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Abstract7

We consider Filippov sliding motion on a co-dimension 2 discontinuity surface. We give conditions under which Σ is attractive8

through sliding which are sharper than those given in a previous paper of ours. Under these sharper conditions, we show that9

the sliding vector field considered in the same paper is still uniquely defined and varies smoothly in x ∈ Σ. A numerical example10

illustrates our results.11

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.12

13
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1. Introduction16

An outstanding problem in the study of piecewise smooth differential systems is how to properly define a Filippov17

sliding vector field when sliding motion has to take place on a co-dimension 2 surface, Σ, intersection of two co-18

dimension 1 surfaces. In [3], we gave sufficient conditions which guaranteed that Σ attracted nearby trajectories19

(through sliding), and that a certain sliding vector field, (7) below, was well defined on Σ. Our goal in this work is to20

sharpen the conditions given in [3], while still obtaining the same conclusions.21

The basic problem we consider is the piecewise smooth system22

ẋ = f (x), f (x) = fi(x), x ∈ Ri, i = 1, . . ., 4, (1)23

with initial condition x(0) = x0 ∈ Ri, for some i. Here, the Ri ⊆ Rn are open, disjoint and connected sets, and (locally)24

R
n = ⋃

iRi. Each fi can be assumed smooth in an open neighborhood of the closure of each Ri, i = 1, . . ., 4. Clearly,25

from (1), the vector field is not properly defined on the boundaries of the Ri’s.26

Above, we will assume that the Ri’s are (locally) separated by two intersecting smooth surfaces of co-dimension 1,27

Σ1 = {x : h1(x) = 0} and Σ2 = {x : h2(x) = 0}, and we let Σ = Σ1 ∩ Σ2. We will always assume that ∇h1(x) /= 0, x ∈ Σ1,28

� This work was done while the second and third author were visiting the School of Mathematics of Georgia Institute of Technology, whose
hospitality is gratefully acknowledged.
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Fig. 1. Regions Ri’s, Σ and Σ±
1,2.

∇h2(x) /= 0, x ∈ Σ2, that h1,2 are Ck functions, with k ≥ 2, and further that ∇h1(x) and ∇h2(x) are linearly independent29

for x on (and in a neighborhood of) Σ.30

Without loss of generality, we can label the regions as follows:31

R1 : f1 when h1 < 0, h2 < 0, R2 : f2 when h1 < 0, h2 > 0,

R3 : f3 when h1 > 0, h2 < 0, R4 : f4 when h1 > 0, h2 > 0,
(2)32

and we will also adopt the notation Σ+
1,2 and Σ−

1,2 to denote the set of points x ∈ Σ1,2 for which we also have h2,1(x) > 033

or h2,1(x) < 0. See Fig. 1.34

Finally, we let35

w1
1 = ∇hT

1 f1, w1
2 = ∇hT

1 f2, w1
3 = ∇hT

1 f3, w1
4 = ∇hT

1 f4,

w2
1 = ∇hT

2 f1, w2
2 = ∇hT

2 f2, w2
3 = ∇hT

2 f3, w2
4 = ∇hT

2 f4,
(3)36

which we assume to be well defined in a neighborhood of Σ. As it turns out, the signs of the wi
j’s are the key property37

to monitor.38

Remark 1. Looking ahead, let us suppose that we are following a solution trajectory on Σ, x(t). In this case, we will39

need to consider the wi
j’s along this solution trajectory, and can thus think of the wi

j’s as functions of t.40

Remark 2. The classical Filippov theory (see [6]) is concerned with the case of two regions separated by a surface41

Σ defined as the 0-set of a smooth scalar valued function h:42

ẋ = f1(x), x ∈ R1 = {x : h(x) < 0}, and ẋ = f2(x), x ∈ R2 = {x : h(x) < 0},43

Σ := {x ∈ Rn : h(x) = 0}, h : Rn → R. (4)44

Filippov convexification method allows to define a sliding motion on Σ, in particular when Σ attracts nearby trajectories.45

Filippov proposal is to take a convex combination of f1 and f2 and impose that the vector field is tangent to Σ. That is,46

take fF : = (1 − α)f1 + αf2, with α chosen so that fF ∈ TΣ:47

x′ = (1 − α)f1 + αf2, α = w1

w1 − w2 , w1 = ∇h(x)T f1(x), w2 = ∇h(x)T f2(x). (5)48

With the above in mind, we can consider sliding on Σ±
1,2 previously defined (if such sliding motion indeed can take49

place). According to (5), we will call fΣ±
1,2

these four vector fields, defined as follows (as long as the denominators are50

nonzero):51
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52

fΣ+
1

= (1 − α+)f2 + α+f4, fΣ−
1

= (1 − α−)f1 + α−f3, fΣ+
2

= (1 − β+)f3 + β+f4,53

fΣ−
2

= (1 − β−)f1 + β−f2, and α+ = w1
2

w1
2 − w1

4

, α− = w1
1

w1
1 − w1

3

, β+ = w2
3

w2
3 − w2

4

,54

β− = w2
1

w2
1 − w2

2

. (6)55

56

2. Background57

When attempting to define a Filippov sliding vector field on Σ = Σ1 ∩ Σ2, one needs to consider a convex combi-58

nation of the four vector fields f1, . . ., f4 : fF = λ1f1 + λ2f2 + λ3f3 + λ4f4, λi ≥ 0, i = 1, . . ., 4, and
∑

iλi = 1. Imposing that59

fF ∈ TΣ , however, is now no longer sufficient (unlike the case of Remark 2) to uniquely determine the coefficients λi’s.60

To resolve the above ambiguity, in [2,5,1] the authors proposed to restrict consideration to the following bilinear61

vector field62

fF = (1 − α)(1 − β)f1 + (1 − α)βf2 + α(1 − β)f3 + αβf4, (7)63

where now α, β ∈ [0, 1] need to be found so to satisfy the following nonlinear system:64

(1 − α)(1 − β)

[
w1

1

w2
1

]
+ (1 − α)β

[
w1

2

w2
2

]
+ α(1 − β)

[
w1

3

w2
3

]
+ αβ

[
w1

4

w2
4

]
= 0. (8)65

The question then becomes solvability (unique) of this system. To address this problem, in [3] we considered the case66

of Σ being reached through sliding on one of the Σ±
1,2, and to characterize this situation we worked under the following67

assumptions.68

Assumptions 1.69

(a) (w1
j (x), w2

j (x)) do not have the same signs as (h1(x), h2(x)) for x ∈ Rj, j = 1, 2, 3, 4.70

(b) At least one pair of the relations [(1+)and(1+
a )], or [(1−)and(1−

a )], or [(2+)and(2+
a )], or [(2−)and(2−

a )], is satisfied71

on Σ and in a neighborhood of Σ, where
72

(1+)w1
2 > 0, w1

4 < 0, (1+
a )

w2
2

w1
2

− w2
4

w1
4

< 0,

(1−)w1
1 > 0, w1

3 < 0, (1−
a )

w2
3

w1
3

− w2
1

w1
1

< 0,

(2+)w2
3 > 0, w2

4 < 0, (2+
a )

w1
3

w2
3

− w1
4

w2
4

< 0,

(2−)w2
1 > 0, w2

2 < 0, (2−
a )

w1
2

w2
2

− w1
1

w2
1

< 0.

73

(c) If any of (1±) or (2±) is satisfied, then (1±
a ) or (2±

a ) must be satisfied as well.74

Let us clarify the meaning of Assumptions 1 insofar as the dynamics of the system. Assumption 1(a) implies that the75

vector fields fj, j = 1, . . ., 4, must point toward at least one of Σ1,2. Assumption 1(b) guarantees that there is attractive76

sliding toward Σ along at least one of the Σ±
1,2. Assumption 1(c) states that if attractive sliding occurs along Σ±

1,2 it77

must be toward Σ.78
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Fig. 2. Admissible f1 under the assumption w1
1(x) < 0.

It must be emphasized that our theory is justified under the assumption that Σ is attractive in finite time upon79

sliding on a co-dimension 1 surface. Hence, Assumption 1(c) are fundamental in this setting.80

In [3], we made a simplifying assumption on the wi
j’s, expressed by the following:81

Old assumption (see [3]):82

wi
j(x) areboundedawayfrom 0, i = 1, 2, j = 1, 2, 3, 4, x ∈ Σ. (9)83

Note that (9) implies that no trajectory can approach Σ tangentially from a region Rj, j = 1, 2, 3, 4.84

Under Assumptions 1 and (9), in [3] it was proved that Σ attracted nearby trajectories, which in fact reached Σ in85

finite time, and moreover that (8) had a unique solution. More precisely, we proved the following result.86

Theorem 3. Let Assumptions 1 be satisfied and let (9) hold.87

(a) Then, there exists a unique solution (α, β) of system (8) in (0, 1) × (0, 1).88

(b) Further, let (1+
a ), (1−

a ), (2+
a ), and (2−

a ), hold uniformly; that is (1+
a ) be replaced by (w2

2/w
1
2) − (w2

4/w
1
4) ≤ −λ+

1 < 0,89

and similarly for the others. Then, Σ is attractive in finite time.90

3. Weaker attractivity assumptions91

It was already observed in [3] that (9) was too strong a sufficient condition to guarantee the conclusions of Theorem92

3. For this reason, our goal below is to weaken (9) in such a way that: Σ still remains attractive through sliding and93

reached in finite time, and the vector field (7) still is well defined on Σ.94

We restrict ourselves to co-dimension 1 phenomena, as characterized by having just one scalar value among the95

wi
j’s being 0 at any point in Σ. Higher co-dimension phenomena (such as two of the wi

j’s becoming 0 at the same96

time) are not necessarily going to preclude the aforementioned conclusions (i.e., attractivity of Σ and well posedness97

of the vector field (7)), but require a host of different possibilities to be examined, which is beyond our present scope.98

Assumptions 2. At most one of the wi
j’s is zero at any given x on Σ.99

In this paper we replace condition (9) with Assumptions 2. This means that, while sliding on Σ, one of the wi
j’s100

can be zero at a point x ∈ Σ, as long as Assumptions 1 are still satisfied.101

Assumptions 1 and 2 together imply the following:102

(i) fj cannot be tangential to Σ at x ∈ Σ;103

(ii) fj cannot be tangential to Σ2 (respectively, Σ1), at a point x on Σ, whenever fj points away from Σ1 (respectively,104

Σ2) at x.105

Item (i) above is just a rewriting of Assumptions 2. To exemplify the instances in (ii), assume that Σ is attractive106

and that we are following a trajectory on Σ. Assumptions 1 are satisfied along the trajectory and take for example107

w1
1(x(t)) < 0 and w2

1(x(t)) > 0 for t < t. At x = x(t), w2
1(x) = 0 while w1

1(x) stays negative. Now f1 is tangent to Σ2,108

but points away from Σ1. Thus, for t > t, w2
1(x(t)) < 0 and w1

1(x(t)) < 0. This, together with the continuity of f1,109

violates Assumptions 1(a). The vector f1 now points away from Σ so that Σ looses attractivity. The same reasoning as110

above applies to any other vector wj = (w1
j , w

2
j ).111

Fig. 2 shows the admissible configurations for f1 at x ∈ Σ. Here we take w1
1(x) < 0 and we show only the component112

of f1 in the normal plane at x to Σ. The dotted and dashed vectors are not admissible due to Assumptions 1(a), while113
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Table 1Q4

Component i = 1 i = 2 i = 3 i = 4

w1
i ≤0 >0 <0 <0

w2
i >0 ≥0 ≤0 <0

Table 2

Component i = 1 i = 2 i = 3 i = 4

w1
i ≤0 >0 ≤0 ≤0

w2
i >0 ≥0 ≥0 <0

the solid vectors are admissible configurations. The dashed vector has first component w1
1 < 0 and second component114

w2
1 = 0.115

On the other hand, if, as before, while sliding on Σ, w2
1(x) = 0, but w1

1(x) > 0 along the trajectory, Assumptions116

1(a) are not violated, (see the numerical example in Section 4 where x = x5) and, as we will show in Lemma 4, Σ117

retains attractivity in finite time. This shows how Assumptions 1(a) are sharper than condition (9).118

Lemma 4. Let Assumptions 1 and 2 be verified and let (1±
a ) and (2±

a ) hold uniformly, then Σ is attractive in finite119

time.120

Proof. The proof is analogous to the proof of Lemma 4 in [3]. We only outline the first part of the proof since it is121

slightly different. Assumptions 1(a) and 2 guarantee that every fj, j = 1, 2, 3, 4 points toward at least one of Σ1 or Σ2.122

This, together with the fact that fj is never tangent to Σ, guarantees that if we start in Rj, we reach Σ1 or Σ2 or Σ in123

finite time. The rest of the proof is the same as that of [3, Lemma 4]. �124

It must be emphasized that a sign change of the wi
j’s, while Assumptions 1 are still satisfied, does not necessarily125

lead to a loss of attractivity of Σ.126

Remark 5. Having one of the fj’s tangent to Σ at a point x ∈ Σ, is neither a necessary not a sufficient condition for127

loss of attractivity of Σ. Hence, if, while sliding on Σ, w1
j (x) = w2

j (x) = 0, this does not necessarily mean that the128

trajectory should exit Σ tangentially with vector field fj, as one may expect according to a first order theory. Contrast129

this to the case of sliding on a co-dimension 1 surface where, if one of the vector fields is tangent to Σ at a point x,130

there is loss of attractivity of Σ and (according to a first order theory) a tangential exit from Σ.131

The theorem below shows that Assumptions 1 and 2 are sufficient for (7) to be well defined on Σ.132

Theorem 6. Let Assumptions 1 and 2 hold. Then, there exists a unique solution (α, β) of system (8) in (0, 1) × (0, 1).133

Remark 7. Assumptions 1 and 2 are not necessary to have a unique solution (α, β) of (8) on (0, 1)2. As a matter of134

facts, the vector field (7) might exist and be unique even if Σ is not attractive (see Example 10).135

Proof. The proof is analogous to the proof of Theorem 3 in [3], and below we will highlight just those cases requiring136

modifications to the arguments used in [3]. �137

In what follows we consider some of the cases that appear in the proof of Theorem 3 in [3], and use the labeling138

of these cases using the same notation adopted in [3]. These cases are chosen so that each one occurs from one of the139

others due to a sign change of one of the wi
j’s. In this way, we can visualize the change in dynamics around Σ if one140

of the wi
j’s changes sign, with Assumptions 1 and 2 holding. We emphasize that under each of these sign changes Σ141

retains attractivity in finite time. In all the tables below (Tables 1–4) we show the sign of each component wi
j; in these142

tables, the writing ≥0, ≤ 0, must be understood within the limitations imposed by Assumption 2: at any given point143

x ∈ Σ only one of the wi
j’s is allowed to be zero. In the corresponding figures (Figs. 3–6) we only display the wi

j’s144

when they are all different from zero.145
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Table 3

Component i = 1 i = 2 i = 3 i = 4

w1
i ≤0 >0 ≥0 <0

w2
i >0 ≥0 >0 <0

Table 4

Component i = 1 i = 2 i = 3 i = 4

w1
i ≥0 >0 ≤0 ≤0

w2
i ≥0 ≥0 ≥0 <0

Fig. 3. Case SΣ+
1

: 2.

Case (SΣ+
1

: 2) The signs of the entries of w1 and w2 are as in Table 1, and the following condition is satisfied146

w2
2

w1
2

<
w2

4

w1
4

. (10)147

Condition (10) ensures sliding along Σ+
1 toward Σ.148

According to Assumptions 1, w1
1 can be zero on Σ since w2

1 > 0, and similarly for w2
2 and w2

3.149

Notice, instead, that w1
4 must be bounded away from zero even though w2

4 < 0. This is in order to150

ensure sliding on at least one of the co-dimension 1 surfaces. Indeed assume that, while following151

Fig. 4. Case SΣ+
1 ,Σ+

2
: 2.
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Fig. 5. Case SΣ+
1 ,Σ+

2
: 5.

Fig. 6. Case SΣ±
1 ,Σ+

2
: 2.

a trajectory on Σ, at t = T, w1
4(x(T )) = 0. Then for t > T and t sufficiently close to T, w1

4(x(t)) > 0152

and there is no sliding on a co-dimension 1 surface. This is against Assumptions 1(b).153

Case (SΣ+
1 ,Σ+

2
: 2) This case follows from Case (SΣ+

1
: 2) above, here w2

3 has undergone a sign change.154

The signs of the entries of w1 and w2 are as in Table 2 and (10) is satisfied. See Fig. 4.155

Case (SΣ+
1 ,Σ+

2
: 5) This case follows from Case (SΣ+

1 ,Σ+
2

: 2) above, here w1
3 has undergone a sign change.156

The signs of the entries of w1 and w2 are as in Table 3 and condition (10) is satisfied together157

with the following:158

w1
3

w2
3

<
w1

4

w2
4

, (11)159

see Fig. 5.160

Here (1+
a ) and (2+

a ) imply that w1
4 and w2

4 must be different from zero.161

Case (SΣ±
1 ,Σ+

2
: 2) This case follows from Case SΣ+

1 ,Σ+
2

: 2 above after w2
1 has undergone a sign change.162

The signs of the entries of w1 and w2 are given in Table 4 and (11) is satisfied; see Fig. 6.163

For this configuration (1+
a ) implies that w2

4 must be different from zero.164

Example 8. Here we illustrate all the changes in dynamics that might occur while sliding on Σ under Case (SΣ+
1 ,Σ+

2
:165

2), when one of the components allowed to be zero in Table 2 goes to zero. Suppose that, while following a trajectory166
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Table 5

Component i = 1 i = 2 i = 3 i = 4

w1
i −1 1 −1 −0.5

w2
i 0 1 −1 −1

Fig. 7. Example 10, wi
j’s at t = T.

x(t) on Σ, one of the wi
j’s is zero at time t = T. We will list here all the possible changes in dynamic that occur after167

time T.168

(1) If w1
1(T ) = 0, then the dynamic after time T is the one in Case (SΣ±

1 ,Σ+
2

: 2).169

(2) If w1
3(T ) = 0, then the dynamic after time T is the one in Case (SΣ+

1 ,Σ+
2

: 5).170

(3) If w2
3(T ) = 0, then the dynamic after time T is the one in Case (SΣ+

1
: 2).171

(4) If w1
4(T ) = 0, then after time T there is attractive sliding only along Σ+

2 and there is no sliding along Σ+
1 .172

Trajectories in a neighborhood of Σ will cross Σ+
1 in the direction of R4. This case mirrors to Case (SΣ+

1
: 2).173

(5) If w2
2(T ) = 0, then after time T there is attractive sliding toward Σ along Σ+

1 and Σ±
2 . This case mirrors Case174

(SΣ±
1 ,Σ+

2
: 2).175

We stress that Σ is attractive in a neighborhood of x(T), and that (7) is well defined.176

Just like in [3, Theorem 8], and with the same proof, the following holds.177

Theorem 9. Under Assumptions 1 and 2, the unique solution (α, β) ∈ (0, 1) × (0, 1) of system (8) varies smoothly178

with respect to x ∈ Σ.179

3.1. Loss of attractivity180

In [3] we showed that violating any of (1±) or (2±) in Assumptions 1 leads to a loss of attractivity of Σ. We further181

identified when/how this loss of attractivity conduced to an exit from Σ to slide on one of Σ±
1,2: first order exit condition.182

Now, when only one of the wi
j’s is zero, and Assumptions 1 are not satisfied, then Σ looses attractivity, but the183

vector field (7) might still be defined on Σ as showed in Example 10.184

Example 10. Assume that we are following a trajectory on Σ with the wi
j’s as in Table 1. Moreover, assume that all185

the wi
j’s are bounded away from zero for t < T and that at time t = T they are as in Table 5 and Fig. 7. As it is clear from186

Fig. 7, at x(T) Assumptions 1 are not satisfied and Σ loses attractivity at time t = T. Nonetheless, system 8 still admits187

a unique solution (α, β) � (0.4226, 0.7321), hence the vector field (7) is still well defined on Σ.188
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In Remark 5, we noticed how, while sliding on Σ, fj might be tangent to Σ without this implying a loss of attractivity189

of Σ. Here, in Remark 11, we emphasize how a co-dimension 2 sliding surface might lose attractivity at a point x even190

though there is no potential tangential exit vector field at that point.191

Remark 11. Consider again Table 5. Note that Σ has lost attractivity, but there is no tangential vector field exiting Σ.192

This is in distinct contrast with sliding on a co-dimension 1 surface. In the latter case, indeed, when the sliding surface193

Σ looses attractivity, Filippov theory will predict (at first order) exiting Σ tangentially.194

4. Numerical example195

Here we result of numerical experiments on an example where one of the wi
j’s (namely, w1

2) becomes 0 along the196

sliding trajectory, still satisfying Assumptions 1. Aside from the modification due to w1
2 becoming 0, the example197

below is actually the one we meant to use in [3].198

All computations have been made with an event driven technique, and event points (when a different regime is199

reached) have been computed by the secant method. Integration of all relevant differential equations was made using200

the classical explicit Runge–Kutta (RK) scheme of order four, a projected RK method in case of sliding motion to201

ensure that all evaluations are made on the constraints’ surfaces (e.g., see [4]). The stepsize τ was held constant and202

equal to τ = 0.0025, and of course adjusted when using the secant method to locate event points. Solution of the system203

(8) was done by Newton’s method.204

Example 12. We have the discontinuity surfaces205

Σ1 = {x ∈ R3 : h1(x) = x2 − p}, Σ2 = {x ∈ R3 : h2(x) = x3 − q}, Σ = Σ1 ∩ Σ2206

with p = 0.5 and q = 1. Thus, we have the following four vector fields, at least continuous in their respective regions of207

definition:208

R1(h1 < 0, h2 < 0) : f1(x) =

⎛
⎜⎜⎜⎜⎜⎝

x2

−x1 + 1

(1 + p) − x2

−x1 + 32

−
1

(1 + q) − x3

⎞
⎟⎟⎟⎟⎟⎠ ;209

R2(h1 < 0, h2 > 0) : f2(x) =

⎛
⎜⎜⎜⎜⎜⎝

−(x2 + x3)

−x1 + 1

(1 + p) − x2

−x1 − 1

(1 − q) + x3

⎞
⎟⎟⎟⎟⎟⎠ ;210

R3(h1 > 0, h2 < 0) : f3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

−(x2 + x3)

−x1 + 1

(1 − p) + x2

−x1 + 1

(1 + q) − x3

⎞
⎟⎟⎟⎟⎟⎟⎠

when x1≥ − 1.3,

⎛
⎜⎜⎜⎜⎜⎜⎝

−(x2 + x3)

6 + 1.3 + 6
x1

1.3
+ 1

(1 − p) + x2

−x1 + 1

(1 + q) − x3

⎞
⎟⎟⎟⎟⎟⎟⎠

when x1 < −1.3,

211

dx.doi.org/10.1016/j.matcom.2013.12.005
Original text:
Inserted Text
Σ,

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
Σ. Here, in Remark 3.13,

Original text:
Inserted Text
codimension

Original text:
Inserted Text
3.13

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
Σ.

Original text:
Inserted Text
codimension

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
2.3.

Original text:
Inserted Text
Runge Kutta

Original text:
Inserted Text
4.14

Original text:
Inserted Text
h

Original text:
Inserted Text


Original text:
Inserted Text
h

Original text:
Inserted Text


Original text:
Inserted Text
(h1<0h2<0):

Original text:
Inserted Text
R2(h1<0h2>0):

Original text:
Inserted Text
R3(h1>0h2<0):

Original text:
Inserted Text
x1≥−1.3

Original text:
Inserted Text
x1<−1.3;



Please cite this article in press as: L. Dieci, et al. Sharp sufficient attractivity conditions for sliding on a co-dimension 2
discontinuity surface, Math. Comput. Simul. (2014), http://dx.doi.org/10.1016/j.matcom.2013.12.005

ARTICLE IN PRESS+Model
MATCOM 4028 1–12

10 L. Dieci et al. / Mathematics and Computers in Simulation xxx (2014) xxx–xxx

−0.5

0

0.5

1

0.5

0.51

0.52

0.53

0.98

0.99

1

1.01

1.02

1.03

x2x1

x3

Σ

x
0

x
1

x
2

x
3

x
4

x
5

x
6

Fig. 8. Solution trajectory: the solution spirals around Σ, starts sliding on Σ+
1 , enters Σ and leaves it to slide on Σ+
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Fig. 9. Solution trajectory: the solution slides on Σ+
1 and leaves it to enter R4, hits Σ+

2 and starts sliding on it, then hits Σ and starts sliding on it.

R4(h1 > 0, h2 > 0) : f4(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

−(x2 + x3)

−x1 − 1

(1 − p) + x2

−x1 + 1

(1 − q) + x3

⎞
⎟⎟⎟⎟⎟⎟⎠

when x1≥ − 1,

⎛
⎜⎜⎜⎜⎜⎜⎝

−(x2 + x3)

−x1 − 1

(1 − p) + x2

130 + 129x1 + 1

(1 − q) + x3

⎞
⎟⎟⎟⎟⎟⎟⎠

when x1 < −1.

212

Results below are for initial condition x0 = [0.7, 0.49, 0.99]. We can distinguish several different dynamics of the213

solution with respect to the two discontinuity surfaces. Indeed, there are several event points, that is values where the214

solution reaches a different regime: a different region and/or sliding surface. We will assign a time value tj, and with215

abuse of notation indicate each event point with xj. The initial part of the trajectory is plotted in Fig. 8, and Fig. 9 shows216

the entire trajectory; event points are marked by asterisks: xj, j = 1, . . ., 11.217

dx.doi.org/10.1016/j.matcom.2013.12.005
Original text:
Inserted Text
Σ,

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
(h1>0h2>0):

Original text:
Inserted Text
x1≥−1

Original text:
Inserted Text
when

Original text:
Inserted Text
Figure 8, and Figure 



Please cite this article in press as: L. Dieci, et al. Sharp sufficient attractivity conditions for sliding on a co-dimension 2
discontinuity surface, Math. Comput. Simul. (2014), http://dx.doi.org/10.1016/j.matcom.2013.12.005

ARTICLE IN PRESS+Model
MATCOM 4028 1–12

L. Dieci et al. / Mathematics and Computers in Simulation xxx (2014) xxx–xxx 11

Table 6
wi

j’s at x4.

Component i = 1 i = 2 i = 3 i = 4

w1
i >0 >0 >0 <0

w2
i <0 <0 >0 >0

Fig. 10. w1 = (w1
1, w

2
1) at t < t5 (left), at t5 (center), and at t > t5 (right).

The initial condition is in region R1 and the trajectory crosses Σ−
1 at x1 ≈ (0.71728, 0.5, 0.98318) and enters R3218

(transversal intersection). At x2 ≈ (0.63696, 0.51686, 1), it crosses Σ+
2 and enters R4 (transversal intersection). At219

x3 ≈ (0.62125, 0.5, 1.00384), it hits Σ+
1 and starts sliding on it in the direction of Σ with vector field fΣ+

1
. Then, while220

sliding on Σ+
1 the solution reaches Σ at time t4 at the point x4 ≈ (0.61659, 0.5, 1).221

At x4, the vector fields fj, j = 1, 2, 3, 4, have the signs given in Table 6 and condition (10) is satisfied, so that222

Assumptions 1 are satisfied, Σ is attractive, fΣ as in (7) is well defined and the solution starts sliding on Σ.223

At time t5, the solution is at x5 = (0.5, 0.5, 1), w2
1(x5) = 0, and w1

1 /= 0 for values on Σ in a neighborhood of x5.224

Assumptions 1 and 2 are satisfied at x5, so the solution keeps sliding on Σ. The configuration along the solution path225

in a neighborhood of t5 is the one showed in Fig. 10 (it mirrors Case (SΣ+
1 ,Σ+

2
: 1) in [3]). Here the dashed vector is226

w1 = (w1
1, w

2
1) at a specific time t < t5, the dotted vector is w1(x(t5)) and the solid vector is w1 at a specific time t > t5.227

At t = t6 ≈ 0.62925, the solution is at x6 = (0, 0.5, 1), and there is equality in (10). Moreover, the wi
j(x)’s for x = x6228

are as in Table 7 and the trajectory leaves Σ smoothly to enter Σ+
1 .229

So, at t = t6, fΣ aligns to fΣ+
1

and the solution exits Σ smoothly to slide on Σ+
1 . At time t7 ≈ 1.22698, the solution230

reaches x7 ≈ (−1, 0.5, 1.5111), fΣ+
1

aligns to f4 and the solution exits Σ+
1 smoothly to enter in region R4. At time t8,231

it reaches Σ+
2 at x8 ≈ (−1.1322, 0.5050, 1), and here w2

3 > 0 while w2
4 < 0 so that sliding begins on Σ+

2 away from232

Σ1. At time t9 ≈ 1.40259, the solution reaches the surface x1 = −1.3 at x9 ≈ (−1.3, 0.7105, 1); here, f3 is continuous233

Table 7
wi

j’s at x6.

Component i = 1 i = 2 i = 3 i = 4

w1
i 1 1 1 −1

w2
i

1
2 −1 1 1
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Table 8
wi

j’s at x11.

Component i = 1 i = 2 i = 3 i = 4

w1
i >0 >0 <0 >0

w2
i >0 >0 >0 <0

but not differentiable. At time t10, we reach the value x10 ≈ (−1.7377, 0.9507, 1). For t > t10 the trajectory continues234

sliding on Σ+
2 but now in the direction of Σ1, since the following condition is satisfied:235

w1
3

w2
3

<
w1

4

w2
4

. (12)236

At time t11, the solution reaches the point x11 ≈ (−2.3430, 0.5, 1) on Σ. The vector fields fj(x10), j = 1, . . ., 4, satisfy237

the conditions of Table 8 and the behavior on Σ is analogous to the one of Case (SΣ+
1

: 2). The solution now starts238

sliding on Σ with vector field fΣ as in (7), and remains on Σ.239

5. Conclusions240

In this paper we weakened the assumptions given in [3] for attractivity of a sliding co-dimension 2 surface Σ and241

for the existence and uniqueness of the Filippov sliding vector field (7) on Σ. We reported on a numerical experiment242

to show the behavior of a piecewise smooth system that satisfies our new assumptions.243
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