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Abstract

We consider Filippov sliding motion on a co-dimension 2 discontinuity surface. We give conditions under which X is attractive
through sliding which are sharper than those given in a previous paper of ours. Under these sharper conditions, we show that
the sliding vector field considered in the same paper is still uniquely defined and varies smoothly in x € 2. A numerical example
Alustrates our results.
© 2014 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

An outstanding problem in the study of piecewise smooth differential systems is how to properly define a Filippov
sliding vector field when sliding motion has to take place on a co-dimension 2 surface, X, intersection of two co;
dimension 1 surfaces. In [3], we gave sufficient conditions which guaranteed that ' attracted nearby trajectories
(through sliding), and that a certain sliding vector field, (7) below, was well defined on ,X. Our goal in this work is to
sharpen the conditions given in [3], while still obtaining the same conclusions.

The basic problem we consider is the piecewise smooth system

i=f), fx)=filx), xeR, i=1,...,4, (D

Mith initial condition x(0) =x¢ € R;, for some i. Here, the R; € R" are open, disjoint and connected sets, and (locally)
R" = UiR,-. Each f; can be assumed smooth in an open neighborhood of the closure of each R;, i=1, ..., 4. Clearly,
from (1), the vector field is not properly defined on the boundaries of the R;’s.

Above, we will assume that the R;’s are (locally) separated by two intersecting smooth surfaces of co-dimension 1,
Z1={x:hi(x)=0} and >» = {x: hy(x) =0}, and we let X' = >'| N X». We will always assume that VA (x) # 0,x€ X,
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R,

Fig. 1. Regions R;’s, & and Efz.

Vho(x) # 0,x€,X,, that hy 5 are C* functions, with k > 2, and further that VA (x) and Vi (x) are linearly independent
for x on (and in a neighborhood of) 2.
Without loss of generality, we can label the regions as follows;

Ry : fiwhenh; <0,hy <0, Rp: fywhenh; <0,hy >0,
R3: fawhenhy > 0,hp <0, Ry4: fawhenhy > 0, hy > 0,

2

and we will also adopt the notation 214:2 and X 1210 denote the set of points x € X' » for which we also have h 1(x) >0
or h1p1(x) <0. See Fig, 1.
Finally, we let

wi = Vhi fi, wy=Vh{fo wy=Vhifs, wy=Vhifa,

wi=Vhlfi, w3i=Vhlf, wi=Vhlf wi=Vhlf,

3

which we assume to be well defined in a neighborhood of ,X. As it turns out, the signs of the wj-’s are the key property
to monitor.

Remark 1. Looking ahead, let us suppose that we are following a solution trajectory on X, x(?). In this case, we will
need to consider the w’j’s along this solution trajectory, and can thus think of the w’j’s as functions of ¢.

Remark 2. The classical Filippov theory (see [6]) is concerned with the case of two regions separated by a surface
2 defined as the 0-set of a smooth scalar valued function h:

A= fikx)y, xeR ={x:h(x)<0}, and i= fo(x), x€ Ry ={x:h(kx) <0,
Y=xeR": ji(x)=0}, h:R" >R, 4

Filippov convexification method allows to define a sliding motion on X, in particular when X attracts nearby trajectories.
Filippov proposal is to take a convex combination of fi and f> and impose that the vector field is tangent to 2. That is,
take fr : = (1 — a)f1 + af2, with o chosen so that fr € T/g:

w!

v=(1-afitafy a=———0 w =V i), w=Vho' ), )
With the above in mind, we can consider sliding on Z‘fz previously defined (if such sliding motion indeed can take
place). According to (5), we will call f ot these four vector fields, defined as follows (as long as the denominators are

NoNzero):

Please cite this article in press as: L. Dieci, et al. Sharp sufficient attractivity conditions for sliding on a co-dimension 2
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Jer=0a —aN)fr+at fi, oo =U—afita f3, fop=(1- B+ BT fa

1 1 2
w w w
— - - +_ 2 - _ 1 + 3
fop =A=BIN+ B fo and ab =g, on =g BT =55
2 4 1 3 3 4
2
w
- 1
B =—5——. (6)
wy — w3

2. Background

When attempting to define a Filippov sliding vector field on X' = X' N X, one needs to consider a convex combi-
nation of the four vector fields f1, . . ., f4 i fFr =A1f1 + Aofa + Aafz3 +Aafs, 1; > 0,i=1,...,4, and > ixi=1. Imposing that
fre T/g, however, is now no longer sufficient (unlike the case of Remark 2) to uniquely determine the coefficients A;’s.

To resolve the above ambiguity, in [2,5,1] the authors proposed to restrict consideration to the following bilinear
vector field

fr=0 -0 =B fi + (1 —a)pfa +a(l — B)f3 + affs, (N
where now «, B € [0, 1] need to be found so to satisfy the following nonlinear system;
w! w1 w% w}‘
(I —a)(1—p) +(1—-w)p +a(l - B) + aff 5 =0. ®)

The question then becomes solvability (unique) of thls system. To address this problem, in [3] we considered the case
of X being reached through sliding on one of the Do 1.2» and to characterize this situation we worked under the following
assumptions.

Assumptions .

(a) (w}(x), w?(x)) do not have the same signs as (h1(x), hp(x)) forxeR;, j=1, 2, 3, 4.
(b) Atleast one pair of the relations [(1)and(1})], or [(17)and(1)], or [(2)and(2])], or [(27)and(2;)], is satisfied
on X and in a neighborhood of X, where

(1Hwl > 0,wl <0, (1)

(1Hw! >0,wl <0, [(1)— - — <0,

w2
%2
wl
W)
w2 2
w3
w3
wi
@Hw} > 0,w} <0, 20— -
3 Wy

Q@ w? > 0, w? <0, ;2;)”’—5 e
w3

(c) If any of (1%) or (27%) is satisfied, then (lflt) or (2}) must be satisfied as well.

Letus clarify the meaning of Assumptions | insofar as the dynamics of the system. Assumption | (a) implies that the
vector fields f;, j ., 4, must point toward ,al least one of X'y 5. Assumption 1(b) guarantees that there is attractwe
sliding toward ,g] along at least one of the Z‘l »- Assumption I(c) states that if attractive sliding occurs along 21 5 it
must be toward X

Please cite this article in press as: L. Dieci, et al. Sharp sufficient attractivity conditions for sliding on a co-dimension 2
discontinuity surface, Math. Comput. Simul. (2014), http://dx.doi.org/10.1016/j.matcom.2013.12.005
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i f

yoo
Y

Fig. 2. Admissible f; under the assumption wi(f) <0.

It must be emphasized that our theory is justified under the assumption that X is attractive in finite time upon
sliding on a co;dimension 1 surface. Hence, Assumption ](c) are fundamental in this setting.

In [3], we made a simplifying assumption on the wjfs, expressed by the following:

Old assumption (see [3]):

w"j(x) areboundedawayfrom0, i=1,2, ,j=1,2,3,4,x€X, ©)]

Note that (9) implies that no trajectory can approach ) tangentially from a region R;, j=1, 2, 3, 4.
Under Assumptions | and (9), in [3] it was proved that X attracted nearby trajectories, which in fact reached X' in
finite time, and moreover that (8) had a unique solution. More precisely, we proved the following result.

Theorem 3. Let Assumptions 1 be satisfied and let (9) hold.

(a) Then, there exists a unique solution (a, B) of system (8) in (0, 1) x (0, 1).
(b) Further; let (17), (17), (2), and (2), hold uniformly; thatis (1) be replaced by (w3 /w}) — (w3 /w)) < =1 <0,
and similarly for the others. Then, X is attractive in finite time.

3. Weaker attractivity assumptions

It was already observed in [3] that (9) was too strong a sufficient condition to guarantee the conclusions of Theorem
3. For this reason, our goal below is to weaken (9) in such a way that: X still remains attractive through sliding and
reached in finite time, and the vector field (7) still is well defined on 2.

We restrict ourselves to cozdimension 1 phenomena, as characterized by having just one scalar value among the
wz-’s being 0 at any point in ,»'. Higher co-dimension phenomena (such as two of the wg’s becoming O at the same
time) are not necessarily going to preclude the aforementioned conclusions (i.e., attractivity of & and well posedness
of the vector field (7)), but require a host of different possibilities to be examined, which is beyond our present scope.

Assumptions 2. At most one of the w;’s is zero at any given x on .

In this paper we replace condition (9) with Assumptions 2. This means that, while sliding on %, one of the w"/.’s
can be zero at a point x € X, as long as Assumptions | are still satisfied. .
Assumptions | and 2 together imply the following:

(1) f; cannot be tangential to X at x € X;
(i) f; cannot be tangential to X (respectively, X'1), at a point X on X, whenever f; points away from Yy (respectively,
X)) atXx.

Item (i) above is just a rewriting of Assumptions 2. To exemplify the instances in (ii), assume that X is attractive
and that we are following a trajectory on . Assumptions I are satisfied along the trajectory and take for example
w{(x(t)) < 0 and w%(x(t)) > 0fort <t Atx = x(7), w%(%) = 0 while wi(f) stays negative. Now f is tangent to X,
but points away from ,'i. Thus, for ¢ > ¢, w%(x(t)) < 0 and w}(x(t)) < 0. This, together with the continuity of fi,
violates Assumptions I (a). The vector f| now points away from X so that X' looses attractivity. The same reasoning as
above applies to any other vector w; = (w}, w%).

JFig. 2 shows the admissible configurations for f; at X € X. Here we take w% (x) < 0 and we show only the component
of fi in the normal plane at X to,X. The dotted and dashed vectors are not admissible due to Assumptions |(a), while

Please cite this article in press as: L. Dieci, et al. Sharp sufficient attractivity conditions for sliding on a co-dimension 2
discontinuity surface, Math. Comput. Simul. (2014), http://dx.doi.org/10.1016/j.matcom.2013.12.005
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Table 1
omponent i=1 i=2 i=3 i=4
P
/y),.] <0 >0 <0 <0
w? >0 >0 <0 <0
Table 2
Component i=1 i=2 i=3 i=4
w! <0 >0 <0 <0
w? >0 >0 >0 <0

i ft ft

the solid vectors are admissible configurations. The dashed vector has first component w% < 0 and second component
w% =0.

On the other hand, if, as before, while sliding on X, w%(}) =0, but w}(x) > 0 along the trajectory, Assumptions
A(a) are not violated, (see the numerical example in Section4 where X = xs) and, as we will show in Lemma 4, X
retains attractivity in finite time. This shows how Assumptions |(a) are sharper than condition (9).

Lemmad. Let Assumptions | and 2 be verified and let (1;':) and (22:) hold uniformly, then X is attractive in finite
time.

Proof. The proof is analogous to the proof of Lemma 4 in [3]. We only outline the first part of the proof since it is
slightly different. Assumptions I(a) and 2 guarantee that every f;, j=1, 2, 3, 4 points toward at least one of X'y or 2.
This, together with the fact that f; is never tangent to ,», guarantees that if we start in R;, we reach X'y or X or X in
finite time. The rest of the proof is the same as that of [3, Lemma 4]. [

It must be emphasized that a sign change of the wi-’s, while Assumptions | are still satisfied, does not necessarily
lead to a loss of attractivity of 2.

Remark 5. Having one of the f;’s tangent to 2 at a point X € X, is neither a necessary not a sufficient condition for
loss of attractivity of X. Hence, if, while sliding on », w}(f) = w%(f) = 0, this does not necessarily mean that the
trajectory should exit X tangentially with vector field f;, as one may expect according to a first order theory. Contrast
this to the case of sliding on a co;dimension 1 surface where, if one of the vector fields is tangent to X at a point X,
there is loss of attractivity of X' and (according to a first order theory) a tangential exit from 2.

The theorem below shows that Assumptions | and 2 are sufficient for (7) to be well defined on .

Theorem 6. Let Assumptions | and 2 hold. Then, there exists a unique solution (@, B) of system (8) in (0, 1) x (0, 1).

Remark 7. Assumptions 1 and 2 are not necessary to have a unique solution (o, B) of (8) on (0, 1)2. As a matter of
facts, the vector field (7) might exist and be unique even if X is not attractive (see Example 10).

Proof. The proof is analogous to the proof of Theorem 3 in [3], and below we will highlight just those cases requiring
modifications to the arguments used in [3], [J

In what follows we consider some of the cases that appear in the proof of Theorem 3 in [3], and use the labeling
of these cases using the same notation adopted in [3]. These cases are chosen so that each one occurs from one of the
others due to a sign change of one of the w"j’s. In this way, we can visualize the change in dynamics around X if one
of the w;’s changes sign, with Assumptions | and 2 holding. We emphasize that under each of these sign changes ,~
retains attractivity in finite time. In all the fables below (Tables 1-4) we show the sign of each component w;; in these
fables, the writing >0, <0, must be understood within the limitations imposed by Assumption 2: at any given point
X € X only one of the wz’s is allowed to be zero. In the corresponding figures (Figs. 3—6) we only display the wz’s
when they are all different from zero.

Please cite this article in press as: L. Dieci, et al. Sharp sufficient attractivity conditions for sliding on a co-dimension 2
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Table 3
Component i=1 i=2 i=3 i=4
b <0 >0 >0 <0
w? >0 >0 >0 <0
Table 4
Component i=1 i=2 i=3 i=4
A > >0 <0 <0
w? >0 >0 >0 <0
22
fa
f3 A < w3
w32 w2
<
)]
f2
S

Fig. 3. Case Sy+ : 2.
1

Case (S of 2) The signs of the entries of w' and w? are as in Table 1, and the following condition is satisfied

2 2
w w

2 4
—2 < —4f (10)
w2 w4

Condition (10) ensures sliding along Z‘fr toward 2.
According to Assumptions |, w% can be zero on ) since w% > 0, and similarly for w% and w%.
Notice, instead, that wi must be bounded away from zero even though wﬁ < 0. This is in order to

ensure sliding on at least one of the co;dimension 1 surfaces. Indeed assume that, while following

Yo

Y

fs /f4
-

3
A
f2
’LUl ’LUl
5 <

Fig. 4. Case S}:T,):; 12,
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1

S

<

2o
f3/’ / fa

S

3

»P-gwl»hg [
4_

fi

/3 \

>

f1/ >

SCIICY

S S =
AN
S

4
Fig. 6. Case S):li’):; 12

a trajectory on 2, at t=T, wi(x(T)) = 0. Then for #> T and ¢ sufficiently close to 7, w}‘(x(t)) >0
and there is no sliding on a cozdimension 1 surface. This is against Assumptions ] (b).
Case (S sHst 2) This case follows from Case (S s 2) above, here w% has undergone a sign change.

The signs of the entries of w! and w? are as in Table 2 and (10) is satisfied. See Fig, 4.
Case (S sfst 5) This case follows from Case (S sFsf 2) above, here wé has undergone a sign change.

The signs of the entries of w! and w? are as in Table 3 and condition ( 10) is satisfied together
with the following;

1 1
w3 _ W4

— < 11
< (4o
see Fig. 5.
Here (1;7) and (2;") imply that w}1 and wi must be different from zero.
Case (S D 2) This case follows from Case S DR 2 above after w? has undergone a sign change.

The signs of the entries of w! and w? are given in Table 4 and (11) is satisfied; see Fig, 6.
For this configuration (1;) implies that wﬁ must be different from zero.

JExample 8. Here we illustrate all the changes in dynamics that might occur while sliding on X' under Case (S DR
2), when one of the components allowed to be zero in Table 2 goes to zero. Suppose that, while following a trajectory
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Table 5

Component i=1 i=2 i=3 i=4
w! —1 1 —1 -0.5
w? 0 1 -1 -1

fi .

Fig. 7. Example 10, wi.’s atr=T,

x(t) on X, one of the w;’s is zero at time =7. We will list here all the possible changes in dynamic that occur after
time 7.

(D If w{(T) = 0, then the dynamic after time T is the one in Case (S D 2).
2) If wé(T) = 0, then the dynamic after time 7 is the one in Case (S sfst 5).
3) If w%(T) = 0, then the dynamic after time 7 is the one in Case (SEI+ 1 2).

(4) If wi(T) = 0, then after time T there is attractive sliding only along Z‘; and there is no sliding along Z‘i".
Trajectories in a neighborhood of X will cross X fr in the direction of R4. This case mirrors to Case (S DA 2).

(5) If w3(T) = 0, then after time T there is attractive sliding toward ~’ along ¥} and Z‘zi. This case mirrors Case
(S st 5t 2).

We stress that X is attractive in a neighborhood of x(7), and that (7) is well defined.

Just like in [3, Theorem 8], and with the same proof, the following holds.

Theorem 9. Under Assumptions | and 2, the unique solution (e, B) € (0, 1) x (0, 1) of system (8) varies smoothly
with respect to x € 2.

3.1. Loss of attractivity

In [3] we showed that violating any of (1%) or (2%) in Assumptions A leads to a loss of attractivity of >. We further
identified when/how this loss of attractivity conduced to an exit from X to slide on one of Efz: first order exit condition.

Now, when only one of the w?’s is zero, and Assumptions | are not satisfied, then X looses attractivity, but the
vector field (7) might still be defined on X' as showed in Example 0.

;’s as in Table 1. Moreover, assume that all

the w';’s are bounded away from zero for # < T and that at fime ¢ =T they are as in Table 5 and Fig, 7. As it is clear from
Fig, 7, at x(T) Assumptions | are not satisfied and 2 loses attractivity at time #=7. Nonetheless, system 8 still admits
a unique solution (e, B) >~ (0.4226, 0.7321), hence the vector field (7) is still well defined on 2.

Example 10. Assume that we are following a trajectory on X' with the w

Please cite this article in press as: L. Dieci, et al. Sharp sufficient attractivity conditions for sliding on a co-dimension 2
discontinuity surface, Math. Comput. Simul. (2014), http://dx.doi.org/10.1016/j.matcom.2013.12.005



dx.doi.org/10.1016/j.matcom.2013.12.005
Original text:
Inserted Text
3.12,

Original text:
Inserted Text


Original text:
Inserted Text
Σ,

Original text:
Inserted Text
1)

Original text:
Inserted Text
2)

Original text:
Inserted Text
3)

Original text:
Inserted Text
4)

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
5)

Original text:
Inserted Text
towards Σ along

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
3.11

Original text:
Inserted Text
2.3 and 3.5

Original text:
Inserted Text
Σ.

Original text:
Inserted Text
2.3

Original text:
Inserted Text
Σ.

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
2.3

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
3.12.Example 3.12

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
at time

Original text:
Inserted Text
Figure 

Original text:
Inserted Text
Figure 

Original text:
Inserted Text
2.3

Original text:
Inserted Text
Σ 

Original text:
Inserted Text
Σ.In Remark 3.7,


189

190

191

193

194

195

196

197

198

199

201

202

203

204

205

209

+Model
MATCOM 4028 1-12

L. Dieci et al. / Mathematics and Computers in Simulation xxx (2014) xxx—xxx 9

In Remark 5, we noticed how, while sliding on X, f; might be tangent to & without this implying a loss of attractivity
of 2. Here, in Remark 11, we emphasize how a cozdimension 2 sliding surface might lose attractivity at a point x even
though there is no potential tangential exit vector field at that point.

Remark 11. Consider again Table 5. Note that X has lost attractivity, but there is no tangential vector field exiting 2.
This is in distinct contrast with sliding on a co;dimension 1 surface. In the latter case, indeed, when the sliding surface
2 looses attractivity, Filippov theory will predict (at first order) exiting > tangentially.

4. Numerical example

Here we result of numerical experiments on an example where one of the wi.’s (namely, w%) becomes 0 along the
sliding trajectory, still satisfying Assumptions |. Aside from the modification due to w% becoming 0, the example
below is actually the one we meant to use in [3].

All computations have been made with an event driven technique, and event points (when a different regime is
reached) have been computed by the secant method. Integration of all relevant differential equations was made using
the classical explicit Runge-Kutta (RK) scheme of order four, a projected RK method in case of sliding motion to
ensure that all evaluations are made on the constraints’ surfaces (e.g., see [4]). The stepsize T was held constant and
equal to 7=0.0025, and of course adjusted when using the secant method to locate event points. Solution of the system
(8) was done by Newton’s method.

Example 12. We have the discontinuity surfaces
Si=xeR:@=xn—-p), D=@xeR :jx=x3-q, T=5NX
with p=0.5 and g = 1. Thus, we have the following four vector fields, at least continuous in their respective regions of
definition:
X2
1

+— .
SISy
32 1

—(1+9—x3

Ri(h1 <0,hy <0): fi(x) =

—Xx1 +

—(x2 4 x3)
1

Rolhi <0.hy>0): = | PG =0 |4
1

Xy —
(I-q) +x3

—(x2 + x3)

1
X
(I=p)+x

1
X
(I+g)—x3
—(x2 + x3)

when x> — 1.3,

R3(hy > 0,hy < 0) 1 f3(x) =

X1 1
6+13+6— 4+ ——n
MR 1.3+(1—p)+x2 when x| < —1.3,

1
XA
(I +q) —x3
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1.03,
1.02
1.01

R

;

0.99

0.98

-0.5
0.53

0.52

x2

Fig. 8. Solution trajectory: the solution spirals around X, starts sliding on X7, enters > and leaves it to slide on ET.

x1 x2

Fig. 9. Solution trajectory: the solution slides on 21* and leaves it to enter Ry, hits Z‘; and starts sliding on it, then hits 3’ and starts sliding on it.

—(x2 + x3)
71 h 1
—X1 — > —
T 0-ptx WA=
1
. 1—¢9g)+x
Ra(hy > 0, hs > 0) : L (I —q)+x3
4(h1 2 ) @ fa(x) (s + 13)
1
X1 0-p+n wheny; < —1.
130 4+ 129x) + ——
(1 —¢q)+x3

Results below are for initial condition xg =[0.7, 0.49, 0.99]. We can distinguish several different dynamics of the
solution with respect to the two discontinuity surfaces. Indeed, there are several event points, that is values where the
solution reaches a different regime: a different region and/or sliding surface. We will assign a time value #;, and with
abuse of notation indicate each event point with x;. The initial part of the trajectory is plotted in Fig, 8, and Fig. 9 shows
the entire trajectory; event points are marked by asterisks: x;, j=1, ..., 11.
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Table 6
w’j ’s at xy "
Component i=1 i=2 i=3 i=4
w) >0 >0 >0 <0
w? <0 <0 >0 >0
2o

Fig. 10. wy = (w!, w?) att<rs (left), at t5 (center), and at > 5 (right).

The initial condition is in region R; and the trajectory crosses X at x; ~ (0.71728, 0.5, 0.98318) and enters Rj3
(transversal intersection). At x» ~ (0.63696, 0.51686, 1), it crosses Z‘;‘ and enters R4 (transversal intersection). At
x3~(0.62125, 0.5, 1.00384), it hits Z‘f‘ and starts sliding on it in the direction of X~ with vector field f DRl Then, while

sliding on Z’f‘ the solution reaches X at time #4 at the point x4 2~ (0.61659, 0.5, 1).

At x4, the vector fields f;, j=1, 2, 3, 4, have the signs given in [Table 6 and condition (10) is satisfied, so that
Assumptions | are satisfied, X is attractive, fx as in (7) is well defined and the solution starts sliding on 2.

At time 5, the solution is at x5 =(0.5, 0.5, 1), w%(x5) =0, and w% # 0 for values on X' in a neighborhood of xs.
Assumptions | and 2 are satisfied at x5, so the solution keeps sliding on 2. The configuration along the solution path
in a neighborhood of f5 is the one showed in Fig, 10 (it mirrors Case (S DA : 1) in [3]). Here the dashed vector is

wy = (w} , w%) at a specific time 7 < t5, the dotted vector is w1(x(#5)) and the solid vector is w; at a speg:iﬁc time ¢ > 5.
At t=1¢ ~0.62925, the solution is at xg =(0, 0.5, 1), and there is equality in (10). Moreover, the w’j(x)’s for x=xg
are as in Table 7 and the trajectory leaves 2 smoothly to enter E;“.
So, at t=tg, f/g aligns to f o and the solution exits X smoothly to slide on Z‘f“. At time 17 & 1.22698, the solution
reaches x7 ~ (—1, 0.5, 1.5111), f2|+ aligns to f4 and the solution exits EfL smoothly to enter in region R4. At time g,

it reaches E;“ at xg ~(—1.1322, 0.5050, 1), and here w% > 0 while wi < 0 so that sliding begins on Z’;“ away from
1. At time f9 2 1.40259, the solution reaches the surface x; = —1.3 at xg ~ (—1.3, 0.7105, 1); here, f3 is continuous

Table 7

w;’s at xe,

Component i=1 i=2 i=3 i=4
w) 1 1 1 -1
w? 3 -1 1 1
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Table 8

w’j s at xqg A

Component i=1 i=2 i=3 i=4
w) >0 >0 <0 >0
w? >0 >0 >0 <0

but not differentiable. At time 19, we reach the value x19 ~ (—1.7377, 0.9507, 1). For ¢>t1¢ the trajectory continues
sliding on Z’;‘ but now in the direction of X1, since the following condition is satisfied:

1 1
w w
=3 <. (12)
w3 w4

At time 711, the solution reaches the point x11 ~ (—2.3430, 0.5, 1) on 2. The vector fields fj(x10),j=1, .. ., 4, satisfy
the conditions of Table 8 and the behavior on X is analogous to the one of Case (S DR 2). The solution now starts

sliding on X' with vector field f fo as in (7), and remains on .
5. Conclusions

In this paper we weakened the assumptions given in [3] for attractivity of a sliding cozdimension 2 surface X' and
for the existence and uniqueness of the Filippov sliding vector field (7) on 2. We reported on a numerical experiment
to show the behavior of a piecewise smooth system that satisfies our new assumptions.
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