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Abstract. In this paper, we are concerned with numerical solution of piece-
wise smooth initial value problems. Of specific interest is the case when the
discontinuities occur on a smooth manifold of co-dimension 2, intersection of two
co-dimension 1 singularity surfaces, and which is nodally attractive for nearby
dynamics.

In this case of a co-dimension 2 attracting sliding surface, we will give some
results relative to two prototypical time and space regularizations. We will show
that, unlike the case of co-dimension 1 discontinuity surface, in the case of co-
dimension 2 discontinuity surface the behavior of the regularized problems is strik-
ingly different. On the one hand, the time regularization approach will not select
a unique sliding mode on the discontinuity surface, thus maintaining the general
ambiguity of how to select a Filippov vector field in this case. On the other hand,
the proposed space regularization approach is not ambiguous, and there will al-
ways be a unique solution associated to the regularized vector field, which will
remain close to the original co-dimension 2 surface. We will further clarify the
limiting behavior (as the regularization parameter goes to 0) of the proposed space
regularization to the solution associated to the sliding vector field of [8].

Numerical examples will be given to illustrate the different cases and to provide
some preliminary exploration in the case of co-dimension 3 discontinuity surface.

1. Introduction

Piecewise smooth differential systems (PWS for short) are receiving an ever in-
creasing attention in mathematics, applied sciences, and engineerings, also because
of the possibility to model dynamical systems exhibiting complex behavior in a very
compact way. Excellent entry points in the literature on PWS systems are the recent
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books [2] and [3] that present numerical and dynamical overviews of the subject, as
well as an extensive list of references on the topic.

The caveat is that –in general– PWS systems fail to have classical solutions, and
some form of generalized solution concept becomes necessary. A very successful
proposal, and the one appropriate for our present work, is one due to Filippov, see
[9], who suggested to replace the PWS system with a certain differential inclusion.
The resulting method has come to be known as Filippov convexification.

As motivation for the class of problems in which we are interested, let us look at
an example arising from delay differential equations with two delays.

Example 1.1. Consider the following system of neutral delay equations (see [12,
13, 14] for such kind of problems and suitable regularizations)

ẏ1(t) = 1 + a ẏ1(y1(t)− 1) + b ẏ2(y2(t)− 1)

ẏ2(t) = 1 + c ẏ1(y1(t)− 1) + d ẏ2(y2(t)− 1)

with the following choice of parameters: a = −4, b = 2, c = 2, d = −4. Clearly, there
are four distinct vector fields in the four different regions R1 = {y1 < 1, y2 < 1},
R2 = {y1 < 1, y2 > 1}, R3 = {y1 > 1, y2 < 1} and R4 = {y1 > 1, y2 > 1}:

Table 1. Vector fields.

Region R1 R2 R3 R4

ẏ1 1 3 −3 −1
ẏ2 1 −3 3 −1

The vector field is not defined when either solution component y1 or y2 is equal
to 1. However, any trajectory with initial conditions in any one of the regions Ri

(i = 1, . . . , 4) will eventually reach one (or both) the values y1 = 1, y2 = 1, at which
point it will cease to exist as a classical solution. �

1.1. The problem. Motivated by Example 1.1, we will consider the following class
of PWS systems:

(1) ẋ = f(x) , f(x) = fi(x) , x ∈ Ri , i = 1, . . . , m ,

to be studied for t in some interval [0, T ], subject to initial condition x(0) = x0.
In (1), Ri ⊆ R

n are open, disjoint and connected sets, whose closures cover R
n:

R
n =

⋃

iRi; also, fi is smooth on Ri and R
n \

⋃

iRi has zero (Lebesgue) measure.
So, in each region Ri, we have a standard differential equation with smooth vector
field fi, but on the boundary of these regions there is no properly defined differential
equation.

In this work, we are interested in the case where the regions Ri’s are separated
(locally) by an implicitely defined surface Σ of co-dimension p, so that near Σ there
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are 2p regions Ri’s and 2p vector fields fi’s. In other words, in (1) m = 2p, the
discontinuity surface is

Σ = {x ∈ R
n : h(x) = 0 , h : R

n → R
p} ,

and for all x ∈ Σ: h(x) =





h1(x)
...

hp(x)



, ∇hj(x) 6= 0, each hj ∈ Ck, k ≥ 2, j = 1, . . . , p,

and the vectors {∇h1(x), . . . ,∇hp(x)} are linearly independent.
Furthermore, we are interested in the case in which Σ is nodally attractive (see

below), whereby trajectories near Σ are attracted to Σ and reach it in a finite time.
Afterwards, trajectories cannot leave Σ and motion must continue on Σ, a situation
referred to as having attractive sliding motion. The question is: What is (if any)
the vector field associated to this sliding motion? Indeed, clearly on Σ the vector
field is not properly defined.

Filippov proposal consists of considering the differential inclusion

(2) ẋ ∈ F (x) =
2p
∑

i=1

λi(x)fi(x) , where λi(x) ≥ 0 , and
2p
∑

i=1

λi(x) = 1 ,

subject to the constraint that F (x) lies in TxΣ, the tangent plane to Σ at x:

(3) (∇hj(x))
TF (x) = 0 , for all j = 1, . . . , p .

Example 1.2. The case when Σ is of co-dimension p = 1 is well understood. There
are two regions, R1, R2, with vector fields f1 and f2, and Σ = {x ∈ R

n : h(x) =
0 , h : R

n → R}. We can assume that in R1 we have h(x) < 0, and in R2 we
have h(x) > 0. In this case, nodal attractivity of Σ is characterized by having
∇h(x)T f1(x) > 0 and ∇h(x)T f2(x) < 0, and (2)-(3) render a unique sliding vector
on Σ. Indeed, we can write λ2 = α, λ1 = 1 − α, and imposing (3) we immediately
get the differential system on Σ:

(4) x′ = (1− α)f1 + αf2 , α =
∇h(x)T f1(x)

∇h(x)Tf1(x)−∇h(x)T f2(x)
.

�

However, already when Σ has co-dimension p = 2, the construction based on (2)-
(3) in general does not select a unique sliding vector field on Σ, since it will give
us a system of 3 equations in 4 unknowns. This general ambiguity (which only gets
more severe for higher co-dimension) inhibits from having a well defined differential
equation (of Filippov type) governing the evolution of the dynamics, a fact which
would be clearly desirable from the practical (modeling and numerical) point of
view.

To remove the aforementioned general ambiguity, one can in principle proceed
according to one of the following alternatives: (i) Enforce extra condition(s) to select
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a unique vector field from the convex set F of (2) (e.g., this path was followed in [8],
and see also references in there), or (ii) Replace the original PWS differential system
(1) with a globally regularized one, which for any positive value of the regularization
parameter ε allows to obtain a classical solution, and then analyze the behaviour
of such solutions for ε → 0. In this work, we consider this second possibility in the
case of a co-dimension 2 discontinuity surface. In particular, we will consider two
different, prototypical, regularizations of (1): (a) A time regularization suggested
in [10], based on a time average of the right-hand-side over a small interval ε, and
(b) A space regularization based on smoothly connecting the different vector fields
around Σ.

Remark 1.3. In the case of a single manifold of co-dimension 1, both of the above
mentioned regularizations have been previously explored (e.g., [10, 18]), and the lim-
iting behavior (in the regularization parameter) of their respective solutions does
converge, in an appropriate topology, to the classical Filippov solution of (4). In the
case of a manifold of co-dimension 2, this study does not seem to have been carried
out in the literature. Interestingly, and unlike the case of co-dimension 1 disconti-
nuity surface, we will see that the behavior of the two different regularizations we
consider is strikingly different. In a nutshell, the time regularization approach will
not select a unique sliding mode on the discontinuity surface, thus retaining the gen-
eral ambiguity present in the selection of a Filippov vector field in this case. However,
the proposed space regularization approach will always select a unique solution, which
stays close to the original co-dimension 2 surface.

Remark 1.4. Naturally, many different means to regularize (1) can be contemplated
and different points of view lead to different interepretations of a certain regulariza-
tion (e.g., see [19, 17] for an interpretation of regularization via geometric singular
perturbation techniques). Indeed, alternatives to those we examine here have been
proposed in the case of a co-dimension 1 discontinuity surface, for example the Euler
polygonal approach of [1] (a type of time regularizations). Whereas of course any
new regularization proposal will require a separate study of its limiting behavior, our
limited experience leads us to suspect that the distinguished difference we observe in
the present study (in co-dimension 2) between time and space regularizations will
generally hold true.

A plan of the paper is as follows. In the remainder of this Introduction we further
examine the case of discontinuity surface of co-dimension 2 and recalls the selection
process of a unique Filippov vector field made in [8]. Section 2 is concerned with
regularization by a certain time averaging process, while Section 3 is concerned with
a certain space averaging regularization. Section 4 presents results of numerical
simulations in the different cases as well as some experimental evidence of what
may happen when the discontinuity surface has co-dimension 3. Section 5 contains
some conclusions.
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1.2. Co-dimension 2 case: Setup and a Filippov vector field. Let us fix the
notation relatively to the problem in co-dimension 2. We have Σ = Σ1 ∩ Σ2, where
Σ1 = { x : h1(x) = 0 , h1 : R

n → R}, ∇h1(x) 6= 0, x ∈ Σ1, and Σ2 = { x : h2(x) =
0 , h2 : Rn → R}, ∇h2(x) 6= 0, x ∈ Σ2, and further ∇h1(x) and ∇h2(x) linearly
independent for x on and in a neighborhood of Σ. We will henceforth assume (as in
[9]) that h1,2 are Ck functions, with k ≥ 2.

We have four different regions R1, R2, R3 and R4 with the four different vector
fields fi, i = 1, . . . , 4, in these regions:

(5) ẋ = fi(x) , x ∈ Ri , i = 1, . . . , 4 .

Without loss of generality, we can label the regions as follows:

R1 : f1 when h1 < 0 , h2 < 0 , R2 : f2 when h1 < 0 , h2 > 0 ,

R3 : f3 when h1 > 0 , h2 < 0 , R4 : f4 when h1 > 0 , h2 > 0 .
(6)

When x is on Σ1,2 or on their intersection Σ, the vector field is not properly
defined. Following Filippov, we rewrite the problem as the set valued differential
inclusion

ẋ ∈
1− σ(h1(x))

2

1− σ(h2(x))

2
f1(x) +

1− σ(h1(x))

2

1 + σ(h2(x))

2
f2(x)

+
1 + σ(h1(x))

2

1− σ(h2(x))

2
f3(x) +

1 + σ(h1(x))

2

1 + σ(h2(x))

2
f4(x) ,

(7)

where σ(·) is the set valued sign function: σ(y) =







1 y > 0
[−1, 1] y = 0
−1 y < 0

. Naturally,

when x ∈ Ri, for some i = 1, . . . , 4, we simply have ẋ = fi; also, when x ∈ Σ1,2, x /∈
Σ, the rewriting (7) is equivalent to the standard Filippov convexification of Example
1.2.

1.2.1. A vector field on Σ. For x ∈ Σ, in [8] the authors considered a special convex
combination of the type above as a way to define a unique vector field in Σ. Their
choice was to select

(8) ẋ = (1− α)(1− β)f1(x) + (1− α)βf2(x) + α(1− β)f3(x) + αβf4(x)

where the functions α, β take values in [0, 1] and must be found so that ∇hT1 (x)ẋ =
∇hT2 (x)ẋ = 0.

It was further shown that α and β are unique (and smooth in x) whenever Σ
satisfies some attractivity conditions, in particular when Σ is nodally attractive. By
letting

w1
1 = ∇hT1 f1 , w

1
2 = ∇hT1 f2 , w

1
3 = ∇hT1 f3 , w

1
4 = ∇hT1 f4 ,

w2
1 = ∇hT2 f1 , w

2
2 = ∇hT2 f2 , w

2
3 = ∇hT2 f3 , w

2
4 = ∇hT2 f4 ,
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the system to be solved for α and β is simply

(1− α)
[

(1− β)w1
1 + βw1

2

]

+ α
[

(1− β)w1
3 + βw1

4

]

= 0

(1− α)
[

(1− β)w2
1 + βw2

2

]

+ α
[

(1− β)w2
3 + βw2

4

]

= 0 ,
(9)

and nodal attractivity is characterized by the constraints on the sign of w1 and
w2 expressed in Table 2, which are assumed to be valid on Σ and near it. It is
implicitly understood that the writing, say, w1

1 > 0 means w1
1 ≥ c > 0, etc., in a

neighborhood of Σ, where c is a positive constant. We will henceforth assume that
the sign conditions of which in Table 2 hold in a neighborhood of Σ.

Table 2. Nodal Attractivity.

Component i = 1 i = 2 i = 3 i = 4

w1
i , i = 1 : 4 > 0 > 0 < 0 < 0

w2
i , i = 1 : 4 > 0 < 0 > 0 < 0

For later use, let us recall that the proof that (α, β) in (9) exist, unique, and
depend smoothly on the state variables, rest on the following direct solution process
for (9) in two steps:

1. From the first equation in (9), let

α =
L1(β)

L1(β)− L2(β)
, where

L1(β) = (1− β)w1
1 + βw1

2 , L2(β) = (1− β)w1
3 + βw2

4 ,

(10)

and notice that (see Table 2) L1 > 0, L2 < 0, for β ∈ [0, 1].
2. Solve for β the quadratic equation resulting from substitution of α from (10)

in the second equation of (9):

P (β) ≡ −L2(β)N1(β) + L1(β)N2(β) = 0 , where

N1(β) = (1− β)w2
1 + βw2

2 , N2(β) = (1− β)w2
3 + βw2

4 .
(11)

As in [8], P (0) > 0 and P (1) < 0, so that there is a unique solution β∗ ∈ [0, 1],
and thus from (10) a unique pair (α∗, β∗) in the square [0, 1]2 solution of (9).
Further, since P is a parabola, we necessarily have P ′(β∗) 6= 0; although we
do not know its sign, nor magnitude, P ′(β∗) is surely bounded.

We are now ready for the following Lemma, which will be needed below. This
result was not explicitly proved in [8], though it was effectively implied in that work.

Lemma 1.5. Let F (α, β) = 0 be the nonlinear system (9), and let (α∗, β∗) be its
unique solution in [0, 1]2 ≡ [0, 1] × [0, 1], found as above. Then, the Jacobian DF
evaluated at this root is nonsingular.
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Proof. The Jacobian is given by the matrix J =

[

∂αF1 ∂βF1

∂αF2 ∂βF2

]

, and det(J) =

∂αF1∂βF2 − ∂αF2∂βF1, which needs to be evaluated at the root (α∗, β∗).
Now, from (10)-(11), we have that the polynomial P (β) can be also written as

P (β) ≡ (L1 − L2)F2

(

L1

L1 − L2

, β

)

and therefore

P ′(β) = (L1 − L2)
[

∂αF2
d

dβ

L1

L1 − L2
+ ∂βF2

]

+ F2∂β(L1 − L2) ,

which is not zero when evaluated at β∗. Now, the second term in this expression
is 0 when evaluated at β∗. Moreover, a simple algebraic computation shows that

∂αF1 = −(L1 − L2) and that ∂βF1 = −
L1L

′

2
−L′

1
L2

L1−L2

, with the “prime” indicating
differentiation with respect to β. Therefore, we can rewrite

det(J)β∗ = −P ′(β∗) .

As a consequence, J is nonsingular at the root (α∗, β∗). �

Remark 1.6. We emphasize that the solution of (9) depends on the wi
j’s (hence

on x), but for any given collection of the wi
j’s (satisfying the signs of Table 2), the

solution is unique and the Jacobian evaluated at the root is nonsingular.

In a practical simulation, one may have to enter and exit repeatedly the discon-
tinuity surface, and a numerical method based on monitoring when one reaches Σ,
when one needs to leave it, and how one needs to modify the vector field in the
different regimes, may be somewhat cumbersome if not downright impractical. An
appealing alternative is to globally regularize (1) before hand, so that one has a
unique (smooth, or at least continuous) differential system which can be integrated
by one of a host of numerical methods for solving differential equations. Although
a systematic comparison of different possibilities remains to be done, it is precisely
this basic appeal which prompted us to perform the present study. Naturally, for
these global regularizations to make sense, we will assume that the functions fi,
i = 1, 2, 3, 4, extend in a neighborhood of the discontinuity surfaces Σ1,Σ2 (hence
of Σ).

2. A time regularization

Here we look at the generalization of the approach used in [10] for the case of a co-
dimension 1 discontinuity surface. The basic idea is to consider a vector field given
by the time average of vector fields evaluated along a solution trajectory sampled
from a small time interval in the past.
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It is convenient to rewrite (1) by using the characteristic functions associated to
the region Ri’s. That is, letting

χi(x) =

{

1 if x ∈ Ri

0 if x 6∈ Ri
, i = 1, . . . , m ,

then (1) can be rewritten as (recall that m = 2p for us)

(12) ẋ(t) =

2p
∑

i=1

χi (x(t)) fi(x(t)) .

We are interested in the case of a trajectory which reaches Σ. Since (12) is au-
tonomous, we will let t = 0 be the time at which the solution reaches Σ, that is
x(0) ∈ Σ. Before t = 0, the solution will be some function ψ(t).

Generalizing the approach of [10], we consider the following regularization of (12)














ẋ(t) =
1

ε

t
∫

t−ε

2p
∑

i=1

χi (x(s)) fi (x(s)) ds , t > 0

x(t) = ψ(t), t ∈ [−ε, 0],

(13)

where we assume that we cannot have hj (ψ(t)) = 0 for all j = 1, . . . , p, and all
t ∈ [−ε, 0]. We will indicate with xε the solution of (13).

Remark 2.1. Note that –as long as the trajectory is sampled in some of the regions
Ri’s, and there are no accumulation points on Σ for the solution of (13)– the vector
field is in fact a time average of different vector fields around Σ.

Example 2.2. Consider the case of a discontinuity surface of co-dimension 1 (the
case considered in [10]). Using the same notation of Example 1.2, we have Σ :=
{x ∈ R

n : h(x) = 0}, separating (locally) R
n into the two regions R1 and R2. In

this case, the proposed regularization (13) reads


























ẋ(t) =
1

ε

t
∫

t−ε

[

H

(

− h(x(s))

)

f1 (x(s)) +H

(

h(x(s))

)

f2 (x(s))

]

ds,

t > 0,

x(t) = ψ(t), t ∈ [−ε, 0],

(14)

where we have made use of the more compact notation afforded by the Heaviside

function: H(y) =

{

1 if y > 0
0 if y < 0

.

The analysis provided in [10] shows that under standard assumptions and for ε
sufficiently small, the problem (14) has a C1 solution xε and the sequence of such
solutions converges (in the C0-topology) as ε→ 0 to a C1-function which identifies
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with the classical Filippov solution. To be precise, relatively to (14), the following
theorem holds.

Theorem 2.3 ([10]). Let f1, f2, h and ψ be as above. Then there exist ε0 > 0,
T > 0, such that for each ε ∈ (0, ε0) problem (14) has a C1-solution xε : [0, T ] → R

n.
Moreover:

(1) |h (xε(t)) | ≤ Cε , ∀t ∈ [0, T ].

There is a C1 function x0 such that

(2) h (x0(t)) = 0 , ∀t ∈ [0, T ];
(3) lim

ε→0
‖xε − x0‖C0[0,T ] = 0;

(4) x0 solves the differential system (4). �

2.1. The case of a co-dimension 2 discontinuity surface. In the case of a co-
dimension 2 manifold separating regions of continuity of the vector field, the problem
can also be regularized using an approach similar to the previous co-dimension 1
case.

The problem at hand is that given in (5)-(6), and we consider the regularization
(13) with p = 2, where of course the vector fields satisfy the assumptions of Table
2.

Next, we show by a simple example (suggested in [8] and also considered in [10])
that the results in this case are substantially different from the co-dimension 1 case.

In fact, now there does not exist in general a unique limit function associated to
the sequence {xε} of solutions of (13).

Example 2.4. Let h1(x) = x1 and h2(x) = x2, so that Σ = {x ∈ R
3 : x1 = x2 = 0}.

With a, b, c > 0, let

f1(x) =





a
b
c



 , f2(x) =





a
−b
−c



 , f3(x) =





−a
b

−c



 , f4(x) =





−a
−b
c



 .

It is simple to see that the Filippov convexification technique (2-3) gives the following
family of vector fields on Σ

(15) ẋ ∈





0
0

(4λ− 1)c



 , 0 ≤ λ ≤ 1/2 .

Next, let us analyze the behavior of (13) for this problem.

Analysis of Example 2.4 with a = b = c = 1.
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Given the simplicity of the problem, it is easy to determine that (13) is equivalent
to the following regularized equations

ẋi(t) =
1

ε

t
∫

t−ε

(

2H
(

xi(s)
)

− 1
)

ds , i = 1, 2,

ẋ3(t) =
1

ε

t
∫

t−ε

(

2H
(

x1(s)
)

− 1
) (

2H
(

x2(s)
)

− 1
)

ds .(16)

The first two equations are decoupled so that we can make use of the results available
for the co-dimension 1 case (see [10]).

Take an initial condition x̄ = (x̄1, x̄2, x̄3) with x̄1 6= 0 and x̄2 6= 0, and consider
first the equations for xi, xi, i = 1, 2. No matter whether x̄1 and x̄2 are positive or
negative, there will be a first time when xεi (i = 1, 2) reaches the value 0. Let t = ti
be the time instants when xεi (t) = 0, i = 1, 2.

.9 1.0 1.1 1.2 1.3 1.4−.01

.00

.01

.02

.9 1.0 1.1 1.2 1.3 1.4.9

1.0

1.1

1.2

Figure 1. On the left is the graph of xε1(t) and xε2(t) (blue) for an
initial value x̄1 = 1.0, x̄2 = 1.2, ε = 10−2; the abscissas represent
time. Note that the wrinkles xε1 and xε2 are perfectly in phase so that
xε3 (right picture) is linear in the sliding regime with slope 1.

According to the analysis given in [10], we obtain that the solution xεi , for t ≥ ti,
is 2ε-periodic and C1([0,+∞)). In the first period [ti, ti+2ε], for i = 1, 2, it is given
by

xεi (t) =











−
1

ε
(t− ti) (t− ti − ε) for ti ≤ t ≤ ti + ε

1

ε
(t− ti − ε) (t− ti − 2ε) for ti + ε ≤ t ≤ ti + 2ε.

Observe that t1, respectively t2, depend continuously on x̄1, respectively x̄2, and on
ε. Since the equations for x1 and x2 are decoupled, without loss of generality we
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.9 1.0 1.1 1.2 1.3 1.4−.01

.00

.01

.02

.9 1.0 1.1 1.2 1.3 1.4.9

1.0

1.1

1.2

Figure 2. On the left is the graph of xε1(t) and xε2(t) (red) for an
initial value x̄1 = 1.004, x̄2 = 1.2, ε = 10−2; the abscissas represent
time. Now, clearly the wrinkles are not in phase and as a result the
slope of xε3 (right picture) in the sliding phase is 0.1608.

can assume that t2 ≥ t1 and we can choose x̄1 and x̄2 so that t2 = t1 + 2 r ε + 2 δ ε
where r is a nonnegative integer and δ ∈ [0, 2].

Consider now the equation (16), and observe that the right-hand side only depends
on the sign of xε1 and xε2. By routine algebraic manipulations we get from (16)

ẋ3(t) = 2 |δ − 1| − 1.(17)

This implies

xε3(t) = xε3(t2) + (2 |δ − 1| − 1) (t− t2) , for t ≥ t2 ,

where δ = δ(x̄1, x̄2, ε) is a continuous function of its arguments. This means that
simply changing the initial values x̄1, x̄2 or ε we are able to change the solution x3(t)
and to generate indeed a bunch of solutions. Since this feature persists in the limit
ε→ 0 we have a phenomenon of fattening, that is in the singular limit there appear
a whole set of weak solutions. By comparison of (15) and (17), we observe that this
set of weak solutions coincides with the set of Filippov solutions for this particular
problem. �

3. Space regularization

Here we consider replacing the problem (7) by regularizing the sign-function.
Namely, given (a small value of) ε ≥ ε0 > 0, we consider the differential equation

ẋ =
1− σε(h1(x))

2

1− σε(h2(x))

2
f1(x) +

1− σε(h1(x))

2

1 + σε(h2(x))

2
f2(x)

+
1 + σε(h1(x))

2

1− σε(h2(x))

2
f3(x) +

1 + σε(h1(x))

2

1 + σε(h2(x))

2
f4(x) ,

(18)



12 Dieci, Guglielmi

where the smoothed sign function σε is defined as follows:

(19) σε(y) =







1 y > ε
g(y) y ∈ [−ε, ε]
−1 y < −ε

,

and the function g will be required to satisfy the following conditions:

(a) Smooth and Increasing: g must be at least C1, and monotone increasing
(hence g′(y) > 0) for y ∈ (−ε, ε);

(b) Interpolate: g must satisfy the interpolatory conditions g(−ε) = −1, g(ε) =
1;

(c) Odd: We will also select g as an odd function, g(−y) = −g(y).

Remark 3.1. Of course, there are many choices for the function g, and one could
select g so to make σε become as smooth as desired. Still, in our experiments (and
in section 3.2 as well), we used the simple linear function

(20) g(y) = y/ε , y ∈ [−ε, ε] .

However, other choices are certainly possible. For example, adopting the choice
g(y) = y

2ε

(

3 − (y/ε)2
)

, y ∈ [−ε, ε], will give a globally C1 function for all y and
require just minimal modifications to the arguments of section 3.2.

We are interested in studying the dynamics of the regularized system (18) when
x is in a neighborhood Σε of the co-dimension 2 discontinuity surface Σ:

Σε = {x ∈ R
n : |h1(x)| ≤ ε , |h2(x)| ≤ ε } ,

so that for x ∈ Σε (18) rewrites as

ẋ =
1− g(h1(x))

2

1− g(h2(x))

2
f1(x) +

1− g(h1(x))

2

1 + g(h2(x))

2
f2(x)

+
1 + g(h1(x))

2

1− g(h2(x))

2
f3(x) +

1 + g(h1(x))

2

1 + g(h2(x))

2
f4(x) .

(21)

We will further assume that Σ is nodally attractive and that the signs of which
in Table 2 hold (uniformly) in Σε.

Now, since ∇h1 and ∇h2 are smooth and linearly independent in Σε, we can
locally change coordinates1: x → y, so that y1 = h1(x), y2 = h2(x). So doing, Σε

rewrites simply as the region

Σε = {y ∈ R
n : y1 ∈ [−ε, ε] , y2 ∈ [−ε, ε]} .

1We are using the fact that a basis for the tangent plane to Σ can be chosen so to vary smoothly
in x ∈ Σ. This is a consequence of the fact that the matrix valued function

[

∇h1(x) ∇h2(x)
]

is

smooth and full rank for all x.
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Further, since ẏ1 = ∇h1(x)
T ẋ1 and ẏ2 = ∇h2(x)

T ẋ2, the differential inclusion (7)
rewrites as

ẏ ∈
1− σ(y1)

2

1− σ(y2)

2
w1(y) +

1− σ(y1)

2

1 + σ(y2)

2
w2(y)

+
1 + σ(y1)

2

1− σ(y2)

2
w3(y) +

1 + σ(y1)

2

1 + σ(y2)

2
w4(y) ,

and equation (21) rewrites as

ẏ =
1− g(y1)

2

1− g(y2)

2
w1(y) +

1− g(y1)

2

1 + g(y2)

2
w2(y)

+
1 + g(y1)

2

1− g(y2)

2
w3(y) +

1 + g(y1)

2

1 + g(y2)

2
w4(y) , y ∈ Σε ,

(22)

where the first two components of the n-dimensional vector valued functions wj,
j = 1, . . . , 4, are the same as wi

j, i = 1, 2, of which in Table 2 (formally, at least,
since they may be evaluated at different points).

Remark 3.2. For later reference, we note that the same change of variable on the
system (8) gives

(23) ẏ = (1− α)(1− β)w1(y) + (1− α)βw2(y) + α(1− β)w3(y) + αβw4(y) ,

where now it must be understood that this expression is legitimate just for y ∈ Σ,
that is when y1 = y2 = 0.

Next, let y be on the boundary of Σε. By
virtue of the signs of the wi

j, j = 1, . . . , 4,
and i = 1, 2, the flow with respect to y1 and
y2 points inward, and thus the regions Σε

are positively invariant sets for the flow of
(22) for any ε ≥ ε0 > 0; naturally, the re-
gions Σε do depend on ε. See the figure on
the right. The situation is analogous to hav-
ing an asymptotically stable node in a planar
system, hence the name of nodal attractivity.

3.1. Piecewise constant vector fields. Next, we consider the simpler –but prac-
tically important– case in which the vectors wi

j , i = 1, 2, j = 1, . . . , 4, are constant.

Example 3.3. A typical situation when the case under scrutiny presents itself is
when in the original problem (5) the vector fields fi, i = 1, . . . , 4, are constant,
and the surfaces Σ1 and Σ2 are (hyper-)planes. In this case, the gradients ∇h1,2
are constant, and as a consequence so are the vectors wj. This seemingly simple
situation occurs in many problems of practical relevance; e.g., see Example 1.1, as
well as [4, 5, 11]. �
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In this case, we now show that not only Σε is invariant, but in fact the flow of
(22) goes to an equilibrium point relatively to (y1, y2), for any positive ε. Notation
is the usual one.

Theorem 3.4. Let ε ≥ ε0 > 0, and let wi
j, i = 1, 2, j = 1, . . . , 4, in (22) be constant

in Σε, and satisfy the sign constraints of Table 2. Then, the first two components of
the flow of (22) approach an equilibrium point.

Proof. Under the stated assumptions, the differential system (22) decouples in two
systems, one satisfied by y1, y2, the other satisfied by y3, . . . , yn. That is, we have

[

ẏ1
ẏ2

]

=
1− g(y1)

2

1− g(y2)

2

[

w1
1

w2
1

]

+
1− g(y1)

2

1 + g(y2)

2

[

w1
2

w2
2

]

+
1 + g(y1)

2

1− g(y2)

2

[

w1
3

w2
3

]

+
1 + g(y1)

2

1 + g(y2)

2

[

w1
4

w2
4

]

,

(24)

and




ẏ3
...
ẏn



 =
1− g(y1))

2

1− g(y2)

2





w3
1
...
wn

1



+
1− g(y1))

2

1 + g(y2)

2





w3
2
...
wn

2





+
1 + g(y1)

2

1− g(y2)

2





w3
3
...
wn

3



+
1 + g(y1)

2

1 + g(y2)

2





w3
4
...
wn

4



 .

(25)

In the case under examination here, we notice that (unlike wi
j , i = 1, 2, j = 1, . . . , 4)

the components wi
j, i = 3, . . . , n, j = 1, . . . , 4, are not necessarily constant.

Now, the flow of (24) points inside the region Σε and thus there must be at least
one equilibrium point in Σε. To find the equilibria, we let αε = (1 + g(y1))/2,
βε = (1 + g(y2))/2, and need to solve the system

(26) 0 = (1− αε)[(1− βε)

[

w1
1

w2
1

]

+ βε

[

w1
2

w2
2

]

] + αε[(1− βε)

[

w1
3

w2
3

]

+ βε

[

w1
4

w2
4

]

] .

But, we know (see (10)-(11)) that this algebraic system has only one solution αε, βε ∈
[0, 1]2. So, there is only one equilibrium of (24) in Σε, which is uniquely found from
the relations y1 = g−1(2αε − 1), y2 = g−1(2βε − 1), since g is monotone.

Now, since the system (24) is 2-dimensional and autonomous, if we rule out the
existence of a periodic orbit in Σε, it will follow that the equilibrium is attracting,
and the flow will approach that of the reduced system. We use Green’s theorem to
rule out periodic orbits (this is a standard argument; e.g., see [15]). For notational
simplicity, rewrite the system (24) as

[

ẏ1
ẏ2

]

=

[

F1(y1, y2)
F2(y1, y2)

]

≡ F (y1, y2) .
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Suppose that there is a periodic orbit in Σε; hence, there is a closed loop in (y1, y2),
call it Γ (which we can take it to be parametrized by t), enclosing a region R in Σε.
Green’s theorem states that

∫∫

R

divFdy1dy2 =

∮

Γ

(F · n)dt

where n is the normal to Γ. But of course if Γ is a periodic orbit, then n is orthogonal
to F (since the vector field is tangent to the trajectory). So,

∮

Γ
(F · n)dt = 0. On

the other hand, explicit computation of divF gives

divF =−
g′(y1)

2

[1− g(y2)

2
w1

1 +
1 + g(y2)

2
w1

2 −
1− g(y2)

2
w1

3 −
1 + g(y2)

2
w1

4

]

+

−
g′(y2)

2

[1− g(y1)

2
w2

1 −
1− g(y1)

2
w2

2 +
1 + g(y1)

2
w2

3 −
1 + g(y1)

2
w2

4

]

.

Now, recalling that g is monotone increasing, that it takes values in [−1, 1], and
that wi

j, i = 1, 2, j = 1, . . . , 4, satisfy the signs of which in Table 2, we immediately
get that divF < 0, and hence there cannot be a periodic orbit in Σε. �

Next, under the assumptions of Theorem 3.4, we want to compare the reduced
flow of (22) to that of (23). First, rewrite (25) with notation from Theorem 3.4 as

(27)





ẏ3
...
ẏn



 = (1−αε)
[

(1− βε)





w3
1
...
wn

1



+ βε





w3
2
...
wn

2





]

+αε

[

(1− βε)





w3
3
...
wn

3



+ βε





w3
4
...
wn

4





]

.

Next, recall that the system (23) is defined on Σ, and therefore y1 = y2 = 0 (for all
t ≥ 0). This means that also (23) rewrites in a manner similar to (26)-(27), namely:

(28) 0 = (1− α)
[

(1− β)

[

w1
1

w2
1

]

+ β

[

w1
2

w2
2

]

]

+ α
[

(1− β)

[

w1
3

w2
3

]

+ β

[

w1
4

w2
4

]

]

,

and

(29)





ẏ3
...
ẏn



 = (1− α)
[

(1− β)





w3
1
...
wn

1



+ β





w3
2
...
wn

2





]

+ α
[

(1− β)





w3
3
...
wn

3



+ β





w3
4
...
wn

4





]

,

where y ∈ Σ. From (28) and (26), since wi
j, i = 1, 2, j = 1, . . . , 4, are constant, we

immediately have that αε = α and βε = β. However, although formally (29) and
(27) are the same vector fields, the functions wi

j, i = 3, . . . , n, j = 1, . . . , 4, depend
on y, and the arguments y to be used in (29) and (27) are not the same, since for
(29) we must have y1 = y2 = 0, while for (27) we have y1 and y2 from solving
g(y1) = 2α − 1, g(y2) = 2β − 1. As a consequence, the trajectories described by
(29) and (27) will not be the same, in general. Nevertheless, there is an important
situation when they are the same.
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Theorem 3.5. Let ε ≥ ε0 > 0, and let wi
j, i = 1, 2, . . . , n, j = 1, . . . , 4, in (22) be

constant in Σε, with the usual sign constraints of Table 2 satisfied. Let y∗1, y
∗

2, be the
equilibrium point of (24), and consider the reduced systems (27) and (29). Then,
their respective flows are identical.

Proof. Under the stated assumptions, the differential systems (27) and (29) are the
same, hence their solution trajectories are as well, for same initial conditions. �

Remark 3.6. As a consequence of Theorem 3.5, and under its assumptions, let
v ∈ R

n−2 be a fixed vector, and suppose we take ICs for (24)-(25) given by y(0) =




y∗1
y∗2
v



, while we take ICs for (23) given by y(0) =





0
0
v



. Then, y3(t), . . . , yn(t),

are identical ∀t ≥ 0. In other words, the reduced dynamics of (22) follows the
same vector field as the dynamics of (23). Except for the first two components of
the solution, which are usually at a different equilibrium, the remaining solution
components are the same. To fix ideas, suppose that we have chosen the function
g: g(y) = y/ε, y ∈ [−ε, ε], and that we have solved the algebraic system (28) and
obtained the unique pair αε, βε ∈ [0, 1]2. This will give us y∗1 = ε(2αε−1) = ε(2α−1),
y∗2 = ε(2βε − 1) = ε(2β − 1).

Example 3.7. Consider this simple example. Let the surfaces Σ1,2 = {x : h1,2(x) =
0} be given by h1(x) = x1 and h2(x) = x2. Further, take the following constant
vector fields in the regions Ri, i = 1, . . . , 4:

f1 =





a
a
1



 , f2 =





a
−b
−1



 , f3 =





−b
a
−1



 , f4 =





−b
−b
1



 , a, b > 0 .

As regularizing function, we choose g(y) = y/ε. So, we obtain α = αε = β =
βε =

a
a+b

, and from this x∗1 = x∗2 = εa−b
a+b

, while x3 satisfies the differential equation

ẋ3 =
(

b−a
b+a

)2
. Except when a = b, the equilibrium point for the regularized problem

is not at the origin (that is, not on Σ). �

To conclude this section, we observe that the equilibrium for the reduced problem
(24) is asymptotically stable (and reached exponentially fast). [This is a consequence
of the fact that the function V (y1, y2) = (y1 − y∗1)

2 + (y2 − y∗2)
2 is a strict Lyapunov

function.]

3.2. General case. Let us now consider the general case, when in the system (24)
the vector valued functions wj depend on the state variables y.

Let us still formally rewrite the system as in (24)-(25), where of course all the
variables wi

j ’s now depend on y. We note again that the dynamics of the system

are restricted to live in Σε, in particular y1,2 ∈ [−ε, ε]. Now, let v ∈ R
n−2 be a

vector of admissible values for the variables y3, . . . , yn, and consider the functions wi
j
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(j = 1, . . . , 4; i = 1, 2) in (24) as functions of y1 and y2 only, for fixed v: w
i
j(y1, y2, v).

As a consequence of the restricted dynamical behavior of y1,2, then there must be a
steady state relatively to y1 and y2, inside Σε.

Theorem 3.8. Let the function g(y) of (19) be of the form (20), g(y) = y/ε,
y ∈ [−ε, ε]. Also, let the first partial derivatives of wi

j (j = 1, . . . , 4; i = 1, 2) with

respect to y1 and y2 be uniformly bounded in [−ε, ε]2.
Then, the algebraic system

0 =
1− g(y1)

2

[1− g(y2)

2
w1

1(y1, y2, v) +
1 + g(y2)

2
w1

2(y1, y2, v)
]

+
1 + g(y1)

2

[1− g(y2)

2
w1

3(y1, y2, v) +
1 + g(y2)

2
w1

4(y1, y2, v)
]

,

0 =
1− g(y2)

2

[1− g(y1)

2
w2

1(y1, y2, v) +
1 + g(y1)

2
w2

3(y1, y2, v)
]

+
1 + g(y2)

2

[1− g(y1)

2
w2

2(y1, y2, v) +
1 + g(y1)

2
w2

4(y1, y2, v)
]

(30)

has a unique solution (y1, y2) in [−ε, ε]2, for ε sufficiently small. The solution of
course depends on v.

Furthermore, the evolution of y1 and y2 according to (24) will reach this equilib-
rium configuration.

After verifying Theorem 3.8, by freeing v, then we will have a co-dimension 2
surface of equilibria, S = {y1(v), y2(v)}, parametrized by v. If we now let the vector
v describe the evolution of the variables y3, . . . , yn, according to (25), we have the
following very interesting conclusion (we use [15, Theorem 0.3.2]):

Corollary 3.9. There is a surface S of equilibria for (24), parametrizable by y3, . . . , yn.
As a consequence, the system is constrained to move on the co-dimension 2 surface
Sε := {(y1, y2) ∈ S}, rather than on Σ. The surface Sε is O(ε) close to Σ. �

Next, let us proceed to prove Theorem 3.8.

Proof of Theorem 3.8. Rewrite (30) by setting αε = (1 + g(y1))/2 and βε = (1 +
g(y2))/2, for all (y1, y2) ∈ [−ε, ε]2. This way, we can formally rewrite (30) as

0 =(1− αε)
[

(1− βε)

[

w1
1

w2
1

]

(y1, y2, v) + βε

[

w1
2

w2
2

]

(y1, y2, v)
]

+αε

[

(1− βε)

[

w1
3

w2
3

]

(y1, y2, v) + βε

[

w1
4

w2
4

]

(y1, y2, v)
]

,

(31)
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and, on this system, we consider the iteration for k = 0, 1, . . . :

0 =(1− α(k+1)
ε )

[

(1− β(k+1)
ε )

[

w1
1

w2
1

]

(y
(k)
1 , y

(k)
2 , v) + β(k+1)

ε

[

w1
2

w2
2

]

(y
(k)
1 , y

(k)
2 , v)

]

+α(k+1)
ε

[

(1− β(k+1)
ε )

[

w1
3

w2
3

]

(y
(k)
1 , y

(k)
2 , v) + β(k+1)

ε

[

w1
4

w2
4

]

(y
(k)
1 , y

(k)
2 , v)

]

,

(32)

where (y01, y
0
2) is a given value in [−ε, ε]2.

Now, each iterate of (32) gives a unique well defined value (α
(k+1)
ε , β

(k+1)
ε ) in [0, 1]2,

which in general will depend on y(k) through the dependence of the wi
j’s on y

(k). In

fact, since the wi
j(y

(k)
1 , y

(k)
2 , v), i = 1, 2, j = 1, . . . , 4, satisfy the nodal attractivity

conditions of which in Table 2, then –arguing as in (10-11)– we can infer uniqueness

of α
(k+1)
ε ∈ [0, 1] and β

(k+1)
ε ∈ [0, 1] for each given (y

(k)
1 , y

(k)
2 ). Further, we notice

that from Lemma 1.5 the Jacobian of the system (32) at this root (α
(k+1)
ε , β

(k+1)
ε ) is

nonsingular.

Correspondingly, we define the unique value (next iterate) (y
(k+1)
1 , y

(k+1)
2 ) in [−ε, ε]2

by exploiting the monotonicity of the function g:

(33)

[

y
(k+1)
1

y
(k+1)
2

]

=

[

g−1(α
(k+1)
ε (y(k)))

g−1(β
(k+1)
ε (y(k)))

]

,

where we have highlighted that the values of α
(k+1)
ε and β

(k+1)
ε depend on y(k) (since

the wi
j’s do). In short, we have the iteration process

[

y
(k)
1

y
(k)
2

]

→

[

y
(k+1)
1

y
(k+1)
2

]

, k = 0, 1, 2, . . . ,

defined by the combination: Solve (32) for (α
(k+1)
ε , β

(k+1)
ε ), and use (33) to define

(y
(k+1)
1 , y

(k+1)
2 ). Since this fixed point iteration maps [−ε, ε]2 into itself, then it has

a fixed point.
We want to show that the fixed point is unique and that the iteration converges

to it for any given (fixed) v, and any initial condition (y01, y
0
2). A sufficient condition

for convergence, and for uniqueness of the fixed point, is of course contractivity of
the iteration map. In particular, if the derivative of the map is less than 1 in norm,
contractivity will follow.

In the specific case of g we are considering, we have
[

y
(k+1)
1

y
(k+1)
2

]

= ε

[

2α
(k+1)
ε (y(k))− 1

2β
(k+1)
ε (y(k))− 1

]

.

As a consequence, contractivity of the iteration map will follow (for ε sufficiently

small) as long as the first partial derivatives of α
(k+1)
ε (y(k)) and β

(k+1)
ε (y(k)) (viewed



Regularization of Piecewise Smooth Systems 19

as functions of y(k)) are bounded (uniformly in ε). In what follows, for simplicity,
we will avoid writing the superscript (k + 1).

Below, we show boundedness for ∂y
1
αε and ∂y

1
βε; the case of ∂y

2
αε and ∂y

2
βε is

much the same.
To obtain expressions for ∂y

1
αε and ∂y

1
βε, we differentiate with respect to y1 the

system satisfied by αε, βε (see (32)):

(34) (1− αε)
[

(1− βε)

[

w1
1

w2
1

]

+ βε

[

w1
2

w2
2

]

]

+ αε

[

(1− βε)

[

w1
3

w2
3

]

+ βε

[

w1
4

w2
4

]

]

= 0 .

This gives

−
∂αε

∂y1

[

(1− βε)w1 + βεw2

]

+
∂αε

∂y1

[

(1− βε)w3 + βεw4

]

−
∂βε
∂y1

[

(1− αε)w1 + αεw3

]

+
∂βε
∂y1

[

(1− αε)w2 + βεw4

]

+ (1− αε)
[

(1− βε)
∂w1

∂y1
+ βε

∂w2

∂y1

]

+ αε

[

(1− βε)
∂w3

∂y1
+ βε

∂w4

∂y1

]

= 0 ,

and this can be rewritten as the following linear system for

[

∂y
1
αε

∂y
1
βε

]

:

M

[

∂y
1
αε

∂y
1
βε

]

= b ,

where in b we have put all the terms containing the partial derivatives of the wi’s.
The key observation now is to notice thatM is exactly the Jacobian of the system

(34) (that is, of (32)) at its unique root in [0, 1]2. But then, by virtue of Lemma

1.5, the matrix M is invertible and thus

[

∂y
1
αε

∂y
1
βε

]

exists unique and it is bounded

(uniformly in ε), and thus the iteration map is contracting uniformly in ε.
Next, we need to argue that the evolution of y1 and y2 according to (24) reaches the

equilibrium configuration. This is guaranteed if the reduced system (24) for fixed v,
that is with wi

j(y1, y2, v) (for i = 1, 2, j = 1, . . . , 4), does not admit periodic orbits.
To rule out periodic orbits, we resort again to Green’s theorem. The argument
is similar to the one we used for the case of constant wi

j ’s, except that now the
smallness of ε plays a key role. Rewrite (24) in the present case:

[

ẏ1
ẏ2

]

=
1− g(y1)

2

[1− g(y2)

2

[

w1
1

w2
1

]

(y1, y2, v) +
1 + g(y2)

2

[

w1
2

w2
2

]

(y1, y2, v)
]

+
1 + g(y1)

2

[1− g(y2)

2

[

w1
3

w2
3

]

(y1, y2, v) +
1 + g(y2)

2

[

w1
4

w2
4

]

(y1, y2, v)
]

,



20 Dieci, Guglielmi

and compute divF , F being the right-hand side of this system above. Writing gi for
g(yi), i = 1, 2, and using a similar notation for the derivatives, we get:

divF =−
g′1
2

[1− g2
2

w1
1 +

1 + g2
2

w1
2 −

1− g2
2

w1
3 −

1 + g2
2

w1
4

]

+

−
g′2
2

[1− g1
2

w2
1 −

1− g1
2

w2
2 +

1 + g1
2

w2
3 −

1 + g1
2

w2
4

]

+
1− g1

2

[1− g2
2

(∂y
1
w1

1 + ∂y
2
w2

1) +
1 + g2

2
(∂y

1
w1

2 + ∂y
2
w2

2)
]

+
1 + g1

2

[1− g2
2

(∂y
1
w1

3 + ∂y
2
w2

3) +
1 + g2

2
(∂y

1
w1

4 + ∂y
2
w2

4)
]

.

Because of the signs in Table 2, and the fact that g′ > 0, we know that the terms in
the first two rows are negative, but we do not control the signs of the terms in the
3rd and 4th rows. However, since g′1 = g′2 = 1/ε, we immediately get that divF < 0
for ε sufficiently small and Theorem 3.8 is verified. �

From contractivity (see above), we also obtain that the equilibrium point (y1, y2)
is asymptotically stable. Moreover, again from contractivity of the fixed point iter-
ation, we also have that the fixed point (y1, y2) depends smoothly on v.

Finally, we would like to remark on the use of a more general function g(y),
rather than simply g(y) = y/ε. In our arguments, we used two key properties of
the function g, the first of which is a consequence of monotonicity, while the second
is not necessarily satisfied for all choices of smooth monotone interpolant g: (a)
g−1(z) ∈ [−ε, ε] for any z ∈ [−1, 1] (used for contractivity), and (b) g′(y) = O(1/ε)
for all y ∈ [−ε, ε] (used to rule out periodic orbits). Any choice of function g
satisfying these properties would work. For example, the cubic function of Remark
3.1, or more generally any function g admitting an expansion of the type g(z) =
z/ε

(

A + O(z/ε)2
)

with A a constant. [We note that the above restriction (b) was
not needed in the case of constant vector fields in order to rule out periodic orbits.]

Remark 3.10. Observe that the argument we used to verify Theorem 3.8 requires
unique solvability of the system (32) and invertibility of the Jacobian at the iterates

α
(k+1)
ε , β

(k+1)
ε . These facts follow from (10)-(11) and Lemma 1.5, and have been in-

ferred regardless of the small value of ε. It is only through the contractivity argument
(and then also to infer negative divergence) that the need for a sufficiently small ε
comes into play.

Finally, we now compare the vector field of the regularized system on Sε with the
vector field of [8] on Σ. That is, we want to compare the vector fields (a) and (b)
below.

(a) Vector field from [8]. We have y1 = y2 = 0, and the differential algebraic
system (28)-(29), where the wi’s are functions of y (with y1 = y2 = 0).
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(b) Regularized vector field on Sε. We have y1 and y2 from yε1 = g−1(αε), y
ε
2 =

g−1(βε) and the differential algebraic system (26)-(27), where the wi’s are
functions of yε (and now, in general yε1 6= 0, yε2 6= 0).

To recap, let us explicitly rewrite case (a) as

0 =(1− α)
(

(1− β)

[

w1
1

w2
1

]

(y) + β

[

w1
2

w2
2

]

(y)
)

+α
(

(1− β)

[

w1
3

w2
3

]

(y) + β

[

w1
4

w2
4

]

(y)
)

, y1 = y2 = 0 ,





ẏ3
...
ẏn



 = (1−α)
(

(1−β)





w3
1
...
wn

1



 (y)+β





w3
2
...
wn

2



 (y)
)

+α
(

(1−β)





w3
3
...
wn

3



 (y)+β





w3
4
...
wn

4



 (y)
)

,

and let us rewrite (b) as

0 = (1−αε)
(

(1−βε)

[

w1
1

w2
1

]

(yε)+βε

[

w1
2

w2
2

]

(yε)
)

+αε

(

(1−βε)

[

w1
3

w2
3

]

(yε)+βε

[

w1
4

w2
4

]

(yε)
)

,





ẏε3
...
ẏεn



 = (1−αε)
(

(1−βε)





w3
1
...
wn

1



 (yε)+βε





w3
2
...
wn

2



 (yε)
)

+αε

(

(1−βε)





w3
3
...
wn

3



 (yε)+βε





w3
4
...
wn

4



 (yε)
)

.

Comparison of the two vector fields makes sense when they are evaluated at
arguments y0 = (0, 0, v) and yε0 = (yε1, y

ε
2, v), respectively, where y

ε
1 = g−1(αε), y

ε
2 =

g−1(βε). In this case, we make the following
Claim. The two vector fields, on Σ and Sε respectively, are O(ε)-close to each other.

[From this, it will follow that the vector fields are also O(ε)-close when evaluated
at (0, 0, v) and (yε1, y

ε
2, ṽ) with v and ṽ being O(ε)-close].

To verify the claim, let zj =







w3
j
...
wn

j






(y) and and zεj =







w3
j
...
wn

j






(yε), j = 1, . . . , 4, and

write




ẏ3
...
ẏn



−





ẏε3
...
ẏεn



 =(1− α)
[

(1− β)(z1 − zε1) + β(z2 − zε2)
]

+ α
[

(1− β)(z3 − zε3) + β(z4 − zε4)
]

+
[

(1− α)(1− β)− (1− αε)(1− βε)
]

zε1 +
[

(1− α)β − (1− αε)βε
]

zε2

+
[

α(1− β)− αε(1− βε)
]

zε3 +
[

αβ − αεβε
]

zε4 .

So, the stated claim will follow if

(i) α− αε = O(ε), β − βε = O(ε), and
(ii) wi

j(y0)− wi
j(y

ε
0) = O(ε), i = 1, . . . , n, j = 1, . . . , 4.
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But, (ii) holds because of the way the wj’s are defined, smoothness of the functions
h1(x) and h2(x) for x in a neighborhood of Σ, and closeness of y0 and y

ε
0. Also, that

(i) holds is a consequence of nonsingularity of the Jacobian of the nonlinear system
(9). Therefore, the claim follows.

4. Numerical Experiments

Here we present results of numerical simulation2 to highlight the behavior of the
two proposed regularizations considered in this work. For the regularized problems,
one has to choose the value of the regularization parameter, ε; in principle, this
should be small enough so to remain close to the original non-regularized problem,
but of course the smaller the value of ε the stiffer is the resulting system, which
leads to more challenging computations (see [16]). Practically speaking, we found
the value ε = 10−2 to be a meaningful value for our purposes.

The first problem we consider is one with a discontinuity surface of co-dimension 2
and nonconstant vector fields, where the solution should slide on the co-dimension 2
manifold for a while before eventually leaving it and coming back to it, periodically.
The second problem is actually a study of what can be expected when Σ is of
co-dimension 3.

It is easy to formally generalize to the case of a discontinuity surface of co-
dimension 3 the time and space regularizations considered in the present work. To
witness, we have eight different regionsR1, . . . , R8, separated by three (hyper-)surfaces
Σ1,2,3 each identified with the zero set of a smooth function h1,2,3, so that Σ =
Σ1 ∩ Σ2 ∩ Σ3. We have eight (typically different) vector fields fi, i = 1, . . . , 8, in
these regions,

ẋ = fi(x) , x ∈ Ri , i = 1, . . . , 8 ,

and we can assume that the regions are labeled as follows:

R1 : f1 when h1 < 0 , h2 < 0 , h3 < 0 , R2 : f2 when h1 < 0 , h2 < 0 , h3 > 0 ,

R3 : f3 when h1 < 0 , h2 > 0 , h3 < 0 , R4 : f4 when h1 < 0 , h2 > 0 , h3 > 0 ,

R5 : f5 when h1 > 0 , h2 < 0 , h3 < 0 , R6 : f6 when h1 > 0 , h2 < 0 , h3 > 0 ,

R7 : f7 when h1 > 0 , h2 > 0 , h3 < 0 , R8 : f8 when h1 > 0 , h2 > 0 , h3 > 0 .

For x ∈ Σ, the extension of (8) becomes

ẋ = (1− α)(1− β)(1− γ)f1(x) + (1− α)(1− β)γf2(x) + (1− α)β(1− γ)f3(x)+

(1− α)βγf4(x) + α(1− β)(1− γ)f5(x) + α(1− β)γf6(x) + αβ(1− γ)f7(x) + αβγf8(x) ,

(35)

2The results in this section, as well as on the other problems considered in this paper, have
been obtained by using the codes RADAR5 and RADAU5 by N. Guglielmi and E. Hairer, and by E.
Hairer and G. Wanner, which are freely downloadable from http://www.unige.ch/math/folks/-

hairer/software.html
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where the functions α, β, γ, take values in [0, 1] and must be found so that∇hT1 (x)ẋ =
∇hT2 (x)ẋ = ∇hT3 (x)ẋ = 0. In the present context, the condition of nodal attractivity

corresponds to the sign restrictions of Table 3 below, where as usual wj
i = (∇hj)

Tfi,
j = 1, 2, 3, i = 1, . . . , 8. The functions α, β, γ, to be used in (35) will need to satisfy

Table 3. Nodal Attractivity, co-dimension 3.

Component i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

w1
i , i = 1 : 8 > 0 > 0 > 0 > 0 < 0 < 0 < 0 < 0

w2
i , i = 1 : 8 > 0 > 0 < 0 < 0 > 0 > 0 < 0 < 0

w3
i , i = 1 : 8 > 0 < 0 > 0 < 0 > 0 < 0 > 0 < 0

(at each x ∈ Σ) the algebraic system

(1− α)
[

(1− β)
(

(1− γ)w1 + γw2

)

+ β
(

(1− γ)w3 + γw4

))

]

+ α
[

(1− β)
(

(1− γ)w5 + γw6

)

+ β
(

(1− γ)w7 + γw8

)]

= 0 .
(36)

Naturally, there are similar extensions for the time and space regularizations (13)
and (18). However, the difficulty is that now not only the time regularization cannot
be generally expected to select a unique vector field, but also the space regularization
presents some lack of uniqueness. This is due to the fact that the proposed space
regularization will mimic the behavior of (and converge to) the sliding Filippov
solution selected by (35); alas, the latter technique does not guarantee uniqueness
in co-dimension 3 (or higher)! This lack of uniqueness was observed by D. Ulmer and
A. Leykin ([20]), who produced a family of constant vector fields whose associated
algebraic system (36) has 2 or 3 solutions in the unit cube. As a consequence, the
arguments of Theorems 3.4 and 3.8 cannot be generalized to co-dimension 3, nor
does the Jacobian necessarily remain nonsingular. What we expect, in this case
of co-dimension 3 and constant vector fields, is that if the solutions selected by
the technique of [8] (that is, the solutions of (36)) are isolated, then the Jacobian
will be nonsingular, the map will contract locally, and the space regularization will
converge to one of these sliding vector fields. Different initial conditions should
select a different limit. In other words, whenever the solution of (36) is not unique
in [0, 1]3, the following possibilities are to be expected: (1) There are two solutions,
one of which is a double root, and at the double root the Jacobian will be singular;
(2) There are three distinct roots, with associated nonsingular Jacobian, and each of
them with its own basin of attraction. In Example 4.2, we will present a numerical
experiment to clarify what happens in practice.

Example 4.1. Consider the following problem, which represents a variation on the
standard stick-slip system (e.g., see [7] and references there).
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We have the two co-dimension 1 surfaces Σ1 = {x ∈ R
3 : x2 − 0.2 = 0} and

Σ2 = {x ∈ R
3 : x3 − 0.4 = 0}, Σ = Σ1 ∩ Σ2, and we have the four vector fields:

f1(x) =





(x2 + x3)/2
−x1 +

1
1.2−x2

−x1 +
1

1.4−x3



 , f2(x) =





(x2 + x3)/2
−x1 +

1
1.2−x2

−x1 −
1

0.6+x3



 ,

f3(x) =





(x2 + x3)/2
−x1 −

1
0.8+x2

−x1 +
1

1.4−x3



 , f4(x) =





(x2 + x3)/2 + x1(x2 + 0.8)(x3 + 0.6)
−x1 −

1
0.8+x2

−x1 −
1

0.6+x3



 .

(37)

The nodal attractivity conditions of Table 2 are satisfied for x1 ∈ (−1, 1). On Σ,
the construction of a Filippov sliding vector field according to (2)-(3) renders the
one parameter family of solutions λ1 = x1 + λ4, λ2 = λ3 = (1− x1)/2− λ4, with λ4
a value in [0, (1− x1)/2] (here, x1 ∈ [−1, 1]). As a consequence, we expect the time
regularization to select one of these possible vector fields and to exhibit oscillatory
behavior around the sliding surface. On the other hand, the vector field (8) is well

defined, with α = β = (1 − x1)/2 (which corresponds to λ4 =
(

(1 − x1)/2
)2
), and

we expect that the space regularization technique has a behavior resembling the one
associated with this specific sliding motion.

Indeed, below we show some typical plots of the solution computed by the two
regularizations considered in this work to confirm the aforementioned expectations.

In Figure 3 we show the solutions corresponding to the ICs (−0.1,−0.1, 0.2) by
replacing (37) with its space regularization with linear function g in (19) and pa-
rameter ε = 10−2. The solution profile is effectively much the same as the one of
sliding motion associated to the vector field (8). Different initial conditions (and/or
smaller values of ε) do not change appreciably this picture.

0 10 20−1.0

−.5

.0

.5

1.0

1.5

0 10 20−1.0

−.5

.0

.5

0 10 20−1.0

−.5

.0

.5

Figure 3. From the left, we show the graphs of xε1(t), x
ε
2(t) and

xε3(t), versus time, for initial values x1, x2 = −0.1, x3 = 0.2, otained
with the regularization in space with ε = 10−2. Note that xε2 and xε3
periodically approximate sliding modes and classical solutions.

In Figure 4, instead, we show plots obtained by using the time regularization
with a relatively large parameter ε = 10−1. The peculiar difference in this case is
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appreciated by zooming into the flat sections of the solutions: when x2 ≈ 0.2 and
x3 ≈ 0.4 we observe small wrinkles of amplitude and wavelength O(ε).

0 10 20−1.0
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1.0

1.5

0 10 20−1.0
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0 10 20−1.0

−.5

.0

.5

Figure 4. From the left, we show the graphs of xε1(t), x
ε
2(t) and x

ε
3(t),

versus time, for initial values x1, x2 = −0.1, x3 = 0.2, obtained with
the regularization in time with ε = 10−1. The appearence of wrinkles
is evident in xε2 and xε3.

A projection of the solution into the section (x1, x3) of the phase space is plotted
in Figure 5 for both considered regularizations. �

−1.0 −.5 .0 .5 1.0 1.5−1.0

−.5

.0

.5

−1.0 −.5 .0 .5 1.0 1.5−1.0

−.5

.0

.5

Figure 5. Plots of the solution in the phase space (xε1, x
ε
3). The

spatial regularization is on the left, the time regularization is on the
right. In both cases, the solution components (xε1, x

ε
3) remain close to

the limit cycle of (37).

Example 4.2. We consider the following problem having a codimension-3 sliding
manifold. Let hi(x) = xi, i = 1, 2, 3, so that Σ = {x ∈ R

n : x1 = x2 = x3 = 0}
(n ≥ 3), and consider the vector fields ([20])

f1(x) =









1
1
1
...









, f2(x) =









3
1

−9
...









, f3(x) =









1
−11

5
...









, f4(x) =









11
−3
−1
...








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and

f5(x) =









−7
3
1
...









, f6(x) =









−1
11
−5
...









, f7(x) =









−3
−1
9
...









, f8(x) =









−5
−1
−1
...









(components past the 3rd one are not relevant for our purposes). There are two
stationary points (for the first three components),

S1 = (0, 0, 0, . . .) and S2 ≈ ε(−0.3368,−0.4175,−0.3839, . . .) ,

where S1 is a double root (with associated singular Jacobian), whereas S2 is a stable
node. In Figure 6, we show different set of initial conditions on the boundary of
the cube (x1, x2, x3) ∈ [−ε, ε]3, from where the solutions of the generalization of the
regularized system (18) applied to (35) reach one or the other stationary point. As
anticipated, we converge to one of the equilibria depending on the starting values.
Inside the cube, there is a surface (not shown) separating the basins of attraction of
the two equilibria. In this problem, there appear to be no attracting periodic orbit.

�

Figure 6. The cube [−ε, ε]3 and initial conditions from where so-
lutions of the (spatially) regularized system converge to either S1

or S2. Red circles indicate initial conditions on the boundary
of the cube from where we converge to the stationary point S1;
green stars indicate initial conditions from where we converge to
the stationary point S2. In the left picture, we show the faces
(x1, x2, ε), (−ε, x2, x3), (x1,−ε, x3); in the right picture, we show the
faces (x1, x2,−ε), (ε, x2, x3), (x1, ε, x3).
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5. Conclusions and future work

In this paper we have discussed regularization of piecewise smooth differential
equations in the case in which the discontinuities occur on a smooth co-dimension
2 surface Σ. In the particular case of nodally attractive Σ, we have presented and
compared a time averaging regularization and a space regularization.

Our results show that the time averaging process in general does retain the same
ambiguity in selecting a Filippov sliding vector field as the original Filippov con-
vexification method. On the other hand, the proposed space regularization process
selects a well defined trajectory which remains close to the surface Σ. Furthermore,
the vector field corresponding to this space regularization is close (uniformly in the
regularization parameter) to the Filippov vector field proposed in [8].

In future work, we plan to examine the spatial regularization technique under the
exhaustive attractivity conditions for Σ recently used in [6] to justify the Filippov
vector field in (8).

Finally, the case where the discontinuity surface has co-dimension 3 (or higher) is
more elusive, in the sense that even the space regularization considered in this work
fails to select a unique limiting sliding vector field. We hope to come back to this
case in future work.
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