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Abstract. We consider a piecewise smooth system in the neighborhood of a co-dimension
2 discontinuity manifold Σ (intersection of two co-dimension 1 manifolds). Within the
class of Filippov solutions, if Σ is attractive, one should expect solution trajectories to
slide on Σ. It is well known, however, that the classical Filippov convexification method-
ology does not render a uniquely defined sliding vector field on Σ. The situation is further
complicated by the possibility that, regardless of how sliding on Σ is taking place, during
sliding motion a trajectory encounters so-called generic first order exit points, where Σ
ceases to be attractive.

In this work, we attempt to understand what behavior one should expect of a solution
trajectory near Σ when Σ is attractive, what to expect when Σ ceases to be attractive
(at least, at generic exit points), and finally we also contrast and compare the behavior
of some regularizations proposed in the literature, whereby the original piecewise smooth
system is replaced –in a neighborhood of Σ– by a smooth differential system.

Through analysis and experiments in R
3 and R

4, we will confirm some known facts,
and provide some important insight: (i) when Σ is attractive, a solution trajectory indeed
does remain near Σ, viz. sliding on Σ is an appropriate idealization (though, in general,
one cannot a priori decide which sliding vector field should be selected); (ii) when Σ
loses attractivity (at first order exit conditions), a typical solution trajectory leaves a
neighborhood of Σ; (iii) there is no obvious way to regularize the system so that the
regularized trajectory will remain near Σ as long as Σ is attractive, and so that it will
be leaving (a neighborhood of) Σ when Σ looses attractivity.

We reach the above conclusions by considering exclusively the given piecewise smooth
system, without superimposing any assumption on what kind of dynamics near Σ (or
sliding motion on Σ) should have been taking place. The only datum for us is the original
piecewise smooth system, and the dynamics inherited by it.

1. Introduction

Consider the following piecewise smooth (PWS) system:

(1.1) ẋ = f(x) , f(x) = fi(x) , x ∈ Ri , i = 1, 2, 3, 4,
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for t ∈ [0, T ], and where, for i = 1, 2, 3, 4, Ri ⊆ R
n are open, disjoint and connected sets,

and Rn =
⋃

iRi. System (1.1) is subject to initial condition x(0) = x0, prescribed in one
of the regions Ri’s. In (1.1), for any i = 1, 2, 3, 4, each fi is smooth in Ri, so that there
is a classical solution in each region Ri, but the solution is not properly defined on the
boundaries of these regions. We assume that these regions are separated (locally) by an
implicitely defined smooth manifold Σ of co-dimension 2. That is, we have

(1.2) Σ = {x ∈ R
n : h(x) = 0 , h : R

n → R
2} ,

and for all x ∈ Σ: h(x) =

[

h1(x)
h2(x)

]

, ∇hj(x) 6= 0, hj ∈ Ck, k ≥ 2, j = 1, 2, and

∇h1(x),∇h2(x), are linearly independent on (and in a neighborhood of) Σ. It is use-
ful to think of Σ = Σ1 ∩Σ2, where Σ1 = { x : h1(x) = 0}, and Σ2 = { x : h2(x) = 0}, are
co-dimension 1 manifolds. Finally, without loss of generality we will henceforth use the
following labeling of the four regions Ri, i = 1, 2, 3, 4:

R1 : when h1 < 0 , h2 < 0 , R2 : when h1 < 0 , h2 > 0 ,

R3 : when h1 > 0 , h2 < 0 , R4 : when h1 > 0 , h2 > 0 .
(1.3)

For later use, we will also adopt the notation Σ±

1,2 to denote the set of points x ∈ Σ1 or

Σ2, for which we also have h2(x) ≷ 0 or h1(x) ≷ 0. E.g., Σ+
1 = {x ∈ Σ1 and h2(x) > 0}.

Finally, we will denote with

(1.4) wi
j(x) = ∇hi(x)

⊤fj(x) , i = 1, 2, j = 1, 2, 3, 4 ,

the projections of the vector fields in the normal directions to the manifolds.

For (1.1), a classical solution in general cannot exist on the boundaries of the given
regions, and several concepts of generalized solution have been proposed during the years
(see [4] for a beautiful exposition on different solutions concepts). We will restrict attention
to Filippov solutions, [15], consisting of absolutely continuous functions whose derivative
is in the convex hull of the neighboring vector fields almost everywhere.

1.1. Co-dimension 1. In the case of one single discontinuity manifold of co-dimension
1, Filippov methodology has provided a widely accepted mathematical framework to un-
derstand motion on the discontinuity surface.

Consider a discontinuity manifold Σ = {x ∈ R
n : h(x) = 0 , h : Rn → R }, separating

two regions R1 (where h(x) < 0) and R2 (where h(x) > 0), with respective vector fields
f1 and f2. Assuming that Σ is attractive, a condition that is satisfied when

∇hT f1 > 0 and ∇hT f2 < 0 , x ∈ Σ ,

then sliding motion on Σ takes place with vector field

(1.5) fF := (1− α)f1 + αf2 , α =
∇hT f1

∇hT (f1 − f2)
.

Filippov theory provides also first order exit conditions: if one of f1 or f2 (but not both)
become tangent to Σ, then α = 0 or 1, Σ loses attractivity, and the solution trajectory
generically will leave Σ tangentially (and smoothly) to enter in R1 with vector field f1,
or in R2 with vector field f2. Furthermore, it has been understood for a long time that
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the limiting behavior of the iterates obtained with Euler method near Σ leads to the
selection of the Filippov sliding vector field itself (e.g., see [26], Chapter 3, Section 1.1)
whenever Σ is attractive, and that the Euler iterates leave a neighborhood of Σ when Σ
loses attractivity.

1.2. Co-dimension 2. However, when Σ is of the form (1.2), an obvious lack of unique-
ness (in general) arises in the construction of a Filippov vector field sliding on Σ. In fact,
on Σ, Filippov methodology now leads to the requirement that the vector field satisfies
the following (for positive values of λ1, . . . , λ4):

fF := λ1f1 + λ2f2 + λ3f3 + λ4f4 , where





w1
1 w1

2 w1
3 w1

4

w2
1 w2

2 w2
3 w2

4
1 1 1 1













λ1

λ2

λ3

λ4









=





0
0
1



 ,
(1.6)

which is clearly an underdetermined system of equations. Indeed, even when Σ is attrac-
tive, in general (1.6) has a one parameter family of solutions and hence of possible Filippov
sliding vector fields.

Remarks 1.1.

(i) Characterization of attractivity of Σ in the present co-dimension 2 case is consid-
erably more elaborate than in the case of co-dimension 1. We will assume that Σ
is either attractive by subsliding (see [10] ) or attractive by spiralling (see [7]), in
the form recalled below in Definition 1.2.

(ii) In the present case, the general lack of uniqueness is not resolved by considering
the limiting behavior of the Euler iterates near Σ. In fact, as already noted in [15],
the limit of the Euler iterates selects one specific element of the one-parameter
family of Filippov solutions.

Definition 1.2. Σ (or a portion of it) is attractive upon sliding if it is reached in finite
time by solution trajectories for any given nearby initial condition, and further there is
sliding motion towards Σ along at least one of the Σ+

1,2. When there is sliding motion

towards Σ along all of the Σ±

1,2’s then we say that Σ is nodally attractive. Σ (or portion

of it) is attractive by spiralling if Σ is reached in finite time by trajectories for any given
nearby initial condition, and there is clockwise or counter clockwise motion around Σ (and
no sliding on Σ±

1,2) for the functions h1(x) and h2(x).

When Σ is attractive, in the literature there have been at least two systematic proposals
to select the coefficients λi’s in (1.6), leading to sliding vector fields of Flilippov type on
Σ: the bilinear and the moments vector fields. The former has been extensively studied,
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see [1, 2, 10, 17] for example, and it consists in choosing the sliding vector field in the form

fB := (1− α)[(1 − β)f1 + βf2] + α[(1 − β)f3 + βf4] ,

(α, β) :

[

w1
1 w1

2 w1
3 w1

4

w2
1 w2

2 w2
3 w2

4

]









(1− α)(1 − β)
(1− α)β
α(1− β)

αβ









=

[

0
0

]

.
(1.7)

The moments method has been recently introduced in [9] and consists in solving the linear
system in (1.6), by appending to it the extra relation

(1.8)
[

d1 −d2 −d3 d4
]









λ1

λ2

λ3

λ4









= 0 , di = ‖wi‖2 , i = 1, 2, 3, 4 .

The two choices above generally lead to distinct solution trajectories, a chief difference
between them being the behavior of the bilinear and moments trajectories at so-called
generic tangential exit points. These were introduced in [10], and are values of x ∈ Σ,
where one (and just one) of the sliding vector fields on Σ±

1 or Σ±

2 is itself tangent to Σ
(exit vector field). The moments vector field automatically aligns with the exit vector
field, whereas the bilinear vector field does not.

An important question, and one which we will try to answer in this work is: what
should happen to trajectories of (1.1) in a neighborhood of Σ, when Σ loses attractivity
(according to generic first order exit conditions)?

1.3. Regularize. If natura non facit saltum1, then (1.1) is either a description of an
innatural system or a wrong model. Probably, whenever it is set forth, it is neither
innatural nor wrong, though it may be a little of both things, perhaps because the model
should be complemented by some missing information (the 20 years old exposition of
Seidman in [23] is still worthwhile reading). Regardless, the above 18th century motto
suggests considering a regularized version of (1.1), by replacing it with a smooth differential
system. Of course, we must assume that we do not have knowledge of where (1.1) comes
from, if from anywhere at all, otherwise we should surely use this knowledge. However,
in the absence of further insight, it is not obvious how one should globally regularize the
system, and several possibilities for globally regularizing the system have been proposed
in the literature.

Arguably, the most studied regularization techniques are what we may call the “singular
perturbation” and “sigmoid blending” techniques. The paper [24] was the first seminal
work on the singular perturbation approach, followed by the more recent works [18], as well
as [13], [16], [17] and, in the context of gene regulatory networks, [20]. The first systematic
exposition of blending was the beautiful work [1]. But, in the end, these techniques are all
rather similar and amount to a regularization of the bilinear vector field. This can be done
locally, just in a neighborhood of Σ, say using a cutoff function (as we do in Section 2),

1Linnaeus’ Philosophia Botanica, 1751
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or more globally, perhaps through use of hyperbolic tangent functions, tanh, to connect
different vector fields.

In this work, we are exclusively concerned with local regularizations, hence those that
alter the given problem only in a neighborhood of Σ. In this case, the above mentioned
regularization proposals share some common traits, the most important ones being that,
outside of a neighborhood of Σ, the regularized vector field effectively reduces to the
original vector fields, and that the regularization depends on a small parameter (or several
small parameters) in such a way that as the parameter(s) go to 0, the neigborhood collapses
onto Σ. The first fact is surely a reasonable property, since, away from Σ, there is a well
defined smooth vector field depending on where the trajectory is, be it one of the original
f1,2,3,4 or one of the Filippov sliding vector fields on the surfaces Σ1,2. The second fact
may be a bit more controversial, since the regularized trajectory will typically select a
specific sliding motion on Σ (when Σ is attractive), as the neighborhood collapses onto
Σ; however, as it is well understood, and as we will also see, different regularizations do
behave differently. As noted by Utkin ([26]), given that in a neighborhood of Σ there are
non-unique dynamics, the inherited dynamics on Σ (sliding motion) does depend on the
choice of regularization. But, this being the case, is there an appropriate way to evaluate
different regularizations? To answer this question, we must first decide how we should
evaluate dynamics.

1.4. Evaluate dynamics. The first observation is that when we evaluate the dynamics
of (1.1) we should distinguish between the two cases (i) and (ii) below.

(i) The PWS system (1.1) is just a “convenient” formalism: there is a “true” smooth
system, defined globally, but it is simpler to replace it by a PWS one. For example,
this is the case for problems arising in gene regulatory networks ([19], [5]). In these
cases, one knows what is the desired behavior in a neighborhood of Σ: it is the
behavior of the original problem! However, one must be careful in replacing the
true system by (1.1), since it is not clear that the behavior of a typical solution
of the purely PWS system reflects the dynamics of the original problem; this was
already noted in works such as [21] and [23] relative to a discontinuity surface
of co-dimension 1. But, then, does this discrepancy mean that representing the
original problem as a PWS one was not an appropriate modeling simplification
in the first place? Rather, the question is if and when the dynamics of the PWS
system might still be helpful in understanding the behavior of solutions of the
original problem. This paper is also a partial answer to this question.

(ii) The problem is genuinely piecewise smooth (as a real life or as a mathematical
model), or we do not have sufficient knowledge of an underlying “true” problem (if
any); for example, in bang-bang control, or in dry friction models or in the theory
of nonsmooth dynamical systems. In our opinion, in these cases when there is no
(knowledge of an) underlying “true” dynamics that one is trying to recover, the
choices we make must be consistent with the PWS formulation. This is the case
in which we are interested.



6 LUCA DIECI AND CINZIA ELIA

The above consideration (ii) leads us to restrict to the model (1.1) as the system we
are given and it is this system that we will study. This realization motivates us (and it
has motivated us for several years) to look at the global properties of the discontinuity
surface, and to decide on what is appropriate based on whether or not the surface attracts
the dynamics of the PWS system for initial conditions off the discontinuity surface itself.
In our opinion, it is not easy to justify studying (1.1) by assuming a specific form of an
underlying system from where (1.1) arises as some form of limiting process. In other words,
whereas it is surely legitimate (and by no means trivial) to study the limiting behavior of a
specific choice of regularized vector field defined in a neighborhood of Σ, this may actually
have a restricted scope of applicability compared to (1.1). As already noted by Utkin
(see [25, p.44]), once one has replaced (1.1) with a smoothed version of it, the stability of
sliding motion on Σ is inherited by that of the dynamics of the regularized field. But, is
this consistent with the formulation (1.1)?

For the given PWS system (1.1), we believe that it is its dynamics near the discontinuity
manifold that determines the appropriate behavior of a trajectory. This dynamics is
what we will try to capture in this work. Moreover, our main interest is in the case
when the discontinuity manifold transitions from being attractive to not attractive for the
trajectories of the original discontinuous system: in this case, will (or should) a trajectory
(even an ideal trajectory, sliding on the manifold) feel this loss of attractivity, and hence
leave a neighborhood of Σ?

Therefore, without assuming any form of idealized motion on Σ, we can reformulate our
main task as follows:

“how should we evaluate the dynamics of (1.1) in a neighborhood of Σ?”

In principle, one may want to do this by studying the dynamics of a regularized problem,
and we have already mentioned some possibilities, such as sigmoid blending and singular
perturbation techniques. E.g., see [1, 13, 16, 17, 18, 24]. We emphasize once more that
these choices (as noted by Alexander and Seidman for blending, and by Teixeira et alia.
for singular parturbation) remove the ambiguity of how sliding on Σ occurs, but these
choices are effectively modeling assumptions, and we should ask if they render a behavior
of the dynamics on Σ that is consistent with that of (1.1).

Other possibilities have also been set forth in the literature, see [1] for further references.

(a) Euler broken line approximation. This is simple to do, and it consists in replacing
(1.1) by a Euler method approximation with constant stepsize, call it τ . We
have experimented extensively with this technique, see below. [The eventuality,
of probability 0, that an Euler iterate lands exactly on a discontinuity surface can
be handled in different ways; e.g., by randomly selecting one of the neighboring
vector fields, or by retaining the last vector field used.]

(b) Hysteresis (or delay) approximation. This approach appears in [26] for a surface
of co-dimension 1. For the case of Σ of co-dimension 2, it has been studied first
in [2] and then in [8], always in the case of nodally attractive Σ. The idea here is
that one has a region Uǫ around Σ (called a chatterbox in [2]), and uses the same
vector field, say f1, not only in the region R1, but until the boundary of Uǫ in a
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different region is reached; at that point, a switch to the appropriate vector field in
the new region is performed. The rationale for this approach is that one does not
notice immediately that a discontinuity surface is reached, but there is a “delay”
in appreciating this fact.

(c) Replacing (1.1) with a stochastic DE of Ito type: dx = fdt+ ǫdWt. Again we note
that there is zero probability of landing exactly on the discontinuity surface(s).
The interesting feature of this approach is that it is bound to sample different
vector fields around Σ. The disadvantage is that it makes quantitative predictions
possible only in a statistical sense.

With the exception of (c), the other choices above effectively replace the original PWS
system with another deterministic dynamical system, possibly discrete (as in the case of
Euler method). But, unfortunately, these new systems have their own dynamics, and it
is unclear whether or not these are consistent with that of (1.1). See Section 4 for ample
illustration of this fact. At the same time, each of the cases above has some distinguished
features, that we will attempt to retain.

1.5. Proposal and Plan. Our proposal in support of what should happen to the dy-
namics of (1.1) in a neighborhood of Σ is to:

“consider the Euler iterates with random steps,”

with steps uniformly distributed about a reference stepsize. In other words, we want to
retain the simplicity of looking at Euler iterates, but aim at retaining a certain amount
of randomness in the process to avoid getting trapped by the purely Euler dynamics.
Furthermore, in this work we will restrict to well-scaled vector fields fi, i = 1, . . . , 4, with
none of the wi

j ’s in (1.4) exceeding 1 in absolute value. The reason for this is to avoid
the numerical trajectory going too far away from Σ, and at the same time to attempt
retaining the flavor of a hysteretical trajectory.

We will complement our experiments made with the above strategy, by also using other
approaches. For example, Euler method with constant stepsizes, singular perturbation
regularizations, and also numerical integration of (1.1) performed with variable stepsize
integrators.

We emphasize that our goal is to reach some conclusions insofar as to what is the
behavior of a typical solution trajectory of (1.1) in a (small) neighborhood of Σ. We are
not comparing methods, or different recipes of ideal sliding motion, but simply trying to
evaluate the dynamics of (1.1) in the most plausible and honest way we can think of,
without superimposing on (1.1) any extra modeling assumption.

Finally, one more caveat. Our examples are all of systems in R
3 and R

4, and the
discontinuity surfaces Σ1 and Σ2 are planes; this makes it easier to visualize and understand
things. Higher dimensional state space, and non-planar discontinuity surfaces, can surely
bring new phenomena into play, but we have no reason to suspect that the basic picture
that emerges in our study, with the dichotomy between attractivity and lack of attractivity
of Σ, will be modified substantially.
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The remainder of this work is structured as follows. In Section 2, we consider a pro-
totypical regularization of the bilinear vector field (1.7), and give sufficient (and sharp)
conditions guaranteeing that the regularized solution converges to a sliding solution on Σ
according to (1.7). In Section 3, we give some details of how we implemented the above
mentioned proposal, particularly of what practical criteria we adopted to detect “exit-
ing” from a neighborhood of Σ. In Section 4, we illustrate through several examples the
different things that can happen, and their dependence on the adopted simulation choice.

2. Bilinear interpolant regularization: solutions behavior and fast slow

dynamics

Space regularizations are often employed in literature as an analytical mean to model
the switching mechanism of a discontinuous system, see [2, 13, 16, 17, 18, 24, 25]. Typi-
cally, these regularizations are one parameter families of smooth vector fields with different
time scales in a neighborhood of the sliding surface Σ, namely a slow dynamics tangent
to Σ and a fast one normal to Σ. In what follows, we consider regularizations for Filippov
discontinuous systems as in (1.1), but other approaches are available in the literature for
non-smooth systems that are not of Filippov’s type, for example control systems with
nonlinear control, as in [25, 26]. When the regularization parameter goes to zero, the reg-
ularized solution converges to a solution of Filippov’s differential inclusion ([15, Theorem
1, §8]). It follows that, if Σ is a codimension 1 discontinuity surface, for any regulariza-
tion that satisfies the assumptions of [15, Theorem 1, §8], the corresponding solution will
converge to the unique sliding Filippov solution on Σ as the regularization parameter goes
to zero. But if Σ has codimension k ≥ 2, then the ambiguity of Filippov’s selection will
reflect also in the amibiguity of the limit of regularized solutions (in other words, the limit
will depend on the chosen regularization).

Our goal in this section is to study the limiting behavior of the solutions of a certain
regularization, namely the bilinear interpolant, or simply bilinear, regularization (2.2)
below. This regularization (or a close relative) has often been employed and studied in
the literature; see [1, 2, 22, 23, 13, 17, 16, 18]. More specifically, we will study when the
solution of the bilinear regularization converges to the solution of a particular selection
of the Filippov’s vector field: the sliding bilinear vector field (1.7). When Σ is nodally
attractive, this convergence has been shown in [1, Theorem 5.1], and -under the same
assumption- in [13] it is shown that the bilinear regularized vector field converges to the
bilinear sliding vector field. In what follows, we relax the hypothesis on attractivity of
Σ, and simply assume that Σ is attractive in finite time, i.e. all trajectories with initial
conditions in a neighborhood of Σ will reach Σ in finite time. This can be achieved either
upon sliding along Σ1 and/or Σ2 (Σ is attractive upon sliding), or spiralling around Σ (Σ is
spirally attractive); see Definition 1.2. For later reference, and under the stated attractivity
assumptions of Σ, we note that the algebraic system (1.7) has a unique solution (α, β) in
(0, 1)2.
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For simplicity2, we assume that Σ is the intersection of the hyperplanes Σ1 = {x ∈
R
n|x1 = 0} and Σ2 = {x ∈ R

n|x2 = 0}. Then, we consider the ǫ-neighborhood S of
Σ: S = {x1, x2 : −ǫ ≤ x1, x2 ≤ ǫ}, and two smooth (at least C1) monotone functions
(the functions of course depend on ǫ, but for notational simplicity this dependence on ǫ is
omitted) α, β : R → [−1, 1] interpolating at ±ǫ, as follows:

α(z) = β(z) = 1, z ≥ ǫ, α(z) = β(z) = 0, z ≤ −ǫ,

α′(z), β′(z) > 0, for − ǫ < z < ǫ, α′(z) = β′(z) = 0, |z| ≥ ǫ.
(2.1)

Then, we call bilinear regularization the following one parameter family of vector fields

f ǫ
B(x) = (1− α(x1)) [(1− β(x2))f1(x) + β(x2)f2(x)] +

α(x1)([(1− β(x2))f3(x) + β(x2)f4(x)] .
(2.2)

To be specific, in what follows, we have taken
(2.3)

α(x1) =







1 x1 > ǫ
1
2 +

x1
4ǫ (3− (x1

ǫ
)2) x1 ∈ [−ǫ, ǫ]

0 x1 < −ǫ
, β(x2) =







1 x2 > ǫ
1
2 + x2

4ǫ (3− (x2
ǫ
)2) x2 ∈ [−ǫ, ǫ],

0 x2 < −ǫ

but other choices of a C1 monotone interpolant could be considered. Clearly, a choice of
two different parameters for α and β, respectively ǫα and ǫβ, could also be considered (e.g.,
see [22]), and this would be justified if, for example, it is known a priori that the trajectories
of un underlying physical system approach the two surfaces Σ1 and Σ2 at different rates.
Naturally, the choice of different parameters might lead to different qualitative behavior
of the corresponding solutions, as we will see in Section 4.

Remark 2.1. Often (e.g., see [1, 13, 18]), a simpler C0 regularization is adopted, namely
α(x1) =

x1+ǫ
2ǫ , and similarly for β(x2), possibly with different ǫα and ǫβ. Proposition 2.6 is

not meaningful in this case, whereas Proposition 2.7 holds with essentially the same proof.
See also Remark 2.4.

Our goal is to study the behavior of solutions of ẋ = f ǫ
B
(x) for x ∈ S, and to see when,

for ǫ → 0, they converge to the sliding solution on Σ with vector field fB as given in (1.7).
In order to do so, we split ẋ = f ǫ

B
(x) into fast and slow motions.

For (x1, x2) in S, we can rewrite (2.2) with respect to the variables (α, β, x3, . . . , xn).
For the sake of more compact notation, we let y = (x3, . . . , xn) and further ẏ = g(α, β, y).
In these variables, the full system rewrites as

α̇ =
dα

dx1
eT1 f

ǫ
B(α, β, y) :=

dα

dx1
g1(α, β, y)

β̇ =
dβ

dx2
eT2 f

ǫ
B(α, β, y) :=

dβ

dx2
g2(α, β, y),

ẏ = g(α, β, y)

(2.4)

where ei is the standard i-th unit vector in R
n, i = 1, 2. Notice that dα

dx1
and dβ

dx2
depend

on ǫ and are strictly positive (inside S); from (2.3), they are equal to 3
4ǫ(1 − x2

i

ǫ2
), with

2a fact that can be always locally guaranteed
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i = 1, 2. We refer to α and β as the fast variables and to y as the slow variable. We denote
the solution of (2.4) as (αǫ(·), βǫ(·), yǫ(·)).

Now, using (2.3) in (2.4), because of monotonicity of α and β, we can rewrite x1 as a
function of α and x2 as a function of β. From (2.3), let z = x1

ǫ
and rewrite the first of (2.3),

for x1 ∈ [−ǫ, ǫ], as: z3−3z+4α−2 = 0. Using Vieta’s substitution z = w+ 1
w
, we get the

equation w6+(4α−2)w3+1 = 0. Then w3 = (1−2α)±2i
√
α− α2 and its third roots have

modulus one, so that z = w+ 1
w
= w̄+ 1

w̄
is real. Let ϕ(α) = Arg

(

(1− 2α) + 2i
√
α− α2

)

,

then for α in [0,1], ϕ(α) is in [0, π], and for w(α) = ei(
ϕ(α)

3
+ 4

3
π), the corresponding z(α)

can be rewritten as z(α) = 2 cos(ϕ(α)3 + 4
3π) and satisfies z(0) = −1 and z(1) = 1: this

z(α) is the function we are looking for. Same reasoning applies for β. Then system (2.4)
rewrites as

ǫα̇ =
3

4

(

1− 4 cos2
(

ϕ(α)

3
+

4

3
π

))

eT1 fB(α, β, y)

ǫβ̇ =
3

4

(

1− 4 cos2
(

ϕ(β)

3
+

4

3
π

))

eT2 fB(α, β, y),

ẏ = g(α, β, y)

(2.5)

with ϕ(γ) = Arg
(

(1− 2γ) + 2i
√

γ − γ2
)

. Notice that the function
(

1− 4 cos2
(

ϕ(γ)
3 + 4

3π
))

is strictly positive for γ ∈ (0, 1) and it is 0 at γ = 0, 1. Following standard approaches for
singularly perturbed systems, we set ǫ = 0 in (2.5) and obtain the following system

0 = g1(α, β, y)

0 = g2(α, β, y)

ẏ = g(α, β, y)

(2.6)

Notice that solutions of (2.6) are sliding solutions on Σ with bilinear vector field fB as in
(1.7). Let (α∗(y), β∗(y)) denote the solution of

(2.7)

{

g1(α
∗(y), β∗(y), y) = 0

g2(α
∗(y), β∗(y), y)) = 0

.

(Recall that, under the assumptions of attractivity by sliding or by spiralling, (α∗(y), β∗(y))
is the unique solution of (2.7) in [0, 1]2).

Our goal in this section is twofold: to see if solutions of (2.4) converge to solutions of
(2.6) as ǫ → 0 and to explore the behavior of solutions of (2.4) in the neighborhood of
generic exit points.
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2.1. Asymptotic behavior of the regularized problem for Σ attractive in finite

time. From (2.4), we introduce the time variable τ = 3t
4ǫ and consider the fast system

α′ =

(

1− 4 cos2
(

ϕ(α)

3
+

4

3
π

))

g1(α, β, y)

β′ =

(

1− 4 cos2
(

ϕ(β)

3
+

4

3
π

))

g2(α, β, y),

(2.8)

where the “prime” denotes differentiation with respect to τ , and y is considered as a vector
of parameters. Notice that the solution (α∗(y), β∗(y)) of (2.7) is an equilibrium of (2.8).
We denote with (α(t, y), β(t, y)) the solution of (2.8) with initial condition (α0, β0).

Remark 2.2. In case we take different ǫα and ǫβ in (2.3), we can write ǫβ = ηǫα, perform

the change of time variable τ = 3t
4ǫα

, and obtain (similarly to (2.8)) the fast system

α′ =

(

1− 4 cos2
(

ϕ(α)

3
+

4

3
π

))

g1(α, β, y)

β′ =
1

η

(

1− 4 cos2
(

ϕ(β)

3
+

4

3
π

))

g2(α, β, y) .

(2.9)

The following result by Artstein is a stronger version of a classical result in singular
perturbation theory ([3, Theorem 2.1]).

Theorem 2.3. Assume that

(i) the solution (α∗(y), β∗(y)) of (2.7) is continuous in y;
(ii) (α∗(y), β∗(y)) is a locally asymptotically stable equilibrium of the fast system (2.8);
(iii) the initial condition (α0, β0, y0) of (2.4) is such that the ω-limit set of (α(t, y0), β(t, y0)),

is (α∗(y0), β
∗(y0));

(iv) the problem ẏ = g(α∗(y), β∗(y), y), y(0) = y0, has a unique solution, denote it as
y0(t).

Then, the solution of (2.4) with initial condition (α0, β0, y0), is such that as ǫ → 0:

a) y(·) converges to y0(·), uniformly in time on intervals of the form [0, T ];
b) (α(t), β(t)) converges to (α∗(y0(t)), β

∗(y0(t))) uniformly in time on intervals of the
form [δ, T ], δ > 0.

�

Therefore, when conditions (i)-(iv) of Theorem 2.3 are verified, the solution of the
regular system converges to the sliding solution with bilinear vector field (1.7).

Remark 2.4. If we used (see Remark 2.1) the C0 regularization α(x1) =
x1+ǫ
2ǫ , β(x2) =

x2+ǫ
2ǫ , and let τ = t

2ǫ , then we would have obtained the system

α′ = g1(α, β, y)

β′ = g2(α, β, y)
(2.10)
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instead of (2.8). Now, (2.10) is precisely the “dummy” system of [17] and [16]. How-
ever, (2.8) is not orbitally equivalent to (2.10). As we will see in Proposition 2.7, under
appropriate conditions of attractivity of Σ, (α∗(y), β∗(y)) is an asymptotically stable equi-
librium for both (2.8) and (2.10). However, condition (iii) in Theorem 2.3, implies that
the limiting behavior of the solution of (2.4), depends also on the basin of attraction of
(α∗(y), β∗(y)) and this, in general, is not the same for the two systems. As an illustration
of this, see Example 4.2 in Section 4. System (2.8) is the system we need to study in
order to understand the limiting behavior of the regularized solution in the case of the C1

regularization (2.3). Moreover, we note that if we had used the C0 regularization with

different parameters ǫα and ǫβ, namely α(x1) =
x1+ǫα
2ǫα

and β(x2) =
x2+ǫβ
2ǫβ

, then we would

have obtained a system not orbitally equivalent to (2.10).

In what follows, we first assume that Σ is attractive in finite time (upon sliding or
spiraling) and we want to verify if and when (i), (ii) and (iii) are satisfied. This in turn
will imply that solutions of the regularized problem converge to the sliding solution on Σ
with vector field fB as given in (1.7). The following hold, both when Σ is attractive upon
sliding or spirally.

(a) System (2.8) has a unique equilibrium (α∗(y), β∗(y)) in (0, 1)2.
(b) The functions α∗(y), β∗(y) are smooth functions of y. (For Σ attractive upon

sliding, this is in [10, Theorem 8], and the case of Σ spirally attractive is analogous.)
Notice that this point (b) implies (iv) of Theorem 2.3.

Remark 2.5. We emphasize that the assumption that Σ is attractive in finite time is
sufficient but not necessary for the uniqueness of (α∗(y), β∗(y)); e.g., see [10]. As we will
see in Section 4, this in turn will impact the behavior of the regularized solution, that might
remain close to Σ even when Σ is not attractive.

In Proposition 2.6 and Proposition 2.7, we study the dynamics of (2.8) to verify asymp-
totic stability of (α∗, β∗).

Proposition 2.6. The phase space of (2.8) is the square Q = [0, 1]2. Moreover, the
boundary of Q, denoted as ∂Q, is an invariant set for all values of y. The vertices of Q
are equilibria. If any of the sliding vector fields f±

Σ1,2
is well defined (i.e., if there is sliding

on any of Σ±

1,2), the corresponding value of (α(ȳ), β(ȳ)) in (1.7) is an equilibrium of (2.8)
for y = ȳ.

Proof. For α = 0, 1, or β = 0, 1, it must be x1 = −ǫ, ǫ or x2 = −ǫ, ǫ, and hence α′ = 0
or β′ = 0. Then, for all y, the boundary of Q is invariant under the flow of (2.8). It also
follows that the vertices of Q are equilibria of (2.8). Notice that the corresponding values
of g1 and g2 at the equilibria are (w1

1, w
2
1) for (0, 0), (w

1
3, w

2
3) for (1, 0), (w

1
2 , w

2
2) for (0, 1),

and (w1
4 , w

2
4) for (1, 1), where the wi

j’s are defined in (1.7).

In addition to the vertices of Q, other equilibria of (2.8) might belong to ∂Q, as follows.
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Table 1

i = 1 i = 2 i = 3 i = 4
w1
i + + + −

w2
i − − + −

Figure 1. Proposition 2.7. Reference configuration under which Σ is at-
tractive in finite time.

• If, for y = ȳ, there is sliding on Σ−

2 , then there exists β−(ȳ) such that g2(0, β
−(ȳ), ȳ) =

0 and (0, β−(ȳ)) is an equilibrium of (2.8). The vector field (1.7) for (α, β) =
(0, β−(ȳ)) is fΣ−

2
(ȳ).

• If, for y = ȳ, there is sliding on Σ+
2 then there exists β+(ȳ) such that g2(1, β

+(ȳ), ȳ) =
0 and (1, β+(ȳ)) is an equilibrium of (2.8). The vector field (1.7) for (α, β) =
(0, β+(ȳ)) is fΣ+

2
(ȳ).

• If, for y = ȳ, there is sliding on Σ−

1 for y = ȳ, then there exists α−(ȳ) such that
g1(α

−(ȳ), 0, ȳ) = 0 and (α−(ȳ), 0) is an equilibrium of (2.8). The vector field (1.7)
for (α, β) = (α−(ȳ), 0) is fΣ−

1
(ȳ).

• If, for y = ȳ, there is sliding on Σ+
1 for y = ȳ, then there exists α+(ȳ) such that

g2(α
+(ȳ), 1, ȳ) = 0 and (α+(ȳ), 1) is an equilibrium of (2.8). The vector field (1.7)

for (α, β) = (α+(ȳ), 1) is fΣ+
1
(ȳ).

�

In Proposition 2.7 we give sufficient conditions for (α∗, β∗) to be locally asymptotically
stable.

Proposition 2.7. Assume that Σ is attractive in finite time upon sliding along at least
two of the Σ±

1,2, and that there is attractive sliding along these codimension 1 surfaces.

Then (α∗(y), β∗(y)) is exponentially asymptotically stable for (2.8).

Proof. We prove the result for a particular configuration of vector fields in a neighborhood
of Σ. The proof for all the other configurations is analogous. We consider the case in Figure
1, where Σ is attractive upon sliding along Σ+

1,2, as characterized by the signs of the wi
j ’s

in Table 1, where the wi
j ’s are defined in (1.4).



14 LUCA DIECI AND CINZIA ELIA

Σ attractive implies that (2.4) has a unique equilibrium (α∗, β∗) ∈ (0, 1)2. To study the
stability of (α∗, β∗) we consider the Jacobian matrix of (2.8), evaluated at (α∗, β∗), that
is we look at the eigenvalues of

J =





(

1− 4 cos2(ϕ(α)3 + 4
3π)
)

∂g1
∂α

(α∗, β∗)
(

1− 4 cos2(ϕ(α)3 + 4
3π)
)

∂g1
∂β

(α∗, β∗)
(

1− 4 cos2(ϕ(β)3 + 4
3π)
)

∂g2
∂α

(α∗, β∗)
(

1− 4 cos2(ϕ(β)3 + 4
3π)
)

∂g2
∂β

(α∗, β∗)



 =

(

1− 4 cos2(ϕ(α)3 + 4
3π) 0

0 1− 4 cos2(ϕ(β)3 + 4
3π)

)

J̃ , J̃ :=

(

∂g1
∂α

(α∗, β∗) ∂g1
∂β

(α∗, β∗)
∂g2
∂α

(α∗, β∗) ∂g2
∂β

(α∗, β∗)

)

.

(2.11)

Then, as in the proof of [10, Theorem 8], it follows that det(J̃) > 0, and hence det(J) > 0.

We now show that trace(J) is negative. We write explicitly the diagonal elements of J̃

∂g1
∂α

(α∗, β∗) = −(1− β∗)w1
1 − β∗w1

2 + (1− β∗)w1
3 + β∗w1

4

∂g2
∂β

(α∗, β∗) = −(1− α∗)w2
1 + (1− α∗)w2

2 − α∗w2
3 + α∗w2

4.

and the equilibrium (α∗, β∗) =
(

C1(β∗)
C1(β∗)−C2(β∗) ,

L1(α∗)
L1(α∗)−L2(α∗)

)

, where C1(β
∗) = (1−β∗)w1

1+

β∗w1
2, C2(β

∗) = (1−β∗)w1
3+β∗w1

4, L1(α
∗) = (1−α∗)w2

1+α∗w2
3, L2(α

∗) = (1−α∗)w2
2+α∗w2

4.

Notice that 0 ≤ α∗ ≤ 1 together with C1(β
∗) > 0 (see Table 1) implies that ∂g1

∂α
(α∗, β∗) < 0.

Similarly, 0 ≤ β∗ ≤ 1 together with L2(α
∗) < 0 implies ∂g2

∂β
(α∗, β∗) < 0. This together

with
(

1− 4 cos2(ϕ(γ)3 + 4
3π)
)

> 0, gives the sought result. �

The assumptions in Propositions 2.7 exclude the case of Σ spirally attractive and Σ
attractive upon sliding on just one of the Σ±

1,2. For each of these cases, examples can

be given where the equilibrium (α∗, β∗) of (2.8) is unstable even if Σ is attractive. See
Example 4.3 in Section 4, where, with ǫβ = 10ǫα, the equilibrium (α∗, β∗) of the fast
system is unstable while Σ is attractive.

2.2. Behavior of the regularized solution in the neighborhood of exit points.

Here, we are interested in studying how solutions of (2.4) behave when Σ looses attractiv-
ity. Assume first that Σ is attractive upon sliding. We will focus on the case when Σ looses
attractivity at so-called potential tangential exit points and at potential non-tangential exit
points, defined next.

Definition 2.8. Let x̄ be a point on Σ. We say that x̄ is a potential tangential exit point
if, at x̄, one of the vector fields f±

Σ1,2
is tangent to Σ (and hence it belongs to the Filippov

convex combination). We say that x̄ is a potential non-tangential exit point if, at x̄, one
of the vector fields fj(x) is tangent to either Σ1 or Σ2, and it points away from Σ.

Simplification: Σ is a curve. For simplicity, below we restrict to the case n = 3, so
that, in our case of Σ = {x1 = x2 = 0}, Σ is a (portion of the) x3-axis. (Of course, in
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general, when the co-dimension 2 discontinuity manifold Σ is immersed in R
n, with n ≥ 3,

we expect that exit points themselves will lie on a (union of disjoint) (n− 3)-dimensional
manifold(s) of codimension 3. With the understanding that exit points are now lying on
these manifolds, our description below still qualitatively holds). Also, we consider only
first order phenomena i.e., only potential tangential (respectively, non-tangential) exit
points x̄, such that the derivative with respect to time (evaluated along the trajectory) of
f±

Σ1,2
(x̄) (respectively, fj(x̄), j = 1, . . . , 4) is different from zero. As a consequence, for us

exit points are isolated points on Σ.

In this case of n = 3, and insofar as the behavior of the regularized solution in the
neighborhood of tangential and non-tangential exit points, the following phenomena can
arise.

2.2.1. Tangential exit points. What occurs in this case depends on the number of equilibria
of (2.8).

Suppose that the regularized solution enters the neighborhood of a tangential exit point
x̄ = (0, 0, x̄3), and without loss of generality let fΣ+

1
(x̄) be the vector field tangent to Σ,

and let Σ be attractive for x3 < x̄3. Then either (a) or (b) below can happen.

(a) (α∗(x̄3), β
∗(x̄3)) = (α+(x̄3), 1) and the regularized solution exits the neighborhood

of Σ to enter a neighborhood of Σ+
1 ;

(b) (α∗(x̄3), β
∗(x̄3)) 6= (α+(x̄3), 1) and these are the only solutions of (2.7) for y =

x3 = x̄3; a first order analysis guarantees that the solution that at x̄3 is equal
to (α+(x̄3), 1) is in the interior of [0, 1]2 for x3 in a right neighborhood of x̄3.
Nonetheless, (α∗(x3(t)), β

∗(x3(t))) retains its asymptotic stability. It follows that
the regularized solution remains close to Σ and for ǫ → 0 it will converge to the
solution of the bilinear vector field on Σ, still well defined even though Σ is not
locally attractive anymore. Eventually the regularized solution x(t) will leave a
neighborhood of Σ if one of the two following phenomena takes place:
(i) the equilibrium of (2.8) reaches a fold bifurcation value;
(ii) (α∗(x(t)), β∗(x(t))) is on the boundary of Q for t = t̂, and this can happen

only if one of the vector fields f±

Σ1,2
(x(t̂)) is tangent to Σ, say f+

Σ2
.

In case (ii), the regularized solution will leave the neighborhood of Σ to enter a
neighborhood of Σ+

2 . But, in case (i) it is not generally possible to predict how
the regularized solution will leave a neighborhood of Σ.

Remark 2.9. The phenomena (a) and (b) above do not depend on dα
dx1

and dβ
dx2

in (2.8),

but only on the solution of the algebraic part in (2.6). Hence any choice of functions α
and β in (2.2) that satisfies (2.1) will lead to the same phenomena.

2.2.2. Non tangential exit points. Suppose that the regularized solution enters the neigh-
borhood of a non-tangential exit point, x̄ = (0, 0, x̄3). In this case, although there is only

one solution of (2.6), different things can happen depending on the functions dα
dx1

and dβ
dx2

in (2.8).
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Suppose that f1 is the vector field verifying the conditions for non tangential exit.
Then (α∗(x̄3), β

∗(x̄3)) is still the only equilibrium of (2.8) in the interior of [0, 1]2 and it is
asymptotically stable. However, the equilibrium (0, 0) undergoes a bifurcation at x3 = x̄3
and, for x3 > x̄3, there is a neighborhood of (0, 0) in Q such that all solutions in that
neighborhood are attracted to (0, 0).

As far as the regularized solution, (i) or (ii) below may occur.

(i) The regularized solution x(t) might remain close to Σ, in agreement with Theorem
2.3.

(ii) The regularized solution will leave a neighborhood of Σ to enter R1, if the corre-
sponding solution of (2.8) enters the neighborhood of solutions that reach (0, 0).

In other words, the behavior of the regularized solution depends on the possible bifurca-
tions of (α∗, β∗) and of (0, 0). Moreover, we can choose the functions α and β so that the

terms dα
dx1

and dβ
dx2

will make either one of (i) or (ii) above take place. See Example 4.2 in
Section 4 for an illustration of this fact.

2.2.3. Exit point in the case of spiral dynamics. We consider the case of Σ spirally attrac-
tive and, based on the results in [7], we propose the following definition of potential spiral
exit point.

Definition 2.10. Let x̄ ∈ Σ and assume that there is spiral dynamics around Σ. We say
that x̄ is a potential spiral exit point if x̄ is such that

w2
1(x̄)w

1
3(x̄)w

2
4(x̄)w

1
2(x̄)

w1
1(x̄)w

2
3(x̄)w

1
4(x̄)w

2
2(x̄)

= 1 .

Again, we are only concerned with first order phenomena, i.e., phenomena such that
the derivative with respect to time of the quantity on the left hand side in Definition 2.10
evaluated at x(t) = x̄, is different from zero.

The equilibrium (α∗, β∗) of (2.8) is always unique and well defined in (0, 1)2 for all
x3 ∈ R as long as there is spiral dynamics around Σ. The attractivity of Σ though,
does not imply the stability of the equilibrium. On the other hand, (α∗, β∗) might be
stable when Σ is not attractive. As an illustration of both phenomena, see Example 4.3.
Furthermore, when the equilibrium of (2.8) is unstable and the trajectories of (2.8) reach
(possibly in finite time) one of the equilibria on the boundary of Q, it is the local dynamics
around Σ that determines the behavior of the regularized solution. The importance of the
basin of attraction of (α∗, β∗) is well illustrated in Example 4.3, Figure 11, for ǫβ = 10ǫα.

Based upon the above described situation insofar as different behaviors of the regularized
solution, it is natural to ask how should the solution of the original discontinuous system
(1.1) behave once a potential first order exit point is reached, and how we should infer
this. We discuss this aspect in the next section.
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3. Numerical simulations for the discontinuous system

Frequently, Euler’s method has been used as a mean to approximate the behavior of
solutions of (1.1) in a neighborhood of the discontinuity surface. In [15] (proof of Theorem
1, page 77), Filippov showed that the solutions obtained with Euler’s method converge to
one of the solutions of Filippov’s inclusion when the discretization stepsize goes to zero. In
[1], Alexander and Seidman –in the case of a nodally attractive codimension 2 discontinuity
surface Σ– consider a chattering trajectory xǫ that evolves in an ǫ-neighborhood of Σ. The
trajectory xǫ is obtained by considering the Euler approximation of the solution, and the
fact that Σ is nodally attractive guarantees that –for a sufficiently small stepsize τ– the
Euler’s approximations remain in an ǫ-neighborhood of Σ. Alexander and Seidman in
[1] show that every possible Filippov sliding vector field on Σ is realizable; i.e., given a
solution x̄(t) of Filippov’s differential inclusion, there exists a chattering trajectory xǫ that
converges uniformly in t to x̄ in a given time interval.

3.1. Discretization. We also use Euler’s method as a tool to understand how the solu-
tions of (1.1) should behave in a neighborhood of the codimension 2 discontinuity surface
Σ. However, we propose to do this in a new way, which enables us to make (statistical)
inferences on the expected behavior of a trajectory.

First, we evolve by Euler’s method several initial conditions in a neighborhood of Σ.
Second, in order to mimic the non ideal behavior of a physical system, at each step k
we use a random stepsize τk such that τ ≤ τk ≤ 2τ , where τ is a fixed reference value;
in practice we take τk uniformly distributed (though, in our experience, changing the
distribution does not produce meaningful changes in the outcome). In case one of the
computed approximations falls on a discontinuity surface3, we take a random perturbation
of size of machine precision, so that the perturbed value belongs to one of the regions Rj’s.
Therefore, for each initial condition x0, chosen in a τ -neighborhood of Σ, we generate the
following approximate solution

(3.1) xk+1 =

{

xk + τkfj(xk), xk ∈ Rj ,
xk + δk + τkfj(xk + δk), xk ∈ Σ,Σ1,2,

where δk > 0 is a (normally distributed) random perturbation the same size of machine
precision. We perform two types of experiments with the scheme (3.1). In the first
experiment, we evolve many different initial conditions once, in the second experiment we
perform many different realizations for the same initial condition.

(a) We generate 100 (or more) uniformly distributed random initial conditions in a
τ -neighborhood of Σ, and evolve each of them according to (3.1) on a given time
interval of interest. We further monitor, see below, exit points for each trajectory,
and perform statistics on these.

(b) For a given uniformly distributed random initial condition in a τ -neighborhood
of Σ, we generate 100 trajectories according to (3.1), on a given time interval of
interest. Of course, because of the randomness in the stepsize selection process,

3a case that has never occurred in the several thousands experiments we have performed
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these will give approximations at different times. Thus, we further interpolate
linearly the given trajectories on a fixed temporal grid with spacing τ , that is at
times 0, τ, 2τ, . . . . Finally, we compute an average trajectory by averaging the
obtained 100 approximations on the fixed grid. We also compute exit points, etc.,
with respect to this average trajectory.

3.2. Construction of the experiments. As previously remarked, our experiments are
all in R

3 or R
4, and with discontinuity surfaces given by h1(x) = x1 and h2(x) = x2.

Moreover, we choose the vector fields so that:

• All but one of the wi
j ’s are constant and they are in absolute value less than 1. The

non-constant wi
j is a function of the slow variables x3 (and x4), and it is chosen

in such a way that Σ changes from locally attractive in finite time to non attractive;

• No vector field in the Filippov differential inclusion has equilibria (or more com-
plicated invariant sets) on Σ.

3.3. Exits. An important aspect of our simulations will be to monitor if an approximation
{xk}k∈N of (1.1), computed as in (3.1), leaves a neighborhood of Σ when Σ loses attrac-
tivity. To perform this task, we reasoned as follows. (The choices below are appropriate
for the vector fields we chose, see Section 3.2).

(a) Exit on a codimension 1 surface [Tangential Exits]. Suppose that Σ loses attrac-
tivity at a tangential exit point for which fΣ+

1
becomes tangent to Σ. We monitor

the function h2 and declare that the numerical solution leaves a neighborhood of Σ
by checking that h2(xk) > 10τ . When this is the case, we define as “exit point” the

value x̄ =
xk̄+xk̄+1

2 , where the index k̄ is the first index k̄ for which h2(xk̄) > 1.5τ

together with h2(xj) > τ for all j ≥ k̄. Note that we do this both for the 100
trajectories generated by (3.1) with different initial condition, as well as for the
average trajectory.

(b) Exit in one of the Rj’s [Non Tangential Exits]. Suppose, for example, that the
non-tangential exit is into the region R1. We observe that, at the non-tangential
exit point, f1 is tangent either to Σ1 or to Σ2, while pointing away from Σ. This
implies the existence of repulsive siding along Σ1 or Σ2 with sliding vector field f1
at the non-tangential exit point. Hence, we still need to detect first the exit on a
codimension 1 sliding surface, which we do as in (a).

(c) Exit from spiral case. As long as Σ is spirally attractive, motion around Σ now
repeatedly takes the trajectory inside all of the regions R1, . . . , R4. To decide if the
trajectory leaves a neighborhood of Σ (when the spiral motion ceases to be attrac-
tive), we monitor the 2-norm of the vector (h1, h2) for the last computed numerical
value in R4, before the solution enters the neighboring region R2 (clockwise mo-
tions around Σ) or R3 (counterclockwise motion). We do this for the trajectories
associated to different initial conditions, and declare an exit when the 2-norm of
(h1, h2) becomes strictly monotone increasing.
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3.4. Summary and limitations. As we report in the next section, based upon our ex-
periments with Euler method with random stepsizes, we can thus summarize our findings.

• All computed solutions remain in a O(τ)-neighborhood of Σ as long as Σ is attrac-
tive. This confirms that, on an ideal system, sliding should be taking place along
Σ.

• All computed solutions move away from Σ when they reach a sufficiently small
neighborhood of a potential exit point.

There are important caveats to our results.

• If the discontinuous dynamical system is the “idealization” of a known smooth
system, the approach described above may be misleading if we want to understand
the limiting behavior of the solutions of the original system. For example, if the
original system is given by (2.2), as the regularization parameter goes to zero, one
may obtain a limiting behavior which differs from the behavior of the discontinuous
system; as an example of this, see [21]. Still, as long as the sliding surface Σ is
attractive, one can predict that solutions of the bilinear regularized system must
remain in a neighborhood of Σ.

• A class of systems that does not fit our analysis is given by control systems with
non linear controls for which the Filippov convex combination would not contain all
the neighboring values of the vector fields, and hence our Euler’s approximations
of (1.1) are not sufficient to understand the behavior of solutions (see [26] for a
general theory).

4. Numerical experiments

This section presents results of numerical simulations on several examples in R
3 and

R
4. On each example, we compare the results of different experiments carried out with

(some of) the following strategies.

1) Random Euler . This refers to the approximation of (1.1) computed with Euler
method with random stepsizes as discussed in Section 3.1.

2) Deterministic Euler . This is the fixed stepsize implementation of Euler method
directly on (1.1) (see item (a) at p. 6).

3) Regularized integration. This refers to the approximation of the bilinear regularized
vector field as proposed in Section 2, by integrating the regularized system with the
Matlab built in functions ode45, and/or ode23s, and/or ode15s.4 All of these are
variable stepsize integrators, where local error control is enforced by a combination
of relative and absolute error tolerances (Reltol and Abstol). (It is surely possible
that different solvers may perform somewhat differently than those we have used,
but we have no reason to suspect that a different solver will alter the outcome of
our observations below.)

4ode45 is a Runge-Kutta integrator, suitable for non-stiff problems, ode23s is a second order integrator
based on Rosenbrok formulas, better suited for stiff problems, and ode15s is a variable order (1 through
5) integrator based on the backward-differentiation-formulas (BDF), also suited for stiff problems.



20 LUCA DIECI AND CINZIA ELIA

4) Unregularized integration. This refers to the approximation of (1.1) computed (as
a discontinuous system) with the Matlab built in functions ode45 and/or ode23s
and/or ode15s.

The most noteworthy aspects confirmed by our numerical experiments are the following.
The numerical solution computed with “Random Euler” remains close to Σ as long as Σ is
locally attractive, and instead leaves any small neighborhood of Σ when Σ looses attrac-
tivity. On the other hand, the approximations computed by the “Regularized integration”
might remain in a neighborhood of Σ even when Σ is not attractive in agreement with
the dynamics of (2.8). For the integration of the regularized problem, the stiff Matlab
integrators often do not perform satisfactorily and their numerical solution remains in a
neighborhood of Σ even if the corresponding theoretical solution is not; instead, we found
the numerical integration with ode45 more reliable. Also, “Deterministic Euler” is not
a foolproof option, since it superimposes its own dynamics to the true dynamics of the
underlying problem. Finally, “Unregularized integration” may just fail when requiring
stringent values of the error tolerances, and also occasionally producing totally erroneous
approximations, and cannot be taken as a generally trustworthy indicator of what should
happen in our context.

For our experiments, we will adopt the simplifications already anticipated in Section 3:
the examples are in R

3 and R
4, the discontinuity surfaces are Σj = {x ∈ R

n, xj = 0},
j = 1, 2 and the wi

j’s are all constants except for one of them that depends on x ∈ Σ.
Moreover, with the exception of Example 4.4, in all the examples below the Filippov
vector field is uniquely defined. This is not a restriction for our scopes, since the behavior
of solutions (whether or not for the regularized system) at potential exit points remains
ambiguous, as we will see below.

All the numerical experiments are done on a 2014 Mac Book Air, 1.4 GHz Intel Core i5.

Example 4.1 (Σ looses attractivity through a potential tangential exit point). Consider
the following vector fields

f1 =









1
4

2− 0.9
4 − x23 − x24

−2
5x3 + x4

−2
5x3 +

4
5x4









, f2 =









1
−0.3

−2
5x3 + x4

−2
5x3 +

4
5x4









,

f3 =









−1
0.9

−2
5x3 + x4

−2
5x3 +

4
5x4









, f4 =









−0.25
−0.15

−2
5x3 + x4

−2
5x3 +

4
5x4









.

(4.1)

Σ is the (x3, x4) plane and on it there is the unique vector field ẋ =









0
0

−2
5x3 + x4

−2
5x3 +

4
5x4









. The

circle γ = {(x3, x4) : x23 + x24 = 2} is a curve of potential tangential exit points on Σ.
The region inside γ is attractive upon sliding. It is attractive upon sliding along Σ±

1,2 for
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Figure 2. Example 4.1. Left: Average trajectory obtained with Random
Euler and τ = 10−6. Right: Regularized Integration. The regularized sys-
tem has parameters ǫα = ǫβ = 10−5, and the solution with initial condition

[10−3 10−3 0
√
1.5] is computed with ode23.
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x23+x24 ≤ 2− 0.9
4 and it is attractive upon sliding along Σ±

1 and Σ+
2 for 2− 0.9

4 < x23+x24 < 2,
(see [11] for theoretical studies of an attractive co-dimension 2 surface Σ when one of the
wi
j ’s is zero). Outside γ, fΣ−

1
points away from Σ so that Σ is not attractive. All solutions

with initial condition inside γ will eventually meet γ. We expect a typical trajectory of
(4.1) to leave Σ when it reaches γ and to start sliding along Σ−

1 in direction opposite to
Σ. Below, we report on four experiments.

a) Random Euler. We performed our experiments as described in Section 3.1, points
(a) and (b). Following (a), we computed the average exit point for an ensamble of
100 initial conditions with x1(0) and x2(0) uniformly and independently distributed
in [−τ, τ ]2 and x23(0) + x24(0) = 1.7. We computed the exit point for every solution
using the algorithm described in Section 3.3, point (a) . For τ = 10−6, we obtained
that the average exit point satisfies x̄23 + x̄24 ≃ 2.0865, with standard deviation
σ ≃ 0.0202. We also computed the average trajectory as described in Section 3.1,
(b) with reference stepsize τ = 10−6. In the left plot in Figure 2, we plot the first
(continuous line) and second (dashed line) component of the average trajectory
in function of (x23 + x24). As we can see from the plot, x1 and x2 remain close
to 0 up to x23 + x24 ≃ 2.08, suggesting that sliding motion is taking place along
Σ. After that, x2 starts decreasing while x1 remains close to 0. This suggests
that the computed average trajectory leaves Σ at x23 + x24 ≃ 2.08 and starts sliding
on Σ−

1 . All of this is in line with the behavior we expect for a typical trajectory
of (4.1). In Figure 3 we plot 100 trajectories (shaded region) of (4.1) computed
with Random Euler and uniformly distributed stepsize with τ = 10−6. The second
component of each trajectory is plotted in function of (x23 + x24) while the bold line
is the second component of the average trajectory. The average solution leaves Σ
for x̄23 + x̄24 ≃ 2.08 and all 100 computed solutions leave Σ before x23 + x24 = 2.125.
Although the experiments described above are performed with uniformly distributed
random stepsizes, similar results were obtained for normally distributed stepsizes.
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Figure 3. Example 4.1. Plot of 100 trajectories computed with Random
Euler and uniformly distributed stepsizes. The second component of the
trajectories is plotted in function of (x23 + x24).
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b) Regularized Integration. For the regularized vector field (2.2), we take α and β as
in (2.3). The corresponding fast system (2.8) has a unique asymptotically stable
equilibrium in (0, 1)2, a stable node, up to x23 + x24 = ρ̄ ≃ 2.225. The curve
x23 + x24 = ρ̄ is a curve of saddle node bifurcation values for the fast system and
for x23 + x24 > ρ̄ there are no equilibria in (0, 1)2. (For this example, the behavior
of (2.8) does not change by choosing different functions α and β in (2.3), as long
as they satisfy conditions (2.1), this is in line with Remark 2.9). The behavior of
the solution of the regularized system is well illustrated in the right plot in Figure
2. The solution of the regularized problem is computed with the Matlab function
ode23s and RelTol=AbsTol=10−9. The continuous line in the plot is the first
component of the solution, while the dashed line is the second component. They
are both plotted in function of z = x23 + x24.

c) We also computed the solution of (4.1) with Deterministic Euler and fixed stepsize

τ = 10−3, and initial condition (10−4, 10−4, 0,
√
1.7). First, we get rid of the

transient and then plot the first two components of the approximation in Figure 4.
None of the elements of the sequence generated by the forward Euler’s map is on
Σ1 or Σ2 and hence the computed solution is always in one of the Rj ’s and the
selection of the vector field is straightforward. As it is clear from the plot, we do
not recover the dynamics of the original system. The periodic orbit in the (x1, x2)
plane is spurious and is generated by forward Euler’s own dynamics. The periodic
orbit survives past the curve of potential tangential exit points and indeed the third
and fourth component of the plotted solution are such that 1.5 ≤ x23+x24 ≤ 30.817.
Notice also that the computed solution is trapped in a neighborhood of Σ when Σ
is not attractive . Periodic motion persists also for smaller values of τ , though the
orbit shrinks to the origin as τ → 0.

d) Unregularized integration. Here, this approach works well for relaxed values of
the tolerances. To witness, the numerical solution computed with ode23s and
RelTol=AbsTol=10−7, stays close to Σ up to x23 + x24 ≃ 2.0014. It then leaves
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Figure 4. Example 4.1. Numerical solution computed with “Determinis-
tic Euler” and constant stepsize τ = 10−3.
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Σ to slide on Σ−

1 . In a time interval equal to [0, 0.5], the integrator required a CPU
time of 1492 seconds. With lower values of RelTol and AbsTol, the integrator
takes more than half an hour. The integrator ode45 shows a similar behavior.

Example 4.2 (Σ looses attractivity through a non tangential potential exit point). The
vector fields are

(4.2) f1 =





(3− x3)/5
−1/5
1



 , f2 =





1/5
−1/5
1



 , f3 =





1/5
2/5
1



 , f4 =





−1
−1/5
1



 ,

and Σ is the x3-axis, with uniquely defined sliding vector field ẋ3 = 1. Σ is attractive
through sliding along Σ+

1 and Σ+
2 for x3 < 3. At x3 = 3, f1 is tangent to Σ1 and points

away from Σ so that the point (0, 0, 3) is a potential non tangential exit point. When
x3 > 3, the vector field f1 points away both from Σ1 and Σ2 and we expect a solution of
(1.1) to move away from Σ and to enter R1.

a) Random Euler. We performed the experiments described in Section 3.1. Following
Section 3.1, point (a), we considered 100 initial conditions uniformly and indepen-
dently distributed in [−τ, τ ]2. With reference stepsize τ = 10−4, the average “exit
point” computed as in Section 3.3, point (b), it is x̄3 ≃ 2.9854 with standard devi-
ation σs ≃ 0.0122. With stepsize τ = 10−5, we obtained x̄3 ≃ 2.9923 and standard
deviation σs ≃ 0.0046. We also computed the average trajectory with reference
stepsize τ = 10−5 as described in Section 3.1, point (b). The first and second com-
ponents of the solution are plotted in Figure 5 in function of the third component.
As we can see from the plot, x1 and x2 stay close to 0 up to x3 ≃ 2.9944, then
they both start decreasing suggesting exit from Σ into R1 at x̄ with third component
x̄3 ≃ 2.9944. The obtained results suggest that the typical solution of (4.2) behaves
qualitatively as we expect.

b) Regularized Integration. For the regularized vector field (2.2), we take α and
β as in (2.3), but we make different choices for the parameter ǫ. We use two
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Figure 5. System (4.2). Average trajectory computed with Random Eu-
ler and reference stepsize τ = 10−5.
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different parameter sets, namely ǫα = ǫβ = 10−6 and ǫα = 10−6, ǫβ = 10−5. The
corresponding fast systems (2.8) and (2.9) are not orbitally equivalent and, as a
consequence of this, the behavior of the regularized solutions differs as well. We
first consider the regularized system for ǫα = ǫβ. In this case, (α∗(x3), β

∗(x3)) is
an asymptotically stable equilibrium of (2.8) in (0, 1)2 for x3 < x̄3 ≃ 3.3853. For
x3 = x̄3, the eigenvalues of the Jacobian matrix of (2.8) at the equilibrium cross
the imaginary axis and (α∗(x3), β

∗(x3)) undergoes a subcritical Hopf bifurcation.
In Figure 6, on the left, we plot (with a star) the stable equilibrium of (2.8) for
x3 = 3.38 and the unstable periodic orbits for two different values of the parameter:
x3 = 3.38 and x3 = 3.37. The orbit that corresponds to the parameter value
x3 = 3.36 is obtained integrating backward in time system (2.8) and, as we can see
from the plot, it reaches the boundary of the square in finite time. The plot suggests
that there is no unstable periodic orbit inside [0, 1]2 for this parameter value. In
Figure 6, we plot some trajectories (in forward time) of (2.8) for the parameter
value x3 = 3.2. The dots in the plot represent the equilibria of the system and the
trajectories in the plot have initial conditions close to the equilibria.

Following Theorem 2.3, if the initial condition of (2.4) is chosen so that the cor-
responding (α(x3(0)), β(x3(0))) is in the basin of attraction of (α∗(x3(0)), β

∗(x3(0)))
in (2.8), then b) in Theorem 2.3 follows, and the regularized solution remains in
a neighborhood of Σ as long as (α∗(x3), β

∗(x3)) is attractive. If instead the ini-
tial condition is not in the basin of attraction of the equilibrium (α∗(x3), β

∗(x3)),
the corresponding solution might not remain in a neighborhood of Σ (consider the
case of Σ non attractive for example). This is well illustrated in Figure 7 where
we depict the numerical solution of the regularized problem with initial condition
[10−6, 10−6, 3.2] on the left and initial condition [10−3, 10−3, 3.2] on the right. In
both plots the first and second component of the solution are plotted in function of
the third component. In the left plot the solution slides along Σ up to the exit point
with third component x3 ≃ 3.384 and then enters R1 and this is in accordance with
our singular perturbation analysis. In the right plot the solution reaches Σ upon
sliding along Σ+

2 but then, rather than sliding on Σ, it crosses it and enters R1.
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Figure 6. Example 4.2. Left: unstable periodic orbits of (2.8) for different
values of the parameter. Right: phase portrait of (2.8) for x3 = 3.2.
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Figure 7. Example 4.2. Left: solution of the regularized problem with ini-
tial condition [10−6, 10−6, 3.2]. Right: solution of the regularized problem
with initial condition [10−3, 10−3, 3.2].
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Most likely the crossing is due to the fact that the initial condition [10−3, 10−3, 3.2]
does not satisfy (iii) in Theorem 2.3.

If we study the fast dynamic using (2.10) instead of (2.8), then the equilibrium
(α∗, β∗) still undergoes a subcritical Hopf bifurcation but for a different parameter
value, namely x3 = x̂3 ≃ 3.4476. However, this is not in agreement with the
behavior of the regularized solution that instead exits Σ before this parameter value,
as can be observed in the left plot of Figure 7.

With the second set of parameter values, ǫα = 10−6 and ǫβ = 10−5, the dynam-
ics of (2.9) is similar, but the bifurcation values are different. The equilibrium
(α∗(x3), β

∗(x3)) of (2.9) is stable up to x3 = x̄3 ≃ 3.2296 and at x3 = x̄3 it
undergoes a subcritical Hopf bifurcation. For x3 > x̄3 all solutions with initial
condition in [0, 1]2 reach the boundary of the square in finite time. We computed
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Figure 8. Example 4.2. Regularized solution with ǫα = 10−6 and ǫβ =
10−5. The computations are performed with ode45. The first and second
components of the solution are plotted in function of the third component.
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the numerical solution of (2.2) with ǫα = 10−6 and ǫβ = 10−5 with ode45 and
RelTol=AbsTol=10−12. In Figure 8 we plot the first and second component of the
solution in function of x3. The plot suggests that the numerical solution leaves Σ
to enter R1 for x3 ≃ 3.238 and this is in agreement with the singular perturbation
analysis. The average stepsize used by the integrator is O(10−5). We also used stiff
integrators on the regularized problem with same values as ode45 for RelTol and
AbsTol, but they did not perform satisfactorily. Indeed, the numerical solution ob-
tained with ode23s remains close to Σ up to x3 ≃ 3.369 (with an average stepsize
O(10−4)), while the solution obtained with ode15s is even less accurate and exits
at x3 ≃ 3.485 (with an average stepsize O(10−2)). We integrated the problem also
with lower values of ǫβ, while still having ǫα =

ǫβ
10 so that the corresponding fast

systems are all equivalent. The numerical approximations with the stiff integrators
are even less reliable, and indeed the computed exit values increase as ǫβ decreases.

Example 4.3 (Spiral dynamics around Σ). In this example the vector fields are

(4.3) f1 =





1
3

−x3
3
1



 , f2 =





−2
3

−1
1



 , f3 =





1
3
2
3
1



 , f4 =





−1
3
1
1



 ,

Σ is the x3-axis, with uniquely defined Filippov sliding motion ẋ3 = 1, and there is spiral
like dynamics around Σ. For x3 < 1, Σ is attractive in finite time while, for x3 > 1, Σ is
not locally attractive.

a) Random Euler. Approximations computed with “Random Euler” move away from
Σ for x3 > 1. For a statistical estimate of the exit point, we consider an ensamble of
100 initial conditions with the first two components uniformly (and independently)
distributed in [−τ, τ ]2 as described in Section 3.1, (a). For τ = 10−5, the mean
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Figure 9. Example 4.3. Average trajectory obtained with Random Euler
and τ = 10−5. Plot of the first and second component in function of the
third component.
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Figure 10. Example 4.3. Left: a solution of (4.3) obtained with Random
Euler and τ = 10−5. Right: norm of the vector (h1, h2) in function of x3
for this trajectory.
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value of the third component at the exit point is x̄3 ≃ 0.94777, with standard
deviation ≃ 0.04297. For τ = 10−6, the mean value at the exit point is x̄3 ≃ 0.97910
and the standard deviation is ≃ 0.00529. We also computed the average trajectory
using the algorithm in Section 3.1, point (b). In Figure 9 we show the average
trajectory computed with τ = 10−5 and initial condition (10−6, 10−6, 0.5).

In Figure 10, on the left, we plot one numerical solution of (4.3) obtained with
Random Euler and average stepsize τ = 10−6. On the right of Figure 10 we plot
the 2-norm of the vector (h1, h2) (for us, this is the vector (x1, x2)) in function of
x3. The full dot in the plot marks the estimated exit point.

b) Regularized Integration. Next, consider integrating the regularized vector field
(2.2) with α and β as in (2.3) and two different sets of parameters. We first con-
sider ǫα = ǫβ = 10−4. For these parameters values, the equilibrium (α∗, β∗) of the
fast system (2.8) is stable up to x3 ≃ 1.41798, when the eigenvalues of the Jacobian
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Figure 11. Example 4.3. Left: regularized integration with ode45, ǫα =
ǫβ = 10−4. Right: regularized integration with ode23s, ǫα = 10−4 and
ǫβ = 10−3.
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matrix at the equilibrium cross the imaginary axis. We compute the solution of the
regularized system with initial condition (10−4, 10−4, 0) in the time interval [0, 2]
(so that 0 ≤ x3 ≤ 2) with ode23s, ode15s and ode45 with RelTol=AbsTol= 10−12.
The computed solutions show different behaviors: once again the stiff integrators
behave poorly and the numerical solution computed with ode23s and ode15s re-
main in a small neighborhood of Σ for the whole time interval [0, 2], while the
solution computed with ode45 moves away from Σ for x3 ≃ 1.5 (well after Σ has
lost attractivity) as it is seen from the left plot of Figure 11. The average stepsize
used by the stiff integrators is O(10−2), while the one used by the explicit integrator
is O(10−4). We then consider a second set of parameters ǫα = 10−4 and ǫβ = 10−3.
The equilibrium (α∗, β∗) of the corresponding fast system (2.9) is unstable when
x3 > 0. On the right of Figure 11 we plot the approximation computed with ode23s

(the approximation computed with ode45 behaves in a similar way). As we can
see from the plot, as long as Σ is attractive, the regularized solution is forced to
oscillate around Σ even if the equilibrium (α∗(x3), β

∗(x3)) is not stable.
c) Unregularized integration. The numerical solution obtained with the stiff Matlab

integrator ode23s, with RelTol= AbsTol = 10−7, stays close to Σ up to x3 = 1 and
then it leaves Σ to enter one of the Rj ’s. The integration in the time interval [0, 1]
required a CPU time of 681 seconds. For lower values of RelTol, the integrator
takes more than half an hour in the time interval [0, 1]. The numerical solution
obtained with ode15s and RelTol=AbsTol=10−6 is very inaccurate as it is evident
from the plot in Figure 12. Lower tolerances do not produce better results.
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Figure 12. Example 4.3. Unregularized integration with ode15s and
RelTol=AbsTol=10−6.
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Example 4.4 (Filippov’s vector field on Σ is ambiguous). We consider the following
vector fields

f1 =









1
2
1

−x3 +
1
2x4

x4









, f2 =









1
1
2

−x3 +
1
2x4

x4









f3 =









−(x3 − 3)2 − (x4 − 3)2 + 5
1

−x3 + 28x4
x4









, f4 =









−1
−1

−x3 + 4x4
x4









,

(4.4)

and Σ is the (x3, x4) plane. The circle γ = {x ∈ R
4, (x3 − 3)2 +(x4 − 3)2 = 4} (see Figure

13), divides Σ in two regions. Outside γ, Σ is attractive upon sliding along Σ+
1 and Σ+

2 .
The vector field f+

Σ2
is tangent to Σ at all points of γ, it points away from Σ inside γ and

it points towards Σ outside γ. Hence, Σ is not from inside γ. We would expect a typical
solution of (4.4) to leave Σ once it reaches γ. Note that for this example the Filippov
sliding vector field on Σ is not uniquely defined.

(a) Random Euler. The ambiguity of a Filippov sliding vector field is clearly reflected
in the numerical solutions obtained with Random Euler. In Figure 13, on the left
we plot only the x3 and x4 components of 100 trajectories computed with reference
stepsize τ = 10−4, and same initial condition (10−4, 10−4, 3, 0.5). On the right,
we plot the x1, x3 and x4 components of only 20 of the trajectories above. Notice
that Σ is attractive for (x3, x4) = (3, 0.5) and at this point there is a family of
Filippov vector fields on Σ, namely: fF (x3, x4) = [0, 0,−x3 + (33714 − 103

2 λ)x4, x4]
T ,

with 13
35 ≤ λ ≤ 3

7 . The circle in both plots is the curve γ and the initial condition is
marked with a dot. Looking at both plots we notice: i) The computed solutions leave
Σ when they reach a point on γ (the x1 component in the right plot increases from
O(10−4) to O(10−2) when the trajectory meets γ coming from outside it); ii) When
the trajectories are sufficiently far from Σ, random Euler selects the vector fields
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Figure 13. Example 4.4: 100 approximations obtained with Random Eu-
ler, reference stepsize τ = 10−4 and initial condition (10−4, 10−4, 3, 0.5).
Left plot: projection into the (x3, x4) plane; Right plot: projection into
(x3, x4, x1)
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Figure 14. Example 4.4: zoom in of the left plot in Figure 13

(presently, only f3 and f4) so to reproduce the behavior of a uniquely defined vector
field. This compares well with what is expected in theory (a solution of (4.4), if it
leaves Σ, starts sliding on Σ+

2 with uniquely defined vector field fΣ+
2
= 1

2f3 +
1
2f4).

Moreover, looking at the zoom in Figure 14 we see that Random Euler does not
reproduce the behavior of a unique vector field when the solutions are sufficiently
close to Σ (outside γ in the plot) as a witness to the ambiguity of a Filippov
vector field on Σ. Random Euler reproduces this ambiguity satisfactorily. For
completeness, in Figure 15 we plot in function of time the first component and the
quantity (x3 − 3)2 + (x4 − 3)2 − 4 of the average trajectory computed with Random
Euler and τ = 10−4. In the plot we see that the first component increases beyond
O(τ) when (x3− 3)2+(x4− 3)2 ≤ 4 witnessing that the average solution is leaving
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Figure 15. Example 4.4. First component and quantity (x3− 3)2+(x4−
3)2−4 of the average solution computed with Random Euler and τ = 10−4.
Vertical axis is magnified by the factor 104.
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Σ. Moreover x1 starts decreasing towards 0 when (x3 − 3)2 + (x4 − 3)2 becomes
again greater than 4 and this compares well with the theoretical results.

b) Regularized Integration. Here, the computed approximations of the regularized
system move away from Σ once they reach γ. We note that γ is a curve of saddle-
node bifurcation values for (2.8) for any parameter value ǫα and/or ǫβ. On γ,
(α∗, β∗) = (1, 0.5) is a double root of (2.7), while inside γ there is no solution of
(2.7).

5. Conclusions

In this work we have been interested in studying the behavior of solutions of piecewise
smooth systems in the neighborhood of a co-dimension 2 discontinuity surface Σ, intersec-
tion of two co-dimension 1 discontinuity surfaces. It has long been accepted that if solution
trajectories cannot leave Σ (Σ is attractive), some form of sliding motion on Σ should be
taking place. Precisely which sliding motion has been the subject of much investigation,
but it has not been our concern in this paper. Our chief interest in this work has been
trying to understand what should happen when Σ loses attractivity (at generic first order
exit points). To our knowledge, this type of study had not been carried out before.

We took the point of view that the piecewise smooth system (1.1) was the only infor-
mation at our disposal, and treated this (real life or mathematical) model with its own
mathematical dignity. Naturally, if (1.1) arose as a simplified model for some other known
differential system, then this original system should ultimately guide the search for appro-
priate dynamics near Σ and it may well be that the dynamics of this “true” system are not
matched by those of (1.1). However, the discontinuous model might still give indications
on the behavior of the original system. As an example, solutions of the bilinear regular-
ized vector field remain in a neighborhood of Σ when Σ is attractive for the discontinuous
system.
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To obtain information on the dynamics of (1.1), we used a simple Euler method with
random steps, uniformly chosen with respect to a reference, small, stepsize. Our study
unambiguously showed that: (i) when Σ is attractive, solution trajectories remain near
Σ (thereby validating an idealized sliding motion on Σ); (ii) when Σ loses attractivity, a
typical solution trajectory leaves a neighborhood of Σ.

Several other possibilities have also been considered in this work: regularization tech-
niques, plain and simple Euler method with fixed stepsize, and direct numerical integration
of (1.1) with sophisticated off-the-shelf solvers for differential equations. None of these
options satisfactorily resolved the dynamics of (1.1), and often produced misleading be-
havior. Ultimately, this occurred because each of these choices either superimposed its
own dynamics on those of (1.1) (as Euler method and regularization techniques do, further
producing different behaviors depending on how the regularization is made), or just failed
to produce reliable answers in too many cases (this was the case with directly solving (1.1)
with existing software, where the outcome dramatically depended on the solver used, or
on the tolerances values, or both).

The above notwithstanding, our conclusions are not fully satisfactory either. Our anal-
ysis tells us that it is the dynamics of (1.1) around Σ that must be used to tell us what
should happen in a neighborhood of Σ, but we know of no general foolproof mean to
regularize the system so that the regularized trajectory will be following the dynamics of
(1.1). Perhaps, and –again– as long as the model (1.1) is appropriate, the most reliable
and practically efficient way to proceed is to accept some form of idealized sliding motion
on Σ as long as Σ is attractive, while also demanding that a sliding trajectory leaves Σ
when the latter loses its attractivity. The construction of appropriate sliding vector fields
fulfilling these requests remains an outstanding and challenging task.
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