CONDITIONING AND PADE APPROXIMATION OF THE
LOGARITHM OF A MATRIX*

LUCA DIECI" AND ALESSANDRA PAPINT#

Abstract. In this work we: (i) use theory of piecewise analytic functions to represent the
Fréchet derivative of any primary matrix function, in particular of primary logarithms, (ii) propose
an indicator to assess inherent difficulties to compute a logarithm, (iii) revisit Padé approximation
techniques for the principal logarithm of block triangular matrices.
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1. Introduction. Given a matrix A € R**" or C"*", we call logarithm of A
any matrix L such that eX = A. It is well known that A has a logarithm L if and
only if A is invertible, which we will henceforth assume. Amongst the (infinitely
many) logarithms of A, some are primary matrix functions and some are not (see
[6]). Primary functions are those which are true functions on A(A); in this work,
A(A) = {\i(A), i = 1,...,n} indicates the spectrum of a matrix A. Thus, if L is
a logarithm of A, u; € A(L), and A\; € A(A), then L is a primary function if there
exists a (piecewise analytic) function log for which u; =log(\;), i =1,...,n; we will
nonetheless always write L = log(A), even though “log” may fail to be a function on
the spectrum of A.

In applications, it is often important to characterize under which conditions on
real A we also have a real logarithm L. It is well known (e.g., see [6]) that

Given A € R"*"™  a real logarithm L exists if and only if A has an even number of
Jordan blocks of each size relative to every negative eigenvalue. If A has any negative
eigenvalue, such L cannot be a primary matrix function.

Among the real primary logarithms of A, attention has been almost invariably
restricted to the so-called principal logarithm; this is the one whose eigenvalues have
imaginary parts in (—m, 7). Such principal logarithm enjoys a very useful integral
representation:

log(A) :/Ol(A—I)((A—I)t+I)1dt. (1.1)

Recently, there has been some interest in computation of logarithms of matrices,
see [2], [8], [10] and references there. However, there are important questions still
unanswered. In this work, we address the following three issues.

1. All studies so far have only characterized sensitivity of the principal loga-
rithm. In §2, we characterize the sensitivity of any primary logarithm. We base our
approach on the Fréchet derivative of piecewise analytic functions.

2. Arguably, a logarithm L has computational meaning only if one can reliably
verify to what extent L satisfies e* = A. Thus, in §3 we propose a criterion to assess
the inherent difficulty to compute the log of a matrix, precisely by trying to quantify
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how reliably we can verify if e/ = A. This is similar in spirit to what happens with
the square root of a matrix, A'/2, see [1] and [4]. Indeed, we elucidate the relation
between our indicator and the “square roots” indicator of [1] and [4] in the context
of the inverse scaling and squaring procedure.

3. Recently, there has been some criticism of the inverse scaling and squaring
technique coupled with Padé approximation (the so called Briggs’ method) for com-
puting principal logarithms of block triangular matrices; see [10]. In §4, we derive
improved error bounds which show precisely the interplay between inverse scaling and
squaring and accuracy of Padé approximants. As a result, we show that the appropri-
ate implementation of Briggs’ method is still a very viable technique for computing
the logarithm of a block triangular matrix.

2. Fréchet derivative and conditioning. Classical sensitivity considerations
are statements about the variational problem. In the context of functions of a matrix,
this means studying the Fréchet derivative of the function. Therefore, this type of
sensitivity analysis is restricted to primary matrix functions. For the logarithm, this
study has thus far been restricted to principal logarithms, see [8] and [2]. But —as
made clear in [3]- there are many important applications where this restriction just
cannot be made and it is desirable to extend these considerations to any primary
logarithm. To this end, it is convenient to use the Cauchy integral form to represent
a logarithm in the form put forward in [18] for piecewise analytic functions. For the
sake of generality, at first, here below, f is not restricted to be the “log” function.

Let G, k =1,...,q be disjoint domains® of the complex plane, and let G be the
union of these G; for example, the GG, may be disjoint disks. Let f be a single valued
analytic function in the interior of the G’s. Consider all matrices whose spectrum
lies in G, and let A be a fixed one of them. Then, one can define the primary matrix
function f(A) as (see [18, sections 1.2.2-2.6])

1
A) = — I—A)'d 2.1

S = 5 X [ IEET- 4, (21)

where [y, k =1,..., g arerectifiable curves enclosing each and all eigenvalues \; € G},

only once, lying entirely in G, and where integration along each 'y is performed in
the positive direction.

We can now use (2.1) to obtain a formula for the Fréchet derivative: (2.2) below.
This formula may be known, but we did not find it anywhere. Attempts of a similar
flavor for functions analytic on a domain enclosing all eigenvalues were made in [16],
[15] and in [6, 6.6.15]. See also [13] for a different approach.

As usual, the Fréchet derivative of f at A in the direction of the matrix E is the
linear map f'(A) for which

lim | (F(A +hE) = £(4)) = f'(A)E[| =0
(h real). In this paper, ||-|| is the 2-norm; at times, we also use the Frobenius norm
[l -

LEMMA 2.1. With previous notation, the Fréchet derivative of f at A is given by

the map

! R 1 ! —1 —1
f'(A): E = 2—7”]; . f(2)(zI — A E(2D — A)"tdz. (2.2)

IRecall, a domain is open and simply connected.
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Proof. Choose h sufficiently small, so that A(A + hE) C UpG. Then, form the
difference f(A + hE) — f(A) and expand

(21— (A+hE) ™ —(2I—A)7' = (2T - A7 I +hE(zI-A)~ +0(*)-1]. O

Remark 2.2. Tf p is the number of distinct eigenvalues of A, in formulas (2.1) and
(2.2) it is convenient to take ¢ = p. That is, each T}, encloses precisely one of the
distinct eigenvalues of A.

The norm of the Fréchet derivative is ||f'(A)|| = max)z =1 [|f'(A)Z]|. This is a
useful indicator of numerical conditioning of the evaluation of f(A) (see [2, 4, 8, 11,
12]). In fact, let X = f(A) and suppose X # 0, and let X + AX = f(A + E), where
[|E|| is small. Then, at first order we have

JAx]| e
S A EE)

Thus, ||f'(A)|| acts as an absolute error magnification factor, whereas the quantity

(2.3)

[If (A)]| % acts as a relative error magnification factor, and it is called the condition
number of f at A. Of course, this is a measure of conditioning based on worse type
behavior and more refined estimates are possible if A has a particular structure and
one restricts to matrices E for which A + E has this same structure.

Unfortunately, to obtain a sharp estimate of ||f'(A)] from (2.2), is generally

nontrivial. A typical line of action goes as follows. According to Remark 2.2, consider
J

the case ¢ = p in (2.2). Let V1AV = J = [ b ] be a grouping of the Jordan

form of A, so that .J; comprises all Jordan blocks relatlve to the eigenvalue Aj. Thus,

we have

f(AE = 27”2 Y(zI = J) NV EEV) (2D — J) td2V L. (2.4)

Next, since (2I — J) ™! are easy to write down explicitly, repeated use of the Cauchy
formula for analytic functions eventually gives a closed expression for the Fréchet
derivative. But not a particularly useful one for computational purposes, since one
typically gets stuck with the condition number of V. A great simplification occurs
if A is normal, because then V is unitary and J is diagonal. This is the content of
the following Lemma, whose proof is a simple application of the Cauchy formula on
(2.4). A result like this Lemma 2.3 was known to be true for f analytic (see [8] and
12, (1.4))).

LemMMA 2.3. If A is a normal matriz, for the Fréchet derivative (2.2) of the
primary matriz function f(A) in (2.1) we have

17Dl = mae( e 171 v vl R

2.5
1<5<p 1<jk<p, j#k  [Aj — Ag] (25)

Next, we restrict to the case of f(A) being log(A), and specialize the study of
the Fréchet derivative to this case. Of course, we must understand that log(z) makes
sense in the complex plane slit along a ray going from 0 to infinity, and naturally such
ray must not contain any eigenvalue A; of A. So, (2.1) is specialized to read as follows

1 < .
log(A) = 2—2_:/ log(2)(2I — A) " dz, (2.6)
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where the I';, do not intersect one another, nor the ray along which we had slit the
complex plane. It has to be stressed that log(z) is a single valued analytic function
within each 'y, but it is not required to be so in a domain enclosing UiI'y. To be
precise, suppose the plane is slit along the ray arg z = a and we fix a < argz < a+ 27
for all z € ULy, then

log(z) = log|z| +i(argz + 27m), z € Ty, (2.7)

for some m = 0,£1,+£2,..., but the values of m are not required to be the same for
different I'y,. With this in mind, by construction, (2.6)—(2.7) characterize all primary
logarithms. If A is real with no negative eigenvalues, then it has (in general, infinitely
many) real primary log(A). To characterize these, (2.6) is too general. First, we slit
along the negative real axis, so that —m < argz < w. Then, relative to a complex
conjugate pair of eigenvalues of A4, in (2.7) we must take log(pe®®) = pLi(¢p+2mm).
These choices characterize all real primary logarithms.

One can use Lemma 2.3 in the case of log(A), to classify primary logarithms of
normal matrices in terms of which ones minimize || f'(4)[|;. For example, one easily
gets:

(a) “if A and log(A) are complex, and we have chosen the same value of m in

(2.7) in each Iy, then all logarithms give identical value of || f'(A4)|;”;

(b) “if Ais 2 x 2 (real or complex), then the logarithm giving the smallest value
of || f'(A)[|; is the one which minimizes the distance between the imaginary
parts of its eigenvalues.” Therefore, if A is real, normal, with real primary
log(A), it is not necessarily true that the principal logarithm gives a smaller
value of ||f'(A)[[; than a complex logarithm.

3. Inherent difficulties and scaling procedures. Sensitivity assessment
based on the Fréchet derivative is of course restricted to primary matrix functions. In
essence, this type of sensitivity study tells us if we may (or may not) expect that the
computed logarithm L = L + F is close to the exact logarithm L = log(A). See (2.3)
and also [2, 3, 8, 12]. For the sake of the present section, let us henceforth assume that
F is of small norm. On the other hand, L in general has only an indirect meaning, as
solution of the matrix equation e’ = A; therefore, if evaluation of the exponential of
L is sensitive, calculation of L is intrinsically hard, since we cannot reliably verify to
what extent we have solved e’ = A. For this reason, in this section we propose a simple
indicator to assess the inherent difficulty of computing the logarithm, which attempts
to measure how reliably we can verify if we have solved e = A. Our indicator is not
restricted to primary logarithms, and is similar in spirit to the square root indicator
of [1] and [4]; we take this similarity further by elucidating the interplay between our
indicator and the square root indicator in the context of the popular inverse scaling
and squaring procedure.

So, we let e = A = A+ E, and ask when we can expect E to be of small
norm. Or, in a somewhat backward way, is there a reasonable hope that we have
verifiably found the logarithm of a matrix close to the original matrix A? To answer
this question, we are thus led to consider

Bl _ et — et
4] 4]

(3.1)

and the issue has shifted to how to obtain sharp bounds for (3.1). Several different
bounds for (3.1) have been obtained by Kagstrom in [7] and Van Loan in [11]. We
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are interested in bounds which take the form

% < g(v||F|]) B(L), where v is a positive constant, (3.2)
and we require that
(i) g is monotone increasing and g(z) =z + O(z?) for 0 < z < 1,
(ii) B: Le RV*" — R*, 8(0) =1 and B(L) > 1.
Our idea is to regard 8 as an indicator of intrinsic difficulties in computing log(A). In
practice, the success of this approach will depend on how tight is the bound in (3.2).
Generally, g can be expressed as (see [7, (4.1)])

gw|IFl) = eIl -1, (3-3)

and we have experimented with the choices (3.4), (3.5) and (3.8) below for 8 and v
in (3.2)-(3.3). From [6, Corollary 6.2.32], we get

ellLll
v=1, and B(L) = Tl (3.4)

From [7, (4.9)], the following is obtained (a small refinement of [11, (3.2)])

1A = 5)

v=1, =—), .
1Al

where p(L) is the logarithmic norm of L. Recall that, for a matrix B, the logarithmic

norm is (see [17])

hB
w(B) = lim I +hBJ| -1 — lim w

h—0t h h—0t h ’ (36)

and, in the 2-norm, u(B) is the largest eigenvalue of (B 4+ B*)/2. For later purposes,
it is useful to notice that the second of (3.6) gives

. ok
p(B) = lim 2¢ 1og(HeB/2 H) (3.7)

Finally, from [7, (4.15)] (a slight refinement of [11, (3.4)]) we also get

Lk (L)
y= SN ) = e (3.8)

where a(L) is the spectral abscissa of L (i.e., the largest real part of the eigenvalues of
L), and N is the off diagonal part of a Schur form of L. That is, if Q : Q*LQ = D+ N
is a Schur form of L, then D = diag();), and N is the strictly upper triangular part.
To be precise, in (3.8) v is v(L) and hence g also depends on L in this case; for
simplicity we omit this dependence. Notice that 8 in (3.8) is trivial to obtain if
computation of a primary logarithm is done after Schur reduction of A.

LEmMMA 3.1. For all choices of 3 in (3.4), (3.5), and (3.8), we always have 3 > 1
and B(0) = 1. For 8 given in (3.5) and (3.8), we also have B3(L + cI) = B(L) for any
real number ¢, and if L is normal (L) = 1.

Proof. That 3(L) > 1 in (3.4) is obvious. For (3.5), it follows from e*(L) > ||eL||,
and for (3.8) is similar (see [11]). When L is normal, a simple computation shows
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that e*(l) = e®(X) = |le¥||, and thus B(L) = 1 in (3.5), and (3.8). The statement
about L + ¢l is also an immediate verification. O

Remark 3.2. If the original matrix A is highly structured, and the algorithm used
to compute L exploits this structure, it may be possible to provide refinement of the
bound (3.2). An obvious case is if A is block—diagonal: A = diag A;;, i =1,...,p,
and one computes L;; = log(A;;); then, in this case, it is more appropriate to look at
the factors (3 relative to each diagonal block. A less trivial instance of this occurrence
will be seen in §4.

Remark 3.3. Our numerical experiments showed that, in general, the bound (3.4)
is not satisfactory, and (3.5) is often only a modest improvement over (3.4), whereas
(3.8) gives the most satisfactory results. This is in agreement with the results of [11].
Nonetheless, the 3 values in (3.4) and (3.5) are so inexpensive to compute that we
have included them in this study.

Next, we restrict to principal logarithms of real matrices. In such case, a popular
procedure to compute the logarithm exploits the relation

log A = 2% log(Al/Qk) , (3.9)

where the progressive square roots have been taken so that the arguments of their
cigenvalues are in the strip (—r/2%, 7/2F). Since A'/2" approaches the identity, for
k sufficiently large it should be easy to compute log(A'/ 2k) to full precision, and
then obtain log A. This approach, known as “inverse scaling and squaring,” was first
put forward in [8]. The crux of the technique is the computation of square roots of
matrices. In [1] and [4], the authors propose an indicator to quantify the inherent
difficulty of computation of a square root of A; this indicator is defined as

||
Al
and clearly a(A'?) > 1. Also, a(A'/?) = 1 if A is normal and A'/? is a primary
square root (see [4]). Next, we want to understand whether or not the inverse scaling
and squaring procedure may have introduced additional difficulties (as detected by
the factor «) with respect to the intrinsic difficulty of computation of the logarithm

(as detected by the factor 3).
LEMMA 3.4. With respect to the choices of B(L) in (3.4) and (3.5), we have

BL) = (B(L/2)*a(A'?), (3.11)

whereas with respect to (3.8) we have

a(AY?) = (3.10)

B(L) = (B(L/2))*a(4?)

(3.12)

Proof. To prove (3.11) for § in (3.4) is simple:

ellL/2ll o, elLll 1Al
A7 TAL Az

In a similar way, for 8 in (3.5), (3.11) is true since p(L/2) = u(L)/2. To show (3.12),
we have
: “Dy(L) |4l (/2P
/7)) = LU A
GER) = =) [ v(D)
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COROLLARY 3.5. Let k be a positive integer. For B(L) in (3.4) and (3.5), we
have

k

B(L) = (B(L/25)?" [ (a(a?))* . (3.13)

j=1

For (8 in (3.8), instead, we have

Eal

B(L) = (BL/2%)? [[(a(a?y* ™ 1B (3.14)
]1;[1 (v(L/2%))
(Il
COROLLARY 3.6. For (3 given in (3.8), in (3.12) we have
PERE 5y (aeipaat’) > aw). (3.15)

v(L) ~ 7

Proof. Some algebra gives

2n—2 k—n
v (L/2) = v(L)+S, S := Z”Qkkl —2Z<’;>].

=0

Therefore, we have

> __BL)
(B(L/2))" = a(A1/2)(1+V(L)). 0

We are now ready to answer whether or not computation of log(A4) through the
inverse scaling and squaring procedure may have introduced additional difficulties with
respect to the intrinsic difficulty of computation of log(A). The general situation is
already clear after one square root, that is when we use log(4) = 2log(4'/?). We
have to compare B(L), with the product 3(L/2) a(A'/?). By putting together the
results of Lemma 3.4 and Corollary 3.6, it is easy to obtain:

With respect to 3 in (3.4) and (3.5), taking square roots does not lead to a harder
computational task, that is:

B(L/2)a(AY?) < B(L). (3.16)
With respect to 8 in (3.8), we instead have

ea(L/2) I/(L)

B = BLIDRA) [ T

] (3.17)
The correct interpretation of (3.16) is more a statement about the inadequacy of the
factors B in (3.4)—(3.5) to reveal computational difficulties, than a statement about
real simplifications in computing log(A) which occurs when using inverse scaling and
squaring. Instead, (3.17) lends itself to a more insightful and honest interpretation. In
general, taking square roots may ease the computational task, or increase it, depending
on whether the quantity in bracket in (3.17) is greater or less than 1. A complete
characterization of matrices for which the quantity in bracket in (3.17) is greater than
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1 seems out of reach, but we observe that for normal matrices it is 1; in fact, since
both # and « equal 1, for normal matrices taking square roots does not change the
inherent difficulties of computing log(A). Otherwise, the following examples show

that computational difficulties, as measured by the ratio % of (3.17), can

be either increased or decreased by inverse scaling and squaring.

10° T

Ezample 3.7. Consider
A= [eoc bee:], with logarithm
L =[§t]. For this example,
taking square roots may make
matters worse. In the figure
on the right we show a “log-
log” plot of the ratio

B(L
W for b € [10, 105]

. .
10 10° 10° 10 10°

Example 3.8. Consider now the matrix A =

B(L)
we have gz za(ar

square roots.

Clearly, no matter which factor 3 we are using, since 3(0) = 1, and B(L/2F) > 1,
limy_, oo B(L/2%) = 1. This tells us, if needed, that it is easy to compute the principal
logarithm of a matrix close to the identity. However, it is of practical interest to study
the rate at which B(L/2*) — 1. We need the following result on the logarithmic norm.

LEMMA 3.9. Let A € R™™ ™ be invertible with no eigenvalues on the negative
real azis, and let L be its principal logarithm. For each k € 7+, let AY/?" .= el/2"
be the k—th root of A whose eigenvalues have arguments in (—m /2%, 7/2%), and let

~ 6.24, and hence the computational task is eased by taking

. AL/2* 2
a(AV/?") = A= Then
2k
D) = lim HAW’“ , (3.18)
k—o00
and
k )
L) _ . 1729271
0 = 4l Jim [aa )" (3.19)

Proof. Using (3.7) to characterize u(L), (3.18) is obvious:

HZk 2k

k

limp_, o0 10 HeL/Z . ok

(L) lime— g( ) _ lim |leX/2
k—o0

Now, (3.19) follows from (3.18) and the identity

2k

Hfll/zk
1Al

LEMMA 3.10. Under the same assumptions of Lemma 3.9, we have:

2k71

= a(AV2)(a(A))? - (a(AV)) O
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(i) for B in (3.4):

lerr;o(ﬁ(L/2k))2k = eltl-u), (3.20)

(i) for B in (3.5):
klirrgo(ﬂ(L/2k))2k = 1; (3.21)

(iii) for B in (3.8):
kllnéo(ﬁ(Lm))Zk = lINIFa(L)—u(L) (3.22)

where N is the strictly upper triangular part in a Schur form of L. In particular,
asymptotically,

~ : N
B(L/2%) m eleB)=nEN/27(1 4 %). (3.23)

Proof. Let us begin showing (3.21). Upon using (3.19) and (3.13), we have

B(L) = lim (B(L/2)* A(L),

k—o0

which is (3.21). (3.20) follows similarly from (3.19) and (3.13). To show (3.22), we
pass to the limit as £k — oo in (3.14), and use (3.19), to obtain

. k)25 _ a(L) —u(L) 1 k) 2"
Jim (B(L/24)" = e e Jim (v(L/25))" .
n-1 [|N/2t|
i=0 71

Recalling that v(L/2F) =Y , we have

1+ < u(L/2%) < INI/2"

VI
9k

ok
and therefore limg_, (1/(L/2’“))2 = elVll and (3.22) and (3.23) follow. ]

4. Block triangular matrices and Schur—Fréchet method. In this section,
we revisit the familiar Briggs method (inverse scaling and squaring with Padé approx-
imants) for computing the principal logarithm L of a (real) block triangular matrix R:
L = log(R) (hereafter, the notation “log” always refers to the principal logarithm).
We can think of the triangular matrix R as the result of Schur reduction of a matrix
A. Thus, we have

Ri1 Ri2 ... Rip Liyy L1z ... L1,
R = |9 frfor)  L=log(R)=| 9 f=l (4.1)
SO VR, N

Clearly, in (4.1), L;; = log(R;;). The issue is how to determine the off diagonal
blocks L;;. Restrict to the case of p =2 in (4.1):

R=[fr12]  L=log(R)=[" 2] . (4.2)



10 LUCA DIECI and ALESSANDRA PAPINI

Before discussing ways to obtain L3, we must understand if computation of Li,
presents some “inherent difficulties.” We proceed along the lines of §3.

Let R and L be as in (4.2). In agreement with our previous Remark 3.2, we
assume that the chosen algorithm of solution has respected this block structure, and
thus may look at relative errors in a block sense. That is, with F = [*3* {12, where

L + F represents the computed logarithm, we look at

o5 ] et~ Rl (e~ Rl
([ Rl ’ || Raz | ’ (| Raz||

(4.3)

Then, there are three distinct inherent difficulties in computing L: one relative to
L1, one relative to Loo and one relative to Lis. The first two we treated in §3, here
we deal with the third one. We will need the familiar formula (e.g., see [11]):

1
€L = I:ELM X :| 5 X:/ eLll(l_s)ngeLZZSdS. (44)
0

0 el22

We let (e“TF)15 = Y, and with some algebra get

Y — X|| |Fiol| ! | L1zl + || Frz]|
< h(s)ds + L=zl 1l
[1X]] X1 Jo |1 X1]

/0 h(s) [g(r1(1 = s) [[F11l))g(vas || Faa ) B((1 = ) L11) B(s La2)
+ g1 (1 = ) |Fu1]])B((1 — ) L11) + g(v2s || Faz||) B(sLaz)]ds |

where h(s) := ||e(!=9)L11|| |le*L22|| and g and 3 are the functions in (3.2), and (3.3).
Recall that we assume that g(z) = =z + O(z?) for 0 < z < 1, and that the values
of 8 and v in which we are interested are given in (3.8). Now, we assume that
lviFill <m,i=1,2, with n < 1, and therefore from (4.5) we get

Y - X|| _ 1Pl [
X = 11X o

L)l [

] ), Bk 067, (46)

h(s)(1 +nb(s))ds +n

where b(s) := B((1 — s)L11) + B(sLaz2). Since obviously h(0) = |lel11]| and h(1) =
|lel22]|, we arrive at the interesting conclusion that obtaining L;» may be an intrin-
sically hard computational task whenever h(s), 0 < s < 1, is much larger than the
maximum of ||ef11|| and ||eZ22||. This cannot happen if L;; are normal (that is, if R;;
are). This claim can be verified as follows. Suppose that Ry, @ = 1,2, are normal,
and recall that for normal matrices 3(-) = 1. Then, with notation and results from
Lemma 3.1, we have

He(lfs)Lu = e(l=salln) | |lgoban | = goa(Loz)

where a(L;;) indicates the spectral abscissa of the L;;, i = 1,2. Therefore, in this
case, h(s) = e(1=s)a(lu)+sa(l2z) which is a monotone function, and the claim follows.
Example 4.1. Consider again Example 3.7. Obviously Rj; = Rss are normal, and
there is no intrinsic difficulty in computing Li» = b which is not already reflected in
(and by) the computation of Li; and Las.
Next, consider possible ways to approximate Ly in (4.2).
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(a) Parlett’s method. This well known general procedure rests on the identity
RL = LR (see [14]). From this, if A(R11) N A(R22) = 0, one can uniquely
find L5 by solving

Ri1Lis — LiaRoy = Li1Ri2 — RiaLlos. (4.7)

Remark 4.2. If the blocks Ry; and Ry» are sufficiently separated, so that the
Sylvester equation (4.7) is well conditioned (see [5]), then it is hard for us to
think of a better method to determine L5 than this one. The difficulty of this
approach is to determine a priori if the Sylvester equation is well conditioned.
In [2], we used a simple criterion based on the spectra of the diagonal blocks,
and found it to be empirically reliable. However, if use of the identity (4.7) is
not computationally feasible (say, the equation is singular), then some other
way to obtain L must be found.

(b) Padé approximation. Here, one uses Padé rational functions to approximate
log(R) = log((R —I) + I). Therefore, L;5 is obtained at once along with Ly
and Los. Good choices are diagonal Padé approximants.

Since Padé approximations are accurate only when R is “close to the identity,”
a standard practice is to exploit the relation (3.9) (with R there) and use Padé
approximants for log(R!/2"). The resulting approach is known as Briggs’
method; it was first put forward in [8], and has enjoyed good success.

From a practical point of view, because of Remark 4.2, we think that Briggs’
method is of greater appeal when solution of the system (4.7) is not advisable.
Since our scope in this section is to revisit this Briggs’ technique, we will
assume that “the matriz R € R"™"™ in (4.2) does not have a blocking with
Ry; and Ry well separated.” In particular, if R is in real Schur form, and
we label its eigenvalues A;, ¢ = 1,...,k, k < n, writing only once a complex
conjugate pair but repeating multiple eigenvalues, then for each fixed A; there
exists a Aj, j # ¢, such that |\; — A\;| < 4.

(c) Fréchet technique. This is also a general procedure, which for the logarithm
consists in exploiting the Fréchet identity

L= [t L]+ (5 D 5% (48)

where log' (B)Z is the Fréchet derivative of the logarithm at B in the direction
Z. Therefore, one needs to get

Liz =(10g'(["3" w2 1) [0 52112 (4.9)

The Fréchet method proposed in [10] is based on approximating the Fréchet
derivative of the logarithm in (4.9) by means of the hyperbolic tangent func-
tion.
Naturally, no matter what approach we use to obtain L;», we must be at the
same time solving (4.7) and satisfying (4.9).
THEOREM 4.3. Let R and L be as in (4.2). Then we have

Ly = /1((R11 —Dt+1)7'Riy(Roe — Nt + 1)~ dt =
0 (4.10)

1 1
: / L1 (t)R12L2 (t)dt =: / F(t, ng)dt 5
0 0
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where we have set Li(t) := ((Ry; — Dt +1)~%, i = 1,2. Lo in (4.10) is the only
solution of (4.7) which eventually gives a principal logarithm L. Also, the expressions
(4.10) and (4.9) are identical.

Proof. To show (4.10), just use (1.1) and the block structure. To check that
(4.10) solves (4.7), regardless of whether the spectra of R;; and Rpp are disjoint,
substitute Li5 from (4.10) and use (1.1) for both Ly; and Lay. That (4.10) and (4.9)
give the same expression for L5 is verified using the analytic expression of the Fréchet
derivative given in [2, (3.13)]. O

Theorem 4.3 suggests that to approximate the Fréchet derivative of the logarithm
in (4.9) one might approximate the integral in (4.10) with a quadrature rule. For
argument sake, suppose we do so, say with any of the standard polynomial rules.
Then, it is simple to observe that to obtain good bounds for the quadrature error we
generally need R;; and R»» close to the identity. However, R;> does not necessarily
have to be close to 0 if we are interested in relative accuracy for Ly>. This observation
is at the basis of our revisitation of Briggs’ method.

We must appreciate that in previous works on computation of the logarithm, in
particular in [2, 9, 8], Padé approximations were used to approximate L in (4.2) by
attempting to control the absolute error. That is, if L was the computed approxi-
mation, one tried to ensure that

HL—iH <, (4.11)

where 7 is a small number, say the machine precision EPS. Since the original error
estimates in [9], it has been clear that Padé approximations cannot obtain a small
absolute error in (4.11), unless ||I — R|| is sufficiently small. For this reason, people
have been using (3.9) to work with R'/2*, where k was chosen so that || — RY/2"|| was
sufficiently small. E.g., in [2], we chose k so that ||[I — R'/2"|| < 0.35 and then used
the (9,9) diagonal Padé approximant, which guarantees —in absence of other errors—
a value of n below EPS (see the first estimate in (4.14)). We also remarked that
use of (3.9) may lead to undesired flattening (towards the identity) of the spectra of

Ri{? and R;fk, and observed that (in some ill conditioned problems) this eventually
produced loss of precision. In [10], the authors imputed this loss of precision on
the possible loss of significance incurred when forming I — R/ 2", Indeed, in [10],
the declared motivation for the Fréchet method and the direct approximation of
the Fréchet derivative by the hyperbolic tangent, was the intent to avoid forming
I — RY?". Kenney and Laub claimed that this technique allowed them to obtain
better accuracy than with the standard Padé method. However, we believe that the
real reason behind the reported success of the approach in [10] has nothing to do with
avoiding the subtraction I — Rl/Zk, or the Padé method. To substantiate our claim,
let us begin by looking at a simple Example.

Ezample 4.4. In Table 1 we report on some results relative to Example 3.7 (see
also [10, Example 2]) for several values of ¢ and constant b, b = 10°. The results have
been obtained exploiting the relation log(R) = 2* log(Rl/zk), and we used the (9,9)
diagonal Padé approximation to obtain the logarithm of R!/2". In Table 1, k is the
number of square roots taken before using the Padé approximation for the logarithm,

k
w = |[I=R"?" o, w; = ||[—R§i/2 lloo , i = 1,2, “abs” refers to the matrix of absolute

errors: abs;; = |L;; — L;j|, and “rel” is the matrix of relative errors: rel;; =

abs;;/ |Lij|. These numerical experiments were performed in Matlab, with machine
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TABLE 1
Briggs-Padé method on Example 3.7: 1.

13

c k w w1 = wo abs rel

0.1 0 | 1.105E6 | 0.105 [BE 1T 2E10] [BE, 10 45 18]

01 (22| 022 |1424E-8| [3EF108E-10] [3E-965-16]
BHE— E— E— E—

0.3 0 | 1.35E6 | 0.3498 | [>*G71 S50 | [*%5 " 56 6]

09| 2| s | o025 [[RisE R [ (%040

precision EPS & 2.2FE — 16 (exponential notation is used throughout). In Table 2,
we instead report on the absolute and relative error matrices after exponentiating

L, “ABS” and “REL,” where ABS;; = ‘(R—ef’)ij‘ and REL;; = ABS;;/ |Rij| (see §3
and (4.3)), for the same values of ¢ and k as in Table 1. The results highlight some

TABLE 2
Briggs—Padé method on Example 3.7: II.

c k ABS REL
0.1)0 [60] [60]
o[22 [ P50 5E 4] | (%" gk
0.3 0 [8 9.3E(')710] [8 6.9E(‘)716]
09 [ 2 [ [“500E 8] [ 5 136 4]

interesting features: (i) taking as many square roots as would have been needed to
obtain HI — RY/? H < 0.35, as in the second row of Table 1, then we eventually lose

seven digits along the diagonal of L, but the (1,2) entry has full accuracy (look at the
relative errors in Table 1); (ii) taking k so to bring only the diagonal of R to within
w (rows 1, 3 and 4 of Table 1) gives full precision on the diagonal of L and maintain
accuracy for the (1,2) entry. The loss of precision observed for ¢ = 0.1 and k = 22 is
easily explained as follows: write (ec)l/222 = 1+ x. After 22 square roots the number
e has the finite precision representation 1.000000023841858, so that only eight digits
of z are retained. Now, since log(1 + z) = z — 2?/2 + 23/3 — ... | in the double
precision representation of the number log(1l 4+ =) we should not expect anything
better than eight digits accuracy (seemingly, we got nine). It is important to stress
that the observed loss of digits is unavoidable given the finite precision representation
of z, and no algorithm to approximate the logarithm can avoid it, subtracting 1 or
not. Apparently, the only way to avoid it is to take fewer square roots, so that x has
more (say, sixteen) significant digits. To explain why the (1,2) entry is always fully
accurate, we need to wait until Theorem 4.6 below. Finally, the results of Table 2
are in striking agreement with the bound (4.6); in particular, for the second row of

Table 2, with the notation from (4.6), n ~ 10710, HHL;(Q”H ~ 1, and h(s) ~ 1.

Example 4.4 makes it evident that the approximation goal expressed by (4.11)
(with 7 ~ EPS) is not attainable, in general. Moreover, the legitimate suspicion is
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that problems are caused by taking square roots. We quantify this next.

LEMMA 4.5. Let RY/2" and R'/?" be the exact and computed k-th square roots
of R respectively, where k has been chosen so that ||I — R1/2k|| =w < 1. Let L™ pe
the approximation obtained for log 1%1/2’“7 for example with the (N, N) diagonal Padé.
Let || log RY/2 — ﬁ(k)|| < n be the absolute error in approximating the logarithm, and
”R1/2’° _p/ek I

IR/

< 0 be the relative error in the computed k-th root. Then, we have
Hlog RV k)H <nt HRW H +0(6), (4.12)

and therefore with L =2FL*) one has

+0(6%)). (4.13)

HlogR—ﬁH <28+ ‘Rl/zk

l—w‘

Proof. We have

IN

Hlog RY/?* — ﬂ’”“ log R1/2" — log RY/?" H + Hlog R/ L(’“)‘
tog!(121/2")|| [|m2/2" = B2 | + |10g 222" - L0

O(HRW —Rl/Qk‘ Y.

A

Now we use [2, estimate after (3.2)] to get ||log' (R'/2")| < T and the proof is
complete. O

Suppose we use a very accurate formula to approximate log RY/ 2k, so that (theo-
retically) n < EPS. Then, the overall computational error is controlled by the relative
accuracy in the k-th root, 6, and the magnification factor 2¥. In the best case, § ~ EPS,
an approximate equality which can be achieved in case R is normal, but even in this
case these O(EPS) errors may be magnified by 2*.

Another important feature exhibited by Example 4.4 is that L;» is accurate. This
is a consequence of the following result.

THEOREM 4.6. Let R be partitioned as in (4.2) with Ry € RM™MX™ Ry €

k 1/2" ; k R{Y RYY

R %72 qnd Ryy € R > Let R%) := RY?" and write R™®) (1)1 R%If) , where
22

k is the smallest integer such that HI — RY;)H <w <1 and HI— Ré’;)H <wr <1

for preassigned values of wy and wy. Let w = max(w;, ws), and let P = [Pél gz]

be the approzimation obtained with the (N, N) diagonal Padé approzimant for Lk =
log(R™). Then, we have the following error bounds

Wi \2N+1 .
= Pl <M ()T i=12,
4.14)
eN+1)!, w (
|28 - mo < cton |2 | =5 (20
where ¢(N) = % Further, we have the following bounds for ||R ||

1
(o] < mi] < 7= ] (419
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which lead to a computable relative error bound in the second of (4.14).

Proof. The starting point of the proof is to recall that the (IV, N) Padé approx-
imant is the same as the N-point Gauss-Legendre quadrature rule for the integral
n (1.1); therefore, with M = I — R®)| we have the following error estimate (see [2,
Theorem 4.3 and Corollary 4.4])

o0
LM — P =¢(N)> 2N +j)... (5 + HM* N tiyl, (4.16)
j=0
where 0 < n; < 1. Now, partition M = [4§], and notice that MP =
Ap EP*I AP—ICBI )

v By assumption we have ||A|| < w; < 1 and ||B|| € w2 < 1,

SO that (taking norms of sub-blocks on the right hand side of (4.16)) we immediately
get
Ly = Pl - <e(V) YN +4) . (G + DN =12,
L~ P < e(N)ICHEE0@N +4) (+ D) T ;Nﬂ-—lwé
<c (N)||C||Z;.;0(2N+j+1)...(]+1) 2N+j _

To complete the proof of (4.14), we observe that

ad 2N
;(2]\7 +4) .G+ 1) ﬁ )

from which (4.14) follows. To obtain (4.15), we first use (4.10) to get

1
L = / (R® — Dt + D BE (RY — Dyt + 1)~dt,

and we notice that if ||R(k — I|| < w; then ||((R(k Dt+1)71 <
Therefore,

1 .
ol i =1,2.

1
|62 <122 || r—oma—an

On the other hand, from (4.4), we also have

] < ] [ e

Now, []e™" | < el 4V, and ILP| < wi fy
m ; from these, we get

m| <] [
H 1—w11t1—w2)

Finally, to get (4.15), it is enough to observe that (1 —w;)!=t(1 —wsy)! > (1 —w), and

also (1_wlt)1(1_w2t) < = wt)Z’ for 0 <t < 1. a

Remark 4.7. From (4.14) and (4.15), if w = max(w;,wsz) < 0.30, we should get a
(k)

fully accurate approximation for L5, in agreement with the results of Example 4.4.

k
H Ly)s

—log(1 — w;) . Thus, ||eL§?)t|| <

d —
1—w;t —
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The fundamental implication of Theorem 4.6 is that a (diagonal) Padé approxi-
mation for L produces an approximation for Lis accurate in a relative error sense, if
the resulting approximations for L;; and Loy are accurate in an absolute error sense.
To be precise, the estimates (4.15)—(4.14) predict a loss of precision: for w = 0.3, the
relative eror bound for the approximation to Lo is about 50 times as large as the
absolute error bound in the approximations of Li; and Lss. The situation is quite
similar to what was obtained in [10]. However, we carry out the approximation of
Ly indirectly by using Padé approximations for all of L at once, rather than directly
as done in [10], without sacrificing accuracy. The need for the k-th square root in
Theorem 4.6 is also present in the Schur—Fréchet algorithm of Kenney and Laub; this
is what “Step 1” of the algorithm in [10, p. 651] accomplishes. However, it should be

realized that in our Theorem 4.6 the value of k is not chosen so that ||] — RY/? I <1,

like in [10, Lemma 3.1 and later], but only so that || — R;i/2k|| <1l,i=1,2.Fi

nally, as we had already remarked, there is no true issue associated to forming the
subtraction || — RY/2"||; regardless, the shift of emphasis from a global error bound
as in (4.11) to such an estimate only for the diagonal blocks makes it quite likely that
fewer square roots of R must be taken, and thus less likely that accuracy gets lost
(see Lemma 4.5).

It is of course possible to extend the above considerations hinged on Theorem 4.6
to matrices as in (4.1). Although there are many subtle algorithmic issues which arise
when we increase the number of blocks, Theorem 4.6 continues to hold for all possible

choices of block-(2 x 2) submatrices. For example, suppose we have a block-(3 x 3)

Ri1 Ri2 Rais
0 Ro22 Ros
0 0 Rgss

17— [ 2] < wip < 1, or [T —["2 ]| <wys <1 (or both). Finally,

take the (N, N) Padé approximant for log R (all of it). Theorem 4.6 applies and we

can use the most favorable error estimates predicted by the theorem. We will think

of the computed Li» and Ls3 as coming from the approximation to the logarithm

of [Hir 2] and [ 22 B2 ]| respectively; the approximation for L3, instead, can be
22 33

. . e . . Ri11 [Ri2 Risz]
thought of as coming from two different block partitionings: (i) R = | [Rzz Rzg]

matrix: . Now, assume that || — R;|| <w; <1,i=1,2,3, and that

)
0 Rss

[ raz] [722]
0 R33

more convenient for us, in particular gives us better error estimates from (4.14).

or (ii) R = . We are free to pick whichever block partitioning is

5. Conclusions. In this work we have:

(i) classified, and obtained conditioning information for, primary logarithms of

matrices by using piecewise analytic functions theory;

(ii) proposed an indicator of the inherent difficulty to compute the logarithm of

a matrix;

(iii) revisited Padé approximation techniques to compute principal logarithms of

block triangular matrices.

From the practical point of view, the most important outcome of this work is
that we have shown that the familiar Padé approximation technique with inverse
scaling and squaring is still a viable way to compute the logarithm L of a triangular
matrix R as in (4.2) with close eigenvalues; however, there are situations where one
should not try to obtain an absolute error bound for the approximate L, but only
for its diagonal blocks, while a relative error criterion is more appropriate for the
off diagonal block. As a consequence, the number of square roots which we need to
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perform is not determined by the distance of the whole matrix from the identity, but
rather by the distance from the identity of its diagonal blocks.

We believe that the above point (iii) has far reaching theoretical and practical

implications, and we anticipate some work along similar lines also for the exponential
of a matrix.
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