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1 Introduction

In this paper we consider dynamical systems depending smoothly on a parameter a ≤
λ ≤ b,

dw

dt
= Φ(w, λ), w(t) ∈ IRn . (1)
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The solution of (1) with initial condition w(0) = x, x ∈ IRn, is denoted by F t(x, λ), t ∈ IR.
Suppose for λ = a the system has a compact invariant manifold M(a) ⊂ IRn. We may
think of M(a) as a smooth surface in IRn of dimension p < n. (Precise assumptions will
be stated in Section 2.) Invariance of M(a) means that, given any x ∈ M(a), the whole
trajectory F t(x, a), t ∈ IR, lies in M(a).

The study of invariant manifolds plays an important role in the theory of dynamical
systems and in applications.

Now suppose the parameter λ varies in an interval a ≤ λ ≤ a + ǫ. Under suitable
assumptions on the linearized flow near M(a), it is known that the systems (1) have
nearby invariant manifolds M(λ) for a ≤ λ ≤ a + ǫ; these manifolds depend smoothly
on λ and are all diffeomorphic to M(a). One says that M(a) persists, though it actually
deforms smoothly. Then, if similar conditions on the linearized flow are satisfied near
M(a + ǫ), the branch M(λ) can be continued further, etc.

Perturbation results for invariant manifolds, which can be used to establish such a
continuation property, have a long history. In this paper we follow Fenichel [6] where
sufficient conditions are formulated in terms of so–called Lyapunov–type numbers. If
the conditions are met at an invariant manifold M(λ0), then the branch M(λ) can be
continued beyond λ0. If the conditions are violated, then — in general — the branch
cannot be uniquely continued, and a large variety of bifurcations is possible. At present,
no complete classification of these bifurcations is known, however.

Under rather restrictive assumptions, we will describe how the generalized Lyapunov–
type numbers can be computed. Basically, we will assume that M = M(λ0) consists of
stationary points, of periodic orbits, and of the unstable manifolds of the stationary
points and the periodic orbits in M . Then the Lyapunov–type numbers can be obtained
in terms of eigenvalues of linearizations at the stationary points and of Floquet multipliers
of the periodic orbits.

These results, though restrictive, are often applicable. We present a case study of a
system of two coupled oscillators, depending on two parameters, β and λ. Here λ is the
coupling constant. Many properties of the system have been analyzed in the fundamental
paper [1], and branches of invariant 2–tori have been computed in [3], [4], [12] with λ as
continuation parameter. Breakdown of the tori has been observed in these works, as was
predicted in [1]. The exact mechanism of breakdown remained unknown, however. An
aim of the present paper is to combine branch following for tori — as described in [4] —
with monitoring of Fenichel’s Lyapunov–type numbers. For the example of two coupled
oscillators, a consistent picture of the breakdown of the invariant tori will emerge.
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2 Invariant Manifolds and Lyapunov–Type Num-

bers

To set notations, we first summarize some simple results on ODEs. Let Φ : IRn → IRn

denote a C1 vector field. The solution of

dw

dt
= Φ(w), w(0) = x (2)

is denoted by w(t) = F tx. For simplicity of presentation, we make the technical assump-
tion that F tx is defined for all t ∈ IR and all x ∈ IRn. (This can always be achieved by
first applying a cut–off process to a given system of ODEs.) The solution operator F t

has the group property

F s+tx = F sF tx, s, t ∈ IR, F 0 = id . (3)

Differentiating the identity

d

dt
F tx = Φ(F tx) (4)

w.r.t. x, we obtain

d

dt
DF t(x) = DΦ(F tx)DF t(x) , (5)

and DF 0(x) = id. Here DF t(x) is the Jacobian of F t(·) at x, etc. Thus, the linearized
solution operator DF t(x) is the solution operator of the linearized equation

dy

dt
= DΦ(F tx)y . (6)

Differentiation of (3) w.r.t. x yields

DF s+t(x) = DF s(F tx)DF t(x) . (7)

Manifolds. Let M ⊂ IRn denote a compact connected C1 manifold without boundary
of dimension p < n. We may think of M as a p dimensional surface in IRn. For x ∈ M
let Tx(M) denote the tangent space of M at x. We may (and will) identify Tx(M) with
a p dimensional linear subspace of IRn.

Let

〈u, v〉 =
n
∑

j=1

ujvj, |u|2 = 〈u, u〉

define the Euclidean inner product and norm in IRn. Then
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Nx(M) = {u ∈ IRn : 〈u, v〉 = 0 ∀ v ∈ Tx(M)}

is the normal space of M at x, a subspace of dimension q = n − p. For every x ∈ M ,
each v ∈ IRn has a unique orthogonal decomposition

v = vI + vII , vI ∈ Tx(M), vII ∈ Nx(M) (8)

and

Πx : IRn → IRn, v → vII ∈ Nx(M) ⊂ IRn (9)

denotes the corresponding orthogonal projection operator onto the normal space.

Invariant Manifolds. Let Φ : IRn → IRn denote a C1 vector field and let M ⊂ IRn

denote a compact connected C1 manifold of dimension p, without boundary. Then M is
called invariant under the flow of Φ (for short: invariant for Φ) if for all x ∈ M the whole
trajectory F tx, t ∈ IR, lies in M . It is not difficult to show that M is invariant for Φ if
and only if

Φ(x) ∈ Tx(M) for all x ∈ M . (10)

Furthermore, if M is invariant for Φ, then for every x ∈ M and every t ∈ IR the linearized
solution operator DF t(x), which we view as a map from

IRn = Tx(M) + Nx(M) onto IRn = TF tx(M) + NF tx(M) ,

has the property

DF t(x)(Tx(M)) = TF tx(M) . (11)

Lyapunov–Type Numbers. Suppose that M is invariant for Φ. Following Fenichel
[6], we define for every x ∈ M and every t ∈ IR the following two linear operators:

At(x) : Tx(M) → TF−tx(M), v → DF−t(x)v

and
Bt(x) : NF−tx(M) → Nx(M), v → ΠxDF t(F−tx)v .

To give first an intuitive understanding of these operators, we remark the following:
Suppose that t → ∞. Then Bt(x) will describe the evolution of normal vectors — under
the linearized flow — in forward time. Roughly speaking, if the norm of Bt(x) goes to
zero as t → ∞ for every x ∈ M , then the manifold M is locally attracting. This will be
quantified by the Lyapunov–type number ν(x) defined below.
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The operators At(x) describe the linearized dynamics within M in backward time. If
the norm of At(x) becomes large as t → ∞, then there is attractivity — in forward time
— of the flow within M . To obtain a perturbation result for M (i.e., persistence of M
under small perturbations of the vector field Φ), it is critical that along any trajectory
in M the attractivity towards M is stronger than the attractivity within M . The ratio
of these two attractivity rates is determined by the second Lyapunov–type number σ(x),
which will also be defined below.

In our setting, where the manifold M is embedded in the Euclidean space IRn, the
linear operator At(x) maps a p dimensional subspace of IRn onto another such subspace.
The vector norm in these subspaces is always taken to be the Euclidean norm of IRn, and
|At(x)| denotes the corresponding operator norm. The operator norm of Bt(x) is defined
similarly. As in [6], we define

ν(x) = limsupt→∞|Bt(x)|1/t ,

and if ν(x) < 1, we set

σ(x) = limsupt→∞

log |At(x)|

− log |Bt(x)|
.

For illustration, suppose that

|Bt(x)| = c1e
−βt, β > 0 ,

and
|At(x)| = c2e

αt, α ∈ IR .

Then we have

ν(x) = e−β < 1 and σ(x) =
α

β
.

The following characterization of σ(x) is often useful.

Lemma 2.1 Let x ∈ M with ν(x) < 1. For c > σ(x) we have

|At(x)||Bt(x)|c → 0 as t → ∞ . (12)

Conversely, if (12) holds, then c ≥ σ(x). Consequently,

σ(x) = inf{c ∈ IR : (12) holds} .

Proof: We abbreviate at = |At(x)|, bt = |Bt(x)| and note that bt → 0 as t → ∞ since
ν(x) < 1. Therefore, − log bt > 0 for t ≥ t0.

First let c > σ(x) be arbitrary. We choose c > γ > σ(x) and have
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log at

− log bt
< γ for t ≥ t1 ≥ t0 .

Therefore, log at < log(b−γ
t ), i.e. atb

γ
t < 1 for t ≥ t1. It follows that

atb
c
t = atb

γ
t b

c−γ
t < bc−γ

t → 0 as t → ∞ .

Thus we have shown that (12) holds for c > σ.
Conversely, assume (12) for some c ∈ IR. Clearly, atb

c
t < 1 for t ≥ t1 ≥ t0, thus

log at + c log bt < 0 ,

and therefore

log at

− log bt

< c for t ≥ t1 ≥ t0 .

This implies c ≥ σ(x), and the lemma is proved. ⋄
Suppose now that the manifold M is an invariant manifold for (1) at a certain pa-

rameter value λ0. Define
ν(M) := sup

x∈M
ν(x) ,

and — if ν(x) < 1 for all x ∈ M — also

σ(M) := sup
x∈M

σ(x) .

Then, the perturbation theorem of [6] guarantees that if ν(M) < 1 and σ(M) < 1/k,
there exists a unique Ck invariant manifold diffeomorphic to M for λ = λ0 + ∆λ if ∆λ
is sufficiently small. In other words, if we could accurately compute the values of ν(M)
and σ(M), then we would know whether a certain manifold can be continued. In general,
computation of these quantities is non-trivial, however. Still, there are interesting cases in
which their computation is more or less trivial. These are examined below. It is clear that
Fenichel was aware of the simplifications occurring in these cases, see [6]. However, their
precise derivation and quantification was not carried out in [6] nor — to our knowledge
— anywhere else. For this reason, we are going to examine these cases in detail.
Fixed Points in M . Let M be invariant for Φ, and let x ∈ M be a fixed point of the
dynamical system (2), i.e. Φ(x) = 0. We have F tx ≡ x, and if we set L = DΦ(x), then

DF t(x) = eLt .

The tangent space Tx(M) is invariant under eLt for all t, and therefore L(Tx(M)) ⊂
Tx(M). Let λ1, . . . , λp denote the eigenvalues of L corresponding to the invariant subspace
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Tx(M), and let λp+1, . . . , λn denote the remaining eigenvalues of L. (If λ has algebraic
multiplicity m, then λ is listed m times.)

We may assume the orderings

Re λ1 ≥ . . . ≥ Reλp =: −α

and
−β := Re λp+1 ≥ . . . ≥ Re λn .

The λj for j = 1, . . . , p correspond to the linearized flow within M , and the λj for
j = p + 1, . . . , n correspond to the linearized flow towards M . Therefore, we expect that

|At(x)| ∼ eαt as t → ∞

and
|Bt(x)| ∼ e−βt as t → ∞ .

Thus the previous illustration suggests ν(x) = e−β and, if β > 0, then σ(x) = α/β. This
will indeed be shown below.

Assuming that β > 0, thus ν(x) < 1, the crucial question to obtain a perturbation
theorem is if

σ(x) =
α

β
< 1 .

Clearly, this is equivalent to −α > −β, i.e. the crucial estimate σ(x) < 1 is equivalent
to the existence of a gap between the eigenvalues of L = DΦ(x) that correspond to the
invariant subspace Tx(M) and the other eigenvalues of L:

min
1≤j≤p

Re λj =: −α > −β := max
p+1≤j≤n

Reλj .

Theorem 2.1 Let M be invariant for Φ, and let x ∈ M be a fixed point of the dynamical
system dw/dt = Φ(w). Let λ1, . . . , λp denote the eigenvalues of L = DΦ(x) corresponding
to the invariant subspace Tx(M) of L and let λp+1, . . . , λn denote the other eigenvalues
of L. Define

α = − min
1≤j≤p

Re λj , β = − max
p+1≤j≤n

Re λj .

Then we have ν(x) = e−β, and if β > 0 then σ(x) = α/β.
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Proof: Let v1, . . . , vp denote a basis of Tx(M) and let vp+1, . . . , vn denote a basis of
Nx(M). We will represent all operators by matrices w.r.t. these bases. For example, the
n× n matrix L̂ = (lij) determined by Lvj =

∑

i lijv
i represents L. Note that L̂ has block

form,

L̂ =

(

L11 L12

0 L22

)

, L11 is p × p . (13)

The solution operator eLt is represented by

eL̂t =

(

eL11t R12

0 eL22t

)

. (14)

with

R12 =
∫ t

0
eL11(t−s)L12e

L22sds .

(The form of R12 is not important for our current argument.) Then At(x) and Bt(x) are
represented by e−L11t and eL22t, respectively. It follows that there are positive constants
c1 and c2 independent of t ≥ 1 with

c1e
αt ≤ |At(x)| ≤ c2t

p−1eαt

and
c1e

−βt ≤ |Bt(x)| ≤ c2t
q−1e−βt .

Here q = n − p. This implies

lim
t→∞

|Bt(x)|1/t = e−β .

Also, if β > 0, then we have

lim
t→∞

log |At(x)|

− log |Bt(x)|
=

α

β

and the theorem is proved. ⋄

General Remarks on Lyapunov–Type Numbers. Let x, y ∈ M lie on the same
orbit. We claim that ν(x) = ν(y), and if ν(x) < 1 then also σ(x) = σ(y). This result,
already stated in [6], is well–known. The proof — given here for completeness — is based
on useful product formulae for At(x) and Bt(x).

8



Lemma 2.2 For all x ∈ M and all s, t ∈ IR we have

Bs+t(x) = Bs(x)Bt(F
−sx) (15)

and
As+t(x) = At(F

−sx)As(x) . (16)

Proof: In (7) we replace x by F−s−tx to obtain

DF s+t(F−s−tx) = DF s(F−sx)DF t(F−s−tx) . (17)

Now let v ∈ NF−s−tx(M) be arbitrary. Then we have

Bs+t(x)v = ΠxDF s+t(F−s−tx)v (18)

and
Bt(F

−sx)v = ΠF−sxDF t(F−s−tx)v .

Define the intermediate vector

w := DF t(F−s−tx)v

and decompose

w = wI + wII , wII = ΠF−sxw .

Using (18) and (17) we have

Bs+t(x)v = ΠxDF s(F−sx)w .

On the other hand,

Bs(x)Bt(F
−sx)v = Bs(x)wII = ΠxDF s(F−sx)wII .

The vector wI is a tangent vector and is mapped into another tangent vector by DF s(F−sx).
Consequently,

ΠxDF s(F−sx)wI = 0 .

This shows that

Bs+t(x)v = Bs(x)Bt(F
−sx)v ,

and formula (15) is proved.
To show (16) we start again with (7) and interchange s and t,
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DF s+t(x) = DF t(F sx)DF s(x) .

Replacing t by −t and s by −s we find

DF−s−t(x) = DF−t(F−sx)DF−s(x) .

Restriction of this identity to the corresponding tangent spaces yields

As+t(x) = At(F
−sx)As(x) .

This finishes the proof of lemma. ⋄

Next we show that the Lyapunov–type numbers are constant on orbits.

Lemma 2.3 Let x, y ∈ M lie on the same orbit. Then we have ν(x) = ν(y), and if
ν(x) < 1 then σ(x) = σ(y).

Proof: Let y = F−sx, c = |Bs(x)|. Then (15) yields

|Bs+t(x)| ≤ c|Bt(y)|, t ∈ IR .

This implies ν(x) ≤ ν(y), and by a symmetry argument equality, ν(x) = ν(y), follows.
If ν(x) < 1 then we use (16) to show σ(x) = σ(y) in a similar way. ⋄

Periodic Orbits. Let x ∈ M and let F tx have period τ > 0, i.e., F τx = x and F tx 6= x
for 0 < t < τ . It follows that L := DF τ (x) maps Tx(M) onto itself. (Note that DF t(x)
is always nonsingular since it is a fundamental solution operator of a linear system.) We
choose a basis v1, . . . , vp of Tx(M) and a basis vp+1, . . . , vn of Nx(M), and henceforth will
identify linear operators with their matrix representations in these bases. By Floquet’s
theorem, the fundamental matrix DF t(x) can be written as

DF t(x) = P (t)eRt

where P (t) is a continuous matrix function of period τ . The matrix R is not unique, but
the monodromy matrix L = eRτ = DF τ (x) is. Our choice of basis v1, . . . , vn implies the
block form

L =

(

L11 L12

0 L22

)

, L11 is p × p . (19)

The eigenvalues µj of L are — by definition — the Floquet multipliers of the periodic so-
lution F tx. We order the µj so that µ1, . . . , µp are the eigenvalues of L11 and µp+1, . . . , µn

are the eigenvalues of L22. In other words, µ1, . . . , µp are the eigenvalues of L correspond-
ing to the invariant subspace Tx(M) and µp+1, . . . , µn are the other eigenvalues of L. Of
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course, one of the eigenvalues of L11 equals 1, µ1 = 1, say. We write µj = eλjτ for
j = 1, . . . , n with λj = αj + iβj where αj, βj are real and −π ≤ βjτ < π. By definition,
the λj are the Floquet exponents of the periodic solution F tx. Clearly, λ1 = 0 since
µ1 = 1. In the following theorem we determine the Lyapunov–type numbers of x in
terms of the Floquet exponents.

Theorem 2.2 Let F tx denote an orbit of period τ in M with Floquet exponents λ1 =
0, λ2, . . . , λn, where λ1, . . . , λp correspond to the invariant subspace Tx(M) of L = DF τ (x).
Define α, β by

α = − min
1≤j≤p

Re λj , β = − max
p+1≤j≤n

Re λj .

Then we have ν(x) = e−β, and if β > 0 then σ(x) = α/β.

Proof: First consider Bt(x) for t = mτ, m = 1, 2, 3, . . . The operator Bmτ (x) has the
eigenvalues eλjmτ , j = p + 1, . . . , n. As in the proof of Theorem 2.1 we conclude

lim
m→∞

|Bmτ (x)|1/(mτ) = e−β . (20)

If t is arbitrary, we write t = mτ + s with integer m and 0 ≤ s < τ . By (15) we have

Bt(x) = Bmτ (x)Bs(F
−mτx) = Bmτ (x)Bs(x) .

Therefore,

Bmτ (x) = Bt(x)(Bs(x))−1 .

Defining

c1 = max
0≤s≤τ

|Bs(x)|, c2 = max
0≤s≤τ

|(Bs(x))−1| ,

we obtain

1

c2

|Bmτ (x)| ≤ |Bt(x)| ≤ c1|Bmτ (x)| .

Together with (20) it is then easy to conclude that

ν(x) = lim
t→∞

|Bt(x)|1/t = e−β .

Now suppose that β > 0, i.e. ν(x) < 1. Then we obtain σ(x) = α/β by similar
arguments: First we consider t = mτ for integers m → ∞ and note that Amτ (x) has the
eigenvalues e−λjmτ , j = 1, . . . , p. An argument as in the proof of Theorem 2.1 shows that
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lim
m→∞

log |Amτ (x)|

− log |Bmτ (x)|
=

α

β
.

Then the limit for general t → ∞ is treated by applying (15) and (16). ⋄

Backward Limit Sets. As above, let M ⊂ IRn denote a compact manifold of dimension
p < n which is invariant under the flow of the dynamical system dw/dt = Φ(w). We
will show two results. In the first we assume that F−tx → x0 as t → ∞ for some
x ∈ M . It follows that x0 ∈ M is a fixed point of the evolution and we can compute
ν(x0) and σ(x0) using Theorem 2.1. We will show that ν(x) ≤ ν(x0) and, if ν(x0) < 1
then also σ(x) ≤ σ(x0). In the second result we will prove corresponding estimates if
F−tx approaches a periodic orbit in M as t → ∞.

Theorem 2.3 Let x, x0 ∈ M and assume F−tx → x0 as t → ∞. Then ν(x) ≤ ν(x0)
and, if ν(x0) < 1 then also σ(x) ≤ σ(x0).

Proof: a) Let a > ν(x0) be arbitrary. There exists τ > 0 such that

|Bτ (x0)|
1/τ < a .

By continuity, there is a compact neighborhood U of x0 in M with

|Bτ (y)| < aτ for all y ∈ U ⊂ M . (21)

Since ν(·) is constant on the orbit F tx and since F−tx → x0 as t → ∞ we may assume
that F−tx ∈ U for all t ≥ 0. Recall the product formula (15), which can inductively be
generalized to

Bt1+t2+...+tj (x) = Bt1(x)Bt2(F
−t1x) · · ·Btj (F

−(t1+t2+···+tj−1)x)

for arbitrary ti ∈ IR. If t > 0 is given, we write t = (j − 1)τ + s with integer j and
0 ≤ s < τ , and obtain

Bt(x) = Bτ (x)Bτ (F
−τx) · · ·Bτ (F

(−j+2)τx)Bs(F
(−j+1)τx) . (22)

Using (21) we find

|Bt(x)| ≤ a(j−1)τ |Bs(F
(−j+1)τx| .

Setting

c1 = max{a−s|Bs(y)| : y ∈ U, 0 ≤ s ≤ τ}

we obtain
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|Bt(x)| ≤ c1a
(j−1)τas = c1a

t

where t = (j − 1)τ + s > 0 was arbitrary. This implies

ν(x) = lim sup
t→∞

|Bt(x)|1/t ≤ a ,

and since a > ν(x0) was arbitrary, the estimate ν(x) ≤ ν(x0) is proved.
b) Let ν(x0) < 1. To show σ(x) ≤ σ(x0), we use Lemma 2.1 and let c > σ(x0) be

arbitrary. There exists τ > 0 and a compact neighborhood U of x0 in M with

|Aτ (y)||Bτ(y)|c ≤
1

2
for all y ∈ U ⊂ M . (23)

We may assume F−tx ∈ U for t ≥ 0, and write any given t > 0 as t = (j − 1)τ + s with
0 ≤ s < τ . The product formula

At(x) = As(F
(−j+1)τx)Aτ (F

(−j+2)τx) · · ·Aτ (F
−τx)Aτ (x)

follows inductively from (16). Together with (22) and (23) we obtain

|At(x)||Bt(x)|c ≤ (
1

2
)j−1c2

where

c2 = max{|As(y)||Bs(y)|c : y ∈ U, 0 ≤ s ≤ τ} .

Thus |At(y)||Bt(y)|c → 0 as t → ∞, and Lemma 2.1 implies σ(x) ≤ c. Since c > σ(x0)
was arbitrary, the estimate σ(x) ≤ σ(x0) is proved. ⋄

In the next result we assume F tx0 to be periodic for some x0 ∈ M and let γ = {F tx0 :
t ∈ IR} denote the corresponding periodic orbit. We consider a point x ∈ M for which
F−tx approaches γ as t → ∞. The notation

dist(z, γ) = min{|z − y| : y ∈ γ}

is used.

Theorem 2.4 Let x ∈ M and let γ ⊂ M be a periodic orbit. We assume that

dist(F−tx, γ) → 0 as t → ∞ .

Then ν(x) ≤ ν(x0) and, if ν(x0) < 1 then also σ(x) ≤ σ(x0). Here x0 ∈ γ is arbitrary.
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Proof: Let τ > 0 denote the period of γ and let x0 ∈ γ denote a chosen point which is
kept fixed in the following. For any z ∈ γ there is 0 ≤ s < τ with z = F−sx0. By (15)
we have

Bs+t(x0) = Bs(x0)Bt(z)

and if we set

c1 = max
0≤s≤τ

|(Bs(x0))
−1|

then the estimate

|Bt(z)| ≤ c1|Bs+t(x0)|

follows. Applying (15) again (with s and t interchanged), we also have

Bs+t(x0) = Bt(x0)Bs(F
−tx0) .

Setting
c2 = max{|Bs(y)| : 0 ≤ s ≤ τ, y ∈ γ}

we conclude with the previous estimate

|Bt(z)| ≤ c1c2|Bt(x0)| .

Now let a > ν(x0) be chosen arbitrarily. There exists T > 0 with

|BT (z)|1/T ≤ (c1c2)
1/T |BT (x0)|

1/T < a .

It is important to note that T is independent of z ∈ γ. For ǫ > 0 we define the compact
neighborhoods

UM(γ, ǫ) = {y ∈ M : dist(y, γ) ≤ ǫ}

of γ in M . Compactness of γ yields existence of ǫ > 0 with

|BT (y)|1/T < a for all y ∈ UM (γ, ǫ) .

The remaining part of the proof that ν(x) ≤ ν(x0) can now be given in the same way as
in the case where x0 is a fixed point. See part a) of the proof of Theorem 2.3. Also, if
ν(x0) < 1 then σ(x) ≤ σ(x0) follows by similar arguments. ⋄

Remark 2.1. Under the assumptions of Theorems 2.3 and 2.4 we conjecture that equal-
ities ν(x) = ν(x0) and σ(x) = σ(x0) hold. However, since we do not need this here, we
have not investigated this question carefully.
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In the remaining part of this section, we indicate some generalizations and open
questions. For any x ∈ IRn the backward limit set α(x) consists, by definition, of all
z ∈ IRn for which there is a sequence tj → ∞ with F−tjx → z. Equivalently,

α(x) =
⋂

τ≥0

cl{F−tx : t ≥ τ}

where clA denotes the closure of the set A ⊂ IRn. Now let x ∈ M . Then α(x) ⊂ M
is nonempty and compact. (This follows since the sets cl{F−tx : t ≥ τ}, τ ≥ 0, are
compact and nested.) Furthermore, α(x) is invariant under backward evolution, i.e.,
F−t(α(x)) = α(x) for all t ≥ 0. In such a situation, where K ⊂ M is a nonempty
compact set invariant under backward evolution, an argument as in Fenichel’s uniformity
lemma (see [6]) can be used to show that

sup
z∈K

ν(z) =: ν(K)

and — if ν(z) < 1 for all z ∈ K — then also

sup
z∈K

σ(z) =: σ(K)

are attained, i.e., there exist x0, x1 ∈ K with

ν(K) = ν(x0) and σ(K) = σ(x1) .

Furthermore, if x ∈ M is a point with dist(F−tx, K) → 0 as t → ∞ then arguments as
given in the proofs of Theorems 2.3 and 2.4 show that

ν(x) ≤ ν(K) and σ(x) ≤ σ(K) .

We have only treated the two simplest cases where either K = α(x) = {x0} consists of a
fixed point or K = α(x) = γ is a periodic orbit. These seem to be the only cases where
a computation of ν(K) and σ(K) is straightforward.

Other cases are also of interest. For example, assume that M is a 2-torus with parallel
flow and that every orbit F tx, x ∈ M , is dense in M . If ν(x) < 1 then σ(x) = 0 since
there is no attractivity of the flow within M . In this case the backward limit set is
α(x) = M for every x ∈ M . Using ergodic theory results (e.g., see [9]), in this case one
can show that ν(·) is constant almost everywhere on M .

15



3 Invariant 2-Tori

Let us restrict now to the case in which the invariant manifold M for (1) is a 2-torus.
That is, there is a diffeomorphism

ω : T 2 → M (24)

such that M is invariant for Φ, and T 2 = (IR mod 2π)2 is the standard 2-torus. Let us
denote by θ1 and θ2 the angular coordinates describing T 2; we can then visualize T 2 as
the periodic square [0, 2π] × [0, 2π] in the (θ1, θ2)-plane.

Clearly, the solution operator F t of dw/dt = Φ(w) determines a flow on M , whereas

φt := ω−1 F t ω (25)

is a flow on T 2. The scenario of possibilities for the behavior of the flow φt on T 2

(equivalently, of F t on M) is greatly simplified if φt induces a diffeomorphic circle map
on a suitable cross section. In this case, let

C : T 1 → T 1 (26)

be such a circle map. (E.g., we can think of C as obtained by taking a cross section
on T 2 with θ2 = 0 or some other constant, and C is the associated return map.) Let ρ
denote the rotation number of C. Then, it is well understood (e.g., see [2, p.27]) that C
has periodic points if and only if ρ is rational. Rephrased in terms of the flow on M , if ρ
is rational, then every orbit on M is either periodic or transient, converging to a periodic
orbit as t → ±∞. We refer to the case of rational ρ as the phase locking situation.
Assuming in addition that there are only finitely many periodic orbits, we can use our
previous results on type numbers to compute ν(M) and σ(M), which is what we will do
in the next section.

Remark 3.1. The case in which ρ is irrational does not appear in our case study, at least
for the parameter values considered. However, this case is clearly very interesting. If C
is twice continuously differentiable (see Denjoy’s theorem, [2, p.28]), then C is conjugate
to a rigid rotation, and every orbit in M is dense in M .

To help our exposition in the next section, consider the case of phase-locking on a 2–
torus T 2

λ of the parameter dependent system dw/dt = Φ(w, λ). Suppose that the system
is n-dimensional (n ≥ 3) and that the 2–torus T 2

λ consists of finitely many periodic orbits
(stable and unstable) ωj(λ), j = 1, . . . , J , and of the unstable manifolds of the unstable
orbits.

With λij = λij(λ) we denote the Floquet exponents of ωj(λ) for i = 1, . . . , n, j =
1, . . . , J . Here we always adopt the following ordering: we let λ1j = 0 and we let λ2j
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measure the rate of attractivity to (or repulsion from) ωj(λ) tangential to T 2
λ . We note

that the Floquet exponent λ2j(λ) is always real. In other words, λ1j = 0 and λ2j ∈
IR are expression of the motion on the torus, while λ3j, . . . , λnj are expression of the
motion towards the torus. In addition, we assume that T 2

λ and the periodic orbits ωj(λ)
depend smoothly on λ, and thus we may assume continuous dependence of λij(λ) on the
parameter λ.

Motivated by our case study presented in the next section, we assume that the branch
of invariant tori T 2

λ exists for some parameter range a ≤ λ < b with the above properties,
and that the branches of periodic orbits ωj(λ) exist for a ≤ λ ≤ c with c > b. We further
assume that

ν(T 2
λ ) < 1 and σ(T 2

λ ) < 1 for a ≤ λ < b . (27)

As described in the previous section, we can express the functions ν(T 2
λ ) and σ(T 2

λ ) in
terms of the Floquet exponents of the ωj(λ). First note that

ν(T 2
λ ) = max

j
ν(ωj(λ)), σ(T 2

λ ) = max
j

σ(ωj(λ)) ,

and if we set

αj(λ) = −min{0, λ2j(λ)} ,

βj(λ) = −max{Re λij(λ), 3 ≤ i ≤ n} ,

then

ν(ωj(λ)) = e−βj(λ), σ(ωj(λ)) =
αj(λ)

βj(λ)

for a ≤ λ < b. The above formulae show continuous dependence of ν(T 2
λ ) and σ(T 2

λ ) on
a ≤ λ < b. Also, the estimates (27) are equivalent to the strict inequalities

Re λij(λ) < 0 for 3 ≤ i ≤ n, 1 ≤ j ≤ J, a ≤ λ < b (28)

and
Re λij(λ) < λ2j(λ) for 3 ≤ i ≤ n, 1 ≤ j ≤ J, a ≤ λ < b . (29)

Therefore, concerning the limiting behavior as λ approaches b, there are three possible
cases:
Case 1: The strict inequalities (28), (29) remain valid for λ = b.
Case 2: There exists 1 ≤ j ≤ J and 3 ≤ i ≤ n with Re λij(b) = 0.
Case 3: All strict inequalities (28) extend to λ = b, but (29) becomes violated; that is,
there exists 1 ≤ j ≤ J and 3 ≤ i ≤ n with Re λij(b) = λ2j(b).
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Under additional assumptions, one can show that in case 1 the branch T 2
λ can be

extended to a ≤ λ < b + ∆λ for some ∆λ > 0. (To prove this, it suffices to give a lower
bound on the size of the C1–neighborhood Nλ of the vector field w → Φ(w, λ), so that
T 2

λ persists for every vector field in Nλ, see [6]. It is crucial to estimate the size of this
neighborhood from below independently of a ≤ λ < b. To this end, it appears necessary
to assume that the coordinate system determined by tangents and normals to M(λ) can
be smoothly extended into a neighborhood of M(λ) which is independent of a ≤ λ < b.)

In case 2 we have

lim
λ→b

ν(T 2
λ ) = 1 .

This case often occurs if one of the Floquet exponents λij, i ≥ 3, of an orbit ωj(λ) crosses
0 as λ crosses b, leading (typically) to a pitchfork bifurcation of periodic orbits from the
branch ωj(λ) at λ = b. In general, one cannot guarantee that the branch T 2

λ can be
continued beyond λ = b. However, we believe that the concept of pseudo–hyperbolicity
(see, e.g., [11] for an invariant manifold theorem of a pseudo–hyperbolic fixed point of
a map) will be applicable under suitable additional assumptions. We expect, then, that
the branch T 2

λ can be continued smoothly beyond λ = b, where T 2
λ is non–attracting for

λ > b, but pseudo–hyperbolic. In addition, we expect other attracting tori to bifurcate
from the branch T 2

λ at λ = b. This is in correspondence to the pitchfork bifurcation of
periodic orbits from ωj(λ) at λ = b. So far, however, we were not able to confirm this
picture by numerical computation.

In case 3, the function ν(T 2
λ ) remains bounded away from 1 in a ≤ λ < b, but

lim
λ→b

σ(T 2
λ ) = 1 .

Typically, the real (for a ≤ λ ≤ b) Floquet exponent λ2j(λ) meets another real Floquet
exponent λij(λ) for λ = b. If these exponents remain real for λ > b by passing each other,
then we expect that T 2

λ becomes replaced by a nonsmooth surface for λ > b, with a cusp
in each cross section, the tip of the cusp traveling along ωj(λ). (Compare the example in
[8, p.244].) If λ2j(λ) and λij(λ) form a complex conjugate pair for λ > b, then we expect
a spiral instead of a cusp (see [6]).

4 A Case Study: Two Coupled Oscillators

We consider the following system of two linearly coupled oscillators

ẋ1 = x1 + βy1 − (x2
1 + y2

1)x1 − λ(x1 + y1 − x2 − y2)
ẏ1 = −βx1 + y1 − (x2

1 + y2
1)y1 − λ(x1 + y1 − x2 − y2)

ẋ2 = x2 + βy2 − (x2
2 + y2

2)x2 + λ(x1 + y1 − x2 − y2)
ẏ2 = −βx2 + y2 − (x2

2 + y2
2)y2 + λ(x1 + y1 − x2 − y2),

(30)
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where β > 0 and λ ≥ 0. This system has been studied in much detail by Aronson et al.
in [1], to which we refer for the derivation and motivation of (30). The authors provide
analytical and numerical studies of the bifurcations of fixed points and periodic orbits of
the system. We will use many of their results, and will adopt their notation as much as
possible, in order to facilitate cross-reading. From now on, we will restrict β: 0 < β < 1,
and consider the range of λ: 0 ≤ λ ≤ β/2. This turns out to be sufficient for our purpose.

For λ = 0, the two oscillators both have the periodic attracting limit cycle Ω0 =
{cos βt,− sin βt}, and therefore the full system has an attracting invariant torus T 2

0 =
Ω0 × Ω0. For fixed β sufficiently large (1/2 < β < 1), numerical studies have been
performed attempting to follow (in λ) the branch of invariant 2-tori T 2

λ emanating from
T 2

0 . Typical approaches are in [3], [4], [5], [7], [10], [12]. Regardless of the relative merits
of each approach, all of them eventually are unable to continue the branch. Loosely
speaking, the torus seems to “break down”, but a convincing argument of why the branch
could not be continued was not provided in any of the above works. It should be said that
the inability to continue the branch of tori is not likely to be due to numerical artifacts.
In particular, the approach in [4] is a discrete analogue of the Hadamard graph transform
technique of [6]. A convergence analysis for this approach is given in [4], assuring that
the method will perform continuation of the branch of tori as long as the analytical
conditions of [6] are met, and one has sufficient numerical resolution.

Then, somehow, the conditions in [6] become violated at or near the value of λ where
we fail to continue the branch of tori. Thus, to understand failure to continue the
branch of tori, we have to understand the motion on the torus and towards it. To this
end, [1] provides many of the needed tools. Relying on the results in [1], and on our
computations, we will present a picture of the torus breakdown, which is consistent with
the view presented in the previous section.

Let us begin by noticing that T 2
0 is covered by a 2–parameter family of periodic

solutions, each member of which is specified by a pair of initial phase angles. However,
since the origin of t is arbitrary, there is only a 1–parameter family of orbits; the initial
phase difference can be taken as this parameter. Since all periodic orbits on T 2

0 are
degenerate with two Floquet multipliers equal to 1, one cannot expect the whole 1-
parameter family to persist for weak coupling. In fact, see [1], only two periodic orbits
persist for small coupling λ: ω0 and ωπ. (The orbit ωπ depends on λ, but we suppress
this in our notation.) The orbit ω0 represents in–phase solutions (synchronized at λ = 0),
and ωπ represents solutions which are out of phase by π at λ = 0. Finally, for λ = 0,
an easy computation reveals that Ω0(t) has Floquet exponents 0 and −2. Therefore, at
λ = 0, we have parallel flow on the torus T 2

0 , and a rate of approach of O(e−2t) towards
it; as a consequence, we have ν = e−2 < 1 and σ = 0 for T 2

0 . Therefore, for small coupling
λ, T 2

0 can be continued, and — as proved in [1] — there is phase–locking on the torus:
T 2

λ is made up of ω0, ωπ, and the unstable manifold of ωπ . As long as phase–locking
on the torus persists as λ increases, we can use our previous setup to decide upon the
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possibility to continue T 2
λ . We have performed several numerical experiments to verify

whether or not this was the case and will report on two of them, which have revealed
both non-trivial and typical. They correspond to the cases

(a) β = 0.5165 , and (b) β = 0.55 .

By using the approach in [4], in case (a) we were able to continue the branch of invariant
tori up to λ ≈ 0.2497, and in case (b) up to λ ≈ 0.26 (somewhat higher values of λ
had been obtained with the approach in [3]). In both cases, our numerical computations
showed that indeed phase-locking persisted on the torus up to the indicated values of λ.
The corresponding circle map always has zero rotation number, since ω0 always leads to
a fixed point of the circle map. In case (b), the circle map has precisely two fixed points,
corresponding to ω0 and ωπ. In case (a), further fixed points develop in the window of
stability of ωπ; see below.

In Figure 1 we show the circle maps for case (b) for the values of λ = 0.01, 0.04, 0.1, 0.15
and in Figure 2 for λ = 0.2525; for larger values of λ the picture just got flatter.
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Figure 1. Figure 2.

These figures show the circle maps θ1 → θ′1 = C(θ1) corresponding to the flow on the
torus, see (25), obtained by restricting to the cross section θ2 = π; qualitatively identical
results were obtained for different cross sections. The straight line in Figures 1 and 2
represents the line θ1 = θ′1, and the intersections of the other curves with this line are
the fixed points of the circle maps. (The stable fixed point θ1 = π corresponds to ω0 and
the unstable fixed point θ1 = 0 = 2π corresponds to ωπ. ) In case (a), we have obtained
qualitatively similar pictures. In Figure 3, we show the flow on the torus for case (a) for
the value of λ = 0.2497.
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Figure 3.

Having established that the flow on the torus leads to a circle map with zero rotation
number, it remains to compute the Floquet exponents of all periodic orbits as functions
of λ. We have done this only for ω0 and ωπ, which turns out to be sufficient for case
(b). For case (a), see below. In general, accurate computation of Floquet exponents is
difficult, but in the present case great simplifications are provided once again by the work
[1].

First of all, it is shown in [1] that ω0 lives in the “symmetric” plane

S := {(x1, y1, x2, y2) : x1 = x2, y1 = y2 }

and is stable with respect to perturbations of initial conditions in S. Correspondingly,
ωπ lives in the “antisymmetric” plane

A := {(x1, y1, x2, y2) : x1 = −x2, y1 = −y2 }

and is stable with respect to perturbations of initial conditions in A. Useful analytical
expressions for the orbits ω0 and ωπ are also in [1].

A further important observation in [1] is the following. Linearization of (30) about
any solution in S or A leads to a four dimensional linear system that decouples into two
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systems of dimension two. One system determines λ1 and λ3, the other determines λ2

and λ4. Further, since λ1 = 0, one can compute λ3 analytically from a trace formula.
(This is Liouville’s theorem, see [8, p.120].) Thus, numerical computations need to be
performed for one 2 × 2 linear system of ODEs only.

For the in–phase orbit ω0 the following analytical results can be easily obtained.
(i) For λ = 0 it holds that

(λ1, λ2, λ3, λ4) = (0, 0,−2,−2) .

(ii) For λ > 0 it holds that λ3 = −2, Re λ2 < 0, Reλ4 < 0.
(iii) For λ ≥ 0 it holds that (by Liouville’s theorem)

λ2 + λ4 = −2(1 + λ) .

Result (ii) implies that ν(ω0) remains bounded away from 1 in any bounded interval
of existence of T 2

λ . Thus, torus breakdown cannot be due to ν(ω0) approaching 1.
To obtain σ(ω0), we computed the Floquet exponents λ2 and λ4 of ω0 as functions

of λ numerically, with error tolerances at machine precision, and the analytical result
λ2 + λ4 = −2(1 + λ) was used as an accuracy check. This relation was always fulfilled
by more than 10 digits, leading us to conclude that the computation of the Floquet
exponents was sufficiently accurate to draw the conclusions given below.

The resulting functions λ → σ(ω0) are plotted in Figures 4 and 5 for the cases (a)
and (b).
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Figure 4. Figure 5.

Quite clearly, in both cases σ(ω0) stays below 1/4 for the parameter range of interest,
and hence we should expect at least a C4 torus based on the information gathered from
ω0. Thus, we can turn our attention to ωπ.

The following analytical results can be obtained about the orbit ωπ and its Floquet
exponents λi = λi(λ).

(i) For λ = 0 it holds that

22



(λ1, λ2, λ3, λ4) = (0, 0,−2,−2) .

(ii) The periodic orbit ωπ exists for 0 ≤ λ < β/2, and in this interval λ3 = −2. As
λ → β/2, two fixed points develop, which are saddle–nodes, see [1]. The periodic orbit ωπ

approaches the two heteroclinic connections between these two saddle–nodes as λ → β/2.
Thus the period of ωπ tends to infinity as λ → β/2. Notice that appearance of these
fixed points could in principle be responsible for failure to achieve σ < 1 (as restricted to
the orbit ωπ), and hence for failure of the continuation algorithm for the branch of tori.
However, our inability to continue the branch of tori occurs before the point λ = β/2, so
that some other cause must be responsible for it.

(iii) For 0 ≤ λ < β/2 we have λ2 + λ4 = 2(4λ − 1) from Liouville’s theorem.
(iv) For small λ > 0, we have λ2 > 0 > λ4. Thus, for 0 < λ ≤ ǫ(β), ωπ repels the flow

within T 2
λ , but attracts in the directions normal to T 2

λ , see [1].
Again, we computed λ2 and λ4 numerically by working with a 2 × 2 linear system,

and the formula λ2 +λ4 = 2(4λ−1) was used as accuracy check. It was fulfilled by more
than 10 digits.

Results on ωπ for case (a), β = 0.5165.
1) For 0 < λ < λs we have

λ2(λ) > 0 > λ4(λ) ,

where 0.24998216527 < λs < 0.24998216528, and

λ2(λs) = 0 > λ4(λs) .

2) For λs < λ < 0.25 (exactly) we have λ2(λ) < 0 and λ4(λ) < 0. (In the so–called
window of stability, λs < λ < 0.25, the orbit ωπ is stable, which motivates the index s.)

3) There is a value λb with

λs < λb < 0.25

and

λ4(λ) < λ2(λ) < 0 for λs < λ < λb ,

λ4(λ) = λ2(λ) < 0 for λ = λb .

We obtained the bounds 0.24998216530 < λb < 0.24998216531. (At λ = λb we expect
torus breakdown, which motivates the index b.)

4) For λb < λ < 0.25, the Floquet exponents λ2 and λ4 form a complex conjugate
pair with Re λ2,4 < 1. At λ = 0.25, we have Reλ2,4 = 0. (This is in agreement with the
formula λ2 + λ4 = 2(4λ − 1) stated above.)
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The Floquet multipliers µ2 and µ4 corresponding to the exponents λ2 and λ4 are
shown in Figures 6 and 7 below.
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Figure 6. Figure 7.
In Figure 6, we are showing the real and imaginary parts of the multipliers µ2 and µ4, as
functions of λ, in the region of interest. Figure 7 is an enlargement of Figure 6 showing
the multipliers becoming complex conjugate after entering the window of stability; the
λ–value at which they meet is our λb.

To explain the numerical results, let us tentatively assume that the branch of tori T 2
λ

exists for 0 ≤ λ < λb. Then the following picture is obtained.
a) For 0 ≤ λ < λb the Floquet exponents λ3,4 are negative, and bounded away from

zero. Consequently we have ν(ωπ) ≤ 1 − ǫ for 0 ≤ λ < λb. Thus, ν(ωπ) cannot be
responsible for breakdown.

b) For 0 ≤ λ ≤ λs we have λ2 ≤ 0, and consequently σ(ωπ) = 0, because ωπ does not
attract the flow within T 2

λ .
c) For λs < λ < λb we have σ(ωπ) < 1, but σ(ωπ) → 1 as λ → λb since λ3 < λ2 =

λ4 < 0 at λ = λb. Consequently, we are in case 3 described in the previous section. Since
λ2 and λ4 move into the complex plane for λ > λb, we expect that T 2

λ becomes replaced
by a non–smooth surface with a spiral, when λb < λ < λb + ǫ.

d) At λ = λs, where the window of stability for ωπ begins, the Floquet exponent λ2

passes through zero, as a decreasing function of λ. One expects a pitchfork bifurcation
of periodic orbits from the branch ωπ. Also, for λs < λ < λb the orbits ω0 and ωπ are
both attracting. Consequently, there must exist (at least) two unstable periodic orbits
on T 2

λ between ω0 and ωπ. It is reasonable to believe that these are the orbits generated
in the pitchfork bifurcation from ωπ at λ = λs. In principle, to confirm our picture, we
should compute the Floquet exponents of these orbits, since they could be responsible
for torus breakdown before λ = λb is reached. However, since λb exceeds λs by less than
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4 ∗ 10−11, this turned out to be too small of a scale for our computing resolution.
Remark: At λ = 0.25 the pair of complex conjugate Floquet multipliers µ2, µ4 leaves
the unit circle. One can expect a secondary Hopf bifurcation to occur from the branch
ωπ, leading to new invariant tori.

Results on ωπ for case (b), β = 0.55.
Our computations show that we have

λ2(λ) > 0 > λ4(λ) for 0 < λ < λb

and

λ2(λb) > 0 = λ4(λb)

where 0.260524 < λb < 0.260525. Therefore, for 0 ≤ λ < λb we have ν(ωπ) < 1, σ(ωπ) =
0, but ν(ωπ) → 1 as λ → λb. Thus, case 2 of the previous section prevails.

The approach ν(ωπ) → 1 as λ → λb indicates that the torus T 2
λ loses its attractivity

as λ approaches λb. The Floquet exponent λ4(λ) crosses zero at λ = λb, as an increasing
function of λ. One expects a symmetry breaking pitchfork bifurcation of periodic orbits
to occur from the branch ωπ at λ = λb.

Let us speculate about the behavior for λb < λ < λb + ǫ. Taking a suitable cross
section Z, the orbit ωπ corresponds to a fixed point Qπ of the Poincaré map P . The
Floquet exponent λ4(λ) is positive but small, by continuity. The positivity of λ4 leads
to a repulsive direction for Qπ, and this direction is approximately normal to the tori
T 2

λ existing for λ < λb, in the cross section Z. As long as the repulsion in the direction
corresponding to λ4(λ) is smaller than the repulsion in the direction corresponding to
λ2(λ), one can apply an invariant manifold theorem for pseudo–hyperbolic fixed points
(see [11]). This theorem establishes the existence of a local one–dimensional invariant
manifold (a line) of the Poincaré map in the cross section Z. The line passes through
the fixed point Qπ and is tangent to the λ2–eigenspace at Qπ. If one makes the basic
assumption that no major global changes of the flow occur, it is then plausible that
this line (the local invariant manifold) can be extended to a global invariant manifold,
which connects with the other fixed point Q0 of P corresponding to ω0. This all plays
in the cross section Z and invariance means invariance under the Poincaré map P . This
invariant curve in Z then corresponds to an invariant torus in the whole space for the
given dynamical system. The torus is non–hyperbolic, since along ω0 the normal bundle
has two attracting dimensions, but along ωπ the normal bundle has one attracting and
one repelling dimension.

Further, consider the flow of the Poincaré map P near the fixed point Qπ and ignore
the attractive λ3–direction since it plays no role for our argument. Then P corresponds
to a planar map with fixed point Qπ, and there are two eigendirections, corresponding to
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λ2 and to λ4. Since 0 < λ4 < λ2, the flow lines of P are tangent to the λ4–eigenspace. For
global reasons, one can expect that these flow lines also can be extended to Q0, leading
to a continuum of invariant sets with a cusp at Qπ. In our numerical computations, for
λ near λb, we indeed observe approximations to T 2

λ which show such a cusp.
When λ crosses λb, the Floquet exponent λ4(λ) of the periodic orbit ωπ crosses zero,

and one can expect a symmetry breaking pitchfork bifurcation of periodic orbits from the
branch ωπ. These orbits lead to two fixed points of P near Qπ for each λb < λ < λb + ǫ.
For global reasons, it is plausible that these fixed points are again connected by invariant
curves with Q0. If this is so, then each of the bifurcating periodic orbits leads to an
invariant torus containing ω0. Thus, if our picture is correct, then for some interval
λb < λ < λb + ǫ there are three invariant tori, all tangent to each other along ω0.
The torus containing Qπ is non–hyperbolic whereas the other two tori are expected to be
hyperbolic and attracting. The torus containing Qπ fulfills symmetry conditions, whereas
the other tori break this symmetry. To summarize, at λ = λb we expect a symmetry
breaking pitchfork bifurcation of invariant tori.

5 Conclusions

In this paper we have analyzed the simplifications that occur in the Fenichel theory [6]
if we have an invariant torus with phase-locking. We have given formulae to obtain the
important Lyapunov–type numbers on which this theory rests, and then analyzed their
use in understanding the bifurcation behavior for tori associated with a system of coupled
oscillators.

In this case, we have brought our understanding up to the bifurcation point. There,
either attractivity is lost (ν → 1) or the attractivity within the torus becomes as strong
as the attractivity towards the torus (σ → 1). In both cases, the theory of [6] no longer
applies at and beyond the bifurcation point, and the branch following routine of [4] is
also expected to fail. Still, the branch of tori might exist beyond the bifurcation point if
the Lyapunov–type number ν becomes 1, the tori becoming pseudo–hyperbolic. At the
same time, in a pitchfork bifurcation, new tori might emerge, and one could conceivable
follow these numerically.

In fact, the next challenge will be to understand what happens after the bifurca-
tion point. There are many possibilities for torus bifurcations and inherent theoretical
difficulties in analyzing them. In general, the lack of a finite dimensional procedure
analogous to the Lyapunov-Schmidt reduction, renders a full classification and under-
standing of all bifurcations of tori extremely difficult. (There is an infinity of possibilities
for resonances.)

Consequently, it is hard to imagine ever being able to obtain general numerical pro-
cedures allowing branch switching for tori. (We grew accustomed to such procedures in
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the case of periodic orbits.) Nonetheless, there is room for improvement if phase-locking
on the tori persists up to the bifurcation point. In this case — via Floquet theory — the
bifurcation phenomena become finite dimensional again. This is the case for our model.
We plan to consider the resulting numerical aspects in future work.
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