix} \bar{x}_1 \\ m \end{pmatrix}, \quad (16)$$

with $\hat{t} = b\bar{t}_2 + d\bar{t}_1$ and $\bar{t}_1 = t_1(\bar{x}_1)$, $\bar{t}_2 = t_2(P_1(\bar{x}_1))$. Formula (16) requires that a rotation multiplied by the factor $e^{-a\bar{t}_2+c\bar{t}_1}$ takes the vector $(\bar{x}_1, m)^\top$ in itself. This is the case only if

$$-a\bar{t}_2 + c\bar{t}_1 = 0, \quad b\bar{t}_2 + d\bar{t}_1 = 2\pi, \quad (17)$$

which gives the following values for \bar{t}_1 and \bar{t}_2 :

$$\begin{aligned} \bar{t}_1 &= \frac{a}{ad+bc}2\pi \quad \text{quad} \bar{t}_2 = \frac{c}{ad+bc}2\pi \quad \text{or} \\ \bar{d}\bar{t}_1 &= 2\pi \frac{\frac{a}{b} + \frac{c}{d}}{\frac{a}{b} + \frac{c}{d}} \quad b\bar{t}_2 = 2\pi \frac{\frac{c}{d}}{\frac{c}{d} + \frac{a}{b}}. \end{aligned} \quad (18)$$

Lemma 5 *The following is a necessary condition for the existence of a crossing periodic orbit:*

$$\frac{a}{b} > \frac{c}{d}. \quad (19)$$

233 *Proof* Consider system (5) and take as initial condition a point $\begin{pmatrix} x_1 \\ 0 \end{pmatrix}$. Then the trajectory
 234 meets $y = 0$ again after time $\bar{t} = \frac{\pi}{d}$. So, the return time to Σ must be greater than \bar{t} . This
 235 together with the value for \bar{t}_1 in (18) implies $\frac{a}{b} > \frac{c}{d}$. \square

236 For the remainder of this case $m > 0$, we will work under the assumption that (19) holds.

237 **Proposition 6** *If a system (5) admits a crossing periodic orbit γ , then this is an isolated
 238 periodic orbit. No other crossing periodic orbit exists.*

239 *Proof* The trajectory at time \bar{t}_1 given by (18) must satisfy the following

$$240 \quad e^{c\bar{t}_1} \begin{pmatrix} \cos(d\bar{t}_1) & \sin(d\bar{t}_1) \\ -\sin(d\bar{t}_1) & \cos(d\bar{t}_1) \end{pmatrix} \begin{pmatrix} \bar{x}_1 \\ m \end{pmatrix} = \begin{pmatrix} \bar{x}_2 \\ m \end{pmatrix}.$$

241 In particular, from the second component of this equality we get the following expression
 242 for a unique value of \bar{x}_1 , and in turn of \bar{x}_2 :

$$243 \quad \bar{x}_1 = \frac{\cos(d\bar{t}_1) - e^{-c\bar{t}_1}}{\sin(d\bar{t}_1)} m, \quad \bar{x}_2 = \frac{e^{c\bar{t}_1} - \cos(d\bar{t}_1)}{\sin(d\bar{t}_1)} m. \quad (20)$$

244 \square

245 It will be handy to use a more compact notation for \bar{x}_1 and \bar{x}_2 in (20):

$$246 \quad \bar{x}_1 = \frac{\cos(w) - e^{-\alpha z w}}{\sin(w)}, \quad \bar{x}_2 = \frac{e^{\alpha z w} - \cos(w)}{\sin(w)}, \quad \text{where}$$

$$247 \quad z = \frac{a}{b}, \quad \frac{c}{d} = \alpha z, \quad \alpha \in (0, 1); \quad w = d\bar{t}_1 = \frac{2\pi z}{z + \alpha z} = \frac{2\pi}{1 + \alpha}. \quad (21)$$

248 Observe that (20) is uniquely defined, and therefore, if a crossing periodic exists, it must
 249 be unique. Moreover, we have that a crossing periodic orbit exists whenever \bar{x}_1 and \bar{x}_2 are
 250 outside the sliding region S . The following proposition shows that if $\bar{x}_1 \in \Sigma^+$ then $\bar{x}_2 \in \Sigma^-$.

251 **Proposition 7** *Let \bar{x}_1 and \bar{x}_2 be defined as in (20). If $\bar{x}_1 \geq \frac{c}{d}m$ then $\bar{x}_2 < -\frac{a}{b}m$.*

252 *Proof* Using the notation of (21), let $g_1(z, \alpha) = \bar{x}_1 - \frac{c}{d}m = \frac{\cos(w) - e^{-\alpha z w}}{\sin(w)}m - \alpha z m$ and
 253 $g_2(z, \alpha) = \bar{x}_2 + \frac{a}{b}m = \frac{e^{\alpha z w} - \cos(w)}{\sin(w)}m + z m$. We claim that $g_1(z, \alpha) \geq 0$ implies $g_2(z, \alpha) < 0$.
 254 Since $\pi < w < 2\pi$, we have $\sin(w) < 0$ and we can rewrite $g_1(z, \alpha) \geq 0$ as

$$255 \quad \cos(w) \leq e^{-\alpha z w} + \alpha z \sin(w). \quad (22)$$

256 Now, $g_2(z, \alpha) < 0$ can be rewritten as $e^{\alpha z w} - \cos(w) + z \sin(w) > 0$ and, using (22),
 257 $g_2(z, \alpha) < 0$ if the following inequality is verified:

$$258 \quad e^{\alpha z w} - e^{-\alpha z w} + \sin(w)z(1 - \alpha) > 0. \quad (23)$$

259 We first show that for $\alpha \in (\alpha^*, 1)$, $\alpha^* = -2\pi + \sqrt{4\pi^2 + 1}$, we have

$$260 \quad e^{\alpha z w} - e^{-\alpha z w} - z(1 - \alpha) > 0, \quad (24)$$

261 and hence (23). Then we show that for $\alpha \in (0, \alpha^*]$ we have

$$262 \quad e^{\alpha z w} - e^{-\alpha z w} + \sin(w)z > 0, \quad (25)$$

263 and this will imply (23) since $-\alpha \sin(w) > 0$. We will use Taylor expansions. To show (24)
 264 we expand the exponentials with respect to their argument and we get

$$265 \quad 2\alpha z w + R(\alpha z w) - z(1 - \alpha) > 0,$$

266 where $R = O((\alpha w z)^2)$ indicates the remainder of the Taylor expansion of $e^{\alpha z w} - e^{-\alpha z w}$, and
 267 is always positive. For $\alpha > \alpha^*$, $2\alpha w - (1 - \alpha) > 0$ (use $w = \frac{2\pi}{1+\alpha}$), so that (24) is verified.
 268 To show that (25) is verified in $(0, \alpha^*]$ we use the Taylor expansion of $e^{\alpha z w}$ with respect to
 269 its argument and the second degree Taylor polynomial of $\sin(w)$ about $\alpha = 0$. We have

$$270 \quad e^{\alpha z w} - e^{-\alpha z w} = \frac{4\pi z \alpha}{1 + \alpha} + R(\alpha),$$

271 with $R(\alpha) = O(\alpha^3) > 0$, while

$$272 \quad z \sin\left(\frac{2\pi}{1 + \alpha}\right) = -2\pi z \alpha + 2\pi z \alpha^2 \\ 273 \quad + \frac{\alpha^3}{6} \frac{4\pi z}{(1 + \alpha_0)^4} \left(\cos(w_0) \frac{2\pi^2}{(1 + \alpha_0)^2} + \sin(w_0) \frac{6\pi}{1 + \alpha} - 3 \cos(w_0) \right),$$

274 where the last quantity is z times the Lagrange remainder of the Taylor polynomial for the
 275 sine function, $\alpha_0 \in (0, \alpha^*)$ and $w_0 = \frac{2\pi}{1+\alpha_0}$. We can bound from below the coefficient of $z \frac{\alpha^3}{6}$
 276 with the following quantity: $R_1 = 4\pi(-2\pi^2 - 6\pi - 3)$. Now, given that $R(\alpha)$ is positive,
 277 we have

$$278 \quad e^{\alpha z w} - e^{-\alpha z w} + \sin(w)z > z \left(\frac{2\pi\alpha + 2\pi\alpha^3}{1 + \alpha} + \frac{\alpha^3}{6} R_1 \right) =: z R_2(\alpha).$$

279 In the interval under study the function $R_2(\alpha)$ is positive since $R_2(0) = 0$ and $\frac{d}{d\alpha} R_2(\alpha) =$
 280 $\frac{2\pi + 6\pi\alpha^2 + 4\pi\alpha^3}{(1+\alpha)^2} + \frac{1}{2}\alpha^2 R_1$, and this is positive in $[0, \alpha^*]$. Hence (25) is verified as well and the
 281 proof is complete. \square

282 Proposition 7 together with Proposition 6 insures that a unique crossing periodic orbit of
 283 (5) exists if $\bar{x}_1 > \frac{c}{d}m$.

284 **Corollary 8** Let \bar{t}_1 and \bar{t}_2 be defined as in (18) and \bar{x}_1 and \bar{x}_2 as in (20). If $\bar{x}_1 \geq \frac{c}{d}m$ then
 285 (5) admits a crossing periodic orbit γ with first return time to Σ equal to \bar{t}_1 and with period
 286 $\bar{t}_1 + \bar{t}_2$. \square

287 **Remark 9** Proposition 7 tells us that, if \bar{x}_1 in (20) is such that $\bar{x}_1 \geq \frac{c}{d}m$, then the system
 288 has an isolated crossing periodic orbit γ . Notice that for $\frac{c}{d} \rightarrow (\frac{a}{b})^-$, $\bar{t}_1 \rightarrow \pi^+$ and hence,
 289 \bar{x}_1 in (20) goes to $+\infty$. Since \bar{x}_1 is a continuous function of $\frac{c}{d}$, for $\frac{c}{d}$ sufficiently large (and
 290 $\frac{c}{d} < \frac{a}{b}$), the system has a crossing periodic orbit.

291 Below, we show that γ is asymptotically stable for $\bar{x}_1 \geq \frac{c}{d}m$. We do this by direct
 292 computation of the derivative of the Poincaré map; equivalently, we could have computed the
 293 Floquet multiplier(s) using the monodromy matrix, and we will use this approach in Sect. 4.
 294 Further, in Theorem 15 below we will show that γ attracts every initial condition except the
 295 origin.

296 **Definition 10** A periodic orbit γ is said to be *stable and finitely reached* if it is asymptotically
 297 stable and in an open neighborhood of γ there are orbits that reach γ in finite time.

298 **Proposition 11** Let \bar{x}_1 in (20) be such that $\bar{x}_1 \geq \frac{c}{d}m$. Then, the crossing periodic orbit γ is
 299 asymptotically stable. For $\bar{x}_1 = \frac{c}{d}m$, γ is stable and finitely reached.

300 Proof We have $\bar{x}_1 \geq \frac{c}{d}m$ and $\bar{x}_2 < -\frac{a}{b}m$, and the Poincaré map P in (15) is well defined
 301 and differentiable in a neighborhood of \bar{x}_1 . Let $x_1 \in \Sigma^+$, and let $x_2 = P_1(x_1)$ and $x_3 =$
 302 $P_2(x_2) = P(x_1)$. To express $\frac{dP}{dx}(x)$, the following identities will be handy

$$x_2 = e^{ct_1(x_1)} [\cos(dt_1(x_1))x_1 + \sin(dt_1(x_1))m], \quad (26)$$

$$m = e^{ct_1(x_1)} [-\sin(dt_1(x_1))x_1 + \cos(dt_1(x_1))m], \quad (27)$$

$$x_3 = e^{-at_2(x_2)} [\cos(bt_2(x_2))x_2 + \sin(bt_2(x_2))m], \quad (28)$$

$$m = e^{-at_2(x_2)} [-\sin(bt_2(x_2))x_2 + \cos(bt_2(x_2))m]. \quad (29)$$

303 We need to compute $\frac{dx_3}{dx_1} = \frac{dx_3}{dx_2} \frac{dx_2}{dx_1}$. Using Eq. (27) and implicit differentiation we get
 304 $\frac{dt_1}{dx_1} = \frac{\sin(dt_1)e^{ct_1}}{cm - dx_2}$ and differentiating (26) with respect to x_1 we obtain the following

$$\frac{dx_2}{dx_1} = e^{ct_1} \left(\frac{cx_2 + dm}{cm - dx_2} \sin(dt_1) + \cos(dt_1) \right). \quad (30)$$

311 In the same way we can compute $\frac{dx_3}{dx_2}$ differentiating Eq. (28) with respect to x_2 , use implicit
 312 differentiation in Eq. (29) to get $\frac{dt_2}{dx_2}$, and obtain the following

$$\frac{dx_3}{dx_2} = e^{-at_2} \left[\frac{ax_3 - bm}{am + bx_3} \sin(bt_2) + \cos(bt_2) \right]. \quad (31)$$

314 Moreover, using Eq. (17), we can derive the following handy identities

$$\cos(b\bar{t}_2) = \cos(d\bar{t}_1), \quad \sin(b\bar{t}_2) = -\sin(d\bar{t}_1), \quad e^{-at_2} = e^{-ct_1}.$$

316 On the periodic orbit the value of x_3 will be again \bar{x}_1 . So, we have

$$\begin{aligned} \frac{dx_3}{dx_1}(\bar{x}_1) &= \left[\frac{-a\bar{x}_1 - bm}{am + b\bar{x}_1} \sin(d\bar{t}_1) + \cos(d\bar{t}_1) \right] \left[\frac{c\bar{x}_2 + dm}{cm - d\bar{x}_2} \sin(d\bar{t}_1) + \cos(d\bar{t}_1) \right] \\ &= \frac{a(-\bar{x}_1 \sin(d\bar{t}_1) + \cos(d\bar{t}_1)m) + b(\cos(d\bar{t}_1)\bar{x}_1 + m \sin(d\bar{t}_1))}{am + b\bar{x}_1} \\ &\quad + \frac{c(-\sin(d\bar{t}_1)\bar{x}_2 + \cos(d\bar{t}_1)m) - d(\sin(d\bar{t}_1)m + \cos(d\bar{t}_1)\bar{x}_2)}{cm - d\bar{x}_2} \end{aligned}$$

320 and using (26), (27), (29) and (20) we obtain

$$DP(\bar{x}_1) = \left(\frac{am + b\bar{x}_2}{am + b\bar{x}_1} \right) \left(\frac{cm - d\bar{x}_1}{cm - d\bar{x}_2} \right) = \left(\frac{\bar{x}_2 + \frac{a}{b}m}{\bar{x}_2 - \frac{c}{d}m} \right) \left(\frac{\bar{x}_1 - \frac{c}{d}m}{\bar{x}_1 + \frac{a}{b}m} \right). \quad (32)$$

322 On the crossing periodic orbit, $\bar{x}_1 > \frac{c}{d}m$ and $\bar{x}_2 < -\frac{a}{b}m$, so that $DP(\bar{x}_1) < 1$ and γ is
 323 asymptotically stable.

324 If $\bar{x}_1 = \frac{c}{d}m$, then $DP(\bar{x}_1) = 0$ and γ is stable and finitely reached. \square

325 Sliding Periodic Orbit

326 Assume now that system (7) admits a sliding periodic orbit γ_1 , and notice that γ_1 will
 327 always exist for $\frac{c}{d}m$ sufficiently small. Indeed, let x_{-1} be the counterimage of $-\frac{a}{b}m$ on Σ
 328 under $\varphi_1(\cdot, \cdot, \cdot)$. For $\frac{c}{d}m < x_{-1}$, system (7) admits a sliding periodic orbit.

329 In the next theorem we show that γ_1 is stable and finitely reached and it attracts all initial
 330 conditions except the origin.



Fig. 1 Sliding periodic orbit and first elements of the sequence in the proof of Theorem 12

Theorem 12 Assume that system (5) has a sliding periodic orbit γ_1 . Then γ_1 is stable and finitely reached and it attracts all initial conditions except the origin.

Proof We first prove global stability. For $(x, y) \in \Sigma$, let $t_1(x)$ be the first return time of $\varphi_1(t, x, y)$ to Σ . The existence of γ_1 implies that $\varphi_1(t_1(\frac{c}{d}m), \frac{c}{d}m, m) = (\bar{x}, m)$, with $\frac{c}{d}m > \bar{x} \geq -\frac{a}{b}m$. Then, let x_{-1} be the counterimage of $-\frac{a}{b}m$ on Σ under $\varphi_1(\cdot, \cdot, \cdot)$; i.e., let x_{-1} be the point on Σ such that $\varphi_1(t_1(x_{-1}), x_{-1}, m) = (-\frac{a}{b}m, m)$. Clearly $x_{-1} \geq \frac{c}{d}m$ and it must exist since $\varphi_1(\cdot, \cdot, \cdot)$ is a diffeomorphism of \mathbb{R}^2 . Let x_{-2} be the point on Σ such that $\varphi_2(\tau_2(x_{-2}), x_{-2}, m) = (x_{-1}, m)$. Again the linearity of the vector field ensures existence of x_{-2} . Moreover $x_{-2} < -\frac{a}{b}m$. This same reasoning can be applied to x_{-2} and we can generate two sequences $\{x_{-2k}\}$ and $\{x_{-2k-1}\}$ such that: $\varphi_2(\tau_2(x_{-2k}), x_{-2k}, m) = x_{-2k+1}$, $\varphi_1(\tau_1(x_{-2k-1}), x_{-2k-1}, m) = x_{-2k}$ and $x_{-2k-1} > x_{-2k+1}$, $x_{-2k-2} < x_{-2k}$. See Fig. 1. Notice that the sequences can not possibly accumulate on a crossing periodic orbit γ , since γ , if it exists, is isolated and asymptotically stable. This implies global stability (except for the initial condition at the origin) of γ_1 . To prove that the orbit is stable and finitely reached, notice that any x_0 in the region inside γ is such that $\varphi(t_1(x_0), x_0, m) \in \bar{S}$. Moreover any x_0 in $[\frac{c}{d}m, x_{-1}]$ is such that $\varphi_1(t_1(x_0), x_0, m) \in \bar{S}$. If $x_{-1} = \frac{c}{d}m$ then any $x_0 \in [x_{-1}, x_{-3}]$ is such that $\varphi_2 \circ \varphi_1(t_1(x_0), x_0, m) \in \bar{S}$. See Fig. 1. \square

348 Crossing and Sliding Periodic Orbit

349 We noticed above that for $\frac{c}{d}$ small enough, system (7) has a sliding periodic orbit. Let
350 $\frac{c_0}{d_0}$ be such that $P_1(\frac{c_0}{d_0}) = -\frac{a}{b}m$, then for $\frac{c}{d}$ in a right neighborhood of $\frac{c_0}{d_0}$, system (7) has a
351 crossing-and-sliding periodic orbit γ_2 (see Fig. 2).

Theorem 13 Assume that system (7) has a crossing-and-sliding periodic orbit γ_2 . Then γ_2 is stable and finitely reached and it attracts all initial conditions except the origin.

Proof The proof is similar to the one in Theorem 12 for a sliding periodic orbit. Let x_{-2} be the point on Σ^- such that $\varphi_2(\tau_2(x_{-2}), x_{-2}, m) = (\frac{c}{d}m, m)$. The linearity of the vector field ensures existence of x_{-2} . The rest of the proof is the same as in Theorem 12. Notice that

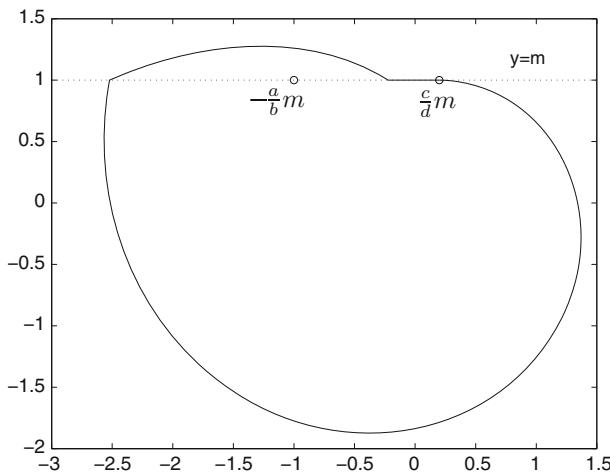


Fig. 2 Sliding and crossing periodic orbit

357 the sequences x_{-2k} and x_{-2k-1} cannot accumulate on a crossing periodic orbit γ since this
 358 would contradict the asymptotic stability of γ . \square

359 The proofs of Theorem 12 and 13 rule out the possibility that two different kind of periodic
 360 orbits coexist.

361 **Proposition 14** *Assume that system (5) has a crossing, or a crossing-and-sliding, or a sliding,
 362 periodic orbit γ . Then γ is the unique periodic orbit of system (7).* \square

363 Theorems 12 and 13, and Proposition 14, allow to infer the following.

364 **Theorem 15** *Assume that a system (7) admits a crossing periodic orbit γ . Consider any ini-
 365 tial condition different from the origin. Then the corresponding solution trajectory approaches
 366 γ . If \bar{x}_1 in (20) is such that $\bar{x}_1 = \frac{c}{d}m$ then γ is also stable and finitely reached (from inside).*

367 *Proof* To prove this result we can select an initial condition on Σ . Indeed, any other initial
 368 condition will lead to a solution that meets Σ in finite time.

369 (i) $\bar{x}_1 > \frac{c}{d}m$.

370 Without loss of generality, we can take the initial condition (x_1, m) , with $\frac{c}{d}m \leq x_1 < \bar{x}_1$.
 371 Indeed if $x_1 \in S$, then the corresponding solution will slide on Σ to exit Σ at $\frac{c}{d}m$. Then,
 372 since a sliding orbit cannot exist, $x_2 = P_1(x_1)$ is such that $-\frac{a}{b}m > x_2 > \bar{x}_2$ and
 373 $x_3 = P_3(x_2)$ is such that $x_3 < \bar{x}_1$. We claim that $x_3 > x_1$. To prove this, we write the
 374 solution explicitly as

$$375 e^{-a(t_2-t_1)+ct_1} Q_1 Q_2 \begin{pmatrix} x_1 \\ m \end{pmatrix} = \begin{pmatrix} x_3 \\ m \end{pmatrix}, \quad (33)$$

376 with $Q_1 = \begin{pmatrix} \cos(dt_1) & \sin(dt_1) \\ -\sin(dt_1) & \cos(dt_1) \end{pmatrix}$ and $Q_2 = \begin{pmatrix} \cos(bt_2) & \sin(bt_2) \\ -\sin(bt_2) & \cos(bt_2) \end{pmatrix}$. Since $x_1 < \bar{x}_1$
 377 and $x_2 > \bar{x}_2$, the rotation that takes (x_1, m) to (x_2, m) must satisfy: $d\bar{t}_1 < dt_1$. Indeed,
 378 if we denote with $\angle x_1 x_2$ the angle between the two vectors $(x_1, m)^\top$ and $(x_2, m)^\top$,
 379 then $\angle x_1 x_2 = dt_1$ and this must be greater than $\angle \bar{x}_1 \bar{x}_2 = d\bar{t}_1$. Similarly, $x_2 > \bar{x}_2$ and

380 $x_3 < \bar{x}_1$ implies $bt_2 < b\bar{t}_2$. Then $-at_2 + ct_1 > -a\bar{t}_2 + c\bar{t}_1 = 0$ so that $e^{-at_2+ct_1} > 1$
 381 and $\|(x_3, m)\| > \|(x_1, m)\|$, i.e. $x_3 > x_1$. Since γ is the unique crossing periodic orbit,
 382 for any $x_1 < \bar{x}_1$, the corresponding solution approaches γ . Similarly, we can show that
 383 for any $x_1 > \bar{x}_1$, $x_1 > x_3 = P(x_1) > \bar{x}_1$, and, again, uniqueness of γ implies that for
 384 any $x_1 > \bar{x}_1$, the corresponding solution approaches γ .

385 (ii) $\bar{x}_1 = \frac{c}{d}m$.

386 If $x_1 < \bar{x}_1$ then the solution will slide on Σ until it reaches \bar{x}_1 in finite time. Hence γ
 387 is stable and finitely reached from the inside. For $x_1 > \bar{x}_1$, the proof is the same as for
 388 case i).

389 This completes the proof of the theorem. \square

390 All previous results have used condition (19): $\frac{c}{d} < \frac{a}{b}$. If this condition is not satisfied, all
 391 solutions (except the origin) are unbounded.

392 **Proposition 16** *For $\frac{c}{d} \geq \frac{a}{b}$, no periodic orbit exists, and all solutions of system (5) (except
 393 the origin) are unbounded.*

394 *Proof* Because of Lemma 5, there cannot be crossing periodic orbits. Next, if $x_1 \in S^+$
 395 then the solution slides along Σ until it reaches $\frac{c}{d}m$. Hence take $x_1 \geq \frac{c}{d}m$. Let $(x_2, m) =$
 396 $\varphi_1(t_1(x_1), x_1, m)$. It must be $x_2 < -\frac{c}{d}m$, since $\|\varphi_1(t, x_1, m)\| = e^{ct}$ is a monotone increasing
 397 function of t . Let $(x_3, m) = \varphi_2(t_2(x_2), x_2, m)$. We claim that $x_3 > x_1$. Indeed

$$398 \quad \begin{pmatrix} x_3 \\ m \end{pmatrix} = e^{ct_1(x_1)-at_2(x_2)} Q_2(x_2) Q_1(x_1) \begin{pmatrix} x_1 \\ m \end{pmatrix},$$

399 with $Q_1(x) = \begin{pmatrix} \cos(dt_1(x)) & \sin(dt_1(x)) \\ -\sin(dt_1(x)) & \cos(dt_1(x)) \end{pmatrix}$ and $Q_2(x) = \begin{pmatrix} \cos(bt_2(x)) & \sin(bt_2(x)) \\ -\sin(bt_2(x)) & \cos(bt_2(x)) \end{pmatrix}$.
 400 Since for $m > 0$ there exists $\epsilon_0 > 0$ such that $dt_1(x_1) > \pi + \epsilon_0$ and $bt_2(x_2) < \pi - \epsilon_0$, then
 401 $ct_1(x_1) - at_2(x_2) > (\frac{c}{d} - \frac{a}{b})\pi + \epsilon_0(\frac{1}{b} + \frac{1}{d})$, and hence $x_3 > e^{\epsilon_0(\frac{1}{b} + \frac{1}{d})}x_1$. Applying the same
 402 reasoning to x_3 we generate a sequence $\{x_{2k+1}\}$ such that $x_{2k+1} > e^{k\epsilon_0(\frac{1}{b} + \frac{1}{d})}x_1$. This proves
 403 the theorem. \square

404 Varying $\frac{c}{d}$

405 Next, we study the behavior of the system as we vary the value of $\frac{c}{d}$, still holding $\frac{a}{b}$ fixed.
 406 Looking at (21), this requires studying \bar{x}_1 as a function of $\frac{c}{d}$, hence of α .

407 **Proposition 17** *Let \bar{x}_1 be defined by (21). If (7) has a crossing periodic orbit, then \bar{x}_1 is
 408 increasing as a function of α .*

409 *Proof* If there is a crossing periodic orbit γ , then $\bar{x}_2(\alpha) < -\frac{a}{b}m = -zm$. Hence

$$410 \quad e^{\alpha zm} - \cos(w) + z \sin(w) > 0. \quad (34)$$

411 For the first derivative of \bar{x}_1 with respect to α we have

$$412 \quad \frac{d}{d\alpha} \bar{x}_1(\alpha) = \frac{\frac{2\pi}{(1+\alpha^2)} (1 + e^{-\alpha zm} (z \sin(w) - \cos(w)))}{\sin(w)^2} m, \quad (35)$$

413 which is positive because of (34). \square

414 Notice that for $\frac{c}{d} \rightarrow (\frac{a}{b})^-$, $\bar{x}_1 \rightarrow +\infty$ [see (20) and (18)]. Hence Proposition 17, together
 415 with Corollary 8, ensure that (7) admits a crossing periodic orbit whose length goes to ∞

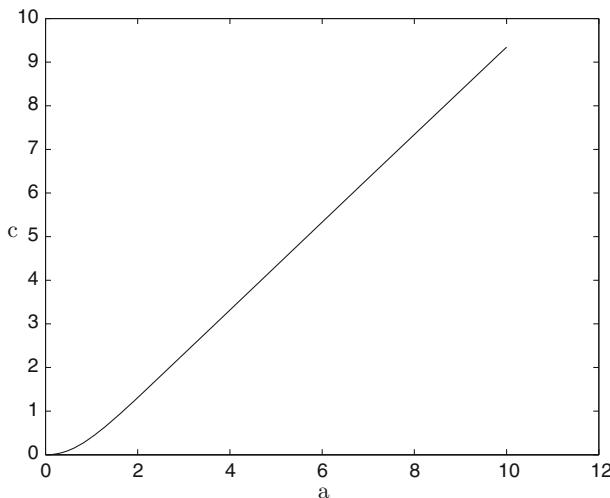


Fig. 3 Parameter values $b = d = m = 1$. Portion of the curve of crossing bifurcation values in a and c

when $\frac{c}{d} \rightarrow (\frac{a}{b})^-$. Because of Proposition 17, as $\frac{c}{d}$ decreases, \bar{x}_1 decreases, and hence the length of the crossing periodic orbit decreases as well. Notice moreover that, if for a certain parameter value $\frac{\bar{c}}{\bar{d}}$, system (7) admits a crossing-and-sliding periodic orbit γ_2 , then for $\frac{c}{d} < \frac{\bar{c}}{\bar{d}}$, there is either a sliding-and-crossing periodic orbit or a sliding periodic orbit contained in the interior region of γ_2 , this rules out the existence of a crossing periodic orbit. It follows that there exists a $\frac{c_1}{d_1}$ such that: (i) $\bar{x}_1 = \frac{c_1}{d_1}m$; (ii) for $\frac{c}{d} > \frac{c_1}{d_1}$ system (7) has a crossing periodic orbit; (iii) for $\frac{c}{d} < \frac{c_1}{d_1}$ ($\frac{c}{d} > \frac{c_0}{d_0}$, see below) system (7) has a crossing-and-sliding periodic orbit. The parameter value $\frac{c_1}{d_1}$ is a *crossing bifurcation* value.

Example 18 (Curve of Crossing Bifurcations). In Fig. 3, we show (a piece of) the curve of the crossing bifurcation value in the two parameters $\frac{c}{d}$ and $\frac{a}{b}$. This is obtained looking at the solution curve of $\bar{x}_1 - \frac{c}{d}m = 0$, with \bar{x}_1 in (20).

As $\frac{c}{d}$ decreases, there is a parameter value $\frac{c}{d} = \frac{c_0}{d_0}$ such that $P_1(\frac{c_0}{d_0}m) = -\frac{a}{b}m$. This is a *buckling bifurcation*: γ persists, but it becomes a sliding periodic orbit. See Fig. 4 obtained for $a = b = d = 1$ and for different values of c . The bold periodic orbit at the buckling bifurcation $c \simeq 0.0634$ is a sliding periodic orbit. The one at $c = 0.1$ is a sliding and crossing periodic orbit and the one at $c = 0.03$ is a sliding periodic orbit.

Example 19 (Curve of Buckling Bifurcations) For the buckling bifurcation we do not have a close formula for the first return time $t(\frac{c}{d}m)$ to Σ . Hence we need to solve for t as well. The curve is obtained through continuation techniques applied to the following nonlinear system

$$\begin{aligned} 435 \quad e^{ct}(\cos(dt)\frac{c}{d} + \sin(dt)) &= \frac{a}{b} \\ 436 \quad e^{ct}(-\sin(dt)\frac{c}{d} + \cos(dt)) &= m. \end{aligned}$$

438 In Fig. 5, we plot (a piece of) the curve of the buckling bifurcation holding $b = d = m = 1$.

439 Below we summarize the behavior of the system in the case of $m > 0$, as $\frac{c}{d}$ varies. In 440 Fig. 6 we plot the bifurcation diagram for this case. The top diagram represents the behavior

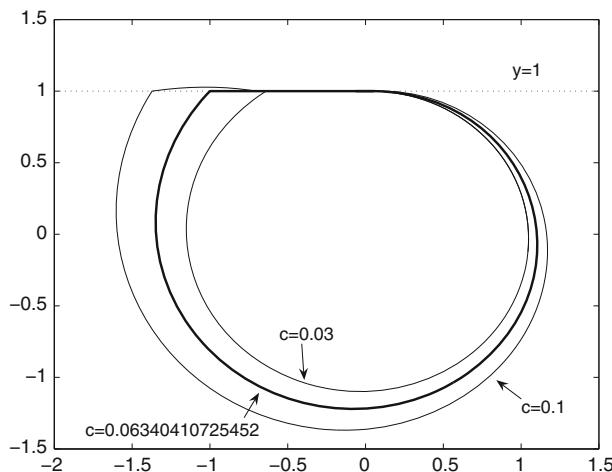


Fig. 4 Parameter values $a = b = d = m = 1$. As c decreases the sliding and crossing periodic orbit becomes a sliding periodic orbit. The value $c \simeq 0.0634$ is the buckling bifurcation value

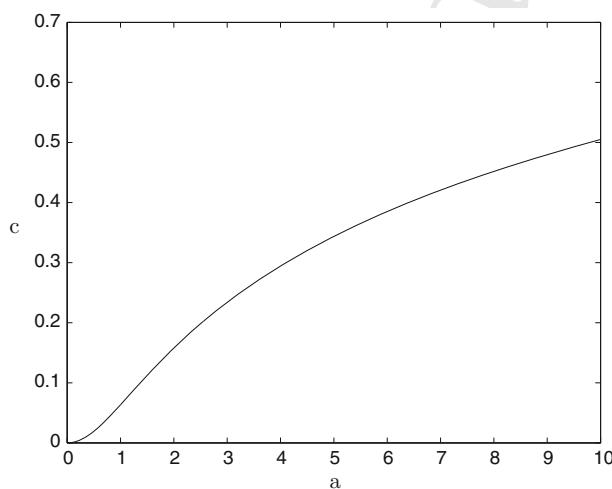


Fig. 5 Parameter values $b = d = m = 1$. A piece of the curve of buckling bifurcation

441 of the origin, the only equilibrium of the system. The other plots, depict the stable periodic
 442 orbits that occur for different parameter values. Recall that the values c_1/d_1 and c_0/d_0 are
 443 those we have just defined above: $\bar{x}_1 = \frac{c_1}{d_1}m$, $P_1(\frac{c_0}{d_0}m) = -\frac{a}{b}m$.

444 $\frac{c}{d} < 0$ The origin is a globally asymptotically stable focus for (7).

445 $\frac{c}{d} = 0$ This is a bifurcation value for the origin: the origin is stable but not asymptotically stable. There is a family of stable periodic orbits of radius $\rho \leq m$:
 446 $\rho(\cos dt, \sin dt)$. For $\rho = m$, the orbit is tangent to Σ at $(0, m)$ and it is stable
 447 and finitely reached from outside and stable from inside. This is a bifurcation
 448 value: a grazing bifurcation of periodic orbits. See Fig. 7.

449

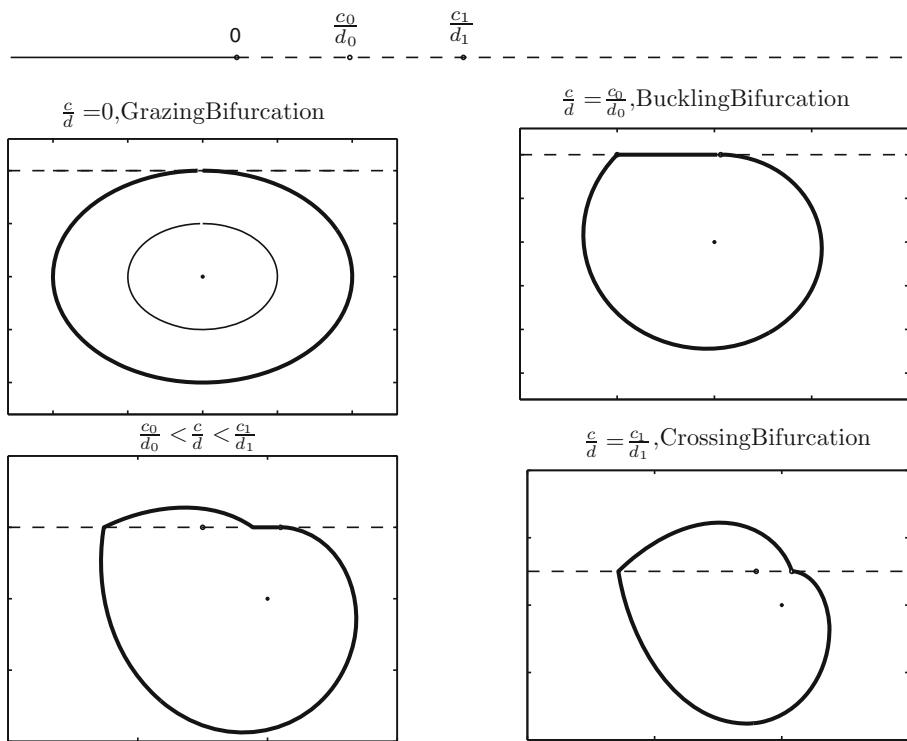


Fig. 6 Bifurcation diagram for $m > 0$

450 $\frac{c_0}{d_0} > \frac{c}{d} > 0$ The origin is an unstable focus. The periodic orbit tangent to Σ in $\frac{c}{d} = 0$
 451 survives and it becomes a sliding periodic orbit. The orbit is stable and finitely
 452 reached from inside.

453 $\frac{c}{d} = \frac{c_0}{d_0}$ This a buckling bifurcation value. See Fig. 4. The value $c \simeq 0.0634$ is a
 454 buckling bifurcation value.

455 $\frac{c_1}{d_1} > \frac{c}{d} > \frac{c_0}{d_0}$ The periodic orbit retains its stability but changes type and it becomes a
 456 crossing-and-sliding periodic orbit. See Fig. 4 with $c = 0.1$.

457 $\frac{c}{d} = \frac{c_1}{d_1}$ This is a crossing bifurcation value.

458 $\frac{a}{b} > \frac{c}{d} > \frac{c_1}{d_1}$ The system has a globally stable (except for the origin) crossing periodic
 459 orbit of constant period $\bar{t}_1 + \bar{t}_2$ as in (18), and length that approaches ∞ for
 460 $\frac{c}{d} \rightarrow (\frac{a}{b})^-$.

461 $\frac{c}{d} \geq \frac{a}{b}$ There are no periodic orbits, all orbits are unbounded (see Proposition 16).

462 3.3 Case $m < 0$

463 To begin with, we observe that system (7) with $m < 0$ is equivalent to the case $m > 0$
 464 in backward time with counterclockwise rotation and with $\frac{c}{d}$ replaced by $\frac{a}{b}$. So, we again
 465 consider the case of $\frac{a}{b}$ fixed and let $\frac{c}{d}$ vary. We use same notations as for the case $m > 0$.

466 The system exhibits repulsive sliding on Σ for $\frac{c}{d}m \leq x \leq -\frac{a}{b}m$. Let $S = \{x \in \Sigma, \frac{c}{d}m < x < -\frac{a}{b}m\}$, $\Sigma^+ = \{x \in \Sigma, x \geq -\frac{a}{b}m\}$, $\Sigma^- = \{x \in \Sigma, x \leq \frac{c}{d}m\}$. The origin is a

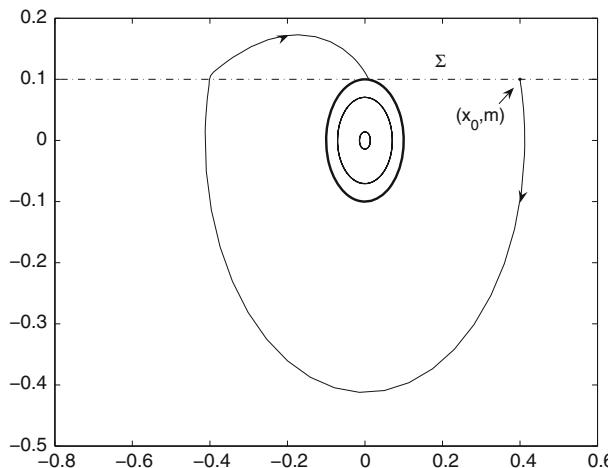


Fig. 7 Here, $\frac{c}{d} = 0$. Grazing bifurcation of periodic orbits. The orbit in *bold* is tangent to Σ at $(0, m)$

468 stable focus and it is the only equilibrium point. The two points $(-\frac{a}{b}m, m)$ and $(\frac{c}{d}m, m)$ are
469 tangential points.

470 Since the system exhibits repulsive sliding on \bar{S} , the only orbits that may cross, or slide
471 on, \bar{S} are those that start in \bar{S} , although no orbit that slides on (a portion of) \bar{S} is uniquely
472 defined in forward time. Nonetheless, the Filippov's vector field (10) is still well defined and
473 $f_F(x) < 0$ for all $x \in S$.

474 In order to study the crossing periodic orbits of the system, we reason as in the case $m > 0$,
475 and we get the same quantities as in (18), (20), and the analog of Proposition 6 holds true as
476 well. Notice that now $d\bar{t}_1 < \pi$ so that we get the following Lemma (cfr. with Lemma 5).

477 **Lemma 20** *The following is a necessary condition for the existence of a crossing periodic
478 orbit:*

$$479 \quad \frac{c}{d} > \frac{a}{b}. \quad (36)$$

480 □

481 **Proposition 21** *Let (36) hold and suppose that system (7) has a crossing periodic orbit γ .
482 Then γ is unstable.*

483 *Proof* Let \bar{x}_1 and \bar{x}_2 be defined as in (20). Take $x_1 > \bar{x}_1$ and let $x_2 = P_1(x_1)$ and $x_3 = P_2(x_2)$.
484 Then $x_2 < \bar{x}_2$ and we claim that $x_3 > x_1$. Indeed

$$485 \quad \begin{pmatrix} x_3 \\ m \end{pmatrix} = e^{ct_1 - at_2} Q_2 Q_1 \begin{pmatrix} x_1 \\ m \end{pmatrix},$$

486 with $Q_1 = \begin{pmatrix} \cos(dt_1) & \sin(dt_1) \\ -\sin(dt_1) & \cos(dt_1) \end{pmatrix}$, $Q_2 = \begin{pmatrix} \cos(bt_2) & \sin(bt_2) \\ -\sin(bt_2) & \cos(bt_2) \end{pmatrix}$ and t_1 and t_2 are first and
487 second return time to Σ . Moreover, $x_1 > \bar{x}_1$ and $x_2 < \bar{x}_2$ imply that $t_1 > \bar{t}_1$, while $x_2 < \bar{x}_2$
488 and $x_3 > \bar{x}_1$ imply that $t_2 < \bar{t}_2$. Hence $e^{ct_1 - at_2} > 1$ and $x_3 > x_1$. In a similar way we can
489 show that γ is unstable from inside as well. □

490 As we will see below, system (7) exhibits crossing-and-sliding or sliding periodic orbits
491 for $\frac{c}{d}$ sufficiently large. In Fig. 8 the curve in bold is a sliding-and-crossing periodic orbit. It

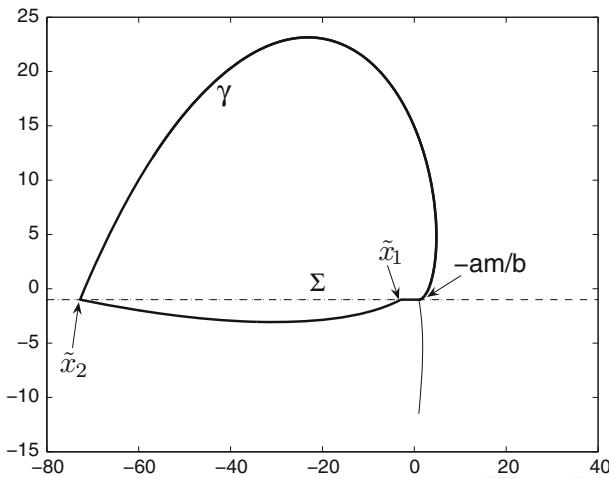


Fig. 8 γ in *bold* is a sliding-and-crossing periodic orbit

492 starts at $(-\frac{a}{b}m, m)$, slides on Σ towards \tilde{x}_1 , it leaves Σ and enters R_1 . It crosses Σ again at
 493 \tilde{x}_2 and enters R_2 until it reaches Σ at $(-\frac{a}{b}m, m)$. The following identities are satisfied

$$494 \quad \tilde{x}_2 = P_2^{-1} \left(-\frac{a}{b}m \right), \quad \tilde{x}_1 = P_1^{-1}(\tilde{x}_2). \quad (37)$$

495 **Remark 22** Notice that any solution of system (7) with initial condition on Σ is not uniquely
 496 defined in forward time. This means that, if γ is a crossing-and-sliding or sliding periodic
 497 orbit, a solution of (7) with initial condition on γ can leave γ at any point that belongs to
 498 the intersection $\gamma \cap \bar{S}$. However, if we consider the time change $\tau \rightarrow -t$ and we consider
 499 the system obtained taking the derivative with respect to τ , then γ is an invariant object for
 500 the new system. Notice that at $(-\frac{a}{b}m, m)$ the sliding vector field f_F is f_2 , and μ in (9) is
 501 equal to 1. However, $\dot{\mu}$ is different from zero at $(-\frac{a}{b}m, m)$. Hence a solution with initial
 502 condition $(-\frac{a}{b}m, m)$ might either stay in Σ , or leave Σ tangentially to enter R_2 , or leave Σ
 503 transversally to enter R_1 .

504 **Proposition 23** *Let (36) hold and suppose that a system (7) has a crossing-and-sliding or a
 505 sliding periodic orbit. Then they are unstable.*

506 *Proof* We will prove the theorem for γ crossing-and-sliding. The proof for γ sliding is
 507 analogous. Let γ be a crossing-and-sliding periodic orbit of (7). In Fig. 8 γ is in bold. It
 508 starts at $(-\frac{a}{b}m, m)$, slides on Σ towards \tilde{x}_1 , it leaves Σ and enters R_1 . It crosses Σ again
 509 at \tilde{x}_2 and enters R_2 until it reaches Σ at $(-\frac{a}{b}m, m)$. Consider now the solution that starts
 510 at $(-\frac{a}{b}m, m)$ and, instead of sliding on Σ , enters R_1 (a small piece of curve in Fig. 8). To
 511 show instability of γ , we need to show that this solution moves away from γ . We have
 512 $x_2 = P_2(-\frac{a}{b}m) < P_2(\tilde{x}_1) = \tilde{x}_2$ so that $x_3 = P_2((P_1(-\frac{a}{b}m)) > -\frac{a}{b}m$. We can apply the
 513 same reasoning to x_3 so to generate two sequences $\{x_{2k}\}$ and $\{x_{2k+1}\}$ on Σ with $x_{2k+1} > x_{2k-1}$
 514 and $x_{2k} < x_{2k-2}$. Hence instability from outside is proven.

515 In order to prove instability from the inside, we just need to notice that any initial condition
 516 in the region inside γ approaches the origin. Denote this region with Γ . Any solution with
 517 initial condition in $R_1 \cap \Gamma$ cannot cross γ so that it must enter $R_2 \cap \Gamma$. Once in $R_2 \cap \Gamma$, the
 518 solution cannot meet Σ again (since $n^T f_2(\mathbf{x}) > 0$ on \bar{S}) and hence it approaches the origin.

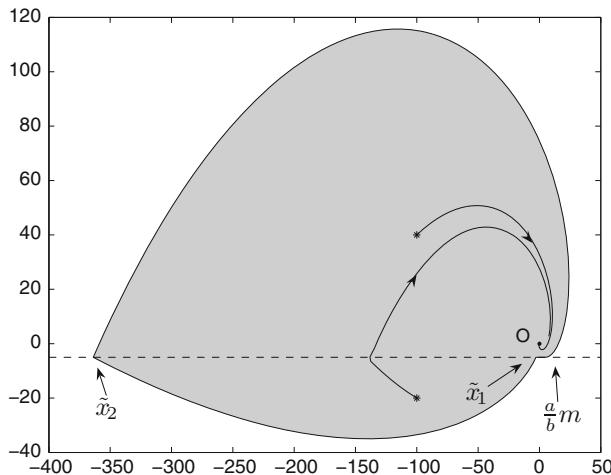


Fig. 9 Sliding and crossing periodic orbit. All the solutions *inside the shaded region* approach the origin

519 In Fig. 9, the region inside γ is filled in gray. The asterisks denote initial conditions in Γ and
 520 the corresponding solutions move towards the origin. \square

521 The sequences $\{x_{2k}\}$ and $\{x_{2k+1}\}$ in the proof of Proposition 23 cannot accumulate on a
 522 crossing periodic orbit due to Proposition 21. Hence the following holds true.

523 **Proposition 24** *System (7) with line of discontinuity $y = m$ and $m < 0$, admits at most one*
 524 *periodic orbit.* \square

525 The sliding-and-crossing (or sliding) periodic orbit acts as a separatrix of the phase
 526 space. All the initial conditions inside it lead to the origin, while the solutions outside γ
 527 are unbounded.

528 The following proposition establishes sufficient conditions for the existence of a crossing
 529 periodic orbit γ . Its proof follows from the observation that for any $x \in \Sigma^+$, $P_1(x) \in \Sigma^-$,
 530 since $n^T A_1 x < 0$ for $x \in S \cup \Sigma^+$.

531 **Proposition 25** *Let (36) hold, and let \bar{t}_1 , \bar{t}_2 , \bar{x}_1 and \bar{x}_2 be defined as in (18), (20). If $\bar{x}_1 >$
 532 $-\frac{a}{b}m$, then (7) has a crossing periodic orbit γ .* \square

533 In order to study what happens at (or past) the value $\frac{c}{d} = \frac{a}{b}$, we set $\frac{a}{b} = z$, $\frac{c}{d} = \alpha \frac{a}{b}$ (with
 534 $\alpha > 1$), and study \bar{x}_1 as a function of α , similarly to what we did in (21).

535 **Proposition 26** *Let (36) hold. If the system admits a crossing periodic orbit, then the function*
 536 *$\bar{x}_1 + \frac{a}{b}m$ is a decreasing function of $\frac{c}{d}$.*

537 *Proof* If γ exists, we have $\bar{x}_2 < \frac{c}{d}m$. Using same notations as in (21) and noticing that
 538 $\sin(w) > 0$ we have

$$e^{\alpha z w} - \cos(w) > \alpha z \sin(w). \quad (38)$$

540 Let $g_1(z, \alpha) = \bar{x}_1 + zm$, so that $\partial g_1 / \partial \alpha = d\bar{x}_1 / d\alpha$, and this is given by (35). Using (38)
 541 then gives that (35) is negative. \square

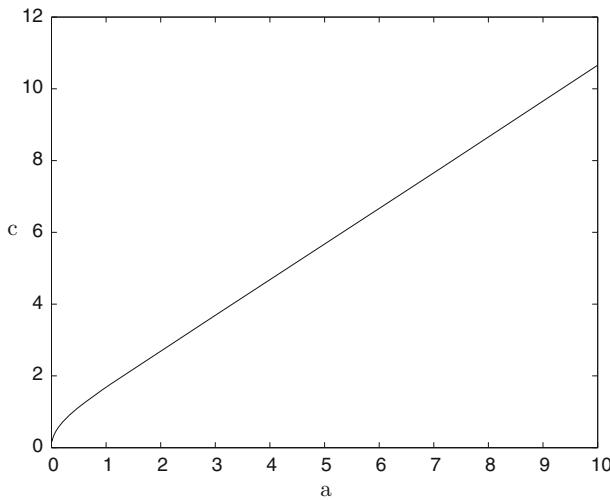


Fig. 10 Crossing bifurcation curve. Parameter values $b = d = 1, m = -1$

542 Observe that when $\frac{c}{d} \rightarrow (\frac{a}{b})^+$, $\bar{x}_1 \rightarrow +\infty$ and the length of the periodic orbit γ tends
 543 to ∞ , while for $\frac{c}{d} \rightarrow \infty$, $\bar{x}_1 \rightarrow -\infty$. Hence, there must be a value of $\frac{c}{d}$, say $\frac{c}{d} = \frac{c_2}{d_2}$, such
 544 that $\bar{x}_1 = -\frac{a}{b}m$. This is a *crossing bifurcation* value. Due to Proposition 26 this crossing
 545 bifurcation value must be unique.

546 *Example 27 (Curve of Crossing Bifurcations)* In Fig. 10, we show a portion of the curve
 547 of the crossing bifurcation values in the two parameters c and a . The other parameters are
 548 $b = d = 1, m = -1$.

549 Next, let $\frac{c}{d} = \frac{c_3}{d_3}$ be such that $P_2(\frac{c_3}{d_3}m) = -\frac{a}{b}m$. Then, the solution that starts at $(-\frac{a}{b}m, m)$
 550 slides on Σ , exits Σ for $x = \frac{c_3}{d_3}$ to enter R_1 and reaches Σ again for $x = -\frac{a}{b}m$: it is a sliding
 551 periodic orbit. Denote it with γ . As $\frac{c}{d}$ increases beyond $\frac{c_3}{d_3}$ the repulsive sliding region \bar{S}
 552 becomes larger, but γ is not affected by the parameter change: it starts at $(-\frac{a}{b}m, m)$, slides
 553 on Σ , exits Σ at $x = \frac{c_3}{d_3}$ to enter R_1 and reaches Σ again at $x = -\frac{a}{b}m$. Hence for $\frac{c}{d} \geq \frac{c_3}{d_3}$,
 554 the system admits a sliding periodic orbit γ that is independent on the value of $\frac{c}{d}$.

555 The value $\frac{c}{d} = \frac{c_3}{d_3}$ for which $P_2(\frac{c_3}{d_3}m) = -\frac{a}{b}m$ is a *buckling bifurcation*.

556 *Example 28 (Curve of Buckling Bifurcations)* In Fig. 11, we plot (part of) the curve of
 557 buckling bifurcation values in the two parameters c and a . The other parameter values are
 558 $b = d = 1, m = -1$.

559 When (36) is violated, and $\frac{a}{b} > \frac{c}{d}$, the following proposition shows that the origin is
 560 globally asymptotically stable.

561 **Proposition 29** *Assume $\frac{c}{d} < \frac{a}{b}$. Then the origin is globally stable for (7).*

562 *Proof* Let $x_1 \in \Sigma^+$, $x_2 = P_1(x_1)$ and $x_3 = P_2(x_2)$. Then, as in the proof of Proposition 21,
 563 we have

$$564 (x_3^2 + m^2) = e^{2(ct_1 - at_2)}(x_1^2 + m^2),$$

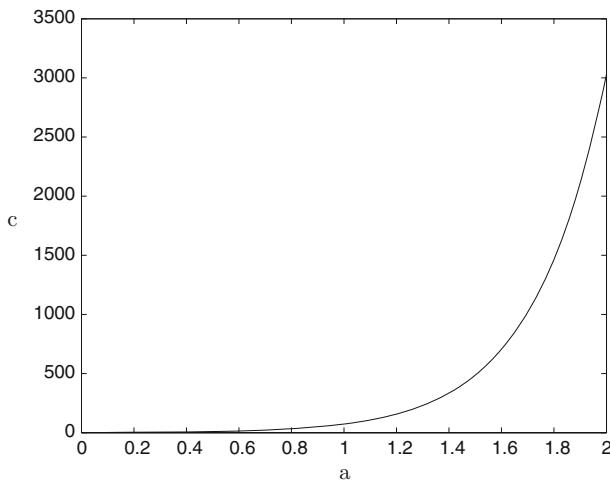


Fig. 11 Buckling bifurcation curve. Parameter values $b = d = 1, m = -1$

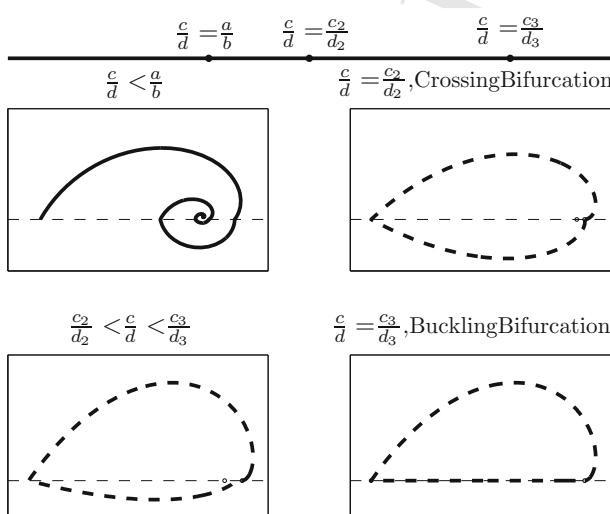


Fig. 12 Bifurcation diagram for the case $m < 0$

and $ct_1 - at_2 < \left(\frac{c}{d} - \frac{a}{b}\right)\pi < 0$. Hence $x_3 < x_1$. We repeat for x_3 the reasoning we used for x_1 , and so on. Hence, we generate two sequences $\{x_{2k}\}$ and $\{x_{2k+1}\}$ with $x_{2k} > x_{2k-2}$ and $x_{2k+1} < x_{2k-1}$, with their differences bounded away from 0. Let \bar{x} be such that $P_2(\bar{x}) = -\frac{a}{b}m$. Then there exists a finite k such that $x_{2k} \geq \bar{x}$ and hence $\varphi_2(t, x_{2k}, m)$ approaches the origin for $t \rightarrow \infty$. \square

Below we summarize the behavior of the system as $\frac{c}{d}$ varies, in this case of $m < 0$. Recall that the values c_2/d_2 and c_3/d_3 are such that, respectively: $\bar{x}_1 = -\frac{a}{b}m$, $P_2(\frac{c_3}{d_3}m) = -\frac{a}{b}m$. In Fig. 12 we plot the bifurcation diagram for this case. The top diagram represents the behavior of the origin, the only equilibrium of the system. The boxed plot that corresponds to the value

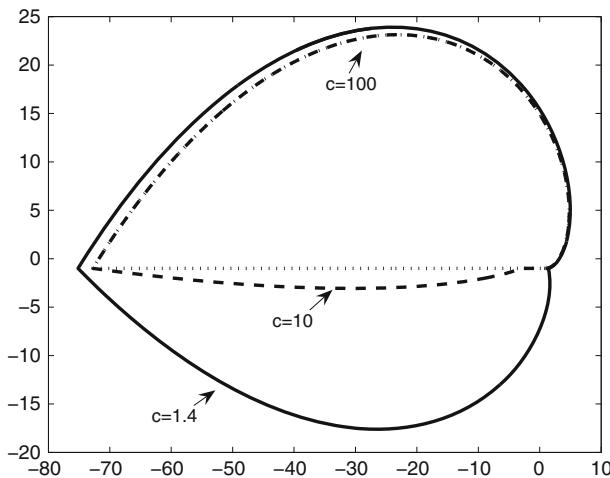


Fig. 13 Crossing, crossing and sliding and sliding periodic orbit for different values of c and $a = b = d = 1$ and $m = -1$

574 $\frac{c}{d} < \frac{a}{b}$, depicts the behavior of the origin as a global stable focus. The other plots, depict the
 575 unstable periodic orbits that (might) occur for different parameter values.

576 $\frac{c}{d} \leq \frac{a}{b}$ The origin is a global stable focus for (7). The value $\frac{c}{d} = \frac{a}{b}$ is a bifurcation
 577 value.

578 $\frac{c_2}{d_2} > \frac{c}{d} > \frac{a}{b}$ The origin is a locally stable focus and there is an unstable crossing periodic
 579 orbit γ acting as a separatrix: initial conditions in the region inside the periodic
 580 orbit have corresponding solutions that approach the origin, while initial
 581 conditions in the region outside γ lead to unbounded solutions. The period of γ is
 582 always finite while the orbit's length decreases as $\frac{c}{d}$ increases, and its length
 583 approaches ∞ when $\frac{c}{d} \rightarrow (\frac{a}{b})^+$. In Fig. 13 we plot the crossing and sliding
 584 periodic orbit γ with a continuous line corresponding to the value $c = 1.4$. All the other
 585 parameters are taken equal to 1.

586 $\frac{c}{d} = \frac{c_2}{d_2}$ This is a crossing bifurcation value.

587 $\frac{c_2}{d_2} < \frac{c}{d} \leq \frac{c_3}{d_3}$ The origin is a locally stable focus. There is a crossing-and-sliding periodic
 588 orbit γ which acts as separatrix: the solutions inside γ approach the origin, the
 589 solutions outside γ are unbounded. In Fig. 13 we plot the crossing and sliding
 590 periodic orbit γ with a dashed line. The corresponding value of c is 20.

591 $\frac{c}{d} = \frac{c_3}{d_3}$ This is a buckling bifurcation.

592 $\frac{c}{d} \geq \frac{c_3}{d_3}$ The origin is a locally stable focus and the system has a sliding periodic orbit
 593 γ (that is the same for all the values of $\frac{c}{d}$), which acts as separatrix for initial
 594 conditions that lead to trajectories approaching the origin and those leading
 595 to unbounded solutions. In Fig. 13 we plot the sliding periodic orbit γ with a
 596 dotted line. The corresponding value of c is 100.

597 3.4 m as a Bifurcation Parameter

598 The analysis in Sects. 3.3 and 3.2 allows us to study (7) using m as bifurcation parameter. In
 599 what follows we will distinguish between three cases $\frac{c}{d} < \frac{a}{b}$, $\frac{c}{d} = \frac{a}{b}$ and $\frac{c}{d} > \frac{a}{b}$.

600 We stress that the value $m = 0$ will always be a bifurcation value, regardless of whether
 601 $\frac{a}{b} \gtrless \frac{c}{d}$; cfr. with [12] where the authors assumed $\frac{a}{b} = \frac{c}{d}$ when $m = 0$.

$$602 \quad 0 < \frac{c}{d} < \frac{a}{b}$$

603 $m < 0$ The origin is globally asymptotically stable.

604 $m = 0$ There are no periodic orbits and the origin is still globally asymptotically stable.
 605 This is a Hopf bifurcation value.

606 $m > 0$ The origin is unstable, and there is a unique, globally stable (except for the origin),
 607 periodic orbit. The periodic orbit might be a crossing, crossing-and-sliding, or sliding
 608 periodic orbit, respectively for $\frac{c}{d} \geq \frac{c_1}{d_1}$, $\frac{c_1}{d_1} > \frac{c}{d} > \frac{c_0}{d_0}$, or $\frac{c_0}{d_0} > \frac{c}{d}$.

$$609 \quad \frac{c}{d} = \frac{a}{b}$$

610 $m < 0$ The origin is globally asymptotically stable.

611 $m = 0$ This is a bifurcation value. The origin is stable but not asymptotically stable, and
 612 there is a family of stable periodic orbits.

613 $m > 0$ The origin is unstable, there are no periodic orbits, and all orbits (except the origin)
 614 are unbounded.

$$615 \quad \frac{c}{d} > \frac{a}{b}$$

616 $m < 0$ The origin is (locally) asymptotically stable. An unstable periodic orbit acts as sep-
 617 aratrix of trajectories approaching the origin and those that become unbounded. The
 618 periodic orbit is either a crossing, or a crossing-and-sliding, or a sliding, periodic
 619 orbit, respectively for $\frac{c}{d} \leq \frac{c_2}{d_2}$, $\frac{c_2}{d_2} < \frac{c}{d} < \frac{c_3}{d_3}$, or $\frac{c_3}{d_3} \leq \frac{c}{d}$.

620 $m = 0$ This is a Hopf bifurcation value. The origin is unstable, all other orbits are unbounded.

621 $m > 0$ The origin is unstable, and all other orbits are unbounded.

622 4 General Form

623 In this section we consider the general family of systems (8). Although our study of this case
 624 is far from complete, we believe that it is still of interest since it highlights completely new
 625 phenomena which cannot occur when the family of linear systems is in canonical form.

626 In general, we cannot bring $\Sigma := \{(x, y) : y - qx - m = 0\}$ into a horizontal line without
 627 breaking the structure of the system. Hence, we need to work with $h(x, y) = y - qx - m$.
 628 Note that the sliding region for (8) is \bar{S} with $S = \{(x, m) \in \Sigma, -\frac{a}{ab}m < x < \frac{c}{d}m\}$ and it is
 629 an attractive sliding region. On it, the Filippov sliding vector field (10) is well defined and is
 630 given by

$$631 \quad f_F(x) = \frac{(x^2 + m^2)ad + (\alpha x^2 + \frac{m^2}{\alpha})bc + bdmx(\alpha - \frac{1}{\alpha})}{(c + a)m + x(\alpha b - d)}. \quad (39)$$

632 Unfortunately, these problems depend on five parameters: $\frac{a}{b}$, $\frac{c}{d}$, α , with $a, b, c, d > 0$,
 633 and on m and q , and are too difficult to analyze in such generality. For this reason, we make
 634 the following simplifications:

$$635 \quad m > 0 \text{ and } h(x, y) = y - m, \text{ i.e. } q = 0, \\ 636 \quad \text{and } a = 1, b = 1, d = 1. \quad (40)$$

637 Note that, in the case (40), f_F is easily seen to be always positive.

638 To reiterate, we explore (8) by allowing just c and α to vary. Still, as we will see, even
639 in this simplified case (40), the dynamical behavior of (8) is richer than that reflected by the
640 system in canonical form (7). However, even in this seemingly simpler case, exact analytical
641 expressions for the solution of the problem are out of reach, and we will use a combination
642 of analysis and computer aided simulation to highlight what can happen.

643 For $c < a$, we know that system (7) has a globally asymptotically stable periodic orbit.
644 This might be a crossing, or crossing-and-sliding, or sliding, periodic orbit. The question is
645 whether (8) retains the same dynamical behavior of the system in canonical form.

646 The reasoning for the existence of crossing periodic orbits is similar to the one in (16). A
647 simple computation shows that with $T = \begin{pmatrix} -a & \frac{b}{\alpha} \\ -\alpha b & -a \end{pmatrix}$ we have

$$648 e^{Tt} = e^{-at} \begin{pmatrix} \cos(bt) & \frac{1}{\alpha} \sin(bt) \\ -\alpha \sin(bt) & \cos(bt) \end{pmatrix}.$$

649 Using this expression, we see that there is a crossing periodic orbit if there exists \bar{x}_1 , \bar{t}_1 and
650 \bar{t}_2 such that

$$651 e^{c\bar{t}_1} e^{-a\bar{t}_2} \begin{pmatrix} \cos(b\bar{t}_2) & \frac{\sin(b\bar{t}_2)}{\alpha} \\ -\alpha \sin(b\bar{t}_2) & \cos(b\bar{t}_2) \end{pmatrix} \begin{pmatrix} \cos(d\bar{t}_1) & \sin(d\bar{t}_1) \\ -\sin(d\bar{t}_1) & \cos(d\bar{t}_1) \end{pmatrix} \begin{pmatrix} \bar{x}_1 \\ m \end{pmatrix} = \begin{pmatrix} \bar{x}_1 \\ m \end{pmatrix}. \quad (41)$$

652 Let $\bar{x}_2 = P_1(\bar{x}_1)$. Then we can write \bar{x}_1 and \bar{x}_2 in function of \bar{t}_1 , as in (20), and we can use
653 (41) to rewrite \bar{t}_2 in function of \bar{t}_1 and α as:

$$654 \bar{t}_2(\bar{t}_1, \alpha) = \frac{1}{b} \arctan \frac{\alpha(\bar{x}_1 - \bar{x}_2)}{1 + \alpha^2 \bar{x}_1 \bar{x}_2} \\ 655 = \frac{1}{b} \arctan \frac{\alpha \sin(d\bar{t}_1) (2 \cos(d\bar{t}_1) - (e^{-c\bar{t}_1} + e^{c\bar{t}_1}))}{\sin(d\bar{t}_1)^2 + \alpha^2 (\cos(d\bar{t}_1)(e^{c\bar{t}_1} + e^{-c\bar{t}_1}) - 1 - \cos(d\bar{t}_1)^2)}. \quad (42)$$

656 We are left with the problem of looking for the zeros of the following function of α and \bar{t}_1 ,

$$657 f(\bar{t}_1, \alpha) = \alpha \sin(b\bar{t}_2)(e^{c\bar{t}_1} - \cos(d\bar{t}_1)) - \sin(d\bar{t}_1)(\cos(b\bar{t}_2) - e^{a\bar{t}_2}), \quad (43)$$

658 with \bar{t}_2 as in (42) and $b\bar{t}_2, d\bar{t}_1 \neq \pi$. In Fig. 14 we plot the curve of zeros of $f(\bar{t}_1, \alpha)$ as a
659 function of α for different values of $c < a = 1$. Figure 15 is the same of Fig. 14 but it is
660 obtained for $c \in [0.5, 0.8306122]$.

661 As it is clear from the plot, it is not true that there is a unique value of \bar{t}_1 for all values
662 of α and c . To clarify, in Fig. 16 we plot \bar{t}_1 in function of α for $c \simeq 0.83061$. As it can be
663 seen, not all values of \bar{t}_1 correspond to a crossing periodic orbit. The dashed line in the plot
664 is the value of \bar{t}_1 such that the corresponding \bar{x}_1 is equal to $\frac{c}{d}m$ and let us denote it as $\bar{t}_1^{\frac{c}{d}m}$.

665 We claim that for $\bar{t}_1 > \bar{t}_1^{\frac{c}{d}m}$, there are no corresponding crossing periodic orbits and instead
666 a crossing-and-sliding or sliding periodic orbit appears. Indeed, (41) is obtained regardless
667 of the fact that the vector field $f_i(\mathbf{x}) = A_i \mathbf{x}$ is defined only in R_i , for $i = 1, 2$. Let us denote
668 with $\varphi_i(t, x, y)$, the solution of $\dot{\mathbf{x}} = A_i \mathbf{x}$ with initial condition $\mathbf{x} = (x, y)^\top$. If we consider
669 \bar{x}_1 in (20) as a function of \bar{t}_1 , it is easy to verify that \bar{x}_1 is decreasing for $\bar{t}_1 \in (\frac{\pi}{d}, \frac{2\pi}{d})$. Hence

670 $\bar{x}_1(\bar{t}_1) < \frac{c}{d}m$ whenever $\bar{t}_1 > \bar{t}_1^{\frac{c}{d}m}$. It follows that $\varphi_1(t, \bar{x}_1, m)$ (computed regardless of the
671 fact that f_1 is only defined in R_1) first enters R_2 and it meets Σ at a point $\bar{x}_{1/2} > \frac{c}{d}m$, then
672 it enters R_1 and reaches Σ again at time \bar{t}_1 and at the point \bar{x}_2 given in (20). At \bar{x}_2 , (41)
673 considers the solution of $\dot{\mathbf{x}} = A_2 \mathbf{x}, \varphi_2(t, \bar{x}_2, m)$, that at time \bar{t}_2 meets Σ again at \bar{x}_1 . The orbit

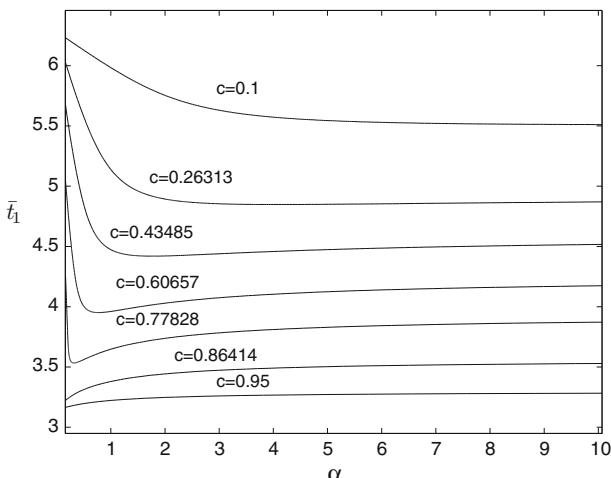


Fig. 14 Curve of \bar{t}_1 as a function of α for different values of c . Here $a = b = d = m = 1$

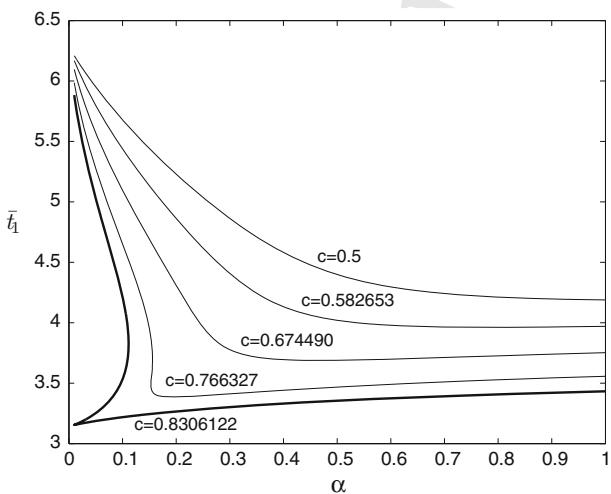


Fig. 15 Curve of \bar{t}_1 as a function of α for different values of c . Here $a = b = d = m = 1$

674 obtained through the composition of the two flows is a closed curve and we denote it with ψ .
 675 If we consider instead the initial condition $(\frac{c}{d}m, m)$, since $\frac{c}{d}m > \bar{x}_1$, $\varphi_1(t, \frac{c}{d}m, m)$, meets Σ
 676 at a point \tilde{x}_2 , with $\tilde{x}_2 > \bar{x}_2$. Two cases may occur: (i) $\tilde{x}_2 \geq -\frac{a}{b}m$, then (8) has a sliding orbit
 677 γ contained in the interior region of ψ ; (ii) $\tilde{x}_2 < -\frac{a}{b}m$, then $\varphi_2(t, \tilde{x}_2, m)$ meets Σ at a point
 678 $\tilde{x}_1 < \bar{x}_1 < \frac{c}{d}m$ and hence there is a crossing-and-sliding periodic orbit in the interior region
 679 of ψ .

680 **Remark 30** The plot in Fig. 16 allows to determine the number of periodic orbits that system
 681 (8) has for each value of α . If, for a given α , there are three corresponding values of \bar{t}_1 ($\alpha = 0.1$
 682 for example), the system has three periodic orbits. If one of the values of \bar{t}_1 is greater than
 683 the crossing bifurcation value, then this means that there is a sliding or crossing-and-sliding
 684 periodic orbit.

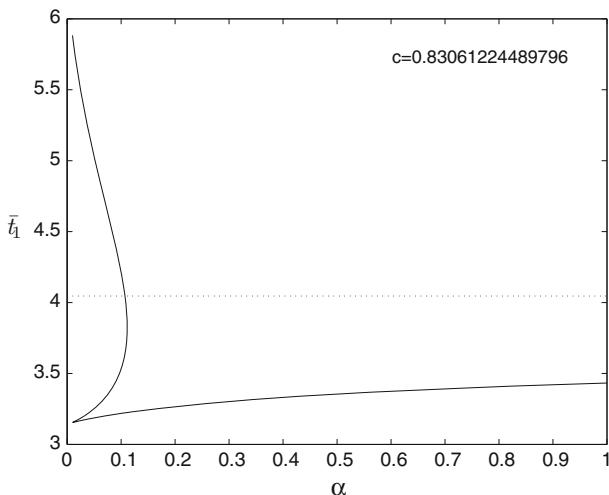


Fig. 16 Plot of \bar{t}_1 in function of α for $c \simeq 0.83061$. Here $a = b = d = m = 1$. The dashed line in the plot is the value of t_1 at the crossing bifurcation

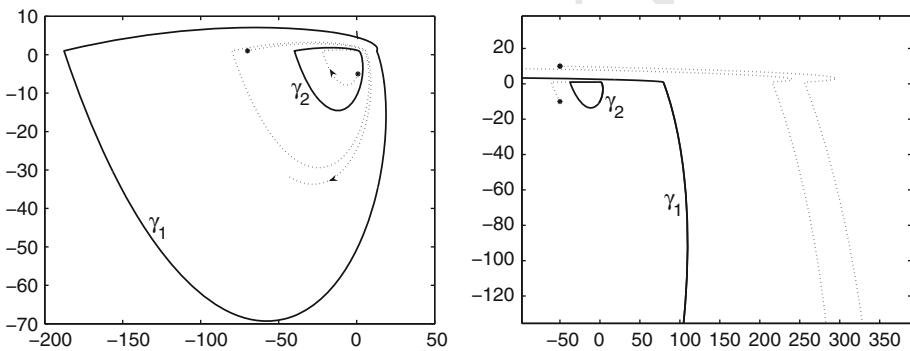


Fig. 17 Behavior of system (8) close to the periodic orbits at the fold

685 From the picture in Fig. 16, it is clear that there are two fold bifurcations of periodic orbits.

686 *Example 31* (Fold of Periodic Orbits and Stability) Through standard fold location tech-
 687 niques, we have computed the fold points: there is one fold for $\alpha \simeq 0.1130986266212$ and
 688 one for $\alpha \simeq 0.01036814335189$. The periodic orbits at these two different parameter values
 689 are shown in Fig. 17. Consider first the case of $\alpha = 0.1130986266212$ on the left of Fig. 17.
 690 The system has two crossing periodic orbits, in bold in the figure: in the figure, γ_1 corresponds
 691 to the smaller value of \bar{t}_1 while γ_2 corresponds to the value at the fold. Observe that γ_2 is stable
 692 from inside and unstable from outside. The value of \bar{t}_1 at the fold is $\bar{t}_1 \simeq 3.82459032689332$
 693 and, using this, we can compute \bar{x}_1 , \bar{x}_2 and \bar{t}_2 explicitly.

694 The stability properties of both orbits can be studied using the Poincaré map or, equiva-
 695 lently, via the monodromy matrix. We will use here the approach based on the monodromy
 696 matrix. We denote with \bar{x}_1 and \bar{x}_2 the two intersections of the periodic orbit with Σ^+ and
 697 Σ^- respectively and with \bar{t}_1 and \bar{t}_2 the first return time to Σ^- and Σ^+ respectively. To form
 698 the monodromy matrix we must take into account the saltation or jump matrices, i.e., fun-

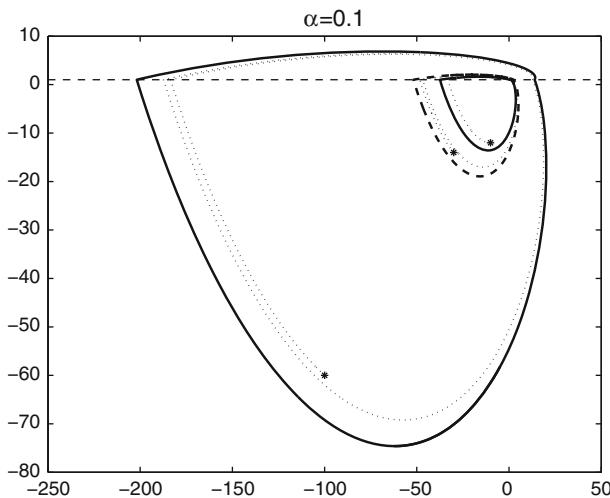


Fig. 18 Periodic orbits of system (8) for $a = b = d = m = 1$, $c \simeq 0.83061$ and $\alpha = 0.1$. The dotted curve is the unstable periodic orbit, the other two are the stable ones

699 fundamental matrices at the discontinuity (see [1, 3, 7–9]). The fundamental matrix solution has
700 the following expression

$$701 \quad X(T) = S_{21}\Phi_2(\bar{t}_2, \bar{t}_1)S_{12}\Phi_1(\bar{t}_1, 0), \quad (44)$$

702 where $\Phi_j(t, t_0)$ is the principal matrix solution of $\dot{X} = A_j X$, $X(t_0) = I$, at time t , and S_{12}
703 and S_{21} are the two saltation matrices, defined as

$$704 \quad S_{12} = I + [f_2(\bar{x}_2, m) - f_1(\bar{x}_2, m)] \frac{n^T(\bar{x}_2, m)^T}{n^T f_1(\bar{x}_2, m)},$$

$$705 \quad S_{21} = I + [f_2(\bar{x}_1, m) - f_1(\bar{x}_1, m)] \frac{n^T(\bar{x}_1, m)^T}{n^T f_1(\bar{x}_1, m)}.$$

706 Since both periodic orbits must give a multiplier equal to 1, the other multiplier is
707 $\det(X(T)) = e^{2(-a\bar{t}_2 + c\bar{t}_1)} \det(S_{12}) \det(S_{21})$ for which we have the following explicit expression
708

$$709 \quad \det(X(T)) = e^{2(-a\bar{t}_2 + c\bar{t}_1)} \frac{\bar{x}_2 + \frac{a}{ab}m}{\bar{x}_2 - \frac{c}{d}m} \frac{\bar{x}_1 - \frac{c}{d}m}{\bar{x}_1 + \frac{a}{ba}m}. \quad (45)$$

710 For γ_2 , we obtain: $\lambda_1 \simeq 1$, and $\lambda_2 \simeq 0.998052$. On the right of Figure 17 is depicted the
711 case for the second fold at $\alpha \simeq 0.01036814335189$. We plot only one arc of the periodic
712 orbit γ_1 at the fold together with the sliding orbit γ_2 . The asterisks are two initial conditions
713 that do not belong to the periodic orbits and the dotted lines are the corresponding solutions.
714 From the plot we observe that γ_1 is stable from the outside and unstable from the inside. At
715 γ_1 , the corresponding value of \bar{t}_1 is $\bar{t}_1 \simeq 3.15511532823135$ and $\bar{x}_1 \simeq 79.32564021634117$.
716 Computing the eigenvalues of the monodromy matrix we obtain $\lambda_1 \simeq 1$ and $\lambda_2 \simeq 1.00009$.

717 Finally in Fig. 18 we plot the orbits of the system for $\alpha = 0.1$. This value is between the
718 two folds and, looking at Fig. 16 we expect the system to have three periodic orbits. Indeed
719 we see the three orbits plotted in bold in Fig. 18. The dotted periodic orbit is unstable while

720 the two solid orbits are stable. The other orbits in the plot correspond to the initial conditions
 721 marked with the stars. The inner orbit is a crossing-and-sliding periodic orbit.

722 5 A Model Nonlinear Problem

723 In this section we consider a weak non linear perturbation of system (5) with $A_{1,2}$ as in (6),
 724 namely

$$725 \dot{\mathbf{x}} = \begin{cases} A_1 \mathbf{x} + \epsilon g_1(\mathbf{x}), & y < m, \\ A_2 \mathbf{x} + \epsilon g_2(\mathbf{x}), & y > m, \end{cases} \quad (46)$$

726 with g_1 and g_2 continuously differentiable functions and such that $g_1(0) = g_2(0) = 0$, ϵ
 727 sufficiently small and $m \geq m_0 > 0$ (and m_0 uniformly bounded away from 0). As usual, let
 728 $n = (0, 1)^T$ denote the normal to $\Sigma = \{(x, y) \mid y = m\}$.

729 As long as we stay away from the bifurcation values of the underlying linear problem, for
 730 ϵ small these types of systems exhibit a behavior similar to the linear case.

731 First of all, note that as long as ϵ is sufficiently small and $\epsilon n^T \frac{d}{dx} g_1(x, y) \Big|_{(-\frac{a}{b}m, m)} \neq b$

732 and $\epsilon n^T \frac{d}{dx} g_2(x, y) \Big|_{(\frac{c}{d}m, m)} \neq d$, the Implicit Function Theorem guarantees that there is an

733 attractive sliding region $\tilde{\mathcal{S}}$ for system (46). We denote with x_R and x_L respectively the right
 734 and left endpoints of \mathcal{S} , $\mathcal{S} = \{(x, m) \mid x_L < x < x_R\}$ and with $\tilde{\Sigma}_+ = \{(x, m) \mid x \geq x_R\}$ and
 735 $\tilde{\Sigma}_- = \{(x, m) \mid x \leq x_L\}$. Clearly $x_{R,L} = x_{R,L}(\epsilon)$, and $x_R(0) = \frac{c}{d}m$ and $x_L(0) = -\frac{a}{b}m$.

736 In what follows we will study the behavior of system (46) as $\frac{c}{d}$ varies. Below, the values
 737 $\frac{c_j}{d_j}$ ($j = 0, 1$) are the critical values for the linear problem (5) in Sect. 3.

738 (a) Let $\frac{c}{d}$ be such that: $\frac{a}{b} > \frac{\bar{a}}{\bar{b}} \geq \frac{c}{d} \geq \frac{\bar{c}_1}{\bar{d}_1} > \frac{c_1}{d_1}$, where $\bar{a}, \bar{b}, \bar{c}, \bar{d}$, depend on ϵ , but are
 739 bounded away from 0 uniformly in ϵ .

740 The linear system (5) has an hyperbolic crossing periodic orbit γ for $\frac{c}{d}$ in this range. In
 741 Sect. 3 we already defined a Poincaré map for (5) and we denoted with \bar{x} its fixed point. We
 742 want to define a Poincaré map $\tilde{P} = \tilde{P}(x, \epsilon)$ for the nonlinear problem (46) and show that
 743 there exists an $\epsilon_0 > 0$ such that for $\epsilon \in (0, \epsilon_0)$, \tilde{P} has a fixed point. We will use the Implicit
 744 Function Theorem and the fact that \bar{x} is an hyperbolic fixed point of P . In what follows we
 745 will use some of the results and the notations of Sect. 3, in particular insofar as \tilde{t}_1, \tilde{x} , etc..

746 We denote with $\tilde{\varphi}_{1,2}(t, x, y, \epsilon)$ the flow of system (46) respectively for $y < m$ and
 747 $y > m$. For $\epsilon = 0$, $\tilde{\varphi}_{1,2}(t, x, y, 0) = \varphi_{1,2}(t, x, y)$. We denote with $\tilde{t}_{1,2}(x, \epsilon)$ the return
 748 time of $\tilde{\varphi}_{1,2}(t, x, m, \epsilon)$ to Σ . Then $\tilde{t}_{1,2}(x, 0) = t_{1,2}(x)$ and smoothness of $\tilde{t}_{1,2}$ and $\tilde{\varphi}_{1,2}$ with
 749 respect to x and ϵ implies that there exist an $\epsilon_1 > 0$ and a $\delta_1 > 0$ such that for all $\epsilon \in [0, \epsilon_1]$
 750 and all $x \in (\bar{x} - \delta_1, \bar{x} + \delta_1)$, $\tilde{t}_{1,2}(x, \epsilon)$ is smooth and well defined and $\tilde{\varphi}_1(\tilde{t}_1(x), x, \epsilon) \in \tilde{\Sigma}_-$
 751 and $\tilde{\varphi}_2(\tilde{t}_2(x), x, \epsilon) \in \tilde{\Sigma}_+$.

752 We can define the following maps for $\epsilon \in [0, \epsilon_1]$ and $x \in (\bar{x} - \delta_1, \bar{x} + \delta_1)$

$$753 \tilde{P}_1(x, \epsilon) : \tilde{\Sigma}_+ \rightarrow \tilde{\Sigma}_-, \quad \tilde{P}_1(x, \epsilon) = \varphi_1(\tilde{t}_1(x, \epsilon), x, \epsilon),$$

754 and

$$755 \tilde{P}_2(x, \epsilon) : \tilde{\Sigma}_- \rightarrow \tilde{\Sigma}_+, \quad \tilde{P}_2(x, \epsilon) = \varphi_2(\tilde{t}_2(x, \epsilon), x, \epsilon).$$

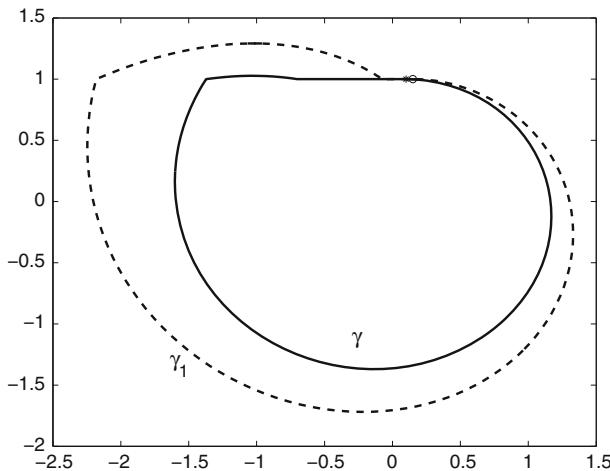


Fig. 19 Crossing and sliding periodic orbits for the linear system (solid line) and for its nonlinear perturbation (dotted line). The asterisk is the tangential exit point for the linear system, while the circle is the one for the nonlinear system

756 We define the Poincaré map for system (46) as $\tilde{P}(x, \epsilon) : \tilde{\Sigma}_+ \rightarrow \tilde{\Sigma}_+$, $\tilde{P}(x, \epsilon) =$
 757 $\tilde{P}_2(\tilde{P}_1(x, \epsilon), \epsilon)$. Clearly $\tilde{P}(x, 0) = P(x)$. Moreover $\tilde{P}_x(x, \epsilon) \Big|_{(\bar{x}, 0)} = P_x(\bar{x}) \neq 1$ since
 758 γ is hyperbolic. Hence there exists an $\epsilon_0 \leq \epsilon_1$ such that for all $\epsilon \in (0, \epsilon_0)$ there is an
 759 $x = x(\epsilon)$ such that $\tilde{P}(x(\epsilon), \epsilon) = x(\epsilon)$. We proved the following theorem.

760 **Theorem 32** *In this case (a), there exists $\epsilon_0 > 0$ such that for all $\epsilon \in [0, \epsilon_0)$ the system*
 761 *(46) has a unique continuous asymptotically stable crossing periodic orbit γ reducing to the*
 762 *crossing periodic orbit of the linear problem for $\epsilon = 0$.*

763 (b) Now take $\frac{c}{d}$ such that $\frac{c_1}{d_1} > \frac{\tilde{c}_1}{\tilde{d}_1} \geq \frac{c}{d} \geq \frac{\tilde{c}_0}{\tilde{d}_0} > \frac{c_0}{d_0}$, where $\tilde{c}_0, \tilde{d}_0, \tilde{c}_1, \tilde{d}_1$, are uniformly
 764 bounded away from 0 in ϵ .

765 System (5) has a crossing-and-sliding periodic orbit γ that is stable and finitely reached.
 766 This γ starts at $(\frac{c}{d}m, m)$, enters R_1 , crosses Σ^- at $\varphi_1(t_1(\frac{c}{d}m), \frac{c}{d}m, m) = (x_1, m)$, enters R_2 ,
 767 meets S at $\varphi_2(t_2(x_1), x_1, m) = (x_2, m)$ and starts sliding on S until it reaches the tangential
 768 exit point $(\frac{c}{d}, m)$. Then, since $\tilde{\varphi}_1$ and $\tilde{\varphi}_2$ are smooth in ϵ and x , there exists an $\epsilon_0 > 0$ such
 769 that for all $\epsilon \in (0, \epsilon_0)$ $\tilde{t}_1(x_R(\epsilon), \epsilon)$ is well defined and, for $\tilde{x}_2 = \tilde{\varphi}_1(\tilde{t}_1(x_R(\epsilon)), x_R(\epsilon), \epsilon)$,
 770 then also $\tilde{t}_2(\tilde{x}_2, \epsilon)$ is well defined and $\tilde{\varphi}_2(\tilde{t}_2(\tilde{x}_2), \tilde{x}_2, m) \in S$. This implies the existence of a
 771 sliding and crossing periodic orbit also for the perturbed nonlinear system.

772 **Theorem 33** *In this case (b), there exists $\epsilon_0 > 0$ such that for all $\epsilon \in [0, \epsilon_0)$ the system (46)*
 773 *has a unique continuous crossing and sliding periodic orbit γ reducing to the crossing and*
 774 *sliding periodic orbit of the linear problem for $\epsilon = 0$.*

775 In Fig. 19 we plot the periodic orbit γ of the linear system and γ_1 of the nonlinear system
 776 for $a = b = d = m = 1$, $c = 0.1$, $\epsilon = 0.1$, $g_1(\mathbf{x}) = \left(x, \frac{y}{1+y^2} \right)$, $g_2(\mathbf{x}) = (x^2, x^2 + y^2)$.

777 (c) Finally, take $\frac{c}{d}$ such that $\frac{c_0}{d_0} > \frac{\tilde{c}_0}{\tilde{d}_0} \geq \frac{c}{d} \geq \eta > 0$, where \tilde{c}_0, \tilde{d}_0 , and η are bounded away
 778 from 0 uniformly in ϵ .

779 Now system (5) with $A_{1,2}$ has a sliding periodic orbit γ that is stable and finitely reached.
 780 This γ starts at $(\frac{c}{d}m, m)$, enters R_1 , meets S at $\varphi_1(t_1(\frac{c}{d}m, m), \frac{c}{d}m, m) = (x_1, m)$ and starts
 781 sliding on S until it reaches $(\frac{c}{d}m, m)$ again. Now, $\tilde{\varphi}_1$ and \tilde{t}_1 are smooth in x and ϵ and
 782 $\tilde{\varphi}_1(t, x, y, 0) = \varphi_1(t, x, y)$ and $\tilde{t}_1(x, 0) = t_1(x)$. Hence, there exist an $\epsilon_0 > 0$ such that for
 783 all $\epsilon \in (0, \epsilon_0)$, $\tilde{t}_1(x_R(\epsilon))$ is well defined and $\tilde{\varphi}_1(\tilde{t}_1(x_R(\epsilon)), x_R(\epsilon), m, \epsilon) \in \mathcal{S}$. From this, we
 784 get

785 **Theorem 34** *In case (c), there exists $\epsilon_0 > 0$ such that for all $\epsilon \in [0, \epsilon_0)$ system (46) has
 786 a unique continuous sliding periodic orbit γ , reducing to the sliding periodic orbit of the
 787 linear problem for $\epsilon = 0$.*

788 **Acknowledgments** This work was performed while the second author was on leave from the University of
 789 Bari, Bari, Italy, and in visit to the School of Mathematics of the Georgia Institute of Technology, whose
 790 support is gratefully acknowledged. The first author is grateful to the University of Jilin, Changchun, China,
 791 where he spent part of the Summer 2013 as Tang Aoqing Professor.

792 References

- 793 1. Dieci, L., Lopez, L.: Fundamental matrix solutions of piecewise smooth differential systems. *Math. Comput. Simul.* **81**, 932–953 (2011)
- 794 2. Du, Z., Li, Y., Zhang, W.: Bifurcation of periodic orbits in a class of planar Filippov systems. *Nonlinear Anal.* **69**(10), 3610–3628 (2008)
- 795 3. Filippov, A.F.: *Differential Equations with Discontinuous Right-Hand Sides*. Mathematics and Its Applications. Kluwer, Dordrecht (1988)
- 796 4. Guardia, M., Seara, T.M., Teixeira, M.A.: Generic bifurcations of low codimension of planar filippov systems. *J. Differ. Equ.* **250**(4), 1967–2023 (2011)
- 797 5. Küpper, T., Moritz, S.: Generalized Hopf bifurcation for non-smooth planar systems. *R. Soc. Lond. Philos. Trans. Ser. A* **359**(1789), 2483–2496 (2001). Non-smooth mechanics
- 798 6. Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. *Int. J. Bifurc. Chaos Appl. Sci. Eng.* **13**(8), 2157–2188 (2003)
- 799 7. Leine, R.I.: Bifurcations in Discontinuous Mechanical Systems of Filippov's type. PhD thesis, Techn. Univ. Eindhoven, The Netherlands (2000)
- 800 8. Leine, R.I.: Bifurcations of equilibria in mechanical systems. *Physica D* **223**, 121–137 (2006)
- 801 9. Mueller, P.C.: Calculation of Lyapunov exponents for dynamic systems with discontinuities. *Chaos, Solitons Fractals* **5**, 167–1681 (1995)
- 802 10. Pi, D., Yu, J.: On the sliding bifurcation of a class of planar Filippov systems. *Int. J. Bifurc. Chaos Appl. Sci. Eng.* **23**(3), 1350040 (2013)
- 803 11. Pi, D., Zhang, X.: The sliding bifurcations in planar piecewise smooth differential systems. *J. Dyn. Differ. Equ.* **25**(4), 1001–1026 (2013)
- 804 12. Zou, Y., Kuepper, T., Beyn, W.-J.: Generalized hopf bifurcation for planar Filippov systems continuous
 805 at the origin. *J. Nonlinear Sci.* **16**, 159–177 (2006)

Author Query Form

**Please ensure you fill out your response to the queries raised below
and return this form along with your corrections**

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 'Author's response' area provided below

Query	Details required	Author's response
1.	Please confirm whether the mail id elia@math.gatech.edu should appear in the proof.	Please use: cinzia.elia@uniba.it