PADE APPROXIMATION FOR THE EXPONENTIAL OF A
BLOCK TRIANGULAR MATRIX.

LUCA DIECI AND ALESSANDRA PAPINI

ABSTRACT. In this work we obtain improved error bounds for Padé approxima-
tions to e4 when A is block triangular. As a result, improved scaling strategies
ensue which avoid some common overscaling difficulties.

1. INTRODUCTION

In this work, we are interested in computation of the exponential of a matrix
A € R™™ (trivial modifications are needed in the complex case), e?. Throughout,
and unless otherwise stated, ||- || will be the 2-norm.

Approximation of e is a most important and frequently encountered task: in
1978, the one hundred plus references of [14] gave a clear indication of this, and in
the 20 years since the importance of computing the matrix exponential has only in-
creased. For a case in point, there are several new approaches put forward for solving
time dependent differential equations which require computing matrix exponentials;
e.g., see [9] or [2]. Yet, with the possible exception of normal matrices and near
the identity approximations (i.e., A close to 0), reliable numerical approximation of

e’ remains somewhat elusive. We are particularly concerned with approximating

e in case A is not normal and not close to 0. Especially for these cases, in our
opinion, the ongoing effort on development and analysis of new techniques is fully
warranted; e.g., see [12], but see also [8] for issues related to the challenging case of
large, sparse, A.

Probably, the most popular and successful technique for approximating e consists
of diagonal Padé approximations along with so-called scaling and squaring. The

technique exploits the scaling and squaring identity
k
(1.1) et = (eA/Qk)2

as follows. First, a sufficiently large k is chosen so that A/2F is close to 0, then
a diagonal Padé approximant is used to calculate e?/ Qk, and finally the result is
squared k times to obtain the required approximation to e*. This basic approach is
implemented in the Matlab function to evaluate e”: expm. The fundamental issue is
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how to choose k; on one hand, we need k large enough because Padé approximations
are accurate only if || A/2*|| is sufficiently small (see [5]), but on the other hand even
a very accurate approximation to e?/ 2k, after repeated squaring, may become a
disappointing approximation to e?. This is clearly shown in the next example.

Example 1.1. The following is a standard test problem (e.g., see [3], [12]). We
have
|w o A wl|ll .
A—[O w]’ et =e [0 1], and we fix x = 1.0e+6 .

In Table 1, we report on the errors for the Matlab function expm which, supposedly,
computes e to machine precision gps &~ 1.0e-16 (scientific notation is used through-

out). The reported error is the relative error in norm: ‘ F — ﬁH / ||F||, where F" and

F denote exact and computed exponentials, respectively, for both e/ 2" and e?. For
later reference, expm chooses k£ so to bring HA/Q’“H below 1/2, and then uses the
(6,6) diagonal Padé approximation. In the particular example, this means k = 21.

w Matlab A/2F error Matlab A-error

0.1 2.5e-016 2.1e-011
0.3 6.2e-015 2.0e-010
0.5 0.0e+000 4.8e-012

TABLE 1. Matlab errors.

The previous example served as motivation for our work. In a similar way to the
error estimates we proved for Padé approximations to log(A) (see [3]), we will derive
improved error estimates for Padé approximations to e? in case A is a 2 x 2 block
upper triangular matrix?,

_|An A
0z oo [ el

where A;; and A,y are square matrices. Clearly, also e in this case has the same
block structure, and the following formula for e is well known (see [13])

A1
€ Fio
et = [ 0 €A22] , where

(1.3) X
F12 = / e(l_“)AllAlge“A”du .
0

!we do not require that the diagonal blocks be themselves triangular matrices
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Loosely speaking, our new error estimates for Padé approximation of e say that if
the diagonal blocks are well scaled, then one obtains accurate (in both absolute and
relative error sense) approximations to the diagonal blocks of e, as well as accurate
(in a relative error sense) approximation to Fis. As a consequence, e* will have been
accurately computed. Further, the error estimates imply that one does not need to
scale (i.e., choose k in (1.1)) based upon [|A|| but only based upon [|A4;|, i =1,2.
This will avoid some common overscaling pitfalls.

In the next section, we give some general results on Padé approximation of e#
and also discuss errors arising during the squaring phase of the scaling and squaring
algorithm. In section 3, we explicitly deal with the case of block triangular matrices
and derive new error estimates in this case. We exemplify the computational impact
of the new estimates on the model problem Example 1.1 and on a larger problem.

2. PADE ERROR ESTIMATES.

In what follows, we let F/(A) be e and R(A) = P(A)Q *(A) be its (s, s) diagonal
Padé approximation. In this section, A is not restricted to be of the form (1.2).
It is well known (see [6], [5], or [14, Appendix 1]) that

(2.1) ‘%A):Ei (25 — j)ls! (—A)

2 )5 =) ]

and
(2.2) F(A) — R(A) = Q '(A)G(A),
with
—1)° 2541 ' s s A(l—u
(2.3) G(A) = &28i_A /g ut (1 =)A= dy,

Several error bounds for F'(A) — R(A) are available in case all eigenvalues of A are
inside a suitable circle. For example, let w = ||A||; and let s be large enough so that
R(z) is analytic on (and inside) the circle C' of center the origin and radius v = kw,
with 1 < k < 2. Then, Fair and Luke in [4] obtain the following bound (the quantity
c(s) is defined below in Theorem 2.5):

le* = R(A)], <

supr(A), where
k_lAeg 9@

’I“(Z) = |ez _ R(Z)| = ‘C(s)ez+z2/[4(25+1)}z25+1[1 + 0(5_3)] .

This bound does not necessarily require smallness assumptions on w, but may force
s to be very large in order to satisfy the requirement of analyticity of R(z), and
a high value of s presents some computational drawbacks. On the other hand, for
small values of w, one can get more accurate error estimates by using the approach
of Moler and Van Loan, [14]. We follow their approach to derive the estimates in
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Theorem 2.5. Our error estimates differ from those in [14] on two accounts: (i) we
first derive bounds on the error in terms of the error in the scalar case, and then
further provide bounds which only involve ||A||, (ii) we do not a priori restrict || Al
to be bounded by 1/2 (cfr. [14]).

Lemma 2.1. Suppose that for all eigenvalues z of A one has |Q(z)—1] < 12. Then
Q(A) is invertible. Next, let a = Q(—||Al|) — 1. If a < 1, we then have

1
2.4 (A < :
(2.4) Q)] <
Further, if ||A]| < log4, then
1
-1
(2.5) Q7 (A)]] < 5 ANz

Proof. First, assume that A is diagonalizable: T *AT =: A = diag(\;,i =1,... ,n).
Using (2.1), we get

. (25— j)ls! (—=A)
Q) = NT = 2 (és)!(s]—) j)!( j!)

So, by letting z to be an eigenvalues of A, the statement on invertibility of ) follows.
Moreover, notice that

(2.6)

@+q—ﬁw!<[ q]’
P+ala—5)! " lp+a

so that we get Q(z) —1 < /2 — 1 which justifies the claim we made in the footnote.
If A is not diagonalizable, it is e-close to a diagonalizable matrix, and standard norm

estimates give the result on invertibility of ().
Next, observe that

IIQ(A)—IIISZ(

‘= 25)l(s —j)! 4!

Thus, if @ = Q(—||4]]) — 1 < 1, then (2.4) follows. Now, if ||A| < log4, from the
expression of Q(—||Al|) — 1 and (2.6) we also have that

, .
1Al 1 I1All/2

< — =< —-1<1

a_;;[Q ; |

(25 =0 JAW o pagy -1,

gt
so that (2.5) follows. O
Lemma 2.2. Let G(A) be defined by (2.3). Then
(2.7) G < 1QUIAIDT [ — R(|AIDI

?this condition is satisfied if |z| < log4
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(2. I < 1Q01AD] 41 = Rl

Moreover, the following estimates also hold

99 a (s1)? Al 4)12s+1
(2.9) ”()”—(25+ (2512 [ A[=,

G (s)*
oAl = @+ D(@))?
Proof. Taking norms in (2.3) and using
1
(2.11) / (1= u)iduy = — P
0 (p+q+1)!
(2.9) is immediate. Also (2.10) can be obtained in a similar way, rewriting G(A) as

(2.10) el AP

—1)$ 1

(2.12) G(A) = qusﬂeA/ u' (1 —u)’e du.
(2s)! 0

To obtain (2.7) is enough to observe that expanding G in (2.3) in powers of A all

coefficients have same sign, and thus from (2.2) one obtains (2.7). To obtain (2.8),

rewrite G(A) = —eG(—A), and thus

IGA/ eI < G (=) < 1GUAIDI-
O

Remark 2.3. More accurate estimates can be obtained by using the logarithmic
norm of A, y1(A), or the Schur form of A, Q*AQ = A+ N, where N is strictly upper
triangular and @ is unitary. In fact, it is well known (e.g., see [13]) that (in the
2-norm)

N k
||€At|| < eH(A)t and ||€At|| <e Z || tH 7

for t > 0, where a(A) denotes the spectral abscissa of A Then, the factor ell4ll
can be replaced in (2. 9) by em@du(A)0} o emax{a(4),0} s~ M, and in (2.10) by

emax{n(=4).0} o gmax{a(=4),0} Yorco ! ”N” . Obviously, similar changes apply to later
estimates as well.

Remark 2.4. Notice that our bounds for ||G(A)||, and hence those in Theorem 2.5
below, are identical in an absolute and relative sense with respect to ||e”||. This is
because we do not know if |et|| happens to be < 1 or > 1. If we could use this
information, then of course the estimates could be trivially refined (and would be
different) for the absolute and relative error cases; for example, if we knew that
le|l > 1 (e.g., as when a(A) > 0, since [le?]] > e*“4), then we could divide the
right hand sides of the relative error bounds (2.8) and (2.10) by [|e?|| (simply using
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the absolute error estimates and dividing them by ||e]]). Moreover, for later use,
notice that by expanding in series under the integrals in (2.3) and (2.12) and using
(2.11) one gets

o0

(2_13) G(A) — %A2s+l Zﬁk% — A %A%JA Z(_l)kﬁk%

with gy = sl(s + k)!/(2s + k+ 1)!.
We are now ready to state the following result on Padé error estimates.

Theorem 2.5. Let R(A) be the (s, s) diagonal Padé approzimation to e*. Let o =
Q(—||Al]) — 1, and assume that o < 1. Then

(2.14) Je* — reay) < CUADT orar
.15 e < KDL o gy

Further, if ||A|| = w < log4, then

w

A € 2s+1
(2.16) le” = R(A| < els)g——pw
- It = REDI ) €
| letll =2 —erm
. o (sH)?
with ¢(s) = (TS (EDIEE

Proof. The statement is a consequence of (2.2) and the previous Lemmas. O

Remark 2.6. Observe that |Q(||4]))| < Q(—]4]]) = 1 + «, and thus A cap
be further bounded by 12 which is a bound on the condition number of Q(A). In

fact, (2.14-2.15) make clear that there are two contributions to the error: one is the
conditioning of the denominator, the other is the error one has in the scalar case.

Remark 2.7. We stress that the

scalar estimates (2.14-2.15) are per-
fectly computable for given values

of s and ||A||, and are superior to @
the estimates (2.16-2.17). For ex-
ample, for s = 6, computing the
right hand side of (2.14) in ex-
tended precision and comparing it
to the right hand side of (2.16),
produces the figure on the right
(in semi-logarithmic scale). B L I S T

(2.16)
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However, from the practical point of view, all estimates require ||A|| to be sufficiently
small, and differences between the right hand sides become minor for small values
of ||A||. Because of this, and the fact that the right hand side in the estimates
(2.16-2.17) is more easily computable, we will henceforth only refer to the estimates
(2.16-2.17). Nonetheless, it should be appreciated that later results such as Lemma
3.1 and Theorem 3.2 can be easily rephrased by using the scalar estimates presently
derived.

As already remarked, to take advantage of the fact that the right hand sides in
(2.16) and (2.17) are small for w small, one may exploit (1.1). Let k£ be given,
let Ay = 2% and let R(A;) be the diagonal Padé approximation to e**. Then, by
repeatedly squaring R(Ay), one approximates F(A) with F(A) := [R(4;)]2". But, if
an error of size 7, say, is made by approximating e* with R(Ay), what error bound
can we obtain for F'(A) as approximation of F'(A)? This question was addressed
in [14] by Moler and Van Loan. Here below we obtain a different error bound (cfr.
(2.19) with [14, (pp. 809-810)]).

Let Ag := R(Ay) — e and A := Age=*. Observe that all the matrices we are
considering are functions of A and therefore commute with A and with each other,
and so we have A = —Q 7' (Ay)e *G(4;) = Q7' (Ax)G(—Ag). Thus, following the
same arguments used in Lemma 2.2 and in Theorem 2.5, for || Ag|| sufficiently small,
we can assume to have both
(2.18) [Asll <nand  [|A]l < 7.

Now, we rewrite
F(A) = F(A) = [T = F(A)FH(A)F(A) = [T = (R(Ap)e *)*|F(4)
= [ = (I +0)T]F(4),

and observe that (I+A)2" has an expansion in powers of A with positive coefficients.
Then, we immediately get
I =+ 2 < (L m)* ~ 1,

and therefore
1F(A) — F(A)]

1E (Al
To gain some insight into the order of magnitude of the right-hand-side of (2.19), if
251 < 1, one may use: (1 + )2 — 1 = 2kpe?" 1 4 O(2F192).
Remark 2.8. To interpret what we obtained, observe that (2.19), along with (2.17),
show the potential benefits of the scaling and squaring technique. For example, for
s = 6, if [|A|| = 1 and k£ = 0 the relative error bound is 1.3e-12, while if ||A| =1

and k = 2 the relative error bound is 1.5e-20. However, (2.19) makes it also clear
that there is an advantage to avoid using large scaling factors: the error bound

(2.19) < (1479 —1.
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(2.19) deteriorates quickly with k. For example, already with £ = 20 and n = Eps it
predicts a loss of six digits. Precisely what we observed in Example 1.1.

Remark 2.9. In this section, we have not taken rounding errors into account. How-
ever, the accumulation of roundoff errors occurring during the squaring phase can
severely affect the accuracy of the computed exponential matrix. Some interesting
results about rounding errors accumulation can be found in [15] and [1].

3. BLOCK TRIANGULAR MATRICES AND PADE APPROXIMATIONS.

Let us now restrict attention to A as in (1.2) and F(A) = e* as in (1.3). (To avoid
trivial cases, we will also assume that A5 # 0, as otherwise the computation reduces
to separate computations for the diagonal blocks.) In this case, it is well known that
R(Ap) Ru(A)]

0 R(Ag) |
This special block structure hints that finding R(A;;), ¢ = 1,2, should not be
affected by Apo, and that approximation of Fis may be done differently from that

Indeed, suppose we have approximated the diagonal blocks by R(A;), i = 1,2,
and that A;; and Ass have no common eigenvalues. Then, F(A) may be approxi-
mated by R(A) exploiting the relation (Parlett’s method) R(A)A = AR(A). This
gives the following equation for Ri5(A):

(31) A11R12 (A) — R12 (A)A22 = R(All)Alg — AIQR(AQQ) .

As a matter of fact, if the blocks A;; and Asy are sufficiently separated so that (3.1)
is well conditioned (see [7]), probably there is no simpler way to approximate Fjy
than using (3.1). For this reason, we will think of having to approximate e” in case
in which the blocks A;; and Ayy are not sufficiently separated (say, they have close
—or identical- eigenvalues).

The approach recently proposed by Kenney and Laub in [12] is of interest in
the situation we just described, and we refer to [12] for details on their approach.
Presently, we observe that Padé approximations for all of e# can also be used in case
A1 and Ayy are not well separated, but they seem to suffer from the need to bring
||A]| close to 0, and this may result in overscaling relative to the diagonal blocks (see
Example 1.1). However, this is only a result of unrefined error estimates. Our main
result, Theorem 3.2, will guarantee that, if ||A;;|| and || Ag|| are sufficiently small, a
single Padé approximant for all of e will give small relative errors in a block sense:

les = R(AW)|| - lle’® = R(An)||  [[F12 — Ria(A)]]
[leds]] ’ [[e22]] ’ [Pzl
Therefore, we will avoid dealing separately with the term Fj,. Moreover, in case in

which ||A;]|, ¢ = 1,2, are not sufficiently small, our result will tell that it suffices
to scale A so to reduce the norm of the A;. In general, therefore, the value of k we

Padé approximations are also block triangular matrices: R(A) = [

(3.2)
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will select in order to approximate F'(Ay), A = A/2F, will be smaller, often much
smaller, than the value we would have needed to guarantee that ||Al|/2¥ had been
sufficiently small. As a consequence, we will also need to perform fewer squarings
of the obtained result: this will result in a gain with respect to the bound (2.19),
reduce the impact of roundoff errors (we perform less arithmetic), and altogether
give in an efficient algorithm.

We assume that )(A) is invertible, and begin by rewriting (2.2) in block form:

F(A) - R(4) = | @7 AWGAL) - P — Rip(4)

0 Q7" (Ag)G (Az)
with
Fiy — Ri3(A) Q '(A)G1(A) + Q) (A)G(Ay)
= Q_I(A )G12(A) Q7 (A1) Q12(A)Q 7 (A2)G(Ags)
= Q7'(An) {G12(4) — Qua(A)[e" — R(An)]} .
Then

(3.3)  [1Fi2 = Riz(A)| < 17 (A | {IIG12(A)]| + |Qu2(A) | lle™* — R(Ax)|}

and we have to consider the extra-diagonal blocks of Q(A) and G(A).

Lemma 3.1. Let A be partitioned as in (1.2), Q(A) = [ @dn) @u(4) ] be the

0 QAz)
s-degree matriz polynomial defined in (2.1), and G(A) = [ G(gln) Gti
22

matriz function defined in (2.3). Then

; } be the

1 571(4)
(3.4) [Qu( A = [[Awf] e

(35) 1G] < [Aul %w

with w = max(||A11||, ||A22||)

A, Z] 114‘7 1 F A AL,

Proof. Notice that A7 = [ 0 A%2

} . Then, by (2.1) we get

s j—1

23 —] )!s! (—l)j X j—1—k k
QIZ Z . ZAH A12A22 .

— |
(s =4 J! 0

J=1
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So, taking norms and using (2.6) we obtain

1)) < Z% ZHAHIP ) gy ¥ A

=1
-1

%b

(2s—1—=7l(s—1)!s w_J“ ”
25(2s — 1)l(s — 1 — j)l j1 772

M

7=0

1« oy 1 o
<_§: Al < Zezv||A
— 2 ]:0 (28 ) ]' || 12“ — 26 || 12”7

which gives (3.4). To obtain (3.5), we first observe that by (2.13)

s oo 5"‘] 25+]
2s+j5—k k
G1a(4 'Z 25—|—j—|—1' !X:A11 Az
Then, taking norms and using (2.11) we get
Gald < G S e zsfan 2 A v
12 S (s 2 @5+ 1 1) 11 22 12
o0 -
s (s+D)s=DI'T
= (25)v2 (25 +7)! 4! W Ap||
p D!
S ' 1 L ogyj
= G2 ([ e - ) Sl
j=0 0 '
1 00 '
_ (/UI—USIZ . )||A12||
0 i
1
= </ w1 — ) w“du) A
0
w5l (s —1)!
< 2 A
< e ).
U
We are now ready to state our main result.
Theorem 3.2. Let A be partitioned as in (1.2) and assume that ||Ay|| = wi <
R(dn) Rod)

logd, i = 1,2. Let R(A) = [ 0
22

prozimant for F(A) = et = [ F(Ay) };112
22

An) ] be the (s,s) diagonal Padé ap-

. Then we have the following error
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bounds:
evi . _

|F(Air) — R(Aw)]] e
3.7 G .
0 || F'(As) || - 6(5)2 _ ewi/sz ) 2 .2,

s—1
e” 2s w e2s-1¥

(38) ||F12 _RIZ(A)“ S ||A12||C(8)mw 28+1+§m] ,

(s)?

with w = max(wy,wy) and c(s) = - If w <log2 we also have

FE(ennE
s—1
||F12 — Ri2(A)|| c(s) ev ) W er—1¥
3.9 slos 10 |
(39) Fol - S aowawn Bt

Proof. Easily, (3.7) and (3.6) are the block-diagonal versions of (2.17) and (2.16);
(3.8) follows from (3.3)-(3.5), (2.16) and (2.5). To obtain (3.9) we observe that A is
the principal logarithm?® of F/(A). Moreover, if w; < log 2,

Then, we can apply [3, Theorem 4.6] and [3, (4.15)] to obtain [|Ap,|| < 122l O

_— 2_6w

Remark 3.3. If w = 0.4,0.45,0.5 (notice that log2 ~ .69) and s = 6, the bound
(3.9) in Theorem 3.2 guarantees relative errors in the extradiagonal block less then
1.5e-16, 7.8e-16, 3.7e-15, respectively. If w = 0.5,1,1.35 and s = 6, (3.8) ensures
relative errors with respect to ||Ais]| less than 1.3e-15, 2.1e-11, 3.3e-8, respectively.
Notice that, in theory, the relative error bounds (3.7) and (3.9) could be arbitrarily
small, if w; are allowed to be arbitrarily small. Of course, because of finite precision,
we are not going to observe relative errors arbitrarily small. The correct interpreta-
tion of the bounds, then, is that relative errors of O(&ps) are in principle attainable
if w is sufficiently small; as we just saw, for s = 6, it is enough that w < 0.4.

Example 3.4. Consider once more Example 1.1: A = [§ %] with z = 1.0e+6
and several values of w > 0 (results for negative values of w were nearly identical
to those for |w|). The results in Table 2 refer to computed and estimated errors
for the (6,6) diagonal Padé to e*. We have implemented the (6,6) Padé by using
integer coefficients and arranging powers of A in ascending order. In Table 2, we
adopted the following notation: est; : absolute (and relative) error bound (3.6)
(of course, for the present example, we got identical results for the case i = 1,2),
abs;: |edii — R(Ay;)|, rel;: abs;/|edii|, estio : absolute error bound (3.8), absis:
|(e?) 12— Ri2(A)|, reliy: absa/|(e?)12].  Quite clearly, there is excellent agreement

3This is because if A = a + i3 is an eigenvalue of A with |3] > =, then either ||A11|] > 7 or
[[A22]| > 7, contradicting that |4 <log4,i=1,2
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w est; abs; esti2 absio reljo

0.1 ] 2.0e-026 0.0e+000 | 2.6e-018 0.0e-+000 | 0.0e4-000
0.3 | 4.5e-020 0.0e+000 | 2.0e-012  0.0e+000 | 0.0e4+-000
0.5 | 4.9e-017 0.0e+000 | 1.3e-009  1.2e-009 | 7.1e-016
0.7 | 5.8e-015  3.6e-015 | 1.2e-007  6.7e-008 | 3.3e-014
0.9 | 2.5e-013  1.1e-013 | 4.1e-006  1.7e-006 | 6.9e-013
1.1]6.8e-012  1.8e-012 | 1.0e-004  2.4e-005 | 7.9e-012
1.3 | 2.3e-010  2.0e-011 | 4.7e-003  2.2e-004 | 6.0e-011

TABLE 2. Estimated and computed errors for the (6,6) Padé

with the theoretical bounds. Entries of 0.0e+000 correspond to an identical finite
precision representation of computed and “exact” values.

Finally, suppose we have a matrix A as in (1.2) whose diagonal blocks || A;|| do not
satisfy the assumptions of Theorem 3.2. Then, Theorem 3.2 suggests the following
strategy:

1. select k so that the diagonal blocks of the matrix A, = A/2* satisfy the as-
sumptions of Theorem 3.2,

2. approximate F'(Ay) with the Padé approximation R(Ayg),

3. approximate F(A) with F(A) = (R(Ay))?".

Our examples below show that this is an effective strategy, and it avoids some
common overscaling pitfalls. To understand why, we need to work harder than how
we did to reach (2.19), since (2.18) cannot be assumed for A (we have scaled only
the diagonal blocks, so ||A|| is not necessarily small, while the arguments leading
to (2.18) required || Ag|| sufficiently small); of course, (2.18) can be assumed for Ay,
since relative to Ay the estimates (3.6, 3.7, 3.8, 3.9) hold. Here below, we will give
two types of error statements: forward and backward. In both cases, we will obtain
error bounds which betray the dangers of overscaling, and are more refined than the
standard ones, which require ||Ag|| to be small.

|F(A)-F(A)|

WIL - Observe that

Let us begin trying to obtain a bound on &

~ A _A
||F(A) B F(A)“ < || [1F( 11)0F11( | ”524(22 ||

Now, let A = [A“ A”] be defined as before (2.18). Then, if A; <mn;, i =1,2, it is
1mmed1ate to get

510 LR Pl
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Finally, notice that an upper bound for 7; is given by the right-hand-side of (3.7)
(1=1,2). To bound ||F12(A) — Fi2(A)||, we observe that

2k—1

Fia(A)—Fia(A) = (I—=(I+A1)" ) Fia(A) = [ Y (T+A1) T T A (T+A0) | i (A) .

J=0

Therefore, with n = max(ny,7,), we have

1Fio(A) = Fia (Al < (14 m)* = D[ Fia(A)]| + 251+ 0)* T F(Aza) | [|Asa]] -
Finally, since
Ap = Qil(An/Qk)(Gu(—Ak) - Q12(Ak)A22) ;
following the same arguments used in Lemma 3.1 and Theorem 3.2, we obtain that
for [|Aj5]| the bound (3.8) holds as well:

| Asa| _ e
2k ) f)/ - C(S)2 _ ew/Q

w25

A1 A <
(311 [An] <y e

w 6253111“)
2514+ |,

where w = max(||Ay1||/2% , || As2|[/2%). In summary, we get
1 Fia(4) = Fia(A) | ok | F'(Ag) || [[ Az
(3.12) | F(A)]] |1£'(A)]
< ((T+m)* = 1) + 71+ )% YA .

< ((@+m)* 1) +v(1+n)

Putting together (3.10) and (3.12), we get a bound for the relative error W,

which is more refined than traditional error bounds (e.g., see [5, Section 11.3.2]).

Remark 3.5. To obtain a sharp bound for % is not trivial at all, and the
search for a sharp bound remains an open problem. We have used W <

||A12]|, but this is not necessarily sharp in cases of interest: e.g., for Example 1.1,
regardless of w, the quantity W is O(1), while ||A};5]| =z = 1.e+6.

Next, we provide a backward analysis of our new scaling & squaring strategy;
this analysis will clearly show when and how the new strategy improves upon the
traditional one. We have the following result

Theorem 3.6. Let A be defined as in (1.2). Let k be chosen so that for the matriz
Ay = A/2F the assumptions of Theorem 3.2 hold, and let R(Ay) be the (s,s) Padé
approzimant for e Let F(A) = (R(A))2 be the adopted approzimant for F(A) =
e, and let A = e~ R(Ay,)—1I be partitioned conformally to A. Then, ﬁ(A) = eME
where E = [E(}l gg] and

(3.13) B < cul]Aull, [[Exnll < cxnl|Aswl, [[Ei|l < cal| Al
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Moreover, we have

log(1 — )] =
(3.14) Cii < [og(1 = )| , 1=12, cp < ‘
W; 1—77

(7 + mee”?),

where w; are defined in Theorem 3.2, for n; we can take the right-hand-side of (3.6),
i=1,2, n=max(n,n), and v is defined in (3.11).

Proof. We first look for Ej, such that e~ R(Ay) = e®, and then —since e~ F(A) =
(e 4 R(A;))*~ we will have E = 2¥E),. Now, Ej is nothing but the principal
logarithm of e~ 4*R(A},). Partition

A _ [e a2t _emanst oy a,)e A2t _ [ RA1/2%) Ri2(Ag)
Sl A Lo Rt = [ ]
so that
e—AkR(Ak) — I+€11 e—A11/2k[R12(f}l£££12(Ak)(I+A22)}:| .
. L e® gk
Then, according to [3, (1.1) and (4.10)], Ej, is given by Ej = s where
22

Ez(zk) = log(e’A“/sz(Aii/Qk)) = log(I +A;),i=1,2, and

(3.15) ®) 1 g B
E12 = [Allt + I] e [ng (Ak;) — F12 (Ak)(] + Agg)][Aggt + I] dt .
0

At this point, we observe that |[log(I + A;)|| < [log(l — n;)|, i = 1,2, where
(following the same arguments used in Theorem 3.2) for 7; we can take the right-
hand-side of (3.6). Finally, since Ej; = 2 E®) e immediately get

i )

log(1 —n; .
12l < 241081 )| = FEL =gy oo
thereby obtaining the result about the diagonal blocks. For Eig) we have
1
1
EW| < |le 4/ [Ryy(Ag) — Fra(Ag)(I + A / dt
1B || < le [Ri2(Ak) — Fra(Ap) (I + D) A R T p——y

1 .
< Tl R (A = Fia(A0( + M)l

Now, from (3.8), we have

et
ok

le 2/ (Ria(Ax) — FiaAp))]| < Azl
and from (1.3) relative to Fio(Ax) we get

e/ Fla(A0) M| < 5| Avslle 2.
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Thus, we eventually obtain

k et
1221 < 5

(1—n)

and the Theorem is proved. O

(7 + m2e”?) || ALo|

Remark 3.7. Theorem 3.6 shows precisely when the new scaling strategy improves
upon the standard one. In practice, the 7;’s are generally at best O(gps), and this
can be expected to be the case (see Remark 3.3). Therefore, with our strategy, as
well as with the standard strategy, ¢io is O(Eps). For us, also at least one of ¢;; and
o9 18 O(EPs) (in fact, both ¢1; and cgp are O(Eps) if || Ay1]| and ||Agz|| are of the same
size). But in the standard strategy this is not true if ||A;2|| is large compared to
||Ai;||. In this case, one ends up overscaling with respect to the diagonal blocks and
the constants c¢; become large because the denominator w; approaches 0. Indeed, our
examples clearly show that in cases in which ||Ay;|| & ||A2|| < [|A12|| the standard
strategy does not lead to a stable algorithm.

Remark 3.8. An intriguing phenomenon encountered in approximating e is the so
called “hump”, introduced in [14]*. Although we do not fully understand this hump,
it appears to be an issue caused by roundoff errors. For matrices like in (1.2), our
results imply that fewer scalings and successive squarings of A are generally needed
with respect to the standard implementation. Thus, we should expect less roundoff
propagation and a likely reduction in the occurrence of the hump phenomenon.

Example 3.9. This is once more Example 1.1. In Table 3 we report on relative
errors (in norm) obtained with different scaling strategies. We stress once more that
in the “standard” scaling strategy it is the norm of A to dictate the exponent k in
the scaling factor 2¥, whereas with our improved strategy based on Theorem 3.2 it
is w to dictate the value of k. In agreement with our error estimates, it is evident
the loss of about 6 decimal digits when using a scaling factor 2¥ = 22! (see Remark
2.8). However, scaling only with respect to the diagonal elements of A, we recover
a fully accurate approximation.

Example 3.10. This is similar to Example 1.1, except that the blocks have arbi-
trary dimension n. We have the matrix

L wE z€ nxn R
(3.16) A = E[O —wé’] . where EERY", &= [1:::1] .
Notice that ||A;|| = w, i = 1,2, and also
28 me—e® y 1 [ab..b
eA:[e n Z_‘:jgg], engz—[?.‘?ﬁj'b],a:e“’+(n—1),b:e“’—1
0 en nlb..ba

“a referee asked us to relate our results to this phenomenon
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w “standard” scaling (k) no scaling (k =0) improved scaling (k)
0.1 2.1e-011 (21) 0.0e+000 0.0e+000 (0)
0.5 4.8e-012 (21) 7.1e-016 7.1e-016 (0)
0.9 5.4e-011 (21) 6.9e-013 5.7e-016 (1)
1.3 2.2e-010 (21) 6.0e-011 2.5¢-016 (2)
2.1 1.4e-010 (21) 2.1e-008 5.7e-016  (3)
4.1 7.6e-011 (21) 9.6e-005 1.9¢-015 (4)
6.1 1.9e-010 (21) 1.9e-002 1.1e-015 (4)
8.1 8.0e-012 (21) 6.6e-001 1.7¢-015  (5)

TABLE 3. Relative errors (used scaling factor: 2F).

For n = 10, in Table 4 we report on relative errors for the (6,6) Padé approximation,
coupled with different scaling strategies, in a similar way to what we did in Table
3.

w “standard” scaling (k) no scaling (kK =0) improved scaling (k)
0.1 2.5e-010 (21) 7.7e-016 7.7e:016  (0)
0.3 5.8e-010 (21) 2.1e-016 2.1e-016 (0)
0.5 1.3e-009 (21) 2.4e-016 2.4e-016 (0)
0.7 1.2e-009 (21) 3.0e-015 3.6e-016 (1)
0.9 1.0e-009 (21) 6.3e-014 2.9e-016 (1)
1.1 2.6e-010 (21) 7.7e-013 9.56-016 (2)
1.3 1.9e-009 (21) 6.3¢-012 6.2e-016 (2)

TABLE 4. Relative errors Example 3.10; scaling factor: 2%.

4. CONCLUSIONS AND EXTENSIONS.

In this work, we have revisited Padé approximation techniques to compute the
exponential of a block triangular matrix. Our main result has been Theorem 3.2,
which gives improved error bounds for a 2 x 2 block triangular matrix with well
scaled diagonal blocks. As a consequence of this theorem, we have proposed a new
scaling & squaring strategy for matrices of the form (1.2), and given an error analysis
for the new strategy. We have exemplified how the new strategy can lead to accurate
approximations by avoiding overscaling.

We have restricted to 2 x 2 block triangular matrices, since in our opinion this
is the most important case one needs to understand. But, of course, our results
can be used for a block triangular matrix A with any number of diagonal blocks;
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for example, A may have been obtained by a prior Schur reduction. (Of course, in
agreement with what we said at the beginning of Section 3, for us this is of interest
when the diagonal blocks of A are not sufficiently separated — have close, or identical,
eigenvalues). So, suppose that A is in the form

Aqp A2 ... Alp
(4.1) A= ]

0 Az ... Ay

0 .. 0 Ay

Clearly, also F'(A) and a diagonal Padé approximation R(A) to F'(A) have this same
block structure. Now, assuming that all entries of F'(A) are of equal interest, and
that just one Padé approximation R(A) is computed for all of F'(A), we can use
Theorem 3.2 for the 2 x 2 block partitioning of A associated to the most favorable
error bounds predicted by the theorem. In this case, a little thought reveals that
the best 2 x 2 block partitioning is that which achieves

(4.2) min Max [ [JA(L:j, 1)l JAG+1:p.j+1:)] ],
<j<p

where our notation is inherited from (4.1); e.g., A(1: 2,1 : 2) = [“3* 412 ]. Therefore,
in agreement with our discussion on scaling, one may want to scale with respect to
the diagonal blocks of this “best” block partitioning.

This is how one can use the results in this paper if is willing to do just one Padé
approximation for F(A) when A is as in (4.1). Alternatively, one may want to
proceed recursively from the diagonal of F(A) upward, one superdiagonal at the
time. This may be a useful way to proceed in case blocks close to the diagonal
need to be found with greater accuracy, but one may end up computing the same
quantities more than once. For example, suppose that p = 3 in (4.1). We can
find Fis and Fb; by using Theorem 3.2 on the matrices [AO“ ﬁ;;] and [A(? fég],
respectively. To obtain Fi3, we can use Theorem 3.2 with two different choices of
blocking: | (o] fae amt | or [ 16" 2] [42] |, Tofixid hel

g: [8] [A022 2123] or [00]22 [Azg} . 1o fix 1deas, suppose we use the latter
33
choice. But then, we may end up having to rescale the block [AO“ ﬁ;j ] more than how
we had previously rescaled it to compute Fi5, and thus we will end up recomputing
quantities which had already been computed. With our present understanding, this
seems unavoidable.
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