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1 Introduction

In this paper we consider dynamical systems depending smoothly on a parameter a <
A <0,

dw
dt
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=d(w, ), w(t)eR". (1)




The solution of (1) with initial condition w(0) = z,z € R", is denoted by F'(z,\),t € R.
Suppose for A = a the system has a compact invariant manifold M(a) C R". We may
think of M (a) as a smooth surface in R" of dimension p < n. (Precise assumptions will
be stated in Section 2.) Invariance of M (a) means that, given any x € M (a), the whole
trajectory F'(x,a),t € R, lies in M(a).

The study of invariant manifolds plays an important role in the theory of dynamical
systems and in applications.

Now suppose the parameter A\ varies in an interval a < A < a + e¢. Under suitable
assumptions on the linearized flow near M (a), it is known that the systems (1) have
nearby invariant manifolds M(\) for a < A < a + ¢€; these manifolds depend smoothly
on A and are all diffeomorphic to M(a). One says that M (a) persists, though it actually
deforms smoothly. Then, if similar conditions on the linearized flow are satisfied near
M(a + €), the branch M (\) can be continued further, etc.

Perturbation results for invariant manifolds, which can be used to establish such a
continuation property, have a long history. In this paper we follow Fenichel [6] where
sufficient conditions are formulated in terms of so—called Lyapunov-type numbers. If
the conditions are met at an invariant manifold M ()\g), then the branch M(\) can be
continued beyond Ag. If the conditions are violated, then — in general — the branch
cannot be uniquely continued, and a large variety of bifurcations is possible. At present,
no complete classification of these bifurcations is known, however.

Under rather restrictive assumptions, we will describe how the generalized Lyapunov—
type numbers can be computed. Basically, we will assume that M = M (\g) consists of
stationary points, of periodic orbits, and of the unstable manifolds of the stationary
points and the periodic orbits in M. Then the Lyapunov—type numbers can be obtained
in terms of eigenvalues of linearizations at the stationary points and of Floquet multipliers
of the periodic orbits.

These results, though restrictive, are often applicable. We present a case study of a
system of two coupled oscillators, depending on two parameters, 5 and A. Here X is the
coupling constant. Many properties of the system have been analyzed in the fundamental
paper [1], and branches of invariant 2-tori have been computed in [3], [4], [12] with A as
continuation parameter. Breakdown of the tori has been observed in these works, as was
predicted in [1]. The exact mechanism of breakdown remained unknown, however. An
aim of the present paper is to combine branch following for tori — as described in [4] —
with monitoring of Fenichel’s Lyapunov—type numbers. For the example of two coupled
oscillators, a consistent picture of the breakdown of the invariant tori will emerge.



2 Invariant Manifolds and Lyapunov—Type Num-
bers

To set notations, we first summarize some simple results on ODEs. Let & : R" — R"
denote a C* vector field. The solution of
dw

o O(w), w(0)==x (2)

is denoted by w(t) = F'x. For simplicity of presentation, we make the technical assump-
tion that F'z is defined for all t € R and all x € R". (This can always be achieved by
first applying a cut—off process to a given system of ODEs.) The solution operator F*
has the group property

Ftly = SF'z, s,t€R, F'=id. (3)
Differentiating the identity

d
—Ftyr = (F? 4
S F = B(F'2) (1
w.r.t. x, we obtain
d t t t
EDF (r) = DO(F'z)DF*(x) , (5)

and DF°(z) = id. Here DF'(x) is the Jacobian of F*(-) at x, etc. Thus, the linearized
solution operator DF*(z) is the solution operator of the linearized equation

dy o t
i DO (Frx)y . (6)

Differentiation of (3) w.r.t. = yields
DF*(x) = DF*(F'z)DF'(x) . (7)

Manifolds. Let M C IR" denote a compact connected C! manifold without boundary
of dimension p < n. We may think of M as a p dimensional surface in R". For z € M
let T,,(M) denote the tangent space of M at x. We may (and will) identify 7, (M) with
a p dimensional linear subspace of R".

Let

n
<u>'U> = Zujvja |u|2 = <u>u>
j=1
define the Euclidean inner product and norm in IR". Then

3



N,(M)={ueR": (u,v) =0V veT, (M)}
is the normal space of M at x, a subspace of dimension ¢ = n — p. For every x € M,
each v € IR" has a unique orthogonal decomposition

v=2vl 40", W e T, (M), o e N, (M) (8)

and

I, : R" - R", v—v'leN(M)CR" 9)
denotes the corresponding orthogonal projection operator onto the normal space.
Invariant Manifolds. Let ® : R" — R" denote a C! vector field and let M C R"
denote a compact connected C! manifold of dimension p, without boundary. Then M is
called invariant under the flow of ® (for short: invariant for ®) if for all + € M the whole

trajectory F'z,t € R, lies in M. It is not difficult to show that M is invariant for ® if
and only if

O(z) € T,(M) forall ze M. (10)
Furthermore, if M is invariant for ®, then for every x € M and every t € R the linearized
solution operator DF*(x), which we view as a map from
R" =T,(M)+ N, (M) onto R"=Tpt,(M)+ Npe,(M)
has the property

DF!(2)(To(M)) = Tre(M) . (1)

Lyapunov—Type Numbers. Suppose that M is invariant for ®. Following Fenichel
(6], we define for every x € M and every t € IR the following two linear operators:

A(z) : Ty (M) — Tr-t,(M), v — DF (x)v

and
By(x) : Np-t,(M) — N,(M), v— I, DF'(F'z)v .

To give first an intuitive understanding of these operators, we remark the following:
Suppose that t — co. Then By(x) will describe the evolution of normal vectors — under
the linearized flow — in forward time. Roughly speaking, if the norm of B;(x) goes to
zero as t — oo for every x € M, then the manifold M is locally attracting. This will be
quantified by the Lyapunov-type number v(z) defined below.



The operators A;(x) describe the linearized dynamics within M in backward time. If
the norm of A;(x) becomes large as t — oo, then there is attractivity — in forward time
— of the flow within M. To obtain a perturbation result for M (i.e., persistence of M
under small perturbations of the vector field ®), it is critical that along any trajectory
in M the attractivity towards M is stronger than the attractivity within M. The ratio
of these two attractivity rates is determined by the second Lyapunov—type number o(x),
which will also be defined below.

In our setting, where the manifold M is embedded in the Euclidean space R", the
linear operator A;(z) maps a p dimensional subspace of IR" onto another such subspace.
The vector norm in these subspaces is always taken to be the Euclidean norm of IR", and
|A;(z)| denotes the corresponding operator norm. The operator norm of By(x) is defined
similarly. As in [6], we define

I/(ZII’) = hmsuptﬂoo‘Bt(x)‘l/t ’
and if v(x) < 1, we set

log |As(z)]
—log|By(z)| -

o(x) = limsup,_,
For illustration, suppose that

|Bi(2)| = i, 5>0,

and
|Ai(z)] = c2e™, a€R.

Then we have

viz)=e P <1 and o(x)=

@I e

The following characterization of o(x) is often useful.
Lemma 2.1 Let z € M with v(x) < 1. For ¢ > o(x) we have
|Ai(z)||By(2)|*—=0 as t—o0. (12)
Conversely, if (12) holds, then ¢ > o(x). Consequently,
o(z) =inf{c € R : (12) holds} .

Proof: We abbreviate a; = |Ai(x)],b; = |Bi(x)| and note that by — 0 as t — oo since
v(xz) < 1. Therefore, —logb, > 0 for t > .
First let ¢ > o(x) be arbitrary. We choose ¢ > v > o(z) and have
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log a;

<7 for t>t >ty .
— log b,

Therefore, loga, < log(b;7), i.e. a;b] <1 for t > t;. It follows that

abf = ab/b; 7 < b7 —0 as t— o00.

Thus we have shown that (12) holds for ¢ > o.
Conversely, assume (12) for some ¢ € R. Clearly, a;bf < 1 for t > t; > ty, thus

loga; + clogb; <0,

and therefore

log a,

<c for t>t; >ty.
—log by
This implies ¢ > o(x), and the lemma is proved. ©
Suppose now that the manifold M is an invariant manifold for (1) at a certain pa-

rameter value \g. Define

v(M) = 5161]\12 v(x),

and — if v(z) <1 for all z € M — also

o(M) = sup o(z).
zeM

Then, the perturbation theorem of [6] guarantees that if ¥(M) < 1 and o(M) < 1/k,
there exists a unique C* invariant manifold diffeomorphic to M for A = \g + A\ if A\
is sufficiently small. In other words, if we could accurately compute the values of v(M)
and o(M), then we would know whether a certain manifold can be continued. In general,
computation of these quantities is non-trivial, however. Still, there are interesting cases in
which their computation is more or less trivial. These are examined below. It is clear that
Fenichel was aware of the simplifications occurring in these cases, see [6]. However, their
precise derivation and quantification was not carried out in [6] nor — to our knowledge
— anywhere else. For this reason, we are going to examine these cases in detail.

Fixed Points in M. Let M be invariant for ®, and let x € M be a fixed point of the
dynamical system (2), i.e. ®(z) =0. We have F'x = x, and if we set L = D®(x), then

DF'(z) =™ .
The tangent space T,(M) is invariant under e’* for all ¢, and therefore L(T,(M)) C
T.(M). Let Ay, ..., A\, denote the eigenvalues of L corresponding to the invariant subspace



T,(M), and let A\piq,..., A, denote the remaining eigenvalues of L. (If A has algebraic
multiplicity m, then A is listed m times.)
We may assume the orderings

ReAi > ... > Re), = —a

and
—B:=ReXt1 > ... > Rel, .

The A; for j = 1,...,p correspond to the linearized flow within M, and the A; for
j=p+1,...,n correspond to the linearized flow towards M. Therefore, we expect that

|Ap(x)| ~ e as t— o0

and
|By(z)| ~ e as t— o0

Thus the previous illustration suggests v(x) = e and, if 3 > 0, then o(x) = /3. This
will indeed be shown below.

Assuming that 5 > 0, thus v(z) < 1, the crucial question to obtain a perturbation
theorem is if

Q@
o(z) 3 <1.

Clearly, this is equivalent to —a > —f3, i.e. the crucial estimate o(z) < 1 is equivalent
to the existence of a gap between the eigenvalues of L = D®(z) that correspond to the
invariant subspace T, (M) and the other eigenvalues of L:

min Re)\; =: —a > —f:= max Rel; .
1<5<p p+1<j<n

Theorem 2.1 Let M be invariant for ®, and let x € M be a fized point of the dynamical
system dw/dt = ®(w). Let Ay, ..., N\, denote the eigenvalues of L = D®(x) corresponding

to the invariant subspace T,(M) of L and let N\pi1, ..., A\, denote the other eigenvalues
of L. Define

a=—min Re);, [f=— max Re);.
1<j<p p+1<j<n

Then we have v(z) = e, and if 3 > 0 then o(x) = a/B.



Proof: Let vl ... v? denote a basis of T, (M) and let vP*1 ... v™ denote a basis of
N, (M). We will represent all operators by matrices w.r.t. these bases. For example, the
n x n matrix L = (I;;) determined by Lv? = Y7, [;;v" represents L. Note that L has block
form,

- Ly L .
L:( 011 LZ)’ Liiispxp. (13)
The solution operator e’ is represented by
N eLllt R
() ) (14)

with

t
Ris :/ elnt=s)r el22sqs
0

(The form of Rys is not important for our current argument.) Then A;(x) and B;(z) are
represented by e~111% and el?2!| respectively. It follows that there are positive constants
c1 and ¢y independent of t > 1 with

cre® < |Ay ()] < ot e

and
cre”P < |By(x)| < ept?™te P

Here ¢ = n — p. This implies

Jlim 1B, ()|t =e " .
Also, if > 0, then we have
L loglAw) o
t=oo —log|By(z)|
and the theorem is proved. ¢
General Remarks on Lyapunov—Type Numbers. Let x,y € M lie on the same
orbit. We claim that v(z) = v(y), and if v(x) < 1 then also o(z) = o(y). This result,

already stated in [6], is well-known. The proof — given here for completeness — is based
on useful product formulae for A;(x) and By(z).



Lemma 2.2 For all x € M and all s,t € R we have

Bayi(x) = By(x) B(F~"x) (15)

and
Asii(@) = A(F ) As(2) (16)

Proof: In (7) we replace z by F'~* 'z to obtain
DF**(F~*~'y) = DF*(F~*2)DF'(F~—"') . (17)
Now let v € Np—s—t, (M) be arbitrary. Then we have

Bsii(z)v = I, DF*(F~* "z)v (18)

and
By(F~*z)v = llp-s, DF'(F~*"2)v .

Define the intermediate vector
w:= DF'"(F* "z)v
and decompose
w=w! +w”, wll =Hp-—syw .
Using (18) and (17) we have
Bsy(x)v =, DF*(F°z)w .
On the other hand,

By(z)B,(F~*z)v = By(x)w'' = I, DF*(F*z)w'" .

The vector w! is a tangent vector and is mapped into another tangent vector by DF*(F~*x).
Consequently,

IL,DF*(F*z)w’ =0 .
This shows that

Bsyi(x)v = Bs(x) B{(F~°x)v |

and formula (15) is proved.
To show (16) we start again with (7) and interchange s and t,



DF*™(z) = DF'(F*x)DF*(x) .
Replacing t by —t and s by —s we find

DF~*~'(z) = DF " (F~*z)DF~*(x) .

Restriction of this identity to the corresponding tangent spaces yields

Ayor(2) = A(F~52) Ay () .

This finishes the proof of lemma. ¢

Next we show that the Lyapunov—type numbers are constant on orbits.

Lemma 2.3 Let x,y € M lie on the same orbit. Then we have v(z) = v(y), and if
v(z) <1 then o(x) = o(y).

Proof: Let y = F~°z,c = |Bs(x)|. Then (15) yields

|Bsyi(z)| < c[Bi(y)], teR.

This implies v(z) < v(y), and by a symmetry argument equality, v(z) = v(y), follows.
If v(x) <1 then we use (16) to show o(x) = o(y) in a similar way. ©

Periodic Orbits. Let x € M and let F'x have period 7 > 0, i.e., F"ox = z and F'z # x
for 0 <t < 7. It follows that L := DF"(z) maps T,(M) onto itself. (Note that DF*(x)
is always nonsingular since it is a fundamental solution operator of a linear system.) We
choose a basis v!, ..., v? of T,(M) and a basis vP** ... v" of N,(M), and henceforth will
identify linear operators with their matrix representations in these bases. By Floquet’s
theorem, the fundamental matrix DF*(x) can be written as

DF'(x) = P(t)e™

where P(t) is a continuous matrix function of period 7. The matrix R is not unique, but
the monodromy matrix L = efi” = DF7(x) is. Our choice of basis v',... v™ implies the
block form

_ [ Lun L2 :
L—( 0 L22>’ Lipispxp. (19)

The eigenvalues ji; of L are — by definition — the Floquet multipliers of the periodic so-
lution F'x. We order the p; so that uy, ..., u1, are the eigenvalues of Ly and pipi1, ..., i
are the eigenvalues of Lgy. In other words, ji1, . .., pt, are the eigenvalues of L correspond-
ing to the invariant subspace T,(M) and 11, ..., p, are the other eigenvalues of L. Of
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course, one of the eigenvalues of Ly; equals 1, uy = 1, say. We write p; = e¥7 for
Jj=1,...,n with \; = a; 4+ i3; where o, 8; are real and —7 < ;7 < m. By definition,
the \; are the Floquet exponents of the periodic solution F'z. Clearly, A\; = 0 since
11 = 1. In the following theorem we determine the Lyapunov—type numbers of z in
terms of the Floquet exponents.

Theorem 2.2 Let F'z denote an orbit of period T in M with Floquet exponents \; =
0, A2, ..., A\, where Ay, ..., N\, correspond to the invariant subspace T,,(M) of L = DF™(z).
Define o, 3 by

a=—min Re);, B=— max Rel,.
1<j<p pF+1<j<n

Then we have v(z) = e %, and if 3 > 0 then o(z) = a/3.

Proof: First consider By(z) for t = m7,m = 1,2,3,... The operator B,,.(x) has the

eigenvalues V™, j = p+1,...,n. As in the proof of Theorem 2.1 we conclude
Jim | By (2)] /07 =77 (20)

If ¢ is arbitrary, we write t = m7 + s with integer m and 0 < s < 7. By (15) we have

Bi(x) = By (2) Bs(F~™ ) = By () Bs(x) .

Therefore,
By (w) = By(2)(By(z)) ™" .
Defining
_ _ -1
cr = max [By(z)l, e = max |(By(z))"|,
we obtain

1
o Brr @) < [Bu(2)] < 1| Brur ()]
Together with (20) it is then easy to conclude that
v(z) = Jim |B,(z)|"t = e " .

Now suppose that 3 > 0, i.e. v(z) < 1. Then we obtain o(x) = «/f by similar
arguments: First we consider t = m7 for integers m — oo and note that A,,.(x) has the
eigenvalues e ™7 j =1,...,p. An argument as in the proof of Theorem 2.1 shows that
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log | Ay ()] o«

im =—.
m= —log |Bn(z)]
Then the limit for general ¢ — oo is treated by applying (15) and (16). ©

Backward Limit Sets. As above, let M C R" denote a compact manifold of dimension
p < n which is invariant under the flow of the dynamical system dw/dt = ®(w). We
will show two results. In the first we assume that F~fx — zy as t — oo for some
x € M. It follows that zyp € M is a fixed point of the evolution and we can compute
v(xg) and o(zp) using Theorem 2.1. We will show that v(z) < v(xy) and, if v(zg) < 1
then also o(z) < o(xg). In the second result we will prove corresponding estimates if
F~tx approaches a periodic orbit in M as t — oo.

Theorem 2.3 Let x,290 € M and assume F~'x — x5 ast — oo. Then v(z) < v(xo)
and, if v(xg) < 1 then also o(x) < o(xo).

Proof: a) Let a > v(zg) be arbitrary. There exists 7 > 0 such that

| B, (20)|Y" < a .
By continuity, there is a compact neighborhood U of zy in M with

|B-(y)| <a” forallye U C M . (21)

Since v(-) is constant on the orbit F'z and since F~'x — x5 as t — 0o we may assume
that F~'z € U for all ¢ > 0. Recall the product formula (15), which can inductively be
generalized to

Bt1+t2—|—.,,+tj (:E) == Btl ([L')Btz(F_tlx) oo Btj (F_(t1+t2+m+tj71)l’)

for arbitrary ¢; € R. If ¢ > 0 is given, we write ¢t = (j — 1)7 + s with integer j and
0 < s < 7, and obtain

By(z) = Bo(2)B,(F~z) - B, (FTI )T ) By(F )7y (22)
Using (21) we find

|By(z)| < aV=V7|By(FEIH Ty
Setting

cg =max{a*|Bs(y)|: ye U, 0<s<r7}

we obtain
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|B,(z)| < c1aV " V7a® = ¢yal
where ¢t = (j — 1)7 + s > 0 was arbitrary. This implies
v(z) = limsup |B,(z)|"Y < a ,
t—o00

and since a > v(xy) was arbitrary, the estimate v(z) < v(z) is proved.
b) Let v(zg) < 1. To show o(x) < o(xg), we use Lemma 2.1 and let ¢ > o(xg) be
arbitrary. There exists 7 > 0 and a compact neighborhood U of xy in M with

A=) B-(y)|* <

We may assume F' 'z € U for t > 0, and
0 < s < 7. The product formula

1
5 foralye U C M . (23)
write any given t > 0 as t = (j — 1)7 + s with

Ay(z) = AJ(FIDT ) A(FEIFD7) L AL(F T 2) A ()
follows inductively from (16). Together with (22) and (23) we obtain
1..
[A@)IBi(2)] < (5 e
where

co = max{|A;(y)||Bs(y)|°: yeU, 0<s<7}.

Thus |A:(y)||Bi(y)|¢ — 0 as t — oo, and Lemma 2.1 implies o(z) < ¢. Since ¢ > o(xg)
was arbitrary, the estimate o(x) < o(zy) is proved. ©

In the next result we assume F'zq to be periodic for some zq € M and let v = {F'xy :
t € R} denote the corresponding periodic orbit. We consider a point = € M for which
F~'z approaches v as t — oo. The notation

dist(z, y) = min{[z —y| : y € 7}

is used.

Theorem 2.4 Let x € M and let v C M be a periodic orbit. We assume that

dist(F'z,7) — 0 ast— oo .

Then v(z) < v(xg) and, if v(xy) < 1 then also o(x) < o(xg). Here xog € v is arbitrary.
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Proof: Let 7 > 0 denote the period of v and let xg € v denote a chosen point which is
kept fixed in the following. For any z € «y there is 0 < s < 7 with z = F~*zy. By (15)
we have

By 14(w0) = Bs(x0)By(2)

and if we set

e = gnasx |(B(w0)) |

then the estimate

|Be(2)] < e1| Boya(o)]
follows. Applying (15) again (with s and ¢ interchanged), we also have

Bs+t(£l§'0) = Bt(ZL'Q)BS(F_tI’()) .

Setting
co =max{|Bs(y)|: 0<s<T, yery}

we conclude with the previous estimate
| Bi(2)| < crca| Bi(o)] -
Now let a > v(x) be chosen arbitrarily. There exists T' > 0 with

|Br(2)|"" < (ere2) 7| Br(ao) VT < a
It is important to note that 7" is independent of z € . For € > 0 we define the compact
neighborhoods

Un(v,€) ={y € M : dist(y,7) < ¢}
of v in M. Compactness of v yields existence of € > 0 with

|Br(y)|Y" < a forally € Uy, e) .

The remaining part of the proof that v(x) < v(z¢) can now be given in the same way as
in the case where zy is a fixed point. See part a) of the proof of Theorem 2.3. Also, if
v(xg) < 1 then o(z) < o(zo) follows by similar arguments. ©

Remark 2.1. Under the assumptions of Theorems 2.3 and 2.4 we conjecture that equal-
ities v(x) = v(xg) and o(x) = o(xo) hold. However, since we do not need this here, we
have not investigated this question carefully.
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In the remaining part of this section, we indicate some generalizations and open
questions. For any z € R" the backward limit set «(x) consists, by definition, of all
z € R" for which there is a sequence t; — oo with F'"%x — z. Equivalently,

afz)=(cf{F'z:t>71}

7>0
where c¢lA denotes the closure of the set A C R". Now let x € M. Then a(x) C M
is nonempty and compact. (This follows since the sets cl{F~'z : t > 7},7 > 0, are
compact and nested.) Furthermore, a(z) is invariant under backward evolution, i.e.,
F*a(z)) = afx) for all ¢ > 0. In such a situation, where K C M is a nonempty
compact set invariant under backward evolution, an argument as in Fenichel’s uniformity
lemma (see [6]) can be used to show that

supv(z) =: v(K)

zeK

and — if v(z) < 1 for all z € K — then also

supo(z) =: o(K)

zeK

are attained, i.e., there exist xg, z; € K with

V(K)=v(rg) and o(K)=o0o(z) .

Furthermore, if z € M is a point with dist(F 'z, K) — 0 as t — oo then arguments as
given in the proofs of Theorems 2.3 and 2.4 show that

v(z) <v(K) and o(x) <o(K).

We have only treated the two simplest cases where either K = a(x) = {z(} consists of a
fixed point or K = a(x) =+ is a periodic orbit. These seem to be the only cases where
a computation of ¥(K) and o(K) is straightforward.

Other cases are also of interest. For example, assume that M is a 2-torus with parallel
flow and that every orbit F'x,x € M, is dense in M. If v(x) < 1 then o(x) = 0 since
there is no attractivity of the flow within M. In this case the backward limit set is
a(x) = M for every x € M. Using ergodic theory results (e.g., see [9]), in this case one
can show that v(-) is constant almost everywhere on M.
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3 Invariant 2-Tori

Let us restrict now to the case in which the invariant manifold M for (1) is a 2-torus.
That is, there is a diffeomorphism

w: T° =M (24)

such that M is invariant for ®, and T? = (IR mod 27)? is the standard 2-torus. Let us
denote by 6; and 6, the angular coordinates describing 7?; we can then visualize T2 as
the periodic square [0, 27| x [0, 27| in the (0, 65)-plane.

Clearly, the solution operator F* of dw/dt = ®(w) determines a flow on M, whereas

¢ = w tFlw (25)

is a flow on 72. The scenario of possibilities for the behavior of the flow ¢! on T2
(equivalently, of F'* on M) is greatly simplified if ¢' induces a diffeomorphic circle map
on a suitable cross section. In this case, let

C:T'—T" (26)

be such a circle map. (E.g., we can think of C as obtained by taking a cross section
on T? with 6, = 0 or some other constant, and C is the associated return map.) Let p
denote the rotation number of C. Then, it is well understood (e.g., see [2, p.27]) that C
has periodic points if and only if p is rational. Rephrased in terms of the flow on M, if p
is rational, then every orbit on M is either periodic or transient, converging to a periodic
orbit as t — 4oco. We refer to the case of rational p as the phase locking situation.
Assuming in addition that there are only finitely many periodic orbits, we can use our
previous results on type numbers to compute v(M) and (M), which is what we will do
in the next section.

Remark 3.1. The case in which p is irrational does not appear in our case study, at least
for the parameter values considered. However, this case is clearly very interesting. If C
is twice continuously differentiable (see Denjoy’s theorem, [2, p.28]), then C is conjugate
to a rigid rotation, and every orbit in M is dense in M.

To help our exposition in the next section, consider the case of phase-locking on a 2—
torus T3 of the parameter dependent system dw/dt = ®(w, \). Suppose that the system
is n-dimensional (n > 3) and that the 2-torus T% consists of finitely many periodic orbits
(stable and unstable) w;(A),j =1,...,J, and of the unstable manifolds of the unstable
orbits.

With A;; = A\;j(A) we denote the Floquet exponents of w;(\) for i = 1,...,n, j =
1,...,J. Here we always adopt the following ordering: we let A\;; = 0 and we let Ay,
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measure the rate of attractivity to (or repulsion from) w;()\) tangential to TE. We note
that the Floquet exponent Ayj()) is always real. In other words, A;; = 0 and \y; €
IR are expression of the motion on the torus, while As;,...,\,; are expression of the
motion towards the torus. In addition, we assume that 75 and the periodic orbits w;(\)
depend smoothly on A, and thus we may assume continuous dependence of A;;(A) on the
parameter \.

Motivated by our case study presented in the next section, we assume that the branch
of invariant tori T% exists for some parameter range a < A < b with the above properties,
and that the branches of periodic orbits w;(\) exist for a < A < ¢ with ¢ > b. We further
assume that

v(T?) <1 and o(T?) <1 for a<A<b. (27)
As described in the previous section, we can express the functions v(7%) and o(7%) in
terms of the Floquet exponents of the w;(\). First note that
v(I3) = maxv(w;(A)), o(T3) = maxo(w;(V))
J J

and if we set

Oéj()\) = —IIliIl{O, )‘2]()\)} ;

ﬁ]()\) = —maX{Re )\Z]()\), 3<1 < n} ,
then

s, a;(A)
v(w;(N) =e P a(w;(N) = 2555
! ! Bi(A)
for a < A < b. The above formulae show continuous dependence of v(7%) and o(7%) on
a < X\ < b. Also, the estimates (27) are equivalent to the strict inequalities

ReXij(A\) <0 for 3<i<n, 1<j<J a<A<b (28)

and
ReAij(A) < Ag;(\) for 3<i<n, 1<j<J a<A<b. (29)

Therefore, concerning the limiting behavior as A approaches b, there are three possible
cases:

Case 1: The strict inequalities (28), (29) remain valid for A = b.

Case 2: There exists 1 < j < J and 3 < ¢ <n with Re \;;(b) = 0.

Case 3: All strict inequalities (28) extend to A = b, but (29) becomes violated; that is,
there exists 1 < j < J and 3 <14 < n with Re \;;(b) = A\y;(b).
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Under additional assumptions, one can show that in case 1 the branch 7% can be
extended to a < A < b+ A\ for some AX > 0. (To prove this, it suffices to give a lower
bound on the size of the C''-neighborhood N, of the vector field w — ®(w, A), so that
T? persists for every vector field in Ny, see [6]. Tt is crucial to estimate the size of this
neighborhood from below independently of a < A < b. To this end, it appears necessary
to assume that the coordinate system determined by tangents and normals to M () can
be smoothly extended into a neighborhood of M () which is independent of a < A < b.)

In case 2 we have

. 2\
}\E%V(T)\)— 1.

This case often occurs if one of the Floquet exponents \;;,7 > 3, of an orbit w;(\) crosses
0 as A crosses b, leading (typically) to a pitchfork bifurcation of periodic orbits from the
branch w;(\) at A = b. In general, one cannot guarantee that the branch T} can be
continued beyond A = b. However, we believe that the concept of pseudo—hyperbolicity
(see, e.g., [11] for an invariant manifold theorem of a pseudo—hyperbolic fixed point of
a map) will be applicable under suitable additional assumptions. We expect, then, that
the branch T can be continued smoothly beyond A = b, where 7% is non-attracting for
A > b, but pseudo—hyperbolic. In addition, we expect other attracting tori to bifurcate
from the branch T at A = b. This is in correspondence to the pitchfork bifurcation of
periodic orbits from w;(A) at A = b. So far, however, we were not able to confirm this
picture by numerical computation.
In case 3, the function v(T%) remains bounded away from 1 in a < A < b, but

. 2\
}\ILI})O'(TA) =1.

Typically, the real (for a < A < b) Floquet exponent Ay;(A) meets another real Floquet
exponent \;;(A) for A = b. If these exponents remain real for A > b by passing each other,
then we expect that 77 becomes replaced by a nonsmooth surface for A > b, with a cusp
in each cross section, the tip of the cusp traveling along w;(\). (Compare the example in
8, p.244].) If A\9;(A) and A;;(A) form a complex conjugate pair for A > b, then we expect
a spiral instead of a cusp (see [6]).

4 A Case Study: Two Coupled Oscillators

We consider the following system of two linearly coupled oscillators

i =x1 + By — (22 + )y — Moy +y1 — T2 — o)

U1 = —Pr1+ 1 — (@] +yD)y — My + 1 — 22 — o) (30)
Ty = Ty + By — (25 + y3)x2 + M21 + 31 — T2 — U2)

Yo = —PBry +y2 — (23 + 13)y2 + M1+ y1 — T2 — 1),
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where > 0 and A > 0. This system has been studied in much detail by Aronson et al.
in [1], to which we refer for the derivation and motivation of (30). The authors provide
analytical and numerical studies of the bifurcations of fixed points and periodic orbits of
the system. We will use many of their results, and will adopt their notation as much as
possible, in order to facilitate cross-reading. From now on, we will restrict 5: 0 < 3 < 1,
and consider the range of A: 0 < A < 3/2. This turns out to be sufficient for our purpose.

For A = 0, the two oscillators both have the periodic attracting limit cycle €2y =
{cos Bt, —sin Bt}, and therefore the full system has an attracting invariant torus T¢ =
Qy x Qp. For fixed § sufficiently large (1/2 < § < 1), numerical studies have been
performed attempting to follow (in \) the branch of invariant 2-tori 77 emanating from
T3. Typical approaches are in [3], [4], [5], [7], [10], [12]. Regardless of the relative merits
of each approach, all of them eventually are unable to continue the branch. Loosely
speaking, the torus seems to “break down”, but a convincing argument of why the branch
could not be continued was not provided in any of the above works. It should be said that
the inability to continue the branch of tori is not likely to be due to numerical artifacts.
In particular, the approach in [4] is a discrete analogue of the Hadamard graph transform
technique of [6]. A convergence analysis for this approach is given in [4], assuring that
the method will perform continuation of the branch of tori as long as the analytical
conditions of [6] are met, and one has sufficient numerical resolution.

Then, somehow, the conditions in [6] become violated at or near the value of A where
we fail to continue the branch of tori. Thus, to understand failure to continue the
branch of tori, we have to understand the motion on the torus and towards it. To this
end, [1] provides many of the needed tools. Relying on the results in [1], and on our
computations, we will present a picture of the torus breakdown, which is consistent with
the view presented in the previous section.

Let us begin by noticing that T¢ is covered by a 2-parameter family of periodic
solutions, each member of which is specified by a pair of initial phase angles. However,
since the origin of ¢ is arbitrary, there is only a 1-parameter family of orbits; the initial
phase difference can be taken as this parameter. Since all periodic orbits on T§ are
degenerate with two Floquet multipliers equal to 1, one cannot expect the whole 1-
parameter family to persist for weak coupling. In fact, see [1], only two periodic orbits
persist for small coupling \: wy and w,. (The orbit w, depends on A, but we suppress
this in our notation.) The orbit wy represents in—phase solutions (synchronized at A = 0),
and w, represents solutions which are out of phase by = at A = 0. Finally, for A = 0,
an easy computation reveals that y(¢) has Floquet exponents 0 and —2. Therefore, at
A = 0, we have parallel flow on the torus T, and a rate of approach of O(e™%) towards
it; as a consequence, we have v = ¢7? < 1 and o = ( for 7. Therefore, for small coupling
A, T¢ can be continued, and — as proved in [1] — there is phase-locking on the torus:
T? is made up of wy, wy, and the unstable manifold of w, . As long as phase-locking
on the torus persists as A increases, we can use our previous setup to decide upon the
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possibility to continue T¢. We have performed several numerical experiments to verify
whether or not this was the case and will report on two of them, which have revealed
both non-trivial and typical. They correspond to the cases

(@) B=05165, and () B=055.

By using the approach in [4], in case (a) we were able to continue the branch of invariant
tori up to A & 0.2497, and in case (b) up to A = 0.26 (somewhat higher values of A
had been obtained with the approach in [3]). In both cases, our numerical computations
showed that indeed phase-locking persisted on the torus up to the indicated values of \.
The corresponding circle map always has zero rotation number, since wy always leads to
a fixed point of the circle map. In case (b), the circle map has precisely two fixed points,
corresponding to wy and w,. In case (a), further fixed points develop in the window of
stability of w;; see below.
In Figure 1 we show the circle maps for case (b) for the values of A = 0.01, 0.04, 0.1, 0.15

and in Figure 2 for A = 0.2525; for larger values of A the picture just got flatter.

Figure 1. Figure 2.

These figures show the circle maps 6; — 6] = C(#,) corresponding to the flow on the
torus, see (25), obtained by restricting to the cross section fy = 7; qualitatively identical
results were obtained for different cross sections. The straight line in Figures 1 and 2
represents the line ; = 0], and the intersections of the other curves with this line are
the fixed points of the circle maps. (The stable fixed point §; = 7 corresponds to wy and
the unstable fixed point §; = 0 = 27 corresponds to w,. ) In case (a), we have obtained
qualitatively similar pictures. In Figure 3, we show the flow on the torus for case (a) for
the value of A = 0.2497.
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Figure 3.

Having established that the flow on the torus leads to a circle map with zero rotation
number, it remains to compute the Floquet exponents of all periodic orbits as functions
of A\. We have done this only for wy and w,, which turns out to be sufficient for case
(b). For case (a), see below. In general, accurate computation of Floquet exponents is
difficult, but in the present case great simplifications are provided once again by the work
[1].

First of all, it is shown in [1] that wy lives in the “symmetric” plane

S = {($17y1,$2,y2) LT =T2, Y = yz}

and is stable with respect to perturbations of initial conditions in §. Correspondingly,
wy lives in the “antisymmetric” plane

A= {(xlayh@,yg) T = —To, Y = —yz}

and is stable with respect to perturbations of initial conditions in A. Useful analytical
expressions for the orbits wy and w, are also in [1].

A further important observation in [1] is the following. Linearization of (30) about
any solution in S or A leads to a four dimensional linear system that decouples into two
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systems of dimension two. One system determines A\; and A3, the other determines Ay
and A4. Further, since Ay = 0, one can compute A3 analytically from a trace formula.
(This is Liouville’s theorem, see [8, p.120].) Thus, numerical computations need to be
performed for one 2 x 2 linear system of ODEs only.

For the in—phase orbit wy the following analytical results can be easily obtained.

(i) For A = 0 it holds that

()\17 )\27 )‘37 )\4) = (07 07 _27 _2) :

(ii) For A > 0 it holds that A3 = —2, Re Ao < 0, Re Ay < 0.
(iii) For A > 0 it holds that (by Liouville’s theorem)

A+ A =-2(1+N).

Result (ii) implies that v(wp) remains bounded away from 1 in any bounded interval
of existence of TZ. Thus, torus breakdown cannot be due to v(wy) approaching 1.

To obtain o(wy), we computed the Floquet exponents Ay and A4 of wy as functions
of A numerically, with error tolerances at machine precision, and the analytical result
A2+ Ay = —2(1 + A) was used as an accuracy check. This relation was always fulfilled
by more than 10 digits, leading us to conclude that the computation of the Floquet
exponents was sufficiently accurate to draw the conclusions given below.

The resulting functions A\ — o(wp) are plotted in Figures 4 and 5 for the cases (a)
and (b).

0.28 0.26

0.26 0.24

0.24 0.22

0.22 0.2

02 0.18

0.18 0.16

0.16 0.14

) 065 0‘.1 0‘15 0‘,2 0.‘25 03 o 065 0‘.1 0‘15 0‘,2 0.‘25 03
Figure 4. Figure 5.

Quite clearly, in both cases o(wp) stays below 1/4 for the parameter range of interest,
and hence we should expect at least a C* torus based on the information gathered from
wp. Thus, we can turn our attention to w;.

The following analytical results can be obtained about the orbit w, and its Floquet
exponents \; = \;(\).

(i) For A = 0 it holds that
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()\17 )\27 )‘37 )\4) = (07 07 _27 _2) :

(ii) The periodic orbit w, exists for 0 < A < /2, and in this interval A3 = —2. As
A — /2, two fixed points develop, which are saddle-—nodes, see [1]. The periodic orbit w,
approaches the two heteroclinic connections between these two saddle—nodes as A — 3/2.
Thus the period of w, tends to infinity as A — (/2. Notice that appearance of these
fixed points could in principle be responsible for failure to achieve o < 1 (as restricted to
the orbit w,), and hence for failure of the continuation algorithm for the branch of tori.
However, our inability to continue the branch of tori occurs before the point A = (3/2, so
that some other cause must be responsible for it.

(iii) For 0 < X < 3/2 we have Ay + Ay = 2(4X — 1) from Liouville’s theorem.

(iv) For small A > 0, we have Ay > 0 > A\y. Thus, for 0 < A < €((3), w, repels the flow
within 7%, but attracts in the directions normal to T%, see [1].

Again, we computed Ay and A4 numerically by working with a 2 x 2 linear system,
and the formula Ay + Ay = 2(4\ — 1) was used as accuracy check. It was fulfilled by more
than 10 digits.

Results on w, for case (a), § = 0.5165.

1) For 0 < A < As we have

)\2()\) >0 > )\4()\) s
where 0.24998216527 < A, < 0.24998216528, and

)\2()\5) =0> )\4()\8) :

2) For Ay < A < 0.25 (exactly) we have A2(A) < 0 and A\y(A\) < 0. (In the so—called
window of stability, A; < A < 0.25, the orbit w, is stable, which motivates the index s.)
3) There is a value A\, with

As < Ay < 0.25

and

A(A) < A2(A) <0 for Ay <A< Ny,

M) =X(A) <0 for A=A, .

We obtained the bounds 0.24998216530 < A, < 0.24998216531. (At A = A\, we expect
torus breakdown, which motivates the index b.)

4) For A\, < A < 0.25, the Floquet exponents Ay and A4 form a complex conjugate
pair with Re Ay 4 < 1. At A = 0.25, we have Re Aoy = 0. (This is in agreement with the
formula Ay + Ay = 2(4\ — 1) stated above.)
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The Floquet multipliers ps and p4 corresponding to the exponents A and A\, are
shown in Figures 6 and 7 below.
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Figure 6. Figure 7.
In Figure 6, we are showing the real and imaginary parts of the multipliers ps and py, as
functions of A, in the region of interest. Figure 7 is an enlargement of Figure 6 showing
the multipliers becoming complex conjugate after entering the window of stability; the
A—value at which they meet is our A.

To explain the numerical results, let us tentatively assume that the branch of tori 77
exists for 0 < A < \y. Then the following picture is obtained.

a) For 0 < A < )\, the Floquet exponents A3 4 are negative, and bounded away from
zero. Consequently we have v(w,;) < 1 —¢€ for 0 < XA < \,. Thus, v(w,) cannot be
responsible for breakdown.

b) For 0 < A < Ay we have Ay < 0, and consequently o(w,) = 0, because w, does not
attract the flow within T%.

c) For \; < A < Ay we have o(w;) < 1, but o(w,;) — 1 as A — A, since A3 < Ay =
Ay < 0 at A = \y. Consequently, we are in case 3 described in the previous section. Since
A2 and \; move into the complex plane for A > );, we expect that 7% becomes replaced
by a non—-smooth surface with a spiral, when A\, < A < A\, + €.

d) At A = Ay, where the window of stability for w, begins, the Floquet exponent Ao
passes through zero, as a decreasing function of A\. One expects a pitchfork bifurcation
of periodic orbits from the branch w,. Also, for A\, < A < A, the orbits wy and w, are
both attracting. Consequently, there must exist (at least) two unstable periodic orbits
on T% between wy and w,. It is reasonable to believe that these are the orbits generated
in the pitchfork bifurcation from w, at A = A,. In principle, to confirm our picture, we
should compute the Floquet exponents of these orbits, since they could be responsible
for torus breakdown before A = ), is reached. However, since A\, exceeds A by less than
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4% 107!, this turned out to be too small of a scale for our computing resolution.
Remark: At A = 0.25 the pair of complex conjugate Floquet multipliers po, 14 leaves
the unit circle. One can expect a secondary Hopf bifurcation to occur from the branch
wy, leading to new invariant tori.

Results on w, for case (b), 5 = 0.55.
Our computations show that we have

Aa(A) > 0> N (N) for 0< A<

and

)\2()\1)) > 0= )\4()\1,)

where 0.260524 < A, < 0.260525. Therefore, for 0 < A\ < A\, we have v(w,) < 1,0(w,) =
0, but v(w,) — 1 as A — \,. Thus, case 2 of the previous section prevails.

The approach v(w,) — 1 as A — )\, indicates that the torus T3 loses its attractivity
as A approaches A\,. The Floquet exponent Ay(\) crosses zero at A = A, as an increasing
function of A. One expects a symmetry breaking pitchfork bifurcation of periodic orbits
to occur from the branch w, at A = \,.

Let us speculate about the behavior for A\, < A < A\, + €. Taking a suitable cross
section Z, the orbit w, corresponds to a fixed point (), of the Poincaré map P. The
Floquet exponent A4(\) is positive but small, by continuity. The positivity of A4 leads
to a repulsive direction for @),, and this direction is approximately normal to the tori
T? existing for A < )\, in the cross section Z. As long as the repulsion in the direction
corresponding to A4(\) is smaller than the repulsion in the direction corresponding to
A2(A), one can apply an invariant manifold theorem for pseudo—hyperbolic fixed points
(see [11]). This theorem establishes the existence of a local one-dimensional invariant
manifold (a line) of the Poincaré map in the cross section Z. The line passes through
the fixed point @), and is tangent to the A\y—eigenspace at (). If one makes the basic
assumption that no major global changes of the flow occur, it is then plausible that
this line (the local invariant manifold) can be extended to a global invariant manifold,
which connects with the other fixed point )y of P corresponding to wg. This all plays
in the cross section Z and invariance means invariance under the Poincaré map P. This
invariant curve in Z then corresponds to an invariant torus in the whole space for the
given dynamical system. The torus is non—hyperbolic, since along wy the normal bundle
has two attracting dimensions, but along w, the normal bundle has one attracting and
one repelling dimension.

Further, consider the flow of the Poincaré map P near the fixed point (), and ignore
the attractive A\3—direction since it plays no role for our argument. Then P corresponds
to a planar map with fixed point @), and there are two eigendirections, corresponding to
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Ao and to A\4. Since 0 < Ay < Ao, the flow lines of P are tangent to the Ay;—eigenspace. For
global reasons, one can expect that these flow lines also can be extended to (g, leading
to a continuum of invariant sets with a cusp at (). In our numerical computations, for
A near \,, we indeed observe approximations to 7% which show such a cusp.

When A crosses Ay, the Floquet exponent A\y(A) of the periodic orbit w, crosses zero,
and one can expect a symmetry breaking pitchfork bifurcation of periodic orbits from the
branch w,. These orbits lead to two fixed points of P near @), for each Ay < A < Ay + €.
For global reasons, it is plausible that these fixed points are again connected by invariant
curves with ()y. If this is so, then each of the bifurcating periodic orbits leads to an
invariant torus containing wgy. Thus, if our picture is correct, then for some interval
A < A < M\ + € there are three invariant tori, all tangent to each other along wy.
The torus containing (), is non-hyperbolic whereas the other two tori are expected to be
hyperbolic and attracting. The torus containing ), fulfills symmetry conditions, whereas
the other tori break this symmetry. To summarize, at A = )\, we expect a symmetry
breaking pitchfork bifurcation of invariant tori.

5 Conclusions

In this paper we have analyzed the simplifications that occur in the Fenichel theory [6]
if we have an invariant torus with phase-locking. We have given formulae to obtain the
important Lyapunov—type numbers on which this theory rests, and then analyzed their
use in understanding the bifurcation behavior for tori associated with a system of coupled
oscillators.

In this case, we have brought our understanding up to the bifurcation point. There,
either attractivity is lost (v — 1) or the attractivity within the torus becomes as strong
as the attractivity towards the torus (¢ — 1). In both cases, the theory of [6] no longer
applies at and beyond the bifurcation point, and the branch following routine of [4] is
also expected to fail. Still, the branch of tori might exist beyond the bifurcation point if
the Lyapunov—type number v becomes 1, the tori becoming pseudo—hyperbolic. At the
same time, in a pitchfork bifurcation, new tori might emerge, and one could conceivable
follow these numerically.

In fact, the next challenge will be to understand what happens after the bifurca-
tion point. There are many possibilities for torus bifurcations and inherent theoretical
difficulties in analyzing them. In general, the lack of a finite dimensional procedure
analogous to the Lyapunov-Schmidt reduction, renders a full classification and under-
standing of all bifurcations of tori extremely difficult. (There is an infinity of possibilities
for resonances.)

Consequently, it is hard to imagine ever being able to obtain general numerical pro-
cedures allowing branch switching for tori. (We grew accustomed to such procedures in
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the case of periodic orbits.) Nonetheless, there is room for improvement if phase-locking
on the tori persists up to the bifurcation point. In this case — via Floquet theory — the
bifurcation phenomena become finite dimensional again. This is the case for our model.
We plan to consider the resulting numerical aspects in future work.
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