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Abstract. We propose a new measure of conditioning for the exponential of a block
triangular matrix. We also show that different “condition numbers” must be used to
assess the accuracy of different algorithms which implement diagonal Padé with scaling
and squaring.

1. Introduction

In this work, we consider conditioning of the matrix function eA for a 2 × 2 block
triangular matrix A ∈ R

n×n:

(1.1) A =

[

A11 A12

0 A22

]

,

where the diagonal blocks are square matrices; of course, we are interested in the case
A12 6= 0. We will use the notation F (A) to denote eA. The norm used is the 2-norm,
unless otherwise stated.

It is well known that the exponential of A, eA, is given by the series

(1.2) eA =
∞
∑

k=0

Ak

k!
.

As a consequence of (1.2), if A is as in (1.1), then F (A) has the same block structure
as A:

(1.3) F (A) =

[

F11 F12

0 F22

]

,

(1.4) where Fii = eAii , i = 1, 2 , and F12 =

∫ 1

0
eA11(1−s)A12e

A22sds .

Given the form (1.3), a reasonable algorithm to approximate F (A) should also give

a block triangular approximation, call it F̂ (A). This is the case for diagonal Padé ra-

tional functions, to which we will restrict from now on. Here, F̂ (A) = R(A), R(A) =
P (A)Q−1(A), and numerator and denominator are polynomials of degree s chosen so to
match 2s+1 terms in (1.2). Since Padé approximations are more accurate if the matrix A
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is close to 0, some rescaling of A is needed. The most popular scaling strategy is by pro-
gressive divisions of A by 2. The resulting method is known as scaling and squaring with
diagonal Padé approximations. This is the “least dubious” of the celebrated 19 dubious
ways of Moler & Van Loan, [11], and is the approach of Ward, [13]. The method is at the
core of the Matlab built in function expm, which implements the following algorithm.

Algorithm 1 (expm)

(1) Choose k to be the smallest integer so that Ak := A/2k satisfies ‖Ak‖ < 0.5.

(2) Use the (6,6) Padé to approximate F (Ak), call F̂ (Ak) the obtained answer.

(3) Approximate F (A) with F̂ (A) by squaring k times F̂ (Ak), i.e., F̂ (A) = (F̂ (Ak))
2k

.

In [1], we recently showed that the above technique may give unsatisfactory results when
A is as in (1.1), because of overscaling, and proposed the following simple modification.
Algorithm 2

(1’) Choose k to be the smallest integer for which Ak := A/2k satisfies ‖Aii/2
k‖ ≤ 0.4,

i = 1, 2.
(2)-(3) As in Algorithm 1.

Quite clearly, the only difference is that with Algorithm 2 only the norms of the diagonal
blocks determine the scaling of A, while with Algorithm 1 it is the norm of A to determine
the scaling factor.

Example 1.1. This test problem is revealing. Take

A =

[

ω x
0 ω

]

, eA = eω

[

1 x
0 1

]

, and fix x = 106 .

The interesting case is when |ω| ≪ x, say ω = O(1). (On the diagonal of A we could use
two different values, ω1 and ω2, as long as they are of O(1)). Using the two algorithms

above, we get the following relative errors
‖F̂ (A)−F (A)‖

‖F (A)‖ (in Matlab, the machine precision

EPS is about 2.2 × 10−16).

ω Algorithm 1 Algorithm 2

2.1 1.4 × 10−10 5.7 × 10−16

4.1 7.6 × 10−11 1.9 × 10−15

6.1 1.9 × 10−10 1.1 × 10−15

As it turns out, and in spite of the obvious difference in performance, both algorithms
give results which are better than those predicted by classical conditioning theory for
F (A): trying to understand the reason for this fact has been a motivation for this work
and will lead us to a more refined conditioning measure for eA when A is as in (1.1).

Computation and conditioning of F (A) are well understood in case A is a normal matrix
(see [3] and [9]), but not when A is not normal. Major contributions on conditioning of
functions of a matrix have been made by Kenney and Laub in a series of influential papers:
see [5, 6, 7], and references there. However, the case of A not normal1 remains elusive

1the structure (1.1) is prototypical of the non-normal case
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and gives rise to intriguing and poorly understood phenomena, such as the well known
“hump” of [11]. It should be further appreciated that computation of F (A) is expected
to be the harder the farther A is from a normal matrix, see [2, (11.3.2)]. Accordingly, it
is appropriate (but not strictly necessary for what follows) to think that in (1.1) we have
‖A11‖ and ‖A22‖ ≪ ‖A12‖ ≈ ‖A‖. Finally, it is convenient (but, again, not necessary)
to think that the spectra of A11 and A22 are close to one another. If not, it is our belief
that approximation of F (A) should be carried out differently than using a single Padé
approximant; namely, by first separately computing F11 and F22, and then solving the
Sylvester equation

A11F12 − F12A22 = F11A12 − A12F22

to approximate F12. This approach, known as Parlett’s method, has been discussed in
several places, e.g., see [2], but also [4] for algorithmic aspects of this method on triangular
matrices.

In the next section, we review some recent results on diagonal Padé approximations
for eA, and specialize conditioning results to the case of matrices as in (1.1). Finally, we
briefly discuss the case of general (not block triangular) A.

Remark 1.2. A common occurrence of block triangular structure is when a matrix gets
transformed to triangular form, for example via Schur reduction. Indeed, this is a generally
advocated first step in algorithms which approximate eA (e.g., see [7], but also [4]). On
the other hand, block triangular structure arises naturally also on its own rights, as the
following problems in engineering applications exemplify.

(1) In [10], a discrete optimal control problem is studied and the need arises to compute
exponentials of block triangular matrices. There, Algorithm 1 is used. We observe
that the block triangular structure of [10] fits the case of interest in this paper:
the diagonal blocks have identical eigenvalues.”

(2) In linear systems theory, block triangular structure plays a key theoretical and
practical role; see [8]. E.g., it is the canonical form for controllability and recon-
structibility. In these canonical cases, one has a linear differential systems with
(2 × 2) block upper triangular structure. In the time invariant case, computation
of the exponential of this matrix is required.

(3) One of the important interconnections of linear systems (see [8, pp. 43 & ss.])
is the so called serial connection. In this case, the resulting structure for the
augmented state variables is precisely block upper triangular. Again, one ends
up with differential systems with block upper triangular coefficient matrices and
needs to compute the exponential of these matrices.

(4) As it is well known, Lyapunov and Sylvester differential equations play a key
role in decoupling of linear systems and in studies of asymptotic stability of linear
systems. The Lyapunov equation plays also a fundamental role in study of systems
driven by white noise; see [8, p. 101 & ss.]. Recall that the Lyapunov equation is
the matrix differential equation

Ẋ = AX + XAT + C , X(0) = X0 ,
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where C = CT and X0 = XT
0 . The coefficients A and C can be time dependent or

time independent. In the latter case, the solution of the problem is:

X = Y Z−1 ,

[

Ẏ

Ż

]

=

[

A C
0 −AT

] [

Y
Z

]

, Y (0) = X0 , Z(0) = I ,

and one needs to compute the exponential of the block triangular matrix

[

A C
0 −AT

]

,

precisely the structure under study here. Similar situation occurs for the Sylvester
equation Ẋ = AX − XB + C, which is associated to the triangular structure
[

A C
0 B

]

.

(5) As further illustration of the engineering relevance of block triangular structure,
we point out that many of the model problems in control engineering are in block
triangular structure. For example, see the stirred tank and the inverted pendulum

problems in [8].

To sum up, a refined conditioning theory for block triangular matrices will serve a dual
purpose: (i) to specialize conditioning results to a class of matrices which arises naturally
in applications, and (ii) to understand the relative merits of algorithms which end up
computing eA with A (block) triangular (say, Algorithm 2 versus Algorithm 1, or the
Fréchet phase of the Schur–Fréchet method of [7], or the Parlett’s recursion phase of the
algorithm in [4]).

2. Errors, Conditioning, and Condition Numbers

We begin with an observation. On the rescaled matrices, we can assume (see [1, Theorem

3.2]) that both Algorithms 1 and 2 give relative errors in F̂ (Ak) of size EPS:
∥

∥

∥
F (Ak) − F̂ (Ak)

∥

∥

∥

‖F (Ak)‖
≈ EPS .

Therefore, the difference between the two algorithms has to be found in the final squaring
phase. This is correct, and to appreciate why we need to resort to [1, Theorem 3.6] (see also
[11] for Algorithm 1). There, we showed that Algorithms 1 and 2 compute the exponential
of a matrix A + E:

(2.1) F̂ (A) = eA+E where E =
[

E11 E12

0 E22

]

, and ‖E‖ ≈ EPS‖A‖ .

Moreover, if ωi = ‖Aii‖/2k, i = 1, 2, satisfy ωi ≤ 0.4, we also derived the following bounds:

‖Eii‖ ≤ γi‖Aii‖ , i = 1, 2 , ‖E12‖ ≤ γ3‖A12‖ ,

γi ≈
EPS

ωi
+ O(EPS

2) , i = 1, 2, γ3 ≈ EPS + O(EPS
2) .

(2.2)

What do (2.1)-(2.2) mean? At first glance, they look as good as one can reasonably
hope for. However, if ω1, and/or ω2, are very small, then E11, and/or E22, are not
O(EPS) perturbations of A11, and/or A22, and hence we are not guaranteed to have a
small backward error in a block sense. This is precisely what can happen for Algorithm
1: in case in which ‖A‖ is large compared to ‖Aii‖, i = 1, 2, to reduce the norm of A one
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may have unduly reduced the norm of the Aii’s at the price of an unstable (in a backward,
and block, sense) algorithm. But, should we expect that ‖Eii‖ are O(EPS) magnification
of ‖Aii‖? After all, (2.1) shows that both Algorithms are backward stable, in the sense
that ‖E‖ ≈ EPS‖A‖.

Now, classical arguments tell us that, if F (A) and F (A + E) are exact and perturbed
values, then

(2.3)
‖F (A + E) − F (A)‖

‖F (A)‖ ≤ ‖F ′(A)‖ ‖A‖
‖F (A)‖

‖E‖
‖A‖ + O(‖E‖2) ,

where ‖F ′(A)‖ = max‖B‖=1 ‖F ′(A)B‖. This leads to what has been termed condition

number of F at A:

(2.4) κ(F (A)) := ‖F ′(A)‖ ‖A‖
‖F (A)‖ , ‖F ′(A)‖ = max

‖B‖=1
‖F ′(A)B‖ ,

which can also be written (see [9]) as

(2.5) κ(F (A)) = max
‖E‖=1

∥

∥

∥

∥

∫ 1

0
eA(1−t)EeAtdt

∥

∥

∥

∥

‖A‖
‖F (A)‖ .

Example 2.1. Consider again Example 1.1. A little algebra (or see [4], where explicit
formulas are given) gives κ(F (A)) ≈ x2 = 1012. Recalling the results from Table 1, we
may consider ourselves lucky that we only lost six digits with Algorithm 1, and extremely
lucky that we lost no digits with Algorithm 2. But the caveat is that the condition number
(2.4) has taken into no account the extra structure of E, and has been derived by looking
at perturbations everywhere around A; so doing, it has been penalized by a worse case
sensitivity analysis that is of no help in assessing the goodness of the obtained answers.

We are ready to take into account the added triangular structure of A to arrive at an
improved condition number for F (A), which in turn will help assessing the net worth of
Algorithms 1 and 2. We define the condition number following the classical approach given
in [12] and [5].

Let the set Sb be given by

Sb(A) = {B =
[

B11 B12

0 B22

]

:‖B‖ = 1, ‖Bii‖ ≤ max(‖A11‖, ‖A22‖)
‖A‖ , i = 1, 2,

and ‖B12‖ ≤ ‖A12‖
‖A‖ } .

(2.6)

For the (inherent) condition number of F (A), A as in (1.1), we propose the following:

(2.7) κb(F (A)) = lim
δ→0+

max
B∈Sb(A)

‖F (A + δB) − F (A)‖
δ

‖A‖
‖F (A)‖ .

This is readily seen to be equivalent to

(2.8) κb(F (A)) = max
B∈Sb(A)

‖F ′(A)B‖ ‖A‖
‖F (A)‖ .
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We also notice that, since the diagonal subproblems are decoupled, the diagonal subprob-
lems have their own conditioning, defined in the standard way from (2.5):

(2.9) κ(F (Aii)) = max
‖Eii‖=1

∥

∥

∥

∥

∫ 1

0
eAii(1−t)Eiie

Aiitdt

∥

∥

∥

∥

‖Aii‖
‖F (Aii)‖

, i = 1, 2 .

Next, we want to better characterize the structure of the perturbation matrices produced
by Algorithms 1 and 2. This will allow us to understand in which set of perturbations we
should define “condition numbers” (similarly to (2.8)) for the two algorithms, so to obtain
some feedback on the relative errors obtained. Ideally, these sets should coincide with Sb.

So, for A as in (1.1), and when either Algorithm 1 or 2 is used, we would like to measure
the following quantity

(2.10) ‖F ′(A)B‖ ‖A‖
‖F (A)‖ , B =

E

‖E‖ , E : F̂ (A) = F (A + E) .

Clearly, by the way B is defined, one has B =
[

B11 B12

0 B22

]

, Bii = Eii

‖E‖ , i = 1, 2, and

B12 = E12

‖E‖ . Moreover, from (2.2) and the fact that ‖E‖ ≈ EPS‖A‖, we have the following

approximate bounds:

‖Eii‖
‖E‖ ≤ γi

EPS

‖Aii‖
‖A‖ , i = 1, 2,

‖E12‖
‖E‖ ≤ γ3

EPS

‖A12‖
‖A‖ .

Now, consider Algorithm 1. Here, k is chosen so to obtain ‖A‖ < 2k−1, and therefore

k ≥ log2 ‖A‖. Thus, using the form of the constants γi from (2.2), one gets γi ≈ EPS
‖A‖
‖Aii‖ ,

i = 1, 2, whereas γ3 ≈ EPS. Therefore, for Algorithm 1, one obtains the approximate
bounds (at first order in EPS)

(2.11) ‖Bii‖ ≤ 1 , i = 1, 2, and ‖B12‖ ≤ ‖A12‖
‖A‖ .

In other words, the appropriate value of “condition number” to measure relative errors for
Algorithm 1 is given by

(2.12) κ1(F (A)) = lim
δ→0+

max
B∈Ŝb(A)

‖F (A + δB) − F (A)‖
δ

‖A‖
‖F (A)‖ ,

where

Ŝb(A) = {B =
[

B11 B12

0 B22

]

: ‖B‖ = 1, ‖Bii‖ ≤ 1, i = 1, 2, ‖B12‖ ≤ ‖A12‖
‖A‖ } .

For Algorithm 2, instead, k is chosen to ensure that max(‖A11‖,‖A22‖)
2k < 2/5, and thus

k > log2(5max(‖A11‖, ‖A22‖)) − 1. Thus, we now get γi ≈ 5
2EPS

max(‖A11‖,‖A22‖)
‖Aii‖ , i = 1, 2,

and γ3 ≈ EPS. Therefore, for Algorithm 2, one ends up with the following approximate
bounds

(2.13) ‖Bii‖ ≤ 5

2

max(‖A11‖, ‖A22‖)
‖A‖ , i = 1, 2, and ‖B12‖ ≤ ‖A12‖

‖A‖ .

Thus, an appropriate value of “condition number” to measure relative errors for Algorithm
2 is essentially the same as (2.8).
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Remark 2.2. Observe that (2.13), and (2.6)–(2.8), hints that a possible loss of precision
on the diagonal blocks may be experienced whenever these blocks have widely different
norms.

Example 2.3. Consider once more our test problem, Example 1.1. Let us first assess its
(inherent) conditioning. With some algebra, we obtain the following outcome

• from (2.8): κb(F (A)) ≈ |ω| = O(1); from (2.9), κ(F (Aii)) ≈ |ω| = O(1).

In other words, the restricted search for the norm of the Fréchet derivative in the direc-
tion of the allowed block triangular B’s in (2.8) gives very different outcome than the
unrestricted search amongst all possible directions B’s: the problem is perfectly well con-
ditioned with respect to (2.8).

As far as the errors we should have experienced when using Algorithm 1 or 2, we have
the following situation. For simplicity, fix ω = 2.1. Recall that –with either Algorithm 1
or 2– we have computed the exact exponential eA+E , where E =

[

a b
0 c

]

.

(1) From (2.10) and (2.11) (i.e., relatively to Algorithm 1), we anticipate a relative
error on F (A) of size x EPS = O(EPS‖A‖). Indeed, in this case the error matrix E
has |a|, |c| ≈ EPS

ω
ω1

, where ω1 = ω
2k is defined before (2.2), and |b| ≈ EPS x. With

this, and some algebra, one gets
‖eA+E−eA‖

‖eA‖ ≈ 2kEPS . When k = 21, the value

needed to get ‖A‖
2k < 0.5, this predicts a loss of six digits, in agreement with (2.12)

and the results of Table 1.
(2) From (2.10) and (2.13) (i.e., relatively to Algorithm 2) we anticipate a relative

error of size |ω|EPS = O(EPS). Indeed, in this case for the error matrix E we have
|a|, |c| ≈ EPS ω, and |b| ≈ EPS x. Again, with a bit of algebra, one now gets

∥

∥eA+E − eA
∥

∥

‖eA‖ ≈ EPS .

That is, no loss of precision should be experienced, in agreement with (2.8) and
the results in Table 1.

In a similar way to what we have done on the above example, we now look for upper
bounds on ‖F ′(A)B‖ in the general case of A as in (1.1). These bounds can then be used
in (2.8) and (2.10) to obtain upper bounds on the conditioning of the problem and on
the “condition numbers” of Algorithms 1 and 2. We will use the following well known
inequalities, which can be found in [9]:

(2.14) ‖eAt‖ ≤ M(t) eat, and ‖F ′(At)B‖ ≤ ‖B‖M2(t)eat, t ≥ 0, where

(i) norm estimates: a = ‖A‖ , M(t) ≡ 1 ; or
(ii) logarithmic norm estimates: a = µ(A) , M(t) ≡ 1 , and µ(A) is the logarithmic

norm of A, that is the largest eigenvalue of (A + AT )/2 ; or

(iii) Schur form estimates: a = α(A) , M(t) =
∑n−1

k=0
‖N‖ktk

k! , where α(A) is the
spectral abscissa of A, that is the largest real part of the eigenvalues of A, and N
is the strictly upper triangular part in a Schur form of A.

The following result gives three different upper bounds on ‖F ′(A)B‖. We stress that
these are upper bounds, and may severely overestimate the true value of ‖F ′(A)B‖.
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Theorem 2.4. Let A =

[

A11 A12

0 A22

]

and B =

[

B11 B12

0 B22

]

. Then

(2.15) ‖F ′(A)B‖ ≤ ‖D1 F ′(|A|a)|B|b D2 ‖ ,

where we have set |A|a =

[

a1 ‖A12‖
0 a2

]

, |B|b =

[

M1‖B11‖ ‖B12‖
0 M2‖B22‖

]

, D1 =

[

M1 0
0 1

]

,

D2 =

[

1 0
0 M2

]

, and

(i) ai = ‖Aii‖ and Mi = 1, i = 1, 2, or
(ii) ai = µ(Aii) (logarithmic norm of Aii), and Mi = 1, i = 1, 2, or

(iii) ai = α(Aii) (spectral abscissa of Aii), and Mi = Mii(1) =
∑ni−1

k=0
‖Nii‖k

k! , with Nii

the strict upper triangular part of a Schur form of Aii, i = 1, 2.

Proof. For the diagonal blocks we have

[F ′(A)B]ii = F ′(Aii)Bii , and ‖F ′(Aii)Bii‖ ≤ M2
i ‖Bii‖eai = Mi[F

′(|A|a)|B|b]ii .

For the (1, 2) block we have

F12(A + hB) − F12(A) =
∫ 1

0
e(A11+hB11)(1−s)(A12 + hB12)e

(A22+hB22)sds −
∫ 1

0
eA11(1−s)A12e

A22sds =

∫ 1

0
e(A11+hB11)(1−s)hB12e

(A22+hB22)sds +

∫ 1

0

[

e(A11+hB11)(1−s) − eA11(1−s)
]

A12e
(A22+hB22)sds

+

∫ 1

0
eA11(1−s)A12

[

e(A22+hB22)s − eA22s
]

ds.

Now divide by h and take the limit as h → 0 under the integral signs:

[F ′(A)B]12 =

∫ 1

0
eA11(1−s)B12e

A22sds

+

∫ 1

0

[

F ′(A11(1 − s))B11(1 − s)
]

A12e
A22sds +

∫ 1

0
eA11(1−s)A12

[

F ′(A22s)B22s
]

ds.

Taking norms and using (2.14) we get:

‖[F ′(A)B]12‖ ≤ ‖B12‖
∫ 1

0
M11(1 − s)ea1(1−s)M22(s)e

a2sds

+ ‖B11‖ ‖A12‖
∫ 1

0
[M11(1 − s)]2ea1(1−s)(1 − s)M22(s)e

a2sds

+ ‖B22‖ ‖A12‖
∫ 1

0
M11(1 − s)ea1(1−s)[M22(s)]

2ea2ssds .

Putting together the three terms of the last inequality and using Mii(t) ≤ Mii(1) = Mi,
t ∈ [0, 1], we get

‖[F ′(A)B]12‖ ≤ M1M2

∫ 1

0
ea1(1−s) [‖B12‖ + ‖A12‖ (M1‖B11‖(1 − s) + M2‖B22‖s)] ea2sds.
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Letting bii = Mi‖Bii‖, b12 = ‖B12‖, aii = ai and a12 = ‖A12‖ one finally has

‖[F ′(A)B]12‖ ≤ M1M2

∫ 1

0
ea11(1−s)(b12+a12(b11(1−s)+b22s))e

a22sds = M1M2[F
′(|A|a)|B|b]12

and (2.15) is proven. �

Example 2.5. To illustrate the theorem, let us consider (2.15)-(i) in the case of ‖A11‖ =
‖A22‖ (similar estimates to those below are obtained in case ‖A11‖ 6= ‖A22‖). For the
(1,2) entry of (2.15) we have

(F ′(|A|a)|B|b)12 = e‖A11‖(‖B12‖ +
1

2
(‖B11‖‖A12‖ + ‖B22‖‖A12‖)

)

,

so that

F ′(|A|a)|B|b = e‖A11‖
[

‖B11‖ ‖B12‖+ 1

2
‖A12‖(‖B11‖+‖B22‖)

0 ‖B22‖

]

.

Now, if ‖A12‖ ≤ 2, since ‖Bij‖ ≤ 1, then we have: ‖F ′(|A|b)|B|b‖ ≤ e‖A11‖‖
[

‖B11‖
√

3
0 ‖B22‖

]

‖
≈

√
3e‖A11‖. Instead, if ‖A11‖ = O(1) ≪ ‖A12‖ ≈ ‖A‖, then we recover the situation of

Example 1.1.

At this point, we can draw a summary of what are the implications of adopting the
revised measure (2.8) to assess the (inherent) conditioning of eA when A is block upper
triangular.

(1) Each algorithm needs a “condition number” tailored to the class of perturbations
which the algorithm has produced. In particular, for a 2×2 block triangular matrix,
Algorithm 1 requires us to look at (2.12), which –compared with (2.8)– betrays
potential instabilities of Algorithm 1 in case ‖A11‖ ≈ ‖A22‖ ≪ ‖A12‖ ≈ ‖A‖. For
Algorithm 2, instead, (2.8) provides an adequate measure of condition number.

(2) Problems in which ‖A11‖ and ‖A22‖ are very different are potentially ill con-
ditioned, in the sense that (2.8) may be large. Instead, problems for which
‖A11‖ ≈ ‖A22‖ = O(1) ≪ ‖A‖ ≈ ‖A12‖ are perfectly conditioned, in sharp con-
trast to what is predicted by classical conditioning theory.

(3) For problems where ‖A11‖ and ‖A22‖ are of very different magnitude, considera-
tion of (2.9) and of the relative error bounds (2.2) says that it may be possible to
approximate more accurately Fii, i = 1, 2, than F (A). If this is warranted by the
particular application, then it may be justified to use a more expensive algorithm
which separately computes F11, F22, and F12. For example, this can be achieved
with the Fréchet phase of the algorithm of [7], or also using diagonal Padé approxi-
mations (with distinct scaling factors) to separately approximate F11 and F22, and
then use Algorithm 2 to approximate F (A), only retaining the approximation of
F12.

Case of p blocks.
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Next, we would like to extend the previous considerations to the case of A block trian-
gular with p blocks:

(2.16) A =

[

A11 A12 ... A1p

0 A22 ... A2p
... ... ... ...
0 ... 0 App

]

.

Again, F (A) will have the same block structure, and so will an approximation F̂ (A)
produced by Padé approximation with scaling and squaring. Since the diagonal blocks of
F̂ (A) have no eigenvalues with negative real part, then F̂ (A) has a unique real logarithm,

call it L̂, with all eigenvalues with imaginary part in (−π, π). Obviously, then, F̂ (A) =

eA+E , where E = L̂ − A. A detailed characterization of the backward error matrix E is
not available, although the characterization resulting from a 2 × 2 block partitioning of
(2.16) and E as in (2.1) and (2.2) is still possible. Moreover, some simple observations
can still be made: (i) E has the same block triangular structure as A; (ii) the blocks Eij,
i = 1, . . . , p, j = i + 1, . . . , p, depend only on the sub-matrices A(i : j) of A: A(i : j) :=
[

Aii ... Aij
... ...

Ajj

]

. Because of these two facts, an appropriate measure of conditioning of F (A)

now should at the very least read as

(2.17) κb(F (A)) = max

B=

[

B11 ... B1p
... ...

Bpp

]

,‖B‖=1

‖F ′(A)B‖ ‖A‖
‖F (A)‖ .

Unfortunately, we do not have a good understanding of the relative order of magnitudes
of the blocks Bij which can lead us to a definition similar to the one of the set Sb in (2.6),
and this forces a maximization amongst (the most favorable) 2 × 2 block partitioning of
B as in (2.8). In any case, it should be appreciated that in the process of approximating
F (A), we have also approximated the subproblems F (A(i : j)), each of which has its own
condition number2

κb(F (A(i : j))) = max
‖B(i:j)‖=1

‖F ′(A(i : j))B(i : j)‖ ‖A(i : j)‖
‖F (A(i : j))‖ ,

for i = 1, . . . , p, j = i + 1, . . . , p ,

(2.18)

where again there will be order of magnitude restrictions on B(i : j) resulting from a 2×2
block partitioning of it, as in (2.8) and (2.15). Once more, (2.18) reveals that some pieces
of F (A), namely F (A(i : j)) for some i > 1 and/or j < p, may be better conditioned –and
thus can be approximated more accurately– than F (A). We exemplify this occurrence on
the following example.

Example 2.6. Take A =

[

1 x x2/2
0 1 x
0 0 1

]

, with x ≫ 1. (Here, eA = e
[

1 x x2

0 1 x
0 0 1

]

.) In this case,

one obtains that κb(F (A)) ≈ xκb(F (A(1 : 2))) ≈ x. �

Impact of Schur reduction.

So far, see (2.8), we have relied on having A in the form (1.1). Although this structure
arises naturally in some applications (see [10]), if one has a general matrix A ∈ R

n×n then

2in (2.18), B(i : j) is a block triangular matrix of same structure as A(i : j)
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block triangular structure is usually arrived at via Schur reduction. Let us briefly consider
this situation.

Let Q be an orthogonal matrix giving a block Schur reduction of A to the form (1.1).
Then, F (A) = QF (R)QT and we can use Algorithm 1 or 2 to compute F (R):
Schur–Padé strategy

(i) Let orthogonal Q such that QT AQ = R =
[

R11 R12

0 R22

]

.

(ii) Use Algorithm 1 or 2 to approximate F (R) with F̂ (R).

(iii) Let F̂ (A) = QF̂ (R)QT .

What is an appropriate condition number for this algorithm? Optimistically, we would
like to say that that the backward error matrix produced by the Schur–Padé algorithm
has the structure QEQT with E produced by Algorithm 1 or 2 to compute F (R). But, in
general, this is not true. There are two error matrices which are produced:

(a) the Schur reduction process (see [2]) delivers a matrix R such that QT (A+E1)Q =
R, and –at best– all we can reasonably assume on E1 is that ‖E1‖ ≈ EPS‖A‖;

(b) by Algorithm 1 or 2, one then computes F̂ (R) = F (R + ER), where ER has same
block triangular structure as R, and ‖ER‖ ≈ EPS‖R‖ (possibly also in a block
sense).

Eventually, thus, at first order in EPS, one computes QF (R + ER)QT = F (QRQT +
QERQT ) = F (A + E1 + E2) = F (A + E), where E2 = QERQT and E = E1 + E2. At
this point, in general, E does not have any particularly exploitable structure, and all we
are able to say is that (at best) ‖E‖ ≈ EPS‖A‖. Therefore, in this case, (2.4) remains
an appropriate measure of condition number for an algorithm based on the Schur–Padé
strategy.

Example 2.7. Let us revisit Example 1.1. We take

A =
1

2

[

1.9−x x+0.1
−x−0.1 1.9+x

]

, A = QRQT , R =

[

1 x
0 0.9

]

, x =
√

3 × 106, Q =

√
2

2

[

1 −1
1 1

]

.

Clearly, eA = QeRQT , and eR =

[

e 10x(e − e0.9)
0 e0.9

]

. With some work, we now obtain

the estimate κ(F (A)) ≈ x2 = O(‖A‖2). Indeed, if we use either Algorithm 1 or 2 to
approximate F (R) in step (ii) of the Schur Padé strategy, we eventually lose eleven digits
on F (A), which is in good agreement with the value of κ(F (A)). Of course, Algorithm 2
is less expensive and must be the preferred choice.

3. Conclusion

We revisited conditioning for the exponential of a block triangular matrix. Our measure
(2.8) is an improvement over the classical measure of conditioning (2.4), and provides more
reliable feedback on the goodness of an answer obtained by a stable algorithm. In Theorem
2.4 we have given three different upper bounds on the new condition number, but we have
not discussed how to compute practical estimates for it. This may be an interesting task
for future work.
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