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ABSTRACT. We consider a smooth planar system having slow-fast motion,
where the slow motion takes place near a curve 7. We explore the idea of
replacing the original smooth system with a system with discontinuous right-
hand side (DRHS system for short), whereby the DRHS system coincides with
the smooth one away from a neighborhood of . After this reformulation, in
the region of phase-space where v is attracting for the DRHS system, we will
obtain sliding motion on v and numerical methods apt at integrating for slid-
ing motion can be applied. Moreover, we further bypass resolving the sliding
motion and monitor entries (transversal) and exits (tangential) on the curve
v, a fact that can be done independently of resolving for the motion itself.
The end result is a method free from the need to adopt stiff integrators or to
worry about resolving sliding motion for the DRHS system. We illustrate the
performance of our method on a few problems, highlighting the feasibility of
using simple explicit Runge-Kutta schemes, and that we obtain much the same
orbits of the original smooth system.

1. Introduction. In spite of many years of work on the subject, problems with
different time scales still present considerable difficulty for numerical methods. In
numerical analysis terminology, these problems are often stiff and/or possibly highly
oscillatory. Tt is widely acknowledged that classical explicit methods (say, explicit
Runge-Kutta schemes) are inefficient for numerical integration of stiff systems, and
in fact implicit schemes are routinely advocated for integrating these systems. But,
of course, implicit schemes come with some inherent drawbacks, notably the need
to use (in a form or another) the system Jacobian, and the fact that they tend
to damp solution components, which can be undesirable when trying to resolve
(highly) oscillatory behavior.

1.1. A prototypical model. In this work, we focus on planar slow-fast systems
of relaxation-oscillation type. The prototype of these systems is the well known van
der Pol equation:

P+ Bt —1)i+z=0, (1.1)
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dx

where the notation # stands for 7,

interest being 5 > 1.

In order to maintain some freedom on the friction term, and to obtain different
types of solution behavior, let us consider a broader class of problems similar to
(1.1), namely oscillators in the form

&+ Bgg(z)t + Uy(xz) =0, (1.2)

where g(+) is a smooth function of the position x, and U(-) is a smooth potential®.
Since 4 (g(z)) = gu(x)d, for these problems we perform the standard reduction
to Liénard form, followed by a change of time variable. That is, letting

=By —g(x))
- _%Ux )

and then changing time variable: ¢ = S7, but still using & for g—f, and finally letting
€= %, (1.2) is rewritten as the system

{m =y—g(z) (1.3)

and [ is a positive parameter, the case of

b= Bly — g(x) — {"?
Y

y :_Uw-

Clearly, in (1.3), z is the fast variable and y is the slow variable. The slow manifold
is just the curve y = g(z); for later reference, let us call v := {(z,y) : v = g(z)}.
We remark that in the formulation (1.3) the slow manifold is independent of 3.

Performing the above reductions on (1.1), one obtains the familiar singularly
perturbed form of the van der Pol oscillator:

{ej: =y—(23/3—1x) (1.4)

y = =T,

with 0 < ¢ < 1. It is well known (e.g., see [3]) that —aside from the origin—
solutions of (1.4), hence of (1.1), approach an asymptotically stable periodic orbit
with asymptotic phase. Indeed, by rewriting the system as in (1.4), the periodic
orbit closely follows (it is O(e)-close) the two outer branches of the cubic y =
23 /3 — x, the slow motion phase, and there is fast motion along the connecting arcs,
where x changes rapidly. Again, this is very well known, see [3].

From the numerical point of view, for ¢ < 1 the van der Pol system (1.4) is
very stiff, and even sophisticated explicit integrators, say those of Matlab, cannot
satisfactorily /efficiently resolve the solution profile, the difficulty arising during the
slow motion phase of the integration?.

Example 1.1. Using the Matlab non-stiff integrator ode45 (based on explicit
Runge Kutta, RK, schemes) and the Matlab recommended integrator for stiff prob-
lems, ode15s (based on the Numerical Differentiation formulas), we obtain the
following outcome. For 8 = 50, with initial condition (v/3,0), on the time interval
[0, 1.8] (roughly, this is over one period), and with relative and absolute error tol-
erances of 1076, ode45 takes 10497 steps, while ode15s takes 443 steps and 25% of
the computing time. For f = 100, ode45 takes nearly 40000 steps, while odel5s
requires 485 steps, and 10% of the computing time.

LOf course, for B = 0, one has conservation of energy % [%(m)2 + U(z)] = 0.
2Indeed, the van der Pol oscillator is the standard example provided in the Matlab documen-
tation to exemplify stiffness.
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For the van der Pol system (1.4), sev-
eral authors have considered replacing
the cubic term z®/3 — x with a piece-
wise linear function; e.g., see [5, 4, 6]. o2
For example, one could take the piece- )
wise linear (pwl) interpolant at the pairs
of points (—2,-2/3), (—1,2/3), and
(-1,2/3), (1,—2/3), and then (1,—-2/3) o
(—2,2/3), as in the figure on the right, o
though other choices of similar type may
be done (e.g., see [9]).

-2 -1‘5 -‘1 -0‘5 “7 0‘5 i 1‘5 2
Replacing the cubic with piecewise
linear

Using the same Matlab integrators as
above, for (1.4) with this modified pwl
reformulation, now gives us these re-
sults. For 8 = 50, initial condition at o
(3/2,0), on the interval [0,1.9] (there e
is a slight increase in the period), and
relative and absolute error tolerances
of 1075, ode45 takes 7945 steps, while 0
ode15s takes 388 steps and 66% of the .
computing time. For § = 100, oded5
takes nearly 30000 steps, while odel5s
requires 387 steps, and 8% of the com- s
puting time. For g = 100, the two so-
lution profiles, with the original formu-
lation and the modified one, are on the
right.

— Cubic

——Piecewise Linear

L L L L L L L L L
25 -2 15 -1 05 0 05 1 15 2 25

Cubic vs. piecewise linear limit cycles

The key feature of the reformulation of the van der Pol system described in
Example 1.1 is that an a-priori replacement is made, based upon the shape of
the curve . Of course, one obtains a different model, one whose dynamics can
(or not) be faithful to the dynamics of the original van der Pol problem. [For
example, see [9] for a situation where this reformulation gives misleading results].
Regardless, apparently the reformulation did not produce dramatic computational
savings insofar as numerical integration is concerned, nor it alleviated the concerns
of stiffness or the inappropriateness of using explicit schemes.

In this work, for (1.4), and more generally for (1.3) and related problems, we
propose a rather different modification of the system, for ¢ < 1, one which will
allow us to: use explicit RK schemes, obtain a meaningful saving in computing
time, and recover a faithful solution profile and dynamical behavior for several
different systems, stiff and highly oscillatory.

1.2. Our basic idea. Considering the van der Pol oscillator as a guiding example,
an important consideration is that the approach to the slow manifold is asymp-
totic; that is, solution trajectories approach the periodic orbit tangentially (with
asymptotic phase). However, if we consider a sufficiently large cylinder-like region
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enclosing the curve 7, then solution trajectories will enter this cylindrical region
transversally. This simple consideration prompted us to exploit the following idea.
e Consider a “cylindrical” neighborhood of v of “radius” p, call it C(p), and define
a modified vector field as follows.

(i) Maintain the original vector field at points outside C(p), and on 9C(p).
(i) Define the vector field at a point P inside C(p) to be equal to the vector field
at the closest point to P on 9C (see below).
(iii) Noting that, for p > 0, the new system has the curve v as a discontinuity
manifold, rephrase the modified problem as a systems with DRHS in the
sense of Filippov.

In this work, we considered two possibilities to define C(p) and the associated
concept of distance® of a point P inside C(p) from dC: (a) Tubular neighborhood,
and (b) Shift neighborhood.

(In the figures below, we illustrate these constructions relative to the van der Pol
problem.) Let v = {(x,y) € R?> : y = g(x)}. Let p > 0 be a given positive value,
and define C(p) = {P = (x,y) € R?: d(P,v) < p}, where d(P,~) is the “distance”
of the point P from the curve ~.

FIGURE 1. Tubular (left) and Shift (right) neighborhoods C(p),
p=0.1.

(a) Tubular neighborhood. This is the classical concept adopted in dynamical
systems studies (e.g., see [3]). Here, d(P,~) is the true Euclidean distance of
the point P from the curve v; that is, C(p) is obtained by considering points
within £p along the unit normal directions at points on . This defines the
tubular neighborhood of 7. See Figure 1, where p = 1/10, C(p) is the cylinder-
like region between the two blue curves, and + is traced in black inside C(p).
Of course, C(p) will shrink onto v as p goes to 0.

(b) Shift neighborhood. Here the distance is measured only along the y-axis. In
other words, for a given point P = (x,y), then we use d(P,v) = |y — g(x)|.
Thus, C(p) is obtained by shifting, up to +p, the y-values on . Again, see
Figure 1.

3This is an abuse of language, since the case of (b) defines a distance after projecting out the
z-coordinate
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Remark 1.2. From the geometrical point of view, the classical tubular neigh-
borhood is probably more appealing than the “Shift”-neighborhood. The latter
choice has been adopted in singular perturbation studies (e.g., see [10, Section 39,
p.255], where it is called p-tube) as well as in regularization studies for discon-
tinuous systems (e.g., see [8]); in any case, it is considerably simpler to build the
shift-neighborhood than the tubular neighborhood. We will see below some other
computational advantages/disadvantages of these two choices.

Once we have C(p), the vector field for the modified system is uniquely defined,
except on 7 itself, since points on v are at “distance” p from two points on 9C. In
other words, we have created a DRHS system, where + is the discontinuity curve.

Regardless of having adopted the tubular or shift neighborhood construction, the
DRHS system we have is built as follows. As usual, let v = {(z,y) : y = g(2)}
(e.g., g(x) = x3/3 — x, for van der Pol), let P = (x,y) be a given point, and
let d(P, ) be defined according to the tubular or shift neighborhood constructions
above. Moreover, let h(z,y) =y — g(z).

If d(P,7) > p, then the vector field at P is the same as the original vector field
(say, the van der Pol vector field). When 0 < d(P,v) < p, the vector field at P is
the vector field at the point on dC(p) “closest” to P. Again, the meaning of closest
depends on the choice of neighborhood.

(a) Tubular. Then, the closest point on dC(p) to P, is the point on IC(p) at
minimal Euclidean distance from P, along the normal direction taken at the
projection of P on 7. Note that this simple construction keeps the vector field
constant at points inside C(p) along the normal directions to the curve v, by
retaining the values one has at points at distance 4+p from ~ along the unit
normal to . See Figure 2. In principle, one may also use a smoother transition
at dC(p), but we have not attempted a more refined implementation.

(b) Shift. Since h(z,y) # 0, then the closest point on dC(p) to P is simply
the point of coordinates (z,g(z) + p sign(h(x,y)). Again, see Figure 2 for
elucidation.

L L L L L L L L L L L L
-18 -175 -7 -1.65 -16 -1.55 -15 -145 -14 -7 -1.65 -16 -155 -15

FIGURE 2. Vector fields inside C(p) for both tubular (left) and shift
(right) neighborhoods.

Next, suppose p > 0. At any point P = (z,y), let F_ and F; be the two vector
fields associated to the two cases h < 0 and h > 0, respectively (that is, below and
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above ). We stress that these two vector fields coincide with the original vector
field, except when d(P,y) < p, where they are defined according to the above
construction.

Example 1.3. To clarify, suppose we have chosen the shift neighborhood for the
system

i =1y - g(x))

y:_I,

(1.5)

and that we are selecting p = e (this is the choice we do in practice). Then, our
problem gets written as

&= {%(y —g(x)) if h(z,y) < —e

or
-1 it —e<h(z,y)<O0,

s {Fu—g@) i hizy) > e ond (L6)
1 if 0<h(z,y)<e,

Yy=-—x.

Regardless of how we choose the neighborhood of v, we have the DRHS system:

r;] =F (z,y), when h(xz,y) <0, and
] (1.7)
r;] =F.(z,y), when h(z,y)>0.
When h(z,y) = 0 (on ), the problem is not defined in a classical sense, and we
resort to Filippov theory to define a solution ([2]). In particular, let
_ — 0z
Vh = { : ]
denote the normal direction at points on (and in a neighborhood of) v, and consider
the quantities
w; = VATF_ and wy = VATF, . (1.8)
Then, if at points (x,y) € v, w1 > 0 and wy < 0, and are bounded away from
0, we have that v is attractive and it will be reached in finite time from nearby
initial conditions; in this case, upon reaching -y, solution trajectories will be forced
to remain on it with (sliding) vector field given by

T
__ VM wm g
VhT(F, —F+) w1 — Wwsa
If, instead, a solution trajectory reaches a point on v where wywy > 0, then the
trajectory will cross v with vector field F if wi,ws > 0, or vector field F_ if
w1, ws < 0. Finally, points on v where one of wy or wy is equal to 0 are potential
tangential exit points from ~: we should expect a trajectory reaching such a point
to leave v with vector field F_ if w; = 0 and F if we = 0.

F,=(1—-a)F_ +aF; where «

Remark 1.4. There is a substantial difference between our reformulation and that
obtained by replacing v with a different functional form (as in the reformulation of
Example 1.1). We sought a reformulation which would not sacrifice the accuracy
of the solution profile in the phase plane, while at the same time replacing the
asymptotic approach to (parts of) v with finite time approach. Coupled with sliding



SMOOTH TO DISCONTINUOUS SYSTEMS 2941

mode theory, we can thus obtain transversal entries on the relevant portions of ~
and tangential exits when sliding motion ceases to be attractive.

In Section 2, we give an overview of two different ways to implement the above
idea. Then, in Section 3 we present results of our numerical simulation on several
problems: the van der Pol oscillator, a oscillatory problem of type (1.3), and the
FitzHugh-Nagumo problem.

Remark 1.5. We stress that we are transforming a smooth system into one with
discontinuous right-hand side, and this may appear a bit odd. Indeed, in the lit-
erature on systems with DRHS, the opposite operation is much more commonly
adopted: regularization, or smoothing, whereby one modifies a system with DRHS
into a smooth one. For example, suppose we have a system like (here, x € R™ and
h:R™ = R)

#=F_(x), when h(z)<0 and

&= Fi(x), whenh(z)>0.

Then, a standard process of regularization consists in replacing this system with
the globally defined system

b= (1= ag(@) F- (1) + an(2) Py (2) (1.10)

and where o, (x) interpolates between 0 and 1 in the interval [—n, 1], with a desired
degree of smoothness, and 7 defines a small interval near 0.
For example, suppose we use the following C’-interpolant:

1 if h(x)>n
ap(z) =49 1/24 h(z)/2n if h(x) € [-n,7] (1.11)
0 if h(z) <-n.

Curiously, when we replace the DRHS system (1.6) with its regularized version as
above (using (1.10) and (1.11) and n = €), then, a simple computation tells us that
we will obtain the original system (1.5) everywhere.

2. The overall numerical method: Overview. We consider the DRHS system
(1.7), and look at two possible ways of proceeding in order to approximate the
solution. We will assume that trajectories of (1.7) enter v transversally and exit -
tangentially, according to the well defined 1st order theory of Filippov.

2.1. Method 1: Sliding on 7, Entry and Exit. This method is nothing but
just solving the DRHS system. We can do that by considering an event-driven
technique, whereby a numerical technique identifies where we are with respect to -
and decides on what is the correct vector field to consider: F_, F',, or Fy. We locate
accurately intersection points with + and decide on whether we should cross v or
slide on it by looking at the w;’s in (1.8). During sliding motion, we use a projected
RK integrator, and monitor/locate tangential exit points, otherwise we just use a
standard 4th order RK integrator. All integrations can be done with adaptive or
constant time stepping.

Overall, the implementation of this method is standard, see [1]. The most time
consuming part is the integration during sliding motion, since projected schemes
have to be used in order to avoid (numerical) chattering phenomena. Because of the
ue of projected schemes, with an underlying explicit time stepping scheme, when
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using this approach the end behavior is similar to that of the explicit scheme for
the unmodified problem.

2.2. Method 2: Entry and Exit without sliding. In this method we bypass
integration during sliding motion. It is easy to describe it assuming that we have
computed (a-priori) the tangential exit points, that is the points satisfying w; = 0
and/or wy = 0, while coming from sliding motion. Then, upon reaching a point on
~ where sliding motion should take place (a transversal entry), we directly trace the
curve from the entry to the relevant exit point, after which we will continue with
the appropriate exit vector field (i.e., F_ if wy = 0 or Fy if wo = 0) and a 4th order
RK integrator. By construction, the integrator is used only in the fast motion part
of the dynamics, and hence an explicit integrator is completely adequate.
There are a few important observations to make for these methods.

(i) For our discretization, and with both Methods 1 and 2, we always get perfect
limit cycles. This is because we always trigger the integrator from the same
exit point(s), hence —for any mode of integration, with constant or variable
stepsizes— the method will render the same solution profile. (Of course, dif-
ferent values of p and/or of the time-step and/or of the error tolerances, will
give (slightly) different orbits; but, once these values are fixed, the numerically
computed periodic orbits will all be identical).

(ii) With Method 2, since there is no integration for the sliding motion (i.e., for
the slow motion), there is no numerical difficulty associated to resolving it
(cfr. with 2.1).

(iii) With Method 2, since there is no time integration for the sliding motion, the
concept of time, specifically that of period of the solution, is somewhat lost.
This reflects the fact that we are really recovering the orbit in phase space,
and not computing a trajectory from which we then approximate the orbit.
In our case, the orbits are periodic, and what we can recover is the length of
the orbit, but not the period in the original time variable.

Observation 2.1. Ideally, we would like to enter in the cylindrical neighborhood of
v precisely when the exact solution of the (unmodified) problem does, and abandon
the neighborhood also when the solution does. Since —during slow motion— the exact
solution is O(e)-close to v, then, in order for our method to be advantageous, we
must have p = O(e). Although the constant in the O term depends on the problem,
in our computations we chose precisely p = €, which worked rather well.

We are ready to summarize the key characteristics of our approach, and its
advantages and disadvantages. We do this regardless of whether we chose the
tubular or shift neighborhood, but of course only think of the truly advantageous
ways to implement our approach, that is as Method 2: Entry and Exit without
sliding.

e The asymptotic approach to the limit cycle has been replaced by a finite

time approach to the curve 7 (the slow manifold).

e In the DRHS reformulation, there is no need to resolve the slow motion.

e Once we have chosen ¢, and p, our reformulation gives an inherent error in
the vector field, which is O(e) close to the original. In terms of the stepsize
of a numerical scheme, we can only expect convergence with respect to the
reformulated problem, not the original one. See Figure 8 for elucidation of
the inherent O(e) error.
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3. Examples. Here we present results of simulations with our approach, highlight-
ing benefits and shortcomings, on several problems of fast-slow motion. In Example
3.1, we consider both possibilities to build the neighborhood of «: tubular and shift
neighborhood. For the other Examples, we consider only the tubular neighborhood
construction.

Example 3.1 (van der Pol). This is the van der Pol oscillator
i—pl—ai+r=0
rewritten as a system like in (1.4):
{e:z': =y— (23/3 —x)
y =-T,

with e = 1/4%. In the results below, we have fixed 3 = 10.

In Figure 3 we show the well known limit cycle, and superimpose on it the curve
v ={(z,y) : y=23/3 —x} with enlargement of the right corner, when the limit
cycle departs from closely following ~.

FiGURE 3. Example 3.1. Van der Pol limit cycle: g = 10.

In Figure 4 we show the construction of the modified vector fields, relative
to the (a) tubular and (b) shift neighborhoods of v, of radius p = 1/100. It
is plainly obvious that (portion of) the left and right branches of the cubic are
attracting for the modified DRHS system, regardless of the choice of cylindrical
neighborhood. Instead, the choice of cylindrical neighborhood C(p) has an im-
portant impact on the dynamics of the DRHS system, since exit points in the
two cases are rather different. In this specific case, the exit points from sliding
motion using the tubular neighborhood are at (1.4142...,—0.4714...) (exit vector
field is F_) and at (—1.4142...,0.4714...) (exit vector field is Fy); the exit val-
ues remain close (but not identical) to these for all e, for as long as p = e. In-
stead, using the shift-neighborhood, the exit points from sliding motion occur when
= +(1 ++/5)/2 ~ +1.618 and of course y = g(z) ~ F0.206 (these values can be
easily computed exactly, imposing w; = 0 or we = 0). We also observe that, as
long as p = € (which is our default choice), the exit points for the case of the shift
neighborhood will remain the same for all €; this fact may be undesirable since it
implies that we will not be fully bypassing the slow-motion integration (we will be
leaving the sliding regime too soon).
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1

05

FiGURE 4. Example 3.1. Modified vector fields for the DRHS re-
formulation: tubular (left) and shift (right) neighborhoods, p =
0.01.

In Figures 5 and 6 we show the results obtained with Methods 2.1 and 2.2,
relative to the tubular neighborhood C(p). The value of the radius of the tubular
neighborhood is p = 0.01. Figure 5 show the results obtained with Method 2.1:
sliding on v, and we also show an enlargement. around the rieht exit noint.

Ficure 5. Example 3.1. Method 2.1: DRHS reformulation and
sliding motion, tubular neighborhood.

Figures 6 and 7 refer to Method 2.2: no sliding motion integration, we move the
trajectory from entry-to-exit point(s). Again we show an enlargement near the right
exit point. Quite clearly, there is no slow-motion integration, nor need to project
during sliding motion. In this case, we use about 1/10-th as many integration points
as for Method 2.1. Figure 6 refers to the tubular neighborhood, and Figure 7 to the
Shift neighborhood. In the first case, for the given value of 7 = 1072, 56 integration
steps are needed for the periodic trajectory, in the second case 93 steps are required,
confirming that by the time we left v we had not bypassed the slow motion.
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FiGURE 6. Example 3.1. Method 2.2: DRHS reformulation and no
sliding motion. Tubular neighborhood for C(p). Stepsize 7 = 1072,
and 57 steps are needed for the periodic trajectory.

FIGURE 7. Example 3.1. Method 2.2: DRHS reformulation and no
sliding motion. Shift neighborhood for C(p). Stepsize 7 = 1072,
and 93 steps are needed for the periodic trajectory.

Finally, Figure 8 shows an enlargement near the “left entry point” for Method 2.2
with the tubular neighborhood for C'(p), and compare that trajectory (shown also
in Figure 6) with the solution of the unmodified problem. The fact that we used
a piecewise constant vector field chosen for our modified approach (inside C(p)) is
clearly appreciated, and as a consequence the fact the we have to remain O(e) close
to the exact solution. Computations were performed with a 4th order Runge-Kutta
schemes (the 3/8-th rule) with constant stepsize of 10~%.

Example 3.2 (Oscillatory). This is a “corrugated van der Pol” oscillator, used as
illustration of a problem with high frequency oscillations along the limit cycle. We
only consider the tubular neighborhood construction.

In the reformulation (1.3) the system is

{ex' =y [(:173/3 —o)(1+ 4 cos(ﬂx))]

y ==,
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/

0.7 -

—— Exact Solution
—y=g(x)
0705 X Our method

-071

-0.715

0725 , ,

1 1 1
-2.025 -2.02 -2.015 -2.01 -2.005

FIGURE 8. Example 3.1. Enlargement of entry on « within C(p).
Tubular neighborhood, p = 0.01, 3 = 10. Stepsize 7 = 107%.

where ¢ = 1/32. The case of interest to us being 1 < f3, so that there are small
amplitude, high frequency, oscillations around the limit cycle. In Figure 9 we show
the limit cycle, and superimpose on it the curve v with enlargement of the upper
left part, when the limit cycle departs from closely following ~.

FiGUurE 9. “Corrugated” Van der Pol limit cycle: g = 20.

For our reformulation, this is a harder problem than Example 3.1, in large part
because the value of p impacts to a great extent the entry and exit points on the
curve 7. To exemplify, in Figure 10 we show the modified vector fields for the DRHS
reformulation, in the case of § = 20 and p = 0.01 and p = 0.001, respectively.
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The key difference in the two cases of
p = 0.01 and p = 0.001 is when ~ loses
attractivity for the DRHS reformulation.

Namely, for p = 0.001, the curve v ceases

to be attractive at x =~ =41.7, whereas

for p = 0.01, there are repeated tan-

gential exit points at x ~ +£1.235 and

x ~ +0.965; see figure on the right. We
note that if we abandon the slow mani-
fold at  ~ £1.7, then we end up hav-
ing to integrate the system during its slow
motion phase, and have a very stiff prob-
lem. Again, this confirms that the choice

p = O(e) is convenient.

FIGURE 10. Modified vector fields, p = 0.01 (left) and p = 0.001 (right).

)7 <

<

L N L L L L
45 4 13 42 1 1 09 08 07 06 05

Exit points, case of p = 0.01.

Finally, in Figure 11, we show the results of Method 2.2, that is when we adopt
The

the DRHS reformulation but no sliding motion, for the case of p = 0.01.
original problem with slow motion around an oscillating curve is easily solved.

0.65

FIGURE 11. Method 2.2 on (3.1).
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Example 3.3 (FitzHugh-Nagumo). As last example, we look at the FitzHugh-
Nagumo (or Bonhoffer-van der Pol) system
@ —wv-afS-yta (3.2)
y =z+07-038y,
where a describes an external stimulus and € = 1/32. We observe that this system
is not in the form (1.3).

We fix the value a = 0.5,
for which the system exhibits
relaxation-oscillations, and § =
10. The figure on the right shows
the solution profile. Motion is
counterclockwise.  Clearly, the
solution follows closely the two of
branches of the cubic y = =z —
3 /3 + a.

Limit cycle of (3.2), and slow manifold.
Again, we only consider the tubular neighborhood reformulation. Our method
on this problem behaves quite similarly to Example 3.1, and we simply show the
vector fields resulting from the DRHS reformulation with p = 0.01, in Figure 12,
and the results obtained with Method 2.2, in Figure 13.

15

R s

051

A F
o — - F
4 \ F
7 N +
—y=0(x)
_0_5 L L L L L L L L L
-25 -2 -15 -1 -05 0 05 1 15 2 25

FIGURE 12. Modified vector fields for (3.2).

4. Conclusions. We have presented a method in which a smooth system with
relaxation-oscillation behavior is replaced by a system with DRHS, in a way which
allowed us to adopt sliding mode techniques on a curve v in R?. A key ingredient of



SMOOTH TO DISCONTINUOUS SYSTEMS 2949

16

14

12

-2.5 -2 -1.5 -1 -0.5 0 05 1 15 2 25

FIGURE 13. Method 2.2 for (3.2).

our idea consisted in exploiting the replacement of asymptotic approach to v with a
finite time approach. We further bypassed resolving for the sliding motion, and sim-
ply instantaneously moved along the curve 7 from a transversal entry to a tangential
exit point; so doing, the slow motion portion of the dynamics is bypassed, with ob-
vious simplifications in the numerical integration. We gave numerical evidence that
our results accurately recover the phase space solution profile.

The above said, our work must be considered a preliminary exploratory attempt,
and more work will be needed in order to understand the reach of applicability of
the approach. For example, we have exploited having a curve 7 in R? along which
there is slow motion. Also, a detailed analysis of the interaction between system’s
parameters and the radius p of the tubular neighborhood would be surely desirable.
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