LIMIT CYCLES FOR REGULARIZED DISCONTINUOUS DYNAMICAL
SYSTEMS WITH A HYPERPLANE OF DISCONTINUITY.

LUCA DIECI, CINZIA ELIA, AND DINGHENG PI

ABSTRACT. We consider an n dimensional dynamical system with discontinuous right-hand side
(DRHS), whereby the vector field changes discontinuously across a co-dimension 1 hyperplane
S. We assume that this DRHS system has an asymptotically stable periodic orbit v, not fully
lying in S. In this paper, we prove that also a regularization of the given system has a unique,

asymptotically stable, periodic orbit, converging to v as the regularization parameter goes to 0.

1. INTRODUCTION

Systems with discontinuous right-hand side (also called piecewise smooth, PWS, systems), have
been actively investigated during the last 20-30 years, because of their relevance in many applica-
tions, such as in control theory, mechanical systems with dry frictions, biological models. See [1],

[3] , [9] and [11], for important theoretical and modeling work.

Among many ways in which one can study DRHS systems, the regularization method is very
appealing, since it replaces the discontinuous system with a smooth system. The first authors
to formally introduce this technique were Sotomayor and Teixeira in 1995, see [19], and recently
this method has been exploited to study singularities, Filippov sliding vector fields and dynamical
behavior near sliding regions of the PWS vector field. See [12], [13], [14] and [16].

Limit cycles of PWS vector fields also are of considerable interest. Several authors have studied
the persistence of limit cycles for regularized planar vector fields; e.g., see [18] and [5]. However,
these results rely heavily on the planar nature of the problem; in particular, they make use of the
Poincaré Bendixson Theorem. Our own interest in this paper is to establish existence (and stability)
of limit cycles of regularization of n-dimensional PWS vector fields (n > 2), having a hyperplane of
discontinuity. We will do so in the cases where the discontinuous system has a periodic orbit with

sliding and/or crossing segments.

The work [2] is a precursor of our results. In that work, the authors considered the case of a
regularized vector field for a discontinuous problem with a limit cycle having a sliding segment. No
crossing case was considered in [2]. Moreover, even for the sliding case, our treatment is different

from [2] . Rather than relying on the implicit function theorem applied to the Poincaré map, as the
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authors proposed in [2], we will first use Brouwer’s fixed point theorem to establish the existence
of a periodic orbit for the regularized problem, and then study its stability properties by exploiting
the associated monodromy matrix. Moreover, we provide a unified treatment of limit cycles with

sliding and/or crossing.

Let x = (z1, 72, -+ ,2,) € R", and let h(z) = x1. Define the switching manifold as S = h=1(0),
and let Ry = {qg € R" : h(q) > 0}, R = {qg € R™ : h(g) < 0}. Consider the following system with

discontinuous right-hand side:

F+((E), if .’I]ER+

M RO = 0w, i seR. .

Here, F_ and Fy are C" functions, where r > 1, which we assume to be well defined in R+, on 5,
and in a neighborhood of S. Write Fy = (F_, F). A smooth function ¢ : R — R is a transition
function if ¢(z) = =1 for x < —1, ¢(z) =1 for x > 1 and ¢'(z) > 0 if z € (—1,1). To fix ideas, we

consider the following C* function

-1 z< —1
(2) bz) = {3218 _1<z<1 .
1 z>1
{L¢(X1)
1
_1 _
o 1 X,
-1

FIGURE 1. Graph of transition function ¢(z1)

The ¢-regularization of Fy = (F_, F) is a 1-parameter family of vector fields F,, connecting
F_ and F,, and giving the following regularized system for (1):

o sene=b (i eo(M)) mme (1o (M) e

When needed, we will use the notation ¢¢(z) = ¢(2). The vector field F, is an average of F_ and
F, inside the boundary layer {x € R"| —e < h(x) < €}, while it is equal to either F_ or F} outside
the boundary layer.

In [18] and [6], the authors consider discontinuous planar systems. They show that if v is a
hyperbolic periodic orbit of (1) in R?, then, under suitable assumptions, the regularized vector field
(3) has a hyperbolic limit cycle ., converging to v as € — 0.

In this paper, we consider vector fields in R™, with a co-dimension 1 hyperplane of discontinuity,
for any n > 2. Under appropriate assumptions, we will prove that, if the original PWS system has
an asymptotically stable periodic orbit, then so will the regularized system. We mention that this
is not a trivial generalization. There are two main difficulties. The first is that for non-planar
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problems we do not have a Poincaré-Bendixson Theorem to help us in establishing existence of the
limit cycle (cfr. with [4, 5, 6, 18]); extensions of the Poincaré-Bendixson Theorem for systems in
R™, see [17, 21], require special type of systems (competitive or monotone systems), which do not
fit our type of problem. The second difficulty is to establish the stability of the limit cycle of the
regularized problem. We will do this by using the monodromy matrices of the discontinuous and

regularized problems, and showing that the latter converges (as ¢ — 0) to the former.

The remainder of this paper is organized as follows. We give some definitions and state our
main result in section 2. In section 3, we prove our main result. Conclusions are in section 4. In

Appendix A, we give proofs of some technical results needed in section 3.

2. BASIC DEFINITIONS AND MAIN RESULT

In this section, we will give definitions and assumptions.

We assume that Fy are C", r > 1, in Ry and in a neighborhood of S. We denote the flow of
(1) as ¢} (x) and the flow of (3) as p%(x).

Definition 1. A subset U of S is said to be an attractive (repulsive) sliding subset if for all x € U
the following occurs

(4) VhT'F_(z) >0 and VAT F(z) <0 (VAT F_(z) <0 and VAT Fy(x) > 0).

A point x that verifies (4) is said to be an attractive (repulsive) sliding point. If a solution of (1)
slides on an attractive (repulsive) subset of S, we say that attractive (repulsive) sliding occurs along

the solution.

If a solution intersects S at an attractive sliding point  then it must remain on .S. However the
vector field Fj is not defined on S and a sliding vector field needs to be defined. We follow Filippov
(see [9]) and for each x € S that verifies the first condition in (4) we define the sliding vector field
as

VhT(F_+ F
) F(a) = SRl

[(1—¢")F_ + (1 +¢")Fy](2), ¢"(2) = m(ﬂﬁ)a

1
2
where the value of ¢*(x) in (5) is such that VAT Fs(z) = 0.

In this paper we will also make use of the following definitions.

Definition 2. Let x € S. Then

i) z is a crossing point if (VAT F_)(VATF,) > 0;
ii) x is a first order tangential exit point into R_ if VKT F_(x) = 0, VRTF,(z) < 0, and if,
letting g(x) = VRTF_(z), VgT F_(z) < 0;
iii) = is a first order tangential exit point into Ry if VAT F(x) = 0, VRTF_(z) > 0, and if,
letting g(x) = VhT Fy(z), Vg Fy(z) > 0.

Definition 3. Assume that a solution of (3) reaches S at an attractive sliding point x. Then x is

said to be a transversal entry point.

Let « be a periodic orbit of (1). In this paper we consider one of the following forms for «y (see
[10] for planar systems). See Figure 2.
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i) 7 has a finite number of sliding arcs on S and contains no crossing points. Then, v is called
a sliding periodic orbit. We further exclude the case in which + is entirely contained in S.
ii) v meets S only at a finite number of crossing points. Then, «y is called a crossing periodic
orbit.
iii) v has a finite number of sliding arcs and a finite number of crossing points. Then, v is called

a crossing and sliding periodic orbit.

(a) Crossing periodic orbit  (b) Crossing and sliding periodic orbit

X, o—— X /
X po S—Af‘"
Y

X .

A
7 -
N

s \_/y/ A \\//

(¢) Sliding periodic orbit (d) Sliding periodic orbit

FIGURE 2. Periodic orbits of (1)

As for smooth dynamical systems, stability properties of a periodic orbit v can be studied via
the eigenvalues of the monodromy matrix, the Floquet multipliers. As we will see in Section 3,
to take into account the jumps in the derivatives of the solution, the monodromy matrix along =y
is defined with the aid of suitable saltation matrices. These matrices are full rank in the case of

crossing, but they are singular (of rank (n — 1)) in case v has one or more sliding arcs on S.

Definition 4. Let v be a periodic orbit of (1). Let py,ua,--+ ,pn be the corresponding Floguet
multipliers. We say that v is asymptotically stable if one of the multipliers is 1, say u1 = 1, and all
other u;’s are less than 1 in modulus.

When ~ is a sliding or sliding and crossing periodic orbit, the associated monodromy matrix
has one multiplier equal to 0. This witnesses that there is sliding on a co-dimension 1 region of R”™.
Notice that when (1) is planar, a sliding or sliding and crossing periodic orbit has a multiplier at 1
and one at 0. In this case, 7y is said to be stable in finite time.

2.1. Basic assumptions. Before we state our main result, we make the following basic assump-
tions.

H, Sliding subsets of S are attractive (see Definition 1 ).
H; Entry points on S are transversal (see Definition 3).
Hs Exit points from S are first order tangential exit points (see Definition 2).

H, For each solution of (1), only a finite number of crossings/exits/entries can occur.
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Our main result is the following

Theorem 5. Assume that hypotheses Hy — Hy hold. Let v be an asymptotically stable periodic
orbit of (1) not entirely contained in S. Then, for e > 0 sufficiently small, system (3) has a unique
asymptotically stable limit cycle e, and ye — v when € — 0.

Of course, Theorem 5 above holds true also when (1) is planar and + is stable in finite time.

3. PROOF OF MAIN RESULT

In this section, we prove Theorem 5. We will treat the crossing and sliding cases separately.

3.1. Crossing periodic orbit. We consider the case in which v meets S in just two crossing points,

denote them with Z; and Z2. In Remark 15 we discuss the case of a finite number of crossings.

Theorem 6. Assume that (1) has an asymptotically stable periodic orbit v with two transversal
crossing points with S. Then, for € sufficiently small, there exists one and only one periodic orbit

Ye of (3) in a neighborhood of ~v. Moreover v, is asymptotically stable and lime_.o7ve = 7.

We will prove Theorem 6 according to the following steps.

(1) Prove that (3) has at least one limit cycle. To do this, we will define a Poincaré map P,
and use Brouwer’s fixed point Theorem to show that it has a fixed point. This will give at
least one limit cycle «. of (3), and we will show that v. — v when € — 0.

(2) Then, we will show that v, is asymptotically stable, so v, is the unique limit cycle of (3),

for e sufficiently small.

Let us define a Poincare map associated to v. Without loss of generality, we will assume that
the periodic solution associated to y crosses S at Z; coming from R, and entering in R_, and then

again (at a later time) crosses S at T3 coming from R_ and entering in R, as in Figure 3.

With ¢! we denote the flows of Fly, and with ¢f (o) the solution of (1) at time ¢, with initial
condition z¢ at time ¢t = 0. Recalling that in the present crossing case if zo € S, then VAT F, (x)
and VAT F_(zo) have the same sign, we note that (o), for ¢ > 0 sufficiently small, is the solution
of

F+($), if VhTF+(CC0) >0 5
F_(z), if VATF(z)<0.

Let Bs(Z1) = {z € R™: ||lx — Z1|| < §} be the open ball centered at Z; and of radius J; here,
and later on, the norm is always the Euclidean norm. Denote with Bs(Z1,S) its intersection with S
and with Bs(Z1,9) its closure. Then for § sufficiently small the Poincaré map P_(z) = ¢~ (x)(:zr),
where ¢_(x) is the first return time to S, is well defined and smooth in z and it takes a point x in
Bs(Z1, S) into a neighborhood of Zs. Similarly, we can define a Poincaré map Py (z) that, due to the
asymptotic stability of =y, takes a point = in a neighborhood of Z5 into m. Let P=P,oP_:
Bs(z1,S) — Bs(Z1,5) be the Poincare map of system (1). Then P is well defined and smooth with
its inverse in Bs(Z1,S) and since v is asymptotically stable, P satisfies P(Bs(Z1,S)) C Bs(Z1,5)
for § sufficiently small. Let s be the boundary of W, then s is the intersection of the
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(n — 1)-sphere of center Z; and radius ¢ with S. The set P(1)5) is a diffeomorphic image of 5. Let
V be the union of all trajectories of (1) with initial point on s and endpoint on P(ts) together
with Bs = Bs(z1,S)\P(Bs(z1,5)) and let V be the compact subset of R™ whose boundary is V.
Then all solution trajectories of (1) that intersect Bs will do so transversally, will enter V and will

remain inside it. The periodic orbit v attracts all trajectories inside V.

Stability of v can be studied via the monodromy matrix X (T') at v. Let T be the period of ~
and assume that at time ¢ = ¥, cpg(:il) = Zy. Then, X (T) can be written as the composition of the
following matrices (e.g., see [8, 15]):

(6) X(T) = X(T,D)S 4 (22) X (£,0)S - (1)
where S _(Z1) =1+ (g’h;ii)VhT(a_rl) and S_4(Z2) =1+ %VhT(:fg) are so-called saltation
matrices, while the fundamental matrix solutions X (¢,0) and X (¢,) satisfy

X(t,0) = DF-(wé( )X (£,0), X(0,0)=1I;

The two saltation matrices in (6) are nonsingular and hence X (7') has an eigenvalue at 1 and all

the other eigenvalues are less than 1 in modulus because of asymptotic stability of ~.

To prove the existence of a periodic orbit of (3) in a neighborhood of v we employ the Poincare
map of (3). In a neighborhood of Z; and Z2 solutions of (3) intersect S transversally and hence we

will show that the following Poincaré map, P. : Bs(Z1,S) — Bs(Z1,5) that associates to a point
in Bs(Z1,S) its first return to Bs(Z1,S5), is well defined. The following proposition establishes the

existence of at least one periodic orbit of (3).

Proposition 7. For € sufficiently small, the map P, has at least one fized point in Bs(Z1,S).

In order the prove this proposition we will need the following Lemma.
Lemma 8. For each xo € Bs(Z1) the following is satisfied

lim ot (z0) = @f(20),

uniformly for t in a compact interval.

Proof. Denote with ¢ and ¢! the flows of (1) and (3) respectively. Together with S, consider also
the hyperplanes S, = {z € R"| h(z) = ¢} and S_. = {z € R"| h(z) = —¢}. In what follows,
for 2o € Bs(Z1), we want to estimate the distance between ¢f(z9) and ¢f(x¢) at their intersection
points with S, S, and S_.. Without loss of generality assume that zy € W. Then for ¢
and e sufficiently small VAT F,(xo) < 0, VAT F_(2¢) < 0. Let ¢; be such that x1 = ¢} (z9) € S_.

and similarly, let z{ = goii (o) € S_., with z1, 2§ in a neighborhood of Z;. We want to bound

bt (z0) —goii (x0)| and show that it goes to zero when e — 0. To fix ideas, assume t§ > t1. Let L_ =

max (max;e(o,1,] | DF- (¢ (20))|l, maxie(o 1) [ DF-(¢k(x0))|]) and My = maxeps, 4] | Fe(9L(20))],
then the following inequality holds
It (o) = 8 o) < H F-(@(@0)) = - (2 (w0))ds
H () (Fy = F_)(p2(@0) dSHJrH (¢ (o) dSH

SLJO H% 20) — 2 (o) |ds + #5 (My + M_) + (t5 — t2)M_
and so ||} (o) — w8 (o) | < [t5 (M + M_) + (t5 — t2)M_]e b=
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where the last inequality follows from Gronwall’s Lemma. Moreover using h(¢h (29)) = —e, if we
consider the Taylor polynomial in Lagrange form of ¢ (xo) at the point ¢ = 0, we obtain
—€
(7) 1 = , M€ (Oatl)
Vh(eg' ()T F- (g (o))
In particular lim._,o¢; = 0 and, in a similar way, lim._,o ¢{ = 0. This, together with the bound for

b (z0) — ke (xo)l, implies lime—o @' (z0) = ph(x0).

For t > t1, ¢} (z0) moves away from S_. in direction opposite to Vh(z). But it will eventually
change direction and it will meet S_. again in a neighborhood of Zs. Let t be such that zo =
<p62 (x1) € S_¢ and t§ be such that z§ = <p§ (x5) € S_e. To fix ideas, again we assume t§ > t5. Let
[F_ (¢t (@$))]], and L = max (maxsefo,s || DP— (b (1) |, masicpo.n) [ DF- (2! (25) )
be the local Lipschitz constant for F_, then the following bound holds

te € € t S S € te S €
ok (@) = B @I < o — il + [ fo? (P (@(o0) = Fo (92 (@) ds + 2 P (p2(a))ds|
€ t S S € €
< oy = o+ Lo fy? o) — 2 (a5 lds + (5 — t2) M-
and so [ (w1) = ¢ (@] < (o — gl + (t5 — t2) M el

now M_ = MaXie|t, t]

where the last inequality follows from Gronwall Lemma. Notice that lim._. t5 = to, since x{ — 21
and F, = F_ for h(z) < —e. Then lim o (25) = @i (21). In a similar way we can show that
loh (o) — @l (xo)|| — O up to returning in a neighborhood of Z;. This proves the Lemma. O

As a consequence of Lemma 8, this Corollary holds.

Corollary 9. As e — 0, P. converges pointwise to P in Bs(Z1,5).

i

|
S ( Pz(x“)\\P(Xu)
|

S-e t;

FIGURE 3. P and P,

Proof of Proposition 7. We will prove that P.(Bs(%1,5)) C Bs(Z1,S). Then the statement will
follow from Brouwer’s fixed point Theorem. Consider the following relation between 15 and P(vs):
B(tbs, P(ths)) = mingey; pep(ys) la — bll. Then B(¢5, P(1)5)) > 1 > 0 and 7 is bounded away from 0
since P(Bs(71,5)) C Bs(71,S). Let n, 0 < n < 7, be fixed, and for every = € B;(Z1, S) denote with
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B,(P(x),S) the intersection of the n-ball centered at P(x) with S. Then B, (P(x),S) C Bs(z1,5).
Corollary 9 implies that for every x € Bs(Z1,S) there exists €, , > 0 such that, for € € (0,¢,4),
P.(z) € By(P(x),S) C Bs(z1,S5). The proof follows upon noticing that for every z, €, , is bounded

away from 0. O

Proposition 10. System (1) has at least a periodic orbit.

Proof. Proposition 7 ensures existence of a fixed point of P. in Bs(Z1,S5). We need to exclude
the possibility that the fixed point is an equilibrium point for F,. Assume by contradiction that
there exists € Bs(Z1, ) such that F.(z) = 0. Then Vh(2)TF.(z) = (1(1 — ¢)VATF_ + (1 +
¢)VATF,)(z) = 0. But (VATF_)(z) > 0, VRTF(Z) > 0 and 1(1 4 ¢¢), 3(1 — ¢c) > 0, hence we
reach a contradiction. O

An invariant region V. for F. can be built by considering the union of all trajectories with
initial points on 15 and endpoints on P. (1) together with Bs(Z1,S)\P.(Bs(71,5)) = Bg. Let V.
be the compact subset of R™ with boundary V.. Then all trajectories of (1) that cross Bg will do
so transversally, will enter V, and will remain inside it. See Figure 4. We will show that (3) has a

unique periodic orbit v, in VE and 7. attracts all the solutions inside Ve

FIGURE 4. invariant region V

Next, for each ¢, select a fixed point of P. and denote it with z.. Let 7. = {z € R"| z =
oi(xe), t € R}, be the corresponding periodic orbit. In order to prove Theorem 6 we will show

Main steps

i) as € = 0, . — Z1, which in turn will imply v, — 7;
ii) for € sufficiently small, . is asymptotically stable and this allows us to exclude that (3) has

a family of periodic orbits that converges to ~.

Let @ € Bs(Z1,S) and let f(z) be the solution of (1) with initial condition z. Denote with xo
its intersection with S in a neighborhood of Z3 and let z3 = P(x). Notice that x3 # = unless z = 7;.
Let t5 be such that f? (z) = x2 and T(z) be such that wOT(I)(x) = z3. The following Lemma holds.
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Lemma 11. Denote with X (t,0,x) and X.(t,0,x) respectively the fundamental matriz solution of
(1) along the solution o4 (x) and the fundamental matriz solution of (3) along ¢'(z), x € Bs(Z1,S)
Then

th( e(2),0,2) = X(T(2),0,z),

where with T.(z) we denote the first return time of ' (z) to Bs(z1,9).

Proof. In what follows we will omit the explicit dependence of X (¢,0,2) and X(¢,0,z) on x. The
principal matrix solution of (3) along ¢ (z) satisfies

(8) X = DFE(SDi(x))XEa Xe(0) =1,
where T is the identity matrix and DF(z) is the Jacobian of F, and it is given by

(9) DF.(x) = 5[(1 ~ 6)DF- + (14 0)DF, + ~¢/(Fy — F_)Vh"](z).

Similarly to what we have done in the proof of Lemma 8, we consider the intersections of ¢ (x)
with S, S. and S_. and use these intersection points to rewrite X (T.(z),0) as product of transition
matrices. It will be handy to take the initial condition on S, instead of S. So, let zf € S be
such that ¢f(z§) meets S at time ¢§ at the point z, i.e. <p§ (z§) = x, and VATF.(z§) < 0. We
evaluate the monodromy matrix X.(7.(z),0) along the shifted solution ¢!(z§). Notice that in a
whole neighborhood of x the following 1nequahty is satisfied VhTF (z) < 0 so that ¢ (z§) intersects
S and then S_. at two isolated points: = = ¢t Y(zg) and z§ = oF ( 6). Then the trajectory enters
the set {x € R"|h(z) < —e} and remains in this set until, at time ¢§, it meets S_. again in z§. In
a neighborhood of z§ the following inequality is satisfied VAT F,(z) > 0 so that, at time t§, ! (z§)
meets S in z§ and then S, in z§ at time t§. At t = T.(z), ¢! (z§) returns to S.. With these notations,
we can rewrite X, as follows

(10) Xe(Te(x)v 0) = Xe(Te(x)v tg)Xe(tg7 tg)Xe(tgv t;)XE(tE, O)'

We want to show that all the factors making up X, in (10) converge to the corresponding factors
in X(¢,0,2) (see (6) as well).

We first look at the factor X.(t5,0), rewritten as
Xe(t5,0) = Xc(t5,t1)Xc(t1,0) ,

so that the limit of X (t5,0), as ¢ — 0, will exist if the limits of the other two factors do. We have

0)=1+ /ti DF.(x(t))Xc(t,0)dt =
0

I+ / " (1= 60D + (1+ 6)DF] (1) X, (1. 0)dt+
0

L[ Lo (MDY 1, yntete e o

€

The first integral goes to 0 as € — 0, since ¢{ — 0 and the integrand is bounded. The second
integral is dealt with by noticing that ¢’ (%) is positive and thus we can consider the change of
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variable t — x1, along with i ff ¢ (2)dry = and the mean value Theorem for integrals to

2 b
obtain

i/O;qﬁ’ (ﬂ) (Fy — F_)(2)VhT Xoday =
2 ). VATE.(x)” \e )V T 77 o
(F_ — F,)VhT X,

11
(11) 1
2 VhTF, ’

where the entries of the matrix on the right-hand side are evaluated at some value t, 0 <t < t¢,
possibly different for each matrix entry. Since all objects on the right-hand side are smooth in [0, ),
t$ — 0, F. at t =0 is Fy, and X.(¢5,0) = I + O(t), by expanding around ¢ = 0 (or z1 = €), we
conclude that the limit as € — 0 of X (9, 0) exists and it is:

1(F_ — F)VAT

(12) llj}(l)XE( 170):I+§ VhTFJr (JJ)

For X (t5,t5), we have

t3
X (t5,t5) =T+ DF (x(t))X(t,t])dt =

1y

I+ % [2 [(1 = ¢)DF_ + (1+ ¢ ) DFy] (x(t)) Xe(t,17)dt+

€
1

% /t 2 %aﬁ’ (@) (Fi = FL)Vh(a(£)" Xc(t, 5)dt.

€
1

Again, the first integral goes to 0 as € — 0, since t5, and t{ — 0 and the integrand is bounded. For
the second integral, since ¢’ (%) is positive, we can consider the change of variable ¢ — x7, along

with 5= [ ¢/ (& )day = —%, and the mean value Theorem for integrals to obtain

VhTF ( ) (Fy — F_)(x)VhT Xodxy =

F+ - )VhTX
T2 VhTF, ’

(13)

where the entries of the matrix on the right-hand side are evaluated at some value ¢, ¢{ <t < t§,
possibly different for each matrix entry. Since all objects on the right-hand side are smooth in
(t5,t5], t92 — 0, Fe at t = t5 is [, then by expanding around ¢t = t§ (or x; = —¢), we conclude
that the limit as € — 0 of X(¢§,t5) exists, call it M, and it is defined by the relation:

B 1(F,—F)vhT 17!

Note that the matrix defining M is invertible, and we have

(Fy — F_)VhT

M=I-Grm )@

Finally, using (11) and (13), we can then conclude that lim. .o X(¢5,0) exists, and it is given

by
(Fy — F_)VAT 1 (F. — F,)VAT
(I_ Vh+T(F+ +F_)) (” R > (@) -
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Doing the algebra, this simplifies to

, . F —F
(15) lgl%)Xe(tz,O) =1 + [VTF‘_:VhT] = SJF,(Il).

Similarly to (15), we can prove lim._,o X (¢5,t5) = S_4(z2).

Finally, F. = F_ in [t5,t5] and F. = F} in [t§,T]. This, together with the following limits:

x§, x§, x5 — xo, and t5, 15, tE — to, and T (x) — T'(x), imply:
lin})Xe(tg, t5) = X (t2,0), and lin})Xe(TE(:c), 0) = X(T'(x),0).
O
Lemma 11 implies in particular that X.(Tc(x),0,z) is bounded for all e. At first, this might
come as a surprise, since the derivative with respect to z; of F¢ is multiplied by the factor % in the
boundary layer, (see also the first column of DF in (9)). However, the boundary layer and the time
spent inside the boundary layer go to zero linearly with €, so that the derivative of the vector field

in the boundary layer remains finite in the limit. Moreover, boundedness of X (T.(z),0, ) implies

Lipschitzianity of the solution for each € > 0, as the following corollary states.
Corollary 12. There exists 3 > 0 such that for each t > 0 and for each € > 0

lee(@) — el < Bllw —yll, =,y € Bs(@1) -

Proof. The proof follows from the mean value Theorem for integrals applied to ||p%(z) — ¢i(y)|| =
1
Hfo Xe(t,O,S:E—i- (1 —S)y)(.%‘—y)dS”. U

Corollary 13. There exists a > 0 such that for each € > 0
[1Pe(z) = Pe(y)|| < alle —yll, 2,y € Bs(71,5)

Proof. The result follows from the equality

DP.(z) = ETX (T.(z),0,2)E,

where © € Bs(Z1,S5), E = (ea,...,en), e; is the j-th canonical vector and T,(x) is the first return
time of ¢! (z) to Bs(Z1,.5). Then |DP.(z)|| < || X(T.(x),0,z)| and the norm on the right is bounded
as € — 0 because of Lemma 11. 0

The following Lemma is the first part of Main step i) in the proof of Theorem 6.

Lemma 14.

hI%:Ee = T.

€E—

Proof. Let us denote with a:f and i’f the k-th component of z. and Z1, k > 2. (The first components
are 0.) Let

2

.. 2 . 2
liminf 22 = 27, limsupz, =7

e—0 e—0

2
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and let x., and z., be two sequences such that lim., .o xf = 22 and lim,, 0 a:f = 2
T - k3

. From z,
and x., we can extract convergent subsequences which, with abuse of notation, we sill denote as z.,
and z.,. Let
(16) lim z., =z, lim z., =7.

0 es—0

€;—

Notice that lim,, o P, (z¢;) = lime, 0 e, = , and lim,__¢ P, (z¢,) = lime, oz, = T.

Then
1P(z) — z] < |P(2) — P (@) + [|Pe(z) = Pe,(we)) | + [ Pe: () — |-
The three terms to the right of the inequality go to zero for ¢; — 0. Indeed we have P, (z) — P(x),
P, (xe,) — z and || P, (z) — P, (z¢,) because of Corollary 13. It then follows that

z = P(x), so that z = Z;. Similarly, T = Z;. As a consequence of this reasoning, lim._o2? = 73.

| < alle - 2.,

7

To show convergence of :v’j, k = 3,...,n, we use reasonings analogous to the ones used for (16)

together with the reasonings in this proof. (I

Lemma 14 and Corollary 12 imply the following inequality

lee(xe) =t @Il < llwe(we) — @e(@)Il + i (1) — 5 (@)l
(17) < Bllve = 3l + lc(@1) — @@

In particular, (17) and Lemma 8 insure 7. — v and this proves Main step i) above.

Lemma 11 and Lemma 14 together with continuity of X, with respect to € Bs(Z1,.5), imply
that for all 4+ > 0 there exists ¢, sufficiently small so that for € < ¢, the following inequality is
satisfied

||X6(T6,0,$6) - X(Tvov‘i'l)” S ”XG(Teanxe) - Xe(Te(«i'l)aoa«i'l)H‘f'
”Xe(Te(i'l)voujl) - X(T7O7i1)|| < W.

As a consequence, for e sufficiently small, X (T, 0, z.) has all eigenvalues less than 1 and one equal
to 1 (since 7. is periodic). This implies Main step ii), i.e., 7. is asymptotically stable and hence
isolated. This completes the proof of Theorem 6. O

Remark 15. The proofs of the results in this section do not change in case of a periodic orbit v with
a finite number of transversal crossings. The Poincaré map P can be defined in the neighborhood of
one of the transversal crossing points and viewed as composition of two or more smooth maps and
it retains its smoothness. The attractivity of v insures contractivity of P. Pointwise convergence of
P, to P can be proved as in Corollary 9 and all related results can as well, in particular obtaining
contractivity of Pe for € sufficiently small. The monodromy matriz is given by the composition of
saltation matrices of full rank with fundamental matriz solutions and the proof of convergence for

the monodromy matriz remains essentially the same as we have given.

Theorem 6 together with Remark 15 suffice to prove Theorem 5 for a crossing periodic orbit ~

with a finite number of transversal crossings.

3.2. Sliding periodic orbit. Let v be the periodic orbit of (1). We will first assume that v is the
union of two arcs, one in R_, or Ry, and one in S. In Remark 26 we will discuss how to generalize
the proof to the case of an orbit with a finite number of sliding arcs and a finite number of crossing

transversal points.
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Theorem 16. Assume that system (1) has an asymptotically stable sliding periodic orbit v given
by two arcs: one arc in the region Ry or R_ and one arc on S. Assume moreover that the entry
point in S is a transversal entry point and that the exit point from S is a first order tangential exit
point. Then, for € sufficiently small, there exists one and only one periodic orbit v. of problem (3)

in a neighborhood of ~v. Moreover 7, is asymptotically stable and lim¢_.oye = 7.

Without loss of generality, we assume that v has an arc in R_, and the other on S. Further, we
let z;, and x,,: be respectively the entry point in S, from R_, and the exit point from S, onto R_,
of «v. The point x,; is a first order tangential exit point, then in particular Vh(:bout)TF_ (Zout) = 0.
Assume that the point x;, is a transversal entry point. See Figure 5; although the time arrow is for

convenience only, we will work with this figure in mind when defining the Poincaré map.

L1

oul

FI1GURE 5. Sliding periodic orbit

We first define a Poincare map for the nonsmooth system in a neighborhood of 7. To do so,
let Z1 € yN R~ and take a cross section ¥ to v at ;. Let Bs(Z1,%) = Bs(Z1) N X. Then, for §
sufficiently small, all solutions with initial condition in m reach S in a neighborhood of x;;,
and they will start sliding on S since z;,, is a transversal entry point. Let g(z) = VAT F_(x) and
consider the set I+ = { € By (Tout)| g(x) = 0}, with n > 0 and small; note that this is a small
neighborhood of #,,;. Then Vg7 F_(244) < 0 (see Definition 2) implies that all solutions that slide
on S in a neighborhood of « will cross Il,,; transversally and enter R_. Then they will reach X
again. We define the map P : Bs(Z1,X) — Bs(Z1,X) as P(z) = goto(m)(x), with ¢(x) first return time
to X. P is given by the composition of three smooth maps:

1) PL:X— S, Pi(z) = gotj(w)(:v), where t_(z) is the first time at which ¢! (x) meets S;

2) Ps : S — SNy, Ps(z) = gptss(w)(:zr), where with % we denote the flow of the sliding
Filippov vector field (5) and ¢g(x) is the time at which ¢%(z) meets Iyy;

3) Pp: SNy — %, Po(x) = gpt_i(z)(a:), where t2 (z) is the time at which ¢! (z) reaches X.

Remark 17. The Poincaré map P defined in this way is smooth. The cross section in R_ allows
us to consider only solutions of (1) with orbits in R_US. [We remark that taking any section along
the sliding arc (for example Iyt ), forces us to consider also orbits with an arc in Ry and this has
two drawbacks: i) the corresponding Poincaré map is continuous but not smooth (it is defined in a
different way for points in R_ or in Ry ); ii) the orbits of (1) might cross the section more than once
(if we consider the section W,y for example, this happens if VgT F_(x) < 0 while Vg7 F,(x) > 0)
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and a definition of the Poincaré map via the first return time to the section is not possible. Also,
notice that considering the cross section S N Bs(xin) would remove the concerns i) and ) above
for the non-smooth problem. However, a section that lies on S cannot be used for the regularized

problem because solutions of (3) might never reach it.]

P is a contraction so that P(Bs(Z1,X)) is a proper subset of Bs(Z1,X). We study the stability
of v using the monodromy matrix of (1) along v. Let ¢;, be such that <pff” (Z1) = Zin, tour be such
that o5 (Z1) = Tout, and T be such that ¢ (z;) = Z;. Then the monodromy matrix X (7,0) along

~ is given by the following expression (e.g., see [8])

(18) X(T7 0) = X(T7 tout)X(toutu tzn)S—S(xzn)X(tzna 0)7
where S_s(xn) = [+ V}ESF;EM)]Vh(xm)T is the saltation matrix that satisfies S_g (2 ) F— (Tin) =

Fs(z;p), and the three fundamental matrices in (18) solve the following Cauchy problems:
X(t,0) = DF_(¢"(z1))X(t,0),  X(0,0) =1,
X(t,tin) = DFs(p% " (i) X (o tin)s X (tins tin) = 1,
X(t,tout) = DF_ (0" (@out)) X (t, tout), X (touts tour) = I.
The matrix S_g(z;,) has rank (n — 1) and hence X (T, 0) has an eigenvalue at 1, one at 0, and, due
to the asymptotic stability of 7, all the other eigenvalues are less than 1 in modulus. The eigenvalue

at 0 is a direct consequence of the fact that solution trajectories reach S in finite time and then

slide on S for some time.
To define the Poincaré map, the next result is needed.

Lemma 18. For all x € Bs(Z1),
lim o (z) = ¢ (),

uniformly for t in a compact interval.

Proof. The proof of this Lemma is in Appendix A, and it relies on a singular perturbation analysis
based on [20, pp. 249-260]. O

We now define the Poincare map P, for (3) as the map P, : Bs(Z1,%) — ¥ so that for every
point « € Bs(Z1,%), P.(z) is the first return point of wiE(m)(x) to X.

Lemma 18 insures that P, is well defined and it implies the following Proposition.
Proposition 19. As e — 0, P. converges pointwise to P.

Propositions 20 and 21 below will allow us to view the Poincaré map as the composition of
three maps, similarly to what we did for P. This is desirable since it will lead to a decomposition

of the fundamental matrix solution of (3) into four different factors, as for the discontinuous case
(see (18)).

Proposition 20. For e sufficiently small, orbits of (3) corresponding to solutions with initial con-

ditions in a neighborhood of v must intersect I, transversally.

Proof. Let S°% = M, N S_., and note that for all z € S VhTF.(x) = VRTF_(z) = 0. The
set S divides S_. in two regions, denote them as S~, and ST, such that for all z € S*
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VhTF.(z) = VATF_(x) =2 0. Lemma 18 implies that an orbit T'c of (3) in a neighborhood of

v must intersect S, in a point z¢,, in a neighborhood of z,,. Moreover, since VAT F,(z¢,,) =

VhTF_(2¢,,) < 0, 2¢,, must be isolated. Uniform convergence of solutions of (3) to solutions of
(1) implies that there are points of I'c in a neighborhood of 2, that satisfy VAT F_(z) > 0, while
VhTF_(x¢,,) < 0. Continuity of solutions with respect to z imply that there must be a point
ze of T so that g(z.) = VRTF_(z.) = 0 and VgTF.(%.) < 0. The statement of the proposition

follows. O

Proposition 21. Solution trajectories of (3) corresponding to solutions with initial conditions in

B;s(%1,X) must intersect Iy, only in one point, before returning to .

Proof. The proof uses some of the tools needed for the proof of Lemma 18 and hence is included in
Appendix A. O

Remark 22. The condition that x € Bs(Z1,%) is essential in Proposition 21. It guarantees that
the corresponding solutions of (3) can not cross the boundary layer to enter {x € R™|h(z) > €}.
Without this property, the statement of the proposition might be false. Consider for example the
case VgTFJr (Zout) > 0 and take an initial condition x € Iy N S,.

The following is a consequence of Brouwer fixed point Theorem and of Lemma 19.

Proposition 23. For e sufficiently small, P. has at least a fized point in Bs(Z1,%).
Proof. See the proof of Proposition 7. (|

Moreover, (3) cannot have equilibria in a neighborhood of 4. Indeed outside the boundary
layer F, = Fy, while if there is an equilibrium Z inside the boundary layer, then F.(z) = 0 and
¢(z) is such that (1 — ¢(2))F_(Z) + 3(1 + ¢(Z))F4(Z) = 0. In particular VAT F.(z) = 0 so that
¢(Z) = ¢*(Z) in (5) and hence Fs(Z) = F.(Z) = 0, a contradiction. Then, to each fixed point of P,
there corresponds a periodic orbit of (3).

For each €, we select a fixed point of P, and we denote it as x.. Let . be the corresponding
periodic orbit. What follows mimics the reasonings employed for the case of a crossing periodic
orbit. We will show

Main steps

i) as € — 0, ¢ — Z1, which in turn will imply . — 7;
ii) for e sufficiently small, 7. is asymptotically stable so that it is the unique periodic orbit of
(3) in a neighborhood of ~.

Let x € Bs(Z1,%) and let of(z) be the corresponding solution of (1). Let &, = ¢! () be its
intersection point with S and let ¢@feut () = Zout € Uoyt. At time T'(x) the solution reaches ¥ at a

point different from x, unless x = Z7.

The following Lemma holds.
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Lemma 24. Let X(t,0,z) be the fundamental matriz solution of (1) along p§(z) and X(t,0,z) be
the fundamental matriz solution of (3) along ¢t(x). Then

li_r)l% X (Te(2),0,2) = X(T(x),0,z),

where T.(z) denotes the first return time of ot (z) to X.

Proof. Below, we omit the dependence of X and X, upon z. We will adopt the notation used in
Appendix A.

Together with S, consider the hyperplane S_. = {x € R"|h(z) = —e}. For e sufficiently small,
uniform convergence of ¢! (z) to pf(z) implies that !(z) meets S_. in two isolated points: x¢, in a
neighborhood of 2, and z<,, in a neighborhood of &u;. Let t5, be such that i (z) = z¢,. Then

hmeﬂo .I:n = JA?”L and hmeﬂo tzén = tin-

Let ¢* (&) be as in (5) and let 7 = L. For 0 < p < ¢, let 7, be such that, for 7 > 7,,
() — ¢* (Zin)] < &, where ¢ is defined in (23). Then 7, satisfies (27) and t,, = e7, — 0% as ¢ — 0.
Let /" = elT<ptm+€T"( ),y = ETpln T (1) and denote with ¢ the corresponding value of ¢,
evaluated at the point —— " Then |prc — * ((0, y*)T)| < 1 < €, see (28).

We write the fundamental matrix solution X (7.(x), 0) as product of different transition matrices
(19) Xé(Té(I)a O) = Xé(T ( )a tgut)X (tf)ub n +1 )X ( + t#v 1n)X (t:nv 0)
We want to show that each transition matrix in (19) converges to the corresponding transition
matrix in X (7T'(z),0,z) (see also (18)).

Lemma 18 and Proposition 21 imply lim._ox{,; = Zour and lim. o5, = tout- Moreover
lime_o ¢*€ = ¢*(Zin) since ¢ (z(t)) converges uniformly to ¢*(z(t)) in [tin + tu, tous] (see the last
steps of the proof of Lemma 18 in Appendix A).

From the reasoning above it follows that

lim X (#;,,0) = X (£in, 0).

ino
For the second piece, we write

+t
e

in

tin Tt
@) Tt [ (0= 00D (20) + 1+ 60DF: (o.(0) X(t )i
b [0 () (- PR Kt

In what follows we reason similarly to the proof of Lemma 11. The fundamental matrix solution
X, must satisfy X (t5, + t,,t5,)Fe(z5,) = F.(pe" " (x)). When we take the limit as € — 0, then
oot (@) = By, Fuo(af,) — F_(2in), and lim,_o F. (i (2)) = Fg(2in). In particular, we have
that lim, 3+ lime o F.(pl(z)) # lim, ;- Timeo F.(pt(x)) and this discontinuity is reflected also
in the limit of the fundamental matrix solution. Indeed, if L = lim_.o X(t5,, + t,,t5,) exists, then

it must satisfy

(21) LF_ (%) = Fs(Zin)-
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Now, the first integral in (20) goes to zero as ¢ — 0 since t, = €7, — 0 and the integrand is
bounded.
For the second integral, inside the interval (¢, 5, +t,), we can write
X (tvtzén) _I+R ( Lins )7

Fi(z) = Fi(xj,) + (¢ = t5,) DFy (25, Fx (7,) + h.ot,
where R, is bounded, and ||Rc|| — 0 as t — ¢5,,.

Using this in the integral above, since ¢, > 0, we get

1 tanrtu

= ¢ (1) (P = Fo)Vh(2)" X1, 85,)dt =
1ty

% ¢ (=)t [(Fy — FL)VAT (a5,) + E] =

[(F+— L)VAT (5,) + E e(e)

where ¢(e ft n @' (wl(t)) dt, and E is the error matrix whose components are each computed

at poss1b1y d1fferent values of t € (t5,,15, +1,).

Now, for ¢ — 0, E — 0 and x5, — 21, and t§,, — tin from the right. Thus, for € — 0, the second
integral gives
(P — PL)VH (i) lim cfc)

and so would have

lim X (£, + tu, 1) = 1 + [(Fy — FO)VR" (2)] lim c(e)

and since (21) holds, we must have that

. . 1+ ¢ (Zin .
lim c(e) (P~ FL)VRTF_ (i10) = (Fs — F) (i) = 200 (5 (@),
and hence lim,_,q c(e) = 1+¢*2(ii") thFl,(j» y Thus, finally we get

gl_I)%X ( ino zn +1 ) S*S(jin)v
where S_g is the saltation matrix from R_ to S.

For the third transition matrix in (19), we have

tout
Xty tin+ ) =1+ [ DE(0X (015, +,)dt.
t'éLnth“
Lemma 18 implies that ¢!(z) — ¢f(x) uniformly and t2** — f,,,. Moreover, ¢(t) — ¢*(y(t))
uniformly for t € [t5, + t,,t5,,], with y(t) = ET¢(t) so that F.(p!(x)) converges to Fs(p§(x)) for
t e [ts, + tu, t5,,). Hence

lim DF (¢ (1)) = (1 — () DF_(o(0)) + et DF: (1)) + ~/ (L) ((Fy ~ F_)(e(t) =

(L =" (y()DF-_ (" (y(t)) + " (y(t ))DF+(90*(y(t)) = DFs(t).
It follows that

hm X215, +tu) = X (fout, tin)-

rn
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Finally, the convergence of the last transition matrix in (19), X (T¢(x), t¢,,), to the correspond-

ing term of X (T'(x),0) (see also (18)), follows from tS,, — tout and 5,;, — Tout- O

As in Section 3.1, Lemma 24 implies that ¢! and P. are Lipschitz for all e. Then the following

result follows.

Lemma 25.

lim z. = ;.
e—0

Proof. Let us denote with z¥ the k-th component of z.. Let

liminf 2! = 2!, limsupz! =7

e—0 e—0

1

1

and let z., and x., be two sequences such that lim, oz! = z' and lim.,_oz! = T'. From z,

and z., we can extract convergent subsequences which we sill denote as z., and z.,. Let
(22) lim z., =z, lim z., =T.
€;—0 es—0 -
As in Lemma 14, using the fact that P, is Lipschitz for all €, we obtain that P(z) = z and P(T) = T,

so that x =T = ;. This proves convergence of the first component of z. to the first component of

Z1. The proof for the other components is done in a similar way. O

Lemma 24 and Lemma 25 together with continuity of X. with respect to x implies that
X(T¢,0,z.) has all eigenvalues less than 1 and one equal to 1 (since 7. is periodic). This im-

plies that . is asymptotically stable and hence isolated, and Theorem 16 follows.

Remark 26. In case there are multiple sliding segments, and possibly also crossing, combining
together the results of Theorems 16 and 6, then Theorem 5 holds for these scenarios. It should be
appreciated that, see [8, Theorem 2.8], for an asymptotically stable periodic orbit of (1) with multiple
sliding segments on the plane S, the multipliers are still 1,0, all other multipliers being less than 1

in absolute value and different from zero.

4. CONCLUSIONS

In this paper we have considered n dimensional DRHS systems with a discontinuous co-dimension
one plane S separating two regions R_ and R;. We have further assumed that this discontinuous
system has an asymptotically stable periodic orbit 7. Our main result shows that if « consists
of arcs on S and/or on R_ and R4, but does not lie entirely on S, then a regularization of the
discontinuous system also has a unique asymptotically stable limit cycle, converging to v as the
regularization parameter goes to 0. The case of v lying entirely on S remains to be considered.

Finally, we stress that, our switching manifold is a codimension one plane. The case of higher
co-dimension switching manifold (say, the intersection of two planes) is considerably more complex

(e.g., see [7]), and remains to be considered as well.
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APPENDIX A

Proof of Lemma 18. Let x € Bs(Z1) and denote with ¢ (x) the solution of (1) and with ¢!(z) the
solution of (3). Since in R_, F_ = F, at time t = t{,,, ¢} (x) and ! (z) meet S_. transversally in a
point z¢,, so that VAT F_(z5,) = VAT F.(25,) > 0. Then both ¢!(z) and ¢} (z) enter the boundary
layer S = {z € R" s.t. — e < h(x) < €}. In particular, there exist &, € S and #;; > 0 such that
wéi” (x) = &ip, and lime g 25, = Tin. For t > tins ob(z) starts sliding on S until it meets I,y at
time foue: cpé"“t () = Zout € S N1l In order to show uniform convergence of ¢! to ¢f, we need
to study the limiting behavior of ¢! inside S and we do this via singular perturbation theory. Let
e1 = (1,0,0,...)7, then h(z) = elx = ;. Let y = ETx with E = (ea,...,e,) € R* (™D where ¢;
is the 4-th canonical vector of R”. When x is inside the boundary layer the function ¢ = ¢(%) is
strictly monotone, so that x; in [—¢, €] can be expressed as a function of ¢ in [—1,1]. Then we can

consider the new variables (¢,y) and split (3) into fast and slow motion as follows

Eé :(b/(z)e{Fe (z)

(23) y =ETF.(x)

with z = %L and with initial conditions ¢(0) = ¢y and y(0) = yo. The transformation is done strictly

inside the boundary layer, hence the initial condition for the fast variable ¢ satisfies —1 < ¢g < 1,

while the initial condition for the slow variable yq is arbitrarily close to ETz§, and it converges to
ET4#,, for e — 0. Since ¢(z) is monotone increasing in (—1, 1), then z can be rewritten in function
of ¢, so ¢'(z) is a function of ¢ as ¢'(z) = g(¢). Denote the solution of (23) as (Pe(t),y(t)). If we

set € = 0 in (23), using the fact that 1 — 0 (while —1 < z < 1), we obtain the reduced problem

0 =g(¢)et Fe((0,9)")

24
2y §=E"F((0,9)"),

with initial conditions ¢(0) = ¢o, y(0) = ET#;,, and with g(¢) = ¢'(z). The algebraic equation in
(24) has a unique solution in (—1, 1) for each y and this is given by the following smooth function of
y: o*(y) = %((0, y)T). Then, (24) is just the Filippov sliding differential equation on S with
vector field (5) and we denote its solution as (¢*(y(t)),y(t)). We claim that lim._,o(¢pe(t), yc(t)) =
(¢*(y(t)),y(t)) (while lim._oz;(t) = 0) uniformly in time in [t;, + 7, tout] Where foy; is such that
¢ (Y(tout)) = ¢*(ET#0ut) = —1 and n > 0. The uniform convergence is not immediate to verify
since we cannot use continuity of solutions with respect to the parameter e. We consider the fast

time 7 = é and the derivative with respect to 7. We obtain the following fast system

9

=@l Fula)
(25) dy T
E =cF FE ((E) N

with initial condition ¢(0) = ¢o, ¥(0) = yo. Notice that if (¢e(t), y(t)) solves (23), then (de(eT), ye(eT))
solves (25). If we set € = 0 we have the reduced fast system

% =g(0)eT F.((0,y(0)),
(26) ay
.

with initial condition ¢(0) = ¢¢ and y(0) = E7'#;, and with y as parameter. We denote the solution

of the reduced fast system as (¢(7,y(0)),y(0)). Notice that for ¢ =1, -1, g(¢) = ¢'(z) = 0.
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Lemma 27. Assume that S is attractive at the point (0,y), i.e., VhATFL((0,y)) < 0. Then
T

o*(y) = %(ty) is the unique equilibrium of system (26) in (—1,1). Moreover ¢*(y) is
: ~

globally exponentially stable in (—1,1).

Proof. Let y be fixed and rewrite the first of (26) as

do 1 1
7 = (M) (mad +b), —a=zel(Fy = F)(0,y) <0, b= el (Fy + F)(0,y),
so that % = ¢/(2(7))dr. The statement follows from the mean value Theorem for integrals

upon noticing that ¢'(z(7)) is strictly positive in z € (—1,1) and it is zero only for z =1,—-1. O

The proof of Lemma 27 applies also to obtain the following Corollary.

Corollary 28. Let (0,Yout) = Tout- Then ¢*(Your) = —1 is the unique equilibrium of (26) in
[-1,1). Moreover all solutions in (—1,1) converge exponentially fast to —1. O

Definition 29. Let 6 > 0. The d-cube is the set of points (¢,y) such that

¢ —¢"(y)l <9,
with ¢*(y) as in Lemma 27.

For p < €, because of Lemma 27, there exists an a > 0 such that at time

(27) Tu = —alog(p),

the solution of (26) satisfies |¢(7) — ¢*(ETdi,)| < & for 7 > 7,. Moreover, since the solution of

(25) depends continuously on €, it converges to the solution of (26) for e — 0:
IH%((be (ET)a Ye (ET)) = ((5(7—5 ET'iin); Eszn)

Since &y, is a transversal crossing point then, for € sufficiently small and 7 > 7,,, S is attractive at
the point (0,yc(e7)) and ¢*(y.(er)) is in (—1,1). Using this and the fact that ¢* is smooth with
respect to y, we conclude that there exists an €, > 0 such that for € < ¢, and 7 > 7,, the following

is satisfied

(28)  [@e(e7) = &" (ye(er)| < |e(er) = d(r, B &in)| + |6(7, B in) — ¢* (BT drin) |+

16" (BT 2in) — 6" (ye(er))| < 3% = .

Then (¢(e7), ye(e7)) is in the p-cube. The following Lemma is in [20].

Lemma 30. Let 6 > 0 small. There exist us > 0 and €5 > 0 so that for € < €5 if the solution of
(23) enters the ps cube at t = t, it remains strictly inside the 6-cube as long as —1 < ¢* (yc(t)) < 1.

Proof. The proof of the Lemma is by contradiction and can be found in [20, Lemma 39.1]. It relies
on continuity of solutions of (25) with respect to the parameter € and on the asymptotic convergence
of solutions of Z—T = ¢'(2)eT F.(0,y) to ¢*(y). O

Lemma 30 together with (28) implies that, for n > 0, the solution of (23) remains inside the
n-cube, as long as —1 < ¢*(ye(t)) < 1. Let T, be such that ¢*(y.(T¢)) = —1. Then, for er, <t < T,

we can write

(29) Pe(t) = ¢ (ye(t)) + we(t),
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with lim. ,owe(t) =0 . Then y.(t) satisfies the following differential equation in [et,,, T¢]

e BT By (67 (0e(t)) + welt) (1),

and using continuity of the solution of the differential equation with respect to the state variable and
the fact that lim¢_,o we(t) = 0, we can conclude that y.(et) — y(t) uniformly in time in [e7,,, tous ()],
with to,s such that ¢*(y(teut)) = —1. Moreover, since y.(0) — ET%;,, for € — 0, the convergence
is uniform also in [0,e7,]. Hence lim .o y.(t) = y(t) uniformly in [0,7]. This together with (29)
implies uniform convergence of ¢c(t) to ¢*(y(t)) in [er,,T]. Notice that the convergence is not
uniform in [0, e7,] since ¢.(0) # ¢*(ET%i,). However if we consider the first component of the
solution of (3) and we denote it as 9 ;,(t), then 2§ ;. (t) — 0 ad € — 0 uniformly in time in [0, 7.
Hence (21,¢(t),ye(t)) — (0,y*(t)) uniformly in [0,T]. This completes the proof of Lemma 18. O

Proof of Proposition 21. We will reason by contradiction. Let xg € m and consider the two
flows ! (z0) and ¢} (z0). Let t; be such that ¢} (z¢) meets S in 7 in a neighborhood of z;,,, starts
sliding on S and at to > t; intersects Il transversally at a point xs in a neighborhood of x,y::
©r(z0) = 2 € My NS, and VT Fg(x2) < 0, with g(x) = VAT F_(x). Similarly, ¢%(z¢) intersects
S_. at an isolated point x§ so that VAT F,(x§) = VAT F_(2$) > 0. Let t§ be such that z§ = <p§ (x0).
Then the solution remains inside the boundary layer and for £ > #§ it crosses II,,; transversally at
a point 4 such that Vg7 F.(#) < 0, see Proposition 20. At time t? > #, the solution crosses S_. and
leaves the bot}ndary layer. Assume by contradiction that there are i;,t € (f, t5), with t, < g, so

that @10 = <p?‘2 (xo) are two other intersection point with II,,;. Then it must be
(30) g(12) =0, Vg"F.(21) >0, Vg'F.(22) <O0.

Because of uniform convergence of ¢!(xq) to ¢h(xo), we know that t§ — t; and £,i1,t2,t5 — to.
Using same notations as in the proof of Lemma 18, if we fix ¢ > 0 small, there there exists €,, small
such that for every € < ¢, the following must be satisfied

|6(ye (1)) = " (BT 22)| < |6(ye(t1)) — 6" (ye(t1))] + 0" (ye(f1)) — " (BT 22)| < .

Then F,(#) is arbitrarily close to Fs(0, ET25), where with Fs we have denoted the sliding vector
field on S. But at the exit point (0, ETz5) it must be Vg Fs(ETz2) < 0 and this is in contradiction
with (30). O
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