
PAD�E APPROXIMATION FOR THE EXPONENTIAL OF ABLOCK TRIANGULAR MATRIX.LUCA DIECI AND ALESSANDRA PAPINIAbstract. In this work we obtain improved error bounds for Pad�e approxima-tions to eA when A is block triangular. As a result, improved scaling strategiesensue which avoid some common overscaling di�culties.1. IntroductionIn this work, we are interested in computation of the exponential of a matrixA 2 Rn�n (trivial modi�cations are needed in the complex case), eA. Throughout,and unless otherwise stated, k� k will be the 2-norm.Approximation of eA is a most important and frequently encountered task: in1978, the one hundred plus references of [14] gave a clear indication of this, and inthe 20 years since the importance of computing the matrix exponential has only in-creased. For a case in point, there are several new approaches put forward for solvingtime dependent di�erential equations which require computing matrix exponentials;e.g., see [9] or [2]. Yet, with the possible exception of normal matrices and nearthe identity approximations (i.e., A close to 0), reliable numerical approximation ofeA remains somewhat elusive. We are particularly concerned with approximatingeA in case A is not normal and not close to 0. Especially for these cases, in ouropinion, the ongoing e�ort on development and analysis of new techniques is fullywarranted; e.g., see [12], but see also [8] for issues related to the challenging case oflarge, sparse, A.Probably, the most popular and successful technique for approximating eA consistsof diagonal Pad�e approximations along with so-called scaling and squaring. Thetechnique exploits the scaling and squaring identityeA = �eA=2k�2k(1.1)as follows. First, a su�ciently large k is chosen so that A=2k is close to 0, thena diagonal Pad�e approximant is used to calculate eA=2k , and �nally the result issquared k times to obtain the required approximation to eA. This basic approach isimplemented in the Matlab function to evaluate eA: expm. The fundamental issue is1991 Mathematics Subject Classi�cation. 65F30, 65F35, 65F99, 15A24.Key words and phrases. Exponential, scaling and squaring, Pad�e approximation.This work was supported in part under NSF Grant DMS-9973266 and CNR-GNIM.1



2 DIECI AND PAPINIhow to choose k; on one hand, we need k large enough because Pad�e approximationsare accurate only if A=2k is su�ciently small (see [5]), but on the other hand evena very accurate approximation to eA=2k , after repeated squaring, may become adisappointing approximation to eA. This is clearly shown in the next example.Example 1.1. The following is a standard test problem (e.g., see [3], [12]). Wehave A = � ! x0 ! � ; eA = e! � 1 x0 1 � ; and we �x x = 1.0e+6 :In Table 1, we report on the errors for the Matlab function expm which, supposedly,computes eA to machine precision EPS � 1.0e-16 (scienti�c notation is used through-out). The reported error is the relative error in norm: F � bF = kFk, where F andbF denote exact and computed exponentials, respectively, for both eA=2k and eA. Forlater reference, expm chooses k so to bring A=2k below 1=2, and then uses the(6; 6) diagonal Pad�e approximation. In the particular example, this means k = 21.! Matlab A=2k{error Matlab A{error0.1 2.5e-016 2.1e-0110.3 6.2e-015 2.0e-0100.5 0.0e+000 4.8e-012Table 1. Matlab errors.The previous example served as motivation for our work. In a similar way to theerror estimates we proved for Pad�e approximations to log(A) (see [3]), we will deriveimproved error estimates for Pad�e approximations to eA in case A is a 2 � 2 blockupper triangular matrix1, A = �A11 A120 A22� ;(1.2)where A11 and A22 are square matrices. Clearly, also eA in this case has the sameblock structure, and the following formula for eA is well known (see [13])eA = �eA11 F120 eA22� ; whereF12 = Z 10 e(1�u)A11A12euA22du :(1.3)1we do not require that the diagonal blocks be themselves triangular matrices



PAD�E APPROXIMATION FOR THE EXPONENTIAL OF A BLOCK TRIANGULAR MATRIX. 3Loosely speaking, our new error estimates for Pad�e approximation of eA say that ifthe diagonal blocks are well scaled, then one obtains accurate (in both absolute andrelative error sense) approximations to the diagonal blocks of eA, as well as accurate(in a relative error sense) approximation to F12. As a consequence, eA will have beenaccurately computed. Further, the error estimates imply that one does not need toscale (i.e., choose k in (1.1)) based upon kAk but only based upon kAiik ; i = 1; 2.This will avoid some common overscaling pitfalls.In the next section, we give some general results on Pad�e approximation of eAand also discuss errors arising during the squaring phase of the scaling and squaringalgorithm. In section 3, we explicitly deal with the case of block triangular matricesand derive new error estimates in this case. We exemplify the computational impactof the new estimates on the model problem Example 1.1 and on a larger problem.2. Pad�e error estimates.In what follows, we let F (A) be eA and R(A) = P (A)Q�1(A) be its (s; s) diagonalPad�e approximation. In this section, A is not restricted to be of the form (1.2).It is well known (see [6], [5], or [14, Appendix 1]) thatQ(A) = sXj=0 (2s� j)!s!(2s)!(s� j)! (�A)jj!(2.1)and F (A)� R(A) = Q�1(A)G(A);(2.2)with G(A) = (�1)s(2s)! A2s+1 Z 10 us(1� u)seA(1�u)du:(2.3)Several error bounds for F (A)�R(A) are available in case all eigenvalues of A areinside a suitable circle. For example, let ! = kAk1 and let s be large enough so thatR(z) is analytic on (and inside) the circle C of center the origin and radius  = k!,with 1 < k < 2. Then, Fair and Luke in [4] obtain the following bound (the quantityc(s) is de�ned below in Theorem 2.5):eA � R(A)1 � kk � 1 sup�2C r(�) ; wherer(z) = jez � R(z)j = ���c(s)ez+z2=[4(2s+1)]z2s+1[1 +O(s�3)]��� :This bound does not necessarily require smallness assumptions on !, but may forces to be very large in order to satisfy the requirement of analyticity of R(z), anda high value of s presents some computational drawbacks. On the other hand, forsmall values of !, one can get more accurate error estimates by using the approachof Moler and Van Loan, [14]. We follow their approach to derive the estimates in



4 DIECI AND PAPINITheorem 2.5. Our error estimates di�er from those in [14] on two accounts: (i) we�rst derive bounds on the error in terms of the error in the scalar case, and thenfurther provide bounds which only involve kAk, (ii) we do not a priori restrict kAkto be bounded by 1=2 (cfr. [14]).Lemma 2.1. Suppose that for all eigenvalues z of A one has jQ(z)�1j < 1 2. ThenQ(A) is invertible. Next, let � = Q(�kAk)� 1. If � < 1, we then havekQ�1(A)k � 11� � :(2.4)Further, if kAk < log 4, then kQ�1(A)k � 12� ekAk=2 :(2.5)Proof. First, assume that A is diagonalizable: T�1AT =: � = diag(�i; i = 1; : : : ; n).Using (2.1), we get T�1(Q(A)� I)T = sXj=1 (2s� j)!s!(2s)!(s� j)! (��)jj! :So, by letting z to be an eigenvalues of A, the statement on invertibility of Q follows.Moreover, notice that (p+ q � j)!q!(p+ q)!(q � j)! � � qp+ q�j(2.6)so that we get Q(z)�1 � ez=2�1 which justi�es the claim we made in the footnote.If A is not diagonalizable, it is �-close to a diagonalizable matrix, and standard normestimates give the result on invertibility of Q.Next, observe thatkQ(A)� Ik � sXj=1 (2s� j)!s!(2s)!(s� j)! kAkjj! = Q(�kAk)� 1 :Thus, if � = Q(�kAk) � 1 < 1, then (2.4) follows. Now, if kAk < log 4, from theexpression of Q(�kAk)� 1 and (2.6) we also have that� � sXj=1 �kAk2 �j 1j! � ekAk=2 � 1 < 1;so that (2.5) follows.Lemma 2.2. Let G(A) be de�ned by (2.3). ThenkG(A)k � jQ(kAk)j jekAk �R(kAk)j ;(2.7)2this condition is satis�ed if jzj < log 4



PAD�E APPROXIMATION FOR THE EXPONENTIAL OF A BLOCK TRIANGULAR MATRIX. 5kG(A)kkeAk � jQ(kAk)j jekAk �R(kAk)j :(2.8)Moreover, the following estimates also holdkG(A)k � (s!)2(2s+ 1)((2s)!)2ekAkkAk2s+1;(2.9) kG(A)kkeAk � (s!)2(2s+ 1)((2s)!)2 ekAkkAk2s+1:(2.10)Proof. Taking norms in (2.3) and usingZ 10 up(1� u)qdu = p!q!(p+ q + 1)! ;(2.11)(2.9) is immediate. Also (2.10) can be obtained in a similar way, rewriting G(A) asG(A) = (�1)s(2s)! A2s+1eA Z 10 us(1� u)se�Audu:(2.12)To obtain (2.7) is enough to observe that expanding G in (2.3) in powers of A allcoe�cients have same sign, and thus from (2.2) one obtains (2.7). To obtain (2.8),rewrite G(A) = �eAG(�A), and thuskG(A)k=keAk � kG(�A)k � jG(kAk)j :Remark 2.3. More accurate estimates can be obtained by using the logarithmicnorm of A, �(A), or the Schur form of A, Q�AQ = �+N , where N is strictly uppertriangular and Q is unitary. In fact, it is well known (e.g., see [13]) that (in the2-norm) keAtk � e�(A)t and keAtk � ea(A)t n�1Xk=0 kNtkkk! ;for t � 0, where a(A) denotes the spectral abscissa of A. Then, the factor ekAkcan be replaced in (2.9) by emaxf�(A);0g or emaxfa(A);0gPn�1k=0 kNkkk! , and in (2.10) byemaxf�(�A);0g or emaxfa(�A);0gPn�1k=0 kNkkk! . Obviously, similar changes apply to laterestimates as well.Remark 2.4. Notice that our bounds for kG(A)k, and hence those in Theorem 2.5below, are identical in an absolute and relative sense with respect to keAk. This isbecause we do not know if keAk happens to be < 1 or > 1. If we could use thisinformation, then of course the estimates could be trivially re�ned (and would bedi�erent) for the absolute and relative error cases; for example, if we knew thatkeAk > 1 (e.g., as when a(A) > 0, since keAk � ea(A)), then we could divide theright hand sides of the relative error bounds (2.8) and (2.10) by keAk (simply using



6 DIECI AND PAPINIthe absolute error estimates and dividing them by keAk). Moreover, for later use,notice that by expanding in series under the integrals in (2.3) and (2.12) and using(2.11) one getsG(A) = (�1)s(2s)! A2s+1 1Xk=0 �kAkk! = eA (�1)s(2s)! A2s+1 1Xk=0(�1)k�kAkk!(2.13)with �k = s!(s+ k)!=(2s+ k + 1)! .We are now ready to state the following result on Pad�e error estimates.Theorem 2.5. Let R(A) be the (s; s) diagonal Pad�e approximation to eA. Let � =Q(�kAk)� 1, and assume that � < 1. ThenkeA �R(A)k � jQ(kAk)j1� � jekAk �R(kAk)j(2.14) keA � R(A)kkeAk � jQ(kAk)j1� � jekAk � R(kAk)j :(2.15)Further, if kAk = ! < log 4, thenkeA � R(A)k � c(s) e!2� e!=2!2s+1(2.16) keA � R(A)kkeAk � c(s) e!2� e!=2!2s+1 ;(2.17)with c(s) = (s!)2(2s+1)((2s)!)2 .Proof. The statement is a consequence of (2.2) and the previous Lemmas.Remark 2.6. Observe that jQ(kAk)j � Q(�kAk) = 1 + �, and thus jQ(kAk)j1�� canbe further bounded by 1+�1�� which is a bound on the condition number of Q(A). Infact, (2.14-2.15) make clear that there are two contributions to the error: one is theconditioning of the denominator, the other is the error one has in the scalar case.Remark 2.7. We stress that thescalar estimates (2.14-2.15) are per-fectly computable for given valuesof s and kAk, and are superior tothe estimates (2.16-2.17). For ex-ample, for s = 6, computing theright hand side of (2.14) in ex-tended precision and comparing itto the right hand side of (2.16),produces the �gure on the right(in semi-logarithmic scale). 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−18

−17

−16

−15

−14

−13

−12

−11

−10

−9

(2.16)

(2.14)



PAD�E APPROXIMATION FOR THE EXPONENTIAL OF A BLOCK TRIANGULAR MATRIX. 7However, from the practical point of view, all estimates require kAk to be su�cientlysmall, and di�erences between the right hand sides become minor for small valuesof kAk. Because of this, and the fact that the right hand side in the estimates(2.16-2.17) is more easily computable, we will henceforth only refer to the estimates(2.16-2.17). Nonetheless, it should be appreciated that later results such as Lemma3.1 and Theorem 3.2 can be easily rephrased by using the scalar estimates presentlyderived.As already remarked, to take advantage of the fact that the right hand sides in(2.16) and (2.17) are small for ! small, one may exploit (1.1). Let k be given,let Ak := A2k and let R(Ak) be the diagonal Pad�e approximation to eAk . Then, byrepeatedly squaring R(Ak), one approximates F (A) with bF (A) := [R(Ak)]2k . But, ifan error of size �, say, is made by approximating eAk with R(Ak), what error boundcan we obtain for bF (A) as approximation of F (A)? This question was addressedin [14] by Moler and Van Loan. Here below we obtain a di�erent error bound (cfr.(2.19) with [14, (pp. 809-810)]).Let �k := R(Ak) � eAk and � := �ke�Ak . Observe that all the matrices we areconsidering are functions of A and therefore commute with A and with each other,and so we have � = �Q�1(Ak)e�AkG(Ak) = Q�1(Ak)G(�Ak). Thus, following thesame arguments used in Lemma 2.2 and in Theorem 2.5, for kAkk su�ciently small,we can assume to have bothk�kk � � and k�k � � :(2.18)Now, we rewriteF (A)� bF (A) = [I � bF (A)F�1(A)]F (A) = [I � (R(Ak)e�Ak)2k ]F (A)= [I � (I +�)2k ]F (A) ;and observe that (I+�)2k has an expansion in powers of � with positive coe�cients.Then, we immediately getkI � (I +�)2kk � (1 + �)2k � 1 ;and therefore kF (A)� bF (A)kkF (A)k � (1 + �)2k � 1 :(2.19)To gain some insight into the order of magnitude of the right-hand-side of (2.19), if2k� < 1, one may use: (1 + �)2k � 1 = 2k�e2k� +O(2k�1�2).Remark 2.8. To interpret what we obtained, observe that (2.19), along with (2.17),show the potential bene�ts of the scaling and squaring technique. For example, fors = 6, if kAk = 1 and k = 0 the relative error bound is 1.3e-12, while if kAk = 1and k = 2 the relative error bound is 1.5e-20. However, (2.19) makes it also clearthat there is an advantage to avoid using large scaling factors: the error bound



8 DIECI AND PAPINI(2.19) deteriorates quickly with k. For example, already with k = 20 and � = EPS itpredicts a loss of six digits. Precisely what we observed in Example 1.1.Remark 2.9. In this section, we have not taken rounding errors into account. How-ever, the accumulation of roundo� errors occurring during the squaring phase canseverely a�ect the accuracy of the computed exponential matrix. Some interestingresults about rounding errors accumulation can be found in [15] and [1].3. Block triangular matrices and Pad�e approximations.Let us now restrict attention to A as in (1.2) and F (A) = eA as in (1.3). (To avoidtrivial cases, we will also assume that A12 6= 0, as otherwise the computation reducesto separate computations for the diagonal blocks.) In this case, it is well known thatPad�e approximations are also block triangular matrices: R(A) = �R(A11) R12(A)0 R(A22)�.This special block structure hints that �nding R(Aii); i = 1; 2; should not bea�ected by A12, and that approximation of F12 may be done di�erently from thatof R(Aii).Indeed, suppose we have approximated the diagonal blocks by R(Aii); i = 1; 2,and that A11 and A22 have no common eigenvalues. Then, F (A) may be approxi-mated by R(A) exploiting the relation (Parlett's method) R(A)A = AR(A). Thisgives the following equation for R12(A):A11R12(A)� R12(A)A22 = R(A11)A12 � A12R(A22) :(3.1)As a matter of fact, if the blocks A11 and A22 are su�ciently separated so that (3.1)is well conditioned (see [7]), probably there is no simpler way to approximate F12than using (3.1). For this reason, we will think of having to approximate eA in casein which the blocks A11 and A22 are not su�ciently separated (say, they have close{or identical{ eigenvalues).The approach recently proposed by Kenney and Laub in [12] is of interest inthe situation we just described, and we refer to [12] for details on their approach.Presently, we observe that Pad�e approximations for all of eA can also be used in caseA11 and A22 are not well separated, but they seem to su�er from the need to bringkAk close to 0, and this may result in overscaling relative to the diagonal blocks (seeExample 1.1). However, this is only a result of unre�ned error estimates. Our mainresult, Theorem 3.2, will guarantee that, if kA11k and kA22k are su�ciently small, asingle Pad�e approximant for all of eA will give small relative errors in a block sense:keA11 � R(A11)kkeA11k ; keA22 �R(A22)kkeA22k ; kF12 � R12(A)kkF12k :(3.2)Therefore, we will avoid dealing separately with the term F12. Moreover, in case inwhich kAiik; i = 1; 2, are not su�ciently small, our result will tell that it su�cesto scale A so to reduce the norm of the Aii. In general, therefore, the value of k we



PAD�E APPROXIMATION FOR THE EXPONENTIAL OF A BLOCK TRIANGULAR MATRIX. 9will select in order to approximate F (Ak); Ak = A=2k, will be smaller, often muchsmaller, than the value we would have needed to guarantee that kAk=2k had beensu�ciently small. As a consequence, we will also need to perform fewer squaringsof the obtained result: this will result in a gain with respect to the bound (2.19),reduce the impact of roundo� errors (we perform less arithmetic), and altogethergive in an e�cient algorithm.We assume that Q(A) is invertible, and begin by rewriting (2.2) in block form:F (A)� R(A) = � Q�1(A11)G(A11) F12 �R12(A)0 Q�1(A22)G(A22) � ;with F12 � R12(A) = Q�1(A11)G12(A) +Q�112 (A)G(A22)= Q�1(A11)G12(A)�Q�1(A11)Q12(A)Q�1(A22)G(A22)= Q�1(A11)�G12(A)�Q12(A)[eA22 � R(A22)]	 :Then kF12 � R12(A)k � kQ�1(A11)k�kG12(A)k+ kQ12(A)k keA22 �R(A22)k	 ;(3.3)and we have to consider the extra-diagonal blocks of Q(A) and G(A).Lemma 3.1. Let A be partitioned as in (1.2), Q(A) = � Q(A11) Q12(A)0 Q(A22) � be thes-degree matrix polynomial de�ned in (2.1), and G(A) = � G(A11) G12(A)0 G(A22) � be thematrix function de�ned in (2.3). ThenkQ12(A)k � kA12k 12e s�12s�1! ;(3.4) kG12(A)k � kA12k (s!)2((2s)!)2 e!!2s ;(3.5)with ! = max(kA11k; kA22k).Proof. Notice that Aj = � Aj11 Pj�1k=0Aj�1�k11 A12Ak220 Aj22 � : Then, by (2.1) we getQ12(A) = sXj=1 (2s� j)!s!(2s)!(s� j)! (�1)jj! j�1Xk=0 Aj�1�k11 A12Ak22 :



10 DIECI AND PAPINISo, taking norms and using (2.6) we obtainkQ12(A)k � sXj=1 (2s� j)!s!(2s)!(s� j)! 1j! j�1Xk=0 kA11kj�1�kkA22kkkA12k� s�1Xj=0 (2s� 1� j)!(s� 1)!s2s(2s� 1)!(s� 1� j)! !jj! kA12k� 12 s�1Xj=0 � s� 12s� 1�j !jj! kA12k � 12e s�12s�1!kA12k;which gives (3.4). To obtain (3.5), we �rst observe that by (2.13)G12(A) = (�1)s(2s)! 1Xj=0 (s+ j)!s!(2s+ j + 1)! 1j! 2s+jXk=0 A2s+j�k11 A12Ak22:Then, taking norms and using (2.11) we getkG12(A)k � 1(2s)! 1Xj=0 (s+ j)!s!(2s+ j + 1)! 1j! 2s+jXk=0 kA11k2s+j�kkA22kkkA12k� s(2s)! 1Xj=0 (s+ j)!(s� 1)!(2s+ j)! 1j!!2s+jkA12k= s(2s)! 1Xj=0 �Z 10 us+j(1� u)s�1du� 1j!!2s+jkA12k= s(2s)!!2s Z 10 us(1� u)s�1 1Xj=0 (!u)jj! du! kA12k= s(2s)!!2s�Z 10 us(1� u)s�1e!udu� kA12k� s(2s)!!2se! s!(s� 1)!(2s)! kA12k :We are now ready to state our main result.Theorem 3.2. Let A be partitioned as in (1.2) and assume that kAiik = !i <log 4 ; i = 1; 2. Let R(A) = � R(A11) R12(A)0 R(A22) � be the (s; s) diagonal Pad�e ap-proximant for F (A) = eA = � F (A11) F120 F (A22) � : Then we have the following error



PAD�E APPROXIMATION FOR THE EXPONENTIAL OF A BLOCK TRIANGULAR MATRIX.11bounds: kF (Aii)�R(Aii)k � c(s) e!i2� e!i=2!2s+1i ; i = 1; 2;(3.6) kF (Aii)�R(Aii)kkF (Aii)k � c(s) e!i2� e!i=2!2s+1i ; i = 1; 2;(3.7) kF12 �R12(A)k � kA12k c(s) e!2� e!=2!2s "2s+ 1 + !2 e s�12s�1!2� e!=2# ;(3.8)with ! = max(!1; !2) and c(s) = (s!)2(2s+1)((2s)!)2 . If ! < log 2 we also havekF12 � R12(A)kkF12k � c(s)2� e! e!2� e!=2!2s "2s+ 1 + !2 e s�12s�1!2� e!=2# :(3.9)Proof. Easily, (3.7) and (3.6) are the block-diagonal versions of (2.17) and (2.16);(3.8) follows from (3.3)-(3.5), (2.16) and (2.5). To obtain (3.9) we observe that A isthe principal logarithm3 of F (A). Moreover, if !i < log 2,kI � F (Aii)k � ekAiik � 1 � e!i � 1 < 1 :Then, we can apply [3, Theorem 4.6] and [3, (4.15)] to obtain kA12k � kF12k2�e! :Remark 3.3. If ! = 0:4; 0:45; 0:5 (notice that log 2 � :69) and s = 6, the bound(3.9) in Theorem 3.2 guarantees relative errors in the extradiagonal block less then1.5e-16, 7.8e-16, 3.7e-15, respectively. If ! = 0:5; 1; 1:35 and s = 6, (3.8) ensuresrelative errors with respect to kA12k less than 1.3e-15, 2.1e-11, 3.3e-8, respectively.Notice that, in theory, the relative error bounds (3.7) and (3.9) could be arbitrarilysmall, if !i are allowed to be arbitrarily small. Of course, because of �nite precision,we are not going to observe relative errors arbitrarily small. The correct interpreta-tion of the bounds, then, is that relative errors of O(EPS) are in principle attainableif ! is su�ciently small; as we just saw, for s = 6, it is enough that ! � 0:4.Example 3.4. Consider once more Example 1.1: A = [ ! x0 ! ] with x = 1.0e+6and several values of ! > 0 (results for negative values of ! were nearly identicalto those for j!j). The results in Table 2 refer to computed and estimated errorsfor the (6,6) diagonal Pad�e to eA. We have implemented the (6,6) Pad�e by usinginteger coe�cients and arranging powers of A in ascending order. In Table 2, weadopted the following notation: esti : absolute (and relative) error bound (3.6)(of course, for the present example, we got identical results for the case i = 1; 2),absi: jeAii � R(Aii)j, reli: absi=jeAiij, est12 : absolute error bound (3.8), abs12:j(eA)12�R12(A)j, rel12: abs12=j(eA)12j. Quite clearly, there is excellent agreement3This is because if � = � + i� is an eigenvalue of A with j�j � �, then either kA11k � � orkA22k � �, contradicting that kAiik � log 4; i = 1; 2



12 DIECI AND PAPINI! esti absi est12 abs12 rel120.1 2.0e-026 0.0e+000 2.6e-018 0.0e+000 0.0e+0000.3 4.5e-020 0.0e+000 2.0e-012 0.0e+000 0.0e+0000.5 4.9e-017 0.0e+000 1.3e-009 1.2e-009 7.1e-0160.7 5.8e-015 3.6e-015 1.2e-007 6.7e-008 3.3e-0140.9 2.5e-013 1.1e-013 4.1e-006 1.7e-006 6.9e-0131.1 6.8e-012 1.8e-012 1.0e-004 2.4e-005 7.9e-0121.3 2.3e-010 2.0e-011 4.7e-003 2.2e-004 6.0e-011Table 2. Estimated and computed errors for the (6,6) Pad�ewith the theoretical bounds. Entries of 0.0e+000 correspond to an identical �niteprecision representation of computed and \exact" values.Finally, suppose we have a matrix A as in (1.2) whose diagonal blocks kAiik do notsatisfy the assumptions of Theorem 3.2. Then, Theorem 3.2 suggests the followingstrategy:1. select k so that the diagonal blocks of the matrix Ak = A=2k satisfy the as-sumptions of Theorem 3.2,2. approximate F (Ak) with the Pad�e approximation R(Ak),3. approximate F (A) with bF (A) = (R(Ak))2k .Our examples below show that this is an e�ective strategy, and it avoids somecommon overscaling pitfalls. To understand why, we need to work harder than howwe did to reach (2.19), since (2.18) cannot be assumed for � (we have scaled onlythe diagonal blocks, so kAkk is not necessarily small, while the arguments leadingto (2.18) required kAkk su�ciently small); of course, (2.18) can be assumed for �k,since relative to Ak the estimates (3.6, 3.7, 3.8, 3.9) hold. Here below, we will givetwo types of error statements: forward and backward. In both cases, we will obtainerror bounds which betray the dangers of overscaling, and are more re�ned than thestandard ones, which require kAkk to be small.Let us begin trying to obtain a bound on kF (A)� bF (A)kkF (A)k . Observe thatkF (A)� bF (A)k � k h kF (A11)� bF11(A)k kF12(A)� bF12(A)k0 kF (A22)� bF22(A)k i k :Now, let � = ��11 �120 �22 � be de�ned as before (2.18). Then, if �ii � �i, i = 1; 2, it isimmediate to get kFii(A)� bFii(A)kkFii(A)k � (1 + �i)2k � 1 :(3.10)



PAD�E APPROXIMATION FOR THE EXPONENTIAL OF A BLOCK TRIANGULAR MATRIX.13Finally, notice that an upper bound for �i is given by the right-hand-side of (3.7)(i = 1; 2). To bound kF12(A)� bF12(A)k, we observe thatF12(A)� bF12(A) = (I�(I+�11)2k)F12(A)��2k�1Xj=0 (I+�11)2k�1�j�12(I+�22)j�F22(A) :Therefore, with � = max(�1; �2), we havekF12(A)� bF12(A)k � ((1 + �1)2k � 1)kF12(A)k+ 2k(1 + �)2k�1kF (A22)k k�12k :Finally, since �12 = Q�1(A11=2k)�G12(�Ak)�Q12(Ak)�22� ;following the same arguments used in Lemma 3.1 and Theorem 3.2, we obtain thatfor k�12k the bound (3.8) holds as well:k�12k � kA12k2k ;  = c(s) e!2� e!=2!2s "2s+ 1 + !2 e s�12s�1!2� e!=2# ;(3.11)where ! = max(kA11k=2k ; kA22k=2k). In summary, we getkF12(A)� bF12(A)kkF (A)k � ((1 + �1)2k � 1) + (1 + �)2k�1kF (A22)k kA12kkF (A)k� ((1 + �1)2k � 1) + (1 + �)2k�1kA12k :(3.12)Putting together (3.10) and (3.12), we get a bound for the relative error kF (A)� bF (A)kkF (A)k ,which is more re�ned than traditional error bounds (e.g., see [5, Section 11.3.2]).Remark 3.5. To obtain a sharp bound for kF (A22)k kA12kkF (A)k is not trivial at all, and thesearch for a sharp bound remains an open problem. We have used kF (A22)k kA12kkF (A)k �kA12k, but this is not necessarily sharp in cases of interest: e.g., for Example 1.1,regardless of !, the quantity kF (A22)k kA12kkF (A)k is O(1), while kA12k = x = 1.e+6.Next, we provide a backward analysis of our new scaling & squaring strategy;this analysis will clearly show when and how the new strategy improves upon thetraditional one. We have the following resultTheorem 3.6. Let A be de�ned as in (1.2). Let k be chosen so that for the matrixAk = A=2k the assumptions of Theorem 3.2 hold, and let R(Ak) be the (s; s) Pad�eapproximant for eAk . Let bF (A) = (R(Ak))2k be the adopted approximant for F (A) =eA, and let � = e�AkR(Ak)�I be partitioned conformally to A. Then, bF (A) = eA+E,where E = � E11 E120 E22 � andkE11k � c11kA11k ; kE22k � c22kA22k ; kE12k � c12kA12k :(3.13)



14 DIECI AND PAPINIMoreover, we havecii � j log(1� �i)j!i ; i = 1; 2 ; c12 � e!11� � ( + �2e!2) ;(3.14)where !i are de�ned in Theorem 3.2, for �i we can take the right-hand-side of (3.6),i = 1; 2, � = max(�1; �2), and  is de�ned in (3.11).Proof. We �rst look for Ek such that e�AkR(Ak) = eEk , and then {since e�A bF (A) =(e�AkR(Ak))2k{ we will have E = 2kEk. Now, Ek is nothing but the principallogarithm of e�AkR(Ak). Partitione�Ak = h e�A11=2k �e�A11=2kF12(Ak)e�A22=2k0 e�A22=2k i ; R(Ak) = h R(A11=2k) R12(Ak)0 R(A22=2k) i ;so that e�AkR(Ak) = h I+�11 e�A11=2k [R12(Ak)�F12(Ak)(I+�22)]0 I+�22 i :Then, according to [3, (1.1) and (4.10)], Ek is given by Ek = � E(k)11 E(k)120 E(k)22 � whereE(k)ii = log(e�Aii=2kR(Aii=2k)) = log(I +�ii) ; i = 1; 2; andE(k)12 = Z 10 [�11t+ I]�1e�A11=2k [R12(Ak)� F12(Ak)(I +�22)][�22t+ I]�1dt :(3.15)At this point, we observe that k log(I + �ii)k � j log(1 � �i)j; i = 1; 2, where(following the same arguments used in Theorem 3.2) for �i we can take the right-hand-side of (3.6). Finally, since Eii = 2kE(k)ii , we immediately getkEiik � 2kj log(1� �i)j = j log(1� �i)j!i kAiik ; i = 1; 2 ;thereby obtaining the result about the diagonal blocks. For E(k)12 we havekE(k)12 k � ke�A11=2k [R12(Ak)� F12(Ak)(I +�22)]k Z 10 1(1� �1t)(1� �2t)dt� 11� �ke�A11=2k [R12(Ak)� F12(Ak)(I +�22)]k :Now, from (3.8), we haveke�A11=2k(R12(Ak)� F12(Ak))k � e!12k kA12k ;and from (1.3) relative to F12(Ak) we getke�A11=2kF12(Ak)�22k � �22k kA12ke!1+!2 :



PAD�E APPROXIMATION FOR THE EXPONENTIAL OF A BLOCK TRIANGULAR MATRIX.15Thus, we eventually obtainkE(k)12 k � e!12k(1� �)( + �2e!2)kA12kand the Theorem is proved.Remark 3.7. Theorem 3.6 shows precisely when the new scaling strategy improvesupon the standard one. In practice, the �i's are generally at best O(EPS), and thiscan be expected to be the case (see Remark 3.3). Therefore, with our strategy, aswell as with the standard strategy, c12 is O(EPS). For us, also at least one of c11 andc22 is O(EPS) (in fact, both c11 and c22 are O(EPS) if kA11k and kA22k are of the samesize). But in the standard strategy this is not true if kA12k is large compared tokAiik. In this case, one ends up overscaling with respect to the diagonal blocks andthe constants cii become large because the denominator !i approaches 0. Indeed, ourexamples clearly show that in cases in which kA11k � kA22k � kA12k the standardstrategy does not lead to a stable algorithm.Remark 3.8. An intriguing phenomenon encountered in approximating eA is the socalled \hump", introduced in [14]4. Although we do not fully understand this hump,it appears to be an issue caused by roundo� errors. For matrices like in (1.2), ourresults imply that fewer scalings and successive squarings of A are generally neededwith respect to the standard implementation. Thus, we should expect less roundo�propagation and a likely reduction in the occurrence of the hump phenomenon.Example 3.9. This is once more Example 1.1. In Table 3 we report on relativeerrors (in norm) obtained with di�erent scaling strategies. We stress once more thatin the \standard" scaling strategy it is the norm of A to dictate the exponent k inthe scaling factor 2k, whereas with our improved strategy based on Theorem 3.2 itis ! to dictate the value of k. In agreement with our error estimates, it is evidentthe loss of about 6 decimal digits when using a scaling factor 2k = 221 (see Remark2.8). However, scaling only with respect to the diagonal elements of A, we recovera fully accurate approximation.Example 3.10. This is similar to Example 1.1, except that the blocks have arbi-trary dimension n. We have the matrixA = 1n �!E xE0 �!E� ; where E 2 Rn�n ; E = h 1 ::: 1:::1 ::: 1 i :(3.16)Notice that kAiik = !, i = 1; 2, and alsoeA = �e!n E xn e!�e�!2! E0 e�!n E � ; e!n E = 1n � a b ::: bb a ::: b::: ::: ::: :::b ::: b a � ; a = e! + (n� 1); b = e! � 1 :4a referee asked us to relate our results to this phenomenon



16 DIECI AND PAPINI! \standard" scaling (k) no scaling (k = 0) improved scaling (k)0.1 2.1e-011 (21) 0.0e+000 0.0e+000 (0)0.5 4.8e-012 (21) 7.1e-016 7.1e-016 (0)0.9 5.4e-011 (21) 6.9e-013 5.7e-016 (1)1.3 2.2e-010 (21) 6.0e-011 2.5e-016 (2)2.1 1.4e-010 (21) 2.1e-008 5.7e-016 (3)4.1 7.6e-011 (21) 9.6e-005 1.9e-015 (4)6.1 1.9e-010 (21) 1.9e-002 1.1e-015 (4)8.1 8.0e-012 (21) 6.6e-001 1.7e-015 (5)Table 3. Relative errors (used scaling factor: 2k).For n = 10, in Table 4 we report on relative errors for the (6,6) Pad�e approximation,coupled with di�erent scaling strategies, in a similar way to what we did in Table3. ! \standard" scaling (k) no scaling (k = 0) improved scaling (k)0.1 2.5e-010 (21) 7.7e-016 7.7e-016 (0)0.3 5.8e-010 (21) 2.1e-016 2.1e-016 (0)0.5 1.3e-009 (21) 2.4e-016 2.4e-016 (0)0.7 1.2e-009 (21) 3.0e-015 3.6e-016 (1)0.9 1.0e-009 (21) 6.3e-014 2.9e-016 (1)1.1 2.6e-010 (21) 7.7e-013 9.5e-016 (2)1.3 1.9e-009 (21) 6.3e-012 6.2e-016 (2)Table 4. Relative errors Example 3.10; scaling factor: 2k.4. Conclusions and extensions.In this work, we have revisited Pad�e approximation techniques to compute theexponential of a block triangular matrix. Our main result has been Theorem 3.2,which gives improved error bounds for a 2 � 2 block triangular matrix with wellscaled diagonal blocks. As a consequence of this theorem, we have proposed a newscaling & squaring strategy for matrices of the form (1.2), and given an error analysisfor the new strategy. We have exempli�ed how the new strategy can lead to accurateapproximations by avoiding overscaling.We have restricted to 2 � 2 block triangular matrices, since in our opinion thisis the most important case one needs to understand. But, of course, our resultscan be used for a block triangular matrix A with any number of diagonal blocks;



PAD�E APPROXIMATION FOR THE EXPONENTIAL OF A BLOCK TRIANGULAR MATRIX.17for example, A may have been obtained by a prior Schur reduction. (Of course, inagreement with what we said at the beginning of Section 3, for us this is of interestwhen the diagonal blocks of A are not su�ciently separated { have close, or identical,eigenvalues). So, suppose that A is in the formA = " A11 A12 ::: A1p0 A22 ::: A2p::: ::: ::: :::0 ::: 0 App # :(4.1)Clearly, also F (A) and a diagonal Pad�e approximation R(A) to F (A) have this sameblock structure. Now, assuming that all entries of F (A) are of equal interest, andthat just one Pad�e approximation R(A) is computed for all of F (A), we can useTheorem 3.2 for the 2� 2 block partitioning of A associated to the most favorableerror bounds predicted by the theorem. In this case, a little thought reveals thatthe best 2� 2 block partitioning is that which achievesmin1�j�pMax [ kA(1 : j; 1 : j)k; kA(j + 1 : p; j + 1 : p)k ] ;(4.2)where our notation is inherited from (4.1); e.g., A(1 : 2; 1 : 2) = � A11 A120 A22 �. Therefore,in agreement with our discussion on scaling, one may want to scale with respect tothe diagonal blocks of this \best" block partitioning.This is how one can use the results in this paper if is willing to do just one Pad�eapproximation for F (A) when A is as in (4.1). Alternatively, one may want toproceed recursively from the diagonal of F (A) upward, one superdiagonal at thetime. This may be a useful way to proceed in case blocks close to the diagonalneed to be found with greater accuracy, but one may end up computing the samequantities more than once. For example, suppose that p = 3 in (4.1). We can�nd F12 and F23 by using Theorem 3.2 on the matrices � A11 A120 A22 � and � A22 A230 A33 �,respectively. To obtain F13, we can use Theorem 3.2 with two di�erent choices ofblocking: � A11 [A12 A13 ][ 00 ] hA22 A230 A33 i � or � hA11 A120 A22 i hA13A23 i[ 0 0 ] [A33 ] �. To �x ideas, suppose we use the latterchoice. But then, we may end up having to rescale the block � A11 A120 A22 �more than howwe had previously rescaled it to compute F12, and thus we will end up recomputingquantities which had already been computed. With our present understanding, thisseems unavoidable. References[1] M. Arioli, B. Codenotti, and C. Fassino. The Pad�e method for computing the matrix expo-nential. Linear Algebra and Applic., 240:111{130, 1996.[2] P.E. Crouch and R. Grossman. Numerical integration of ordinary di�erential equations onmanifolds. J. Nonlinear Sc., 3:1{33, 1993.[3] L. Dieci and A. Papini. Conditioning and Pad�e approximation of the logarithm of a matrix.SIAM J. Matrix Anal. Appl., 1999. To appear.
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