
CONDITIONING AND PAD�E APPROXIMATION OF THELOGARITHM OF A MATRIX�LUCA DIECIy AND ALESSANDRA PAPINIzAbstract. In this work we: (i) use theory of piecewise analytic functions to represent theFr�echet derivative of any primary matrix function, in particular of primary logarithms, (ii) proposean indicator to assess inherent di�culties to compute a logarithm, (iii) revisit Pad�e approximationtechniques for the principal logarithm of block triangular matrices.AMS subject classi�cations. 65F30, 65F35, 65F99, 15A24Key words. Logarithm, conditioning, Fr�echet derivative, Pad�e approximation1. Introduction. Given a matrix A 2 Rn�n or C n�n , we call logarithm of Aany matrix L such that eL = A. It is well known that A has a logarithm L if andonly if A is invertible, which we will henceforth assume. Amongst the (in�nitelymany) logarithms of A, some are primary matrix functions and some are not (see[6]). Primary functions are those which are true functions on �(A); in this work,�(A) = f�i(A); i = 1; : : : ; ng indicates the spectrum of a matrix A. Thus, if L isa logarithm of A, �i 2 �(L), and �i 2 �(A), then L is a primary function if thereexists a (piecewise analytic) function log for which �i = log(�i); i = 1; : : : ; n; we willnonetheless always write L = log(A), even though \log" may fail to be a function onthe spectrum of A.In applications, it is often important to characterize under which conditions onreal A we also have a real logarithm L. It is well known (e.g., see [6]) thatGiven A 2 Rn�n , a real logarithm L exists if and only if A has an even number ofJordan blocks of each size relative to every negative eigenvalue. If A has any negativeeigenvalue, such L cannot be a primary matrix function.Among the real primary logarithms of A, attention has been almost invariablyrestricted to the so-called principal logarithm; this is the one whose eigenvalues haveimaginary parts in (��; �). Such principal logarithm enjoys a very useful integralrepresentation: log(A) = Z 10 (A� I)((A� I)t+ I)�1dt : (1.1)Recently, there has been some interest in computation of logarithms of matrices,see [2], [8], [10] and references there. However, there are important questions stillunanswered. In this work, we address the following three issues.1. All studies so far have only characterized sensitivity of the principal loga-rithm. In x2, we characterize the sensitivity of any primary logarithm. We base ourapproach on the Fr�echet derivative of piecewise analytic functions.2. Arguably, a logarithm L has computational meaning only if one can reliablyverify to what extent L satis�es eL = A. Thus, in x3 we propose a criterion to assessthe inherent di�culty to compute the log of a matrix, precisely by trying to quantify�This work was supported in part under NSF Grant DMS-9625813 and Nato Grant CRG 950865.ySchool of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332 U.S.A.(dieci@math.gatech.edu)zDep. Energetica S. Stecco, Univ. of Florence, via C. Lombroso 6/17, 50134 Florence, Italy(papini@de.unifi.it) 1



2 LUCA DIECI and ALESSANDRA PAPINIhow reliably we can verify if eL = A. This is similar in spirit to what happens withthe square root of a matrix, A1=2, see [1] and [4]. Indeed, we elucidate the relationbetween our indicator and the \square roots" indicator of [1] and [4] in the contextof the inverse scaling and squaring procedure.3. Recently, there has been some criticism of the inverse scaling and squaringtechnique coupled with Pad�e approximation (the so called Briggs' method) for com-puting principal logarithms of block triangular matrices; see [10]. In x4, we deriveimproved error bounds which show precisely the interplay between inverse scaling andsquaring and accuracy of Pad�e approximants. As a result, we show that the appropri-ate implementation of Briggs' method is still a very viable technique for computingthe logarithm of a block triangular matrix.2. Fr�echet derivative and conditioning. Classical sensitivity considerationsare statements about the variational problem. In the context of functions of a matrix,this means studying the Fr�echet derivative of the function. Therefore, this type ofsensitivity analysis is restricted to primary matrix functions. For the logarithm, thisstudy has thus far been restricted to principal logarithms, see [8] and [2]. But {asmade clear in [3]{ there are many important applications where this restriction justcannot be made and it is desirable to extend these considerations to any primarylogarithm. To this end, it is convenient to use the Cauchy integral form to representa logarithm in the form put forward in [18] for piecewise analytic functions. For thesake of generality, at �rst, here below, f is not restricted to be the \log" function.Let Gk; k = 1; : : : ; q be disjoint domains1 of the complex plane, and let G be theunion of these Gk; for example, the Gk may be disjoint disks. Let f be a single valuedanalytic function in the interior of the Gk's. Consider all matrices whose spectrumlies in G, and let A be a �xed one of them. Then, one can de�ne the primary matrixfunction f(A) as (see [18, sections I.2.2{2.6])f(A) = 12�i qXk=1 Z�k f(z)(zI �A)�1dz ; (2.1)where �k; k = 1; : : : ; q are recti�able curves enclosing each and all eigenvalues �j 2 Gkonly once, lying entirely in Gk, and where integration along each �k is performed inthe positive direction.We can now use (2.1) to obtain a formula for the Fr�echet derivative: (2.2) below.This formula may be known, but we did not �nd it anywhere. Attempts of a similaravor for functions analytic on a domain enclosing all eigenvalues were made in [16],[15] and in [6, 6.6.15]. See also [13] for a di�erent approach.As usual, the Fr�echet derivative of f at A in the direction of the matrix E is thelinear map f 0(A) for whichlimh!0  1h (f(A+ hE)� f(A))� f 0(A)E = 0(h real). In this paper, k�k is the 2-norm; at times, we also use the Frobenius normk�kf .Lemma 2.1. With previous notation, the Fr�echet derivative of f at A is given bythe map f 0(A) : E ! 12�i qXk=1 Z�k f(z)(zI �A)�1E(zI � A)�1dz : (2.2)1Recall, a domain is open and simply connected.



CONDITIONING AND PAD�E APPROXIMATION 3Proof. Choose h su�ciently small, so that �(A + hE) � [kGk. Then, form thedi�erence f(A+ hE)� f(A) and expand(zI� (A+hE))�1� (zI�A)�1 = (zI �A)�1[(I +hE(zI�A)�1+O(h2))� I ] :Remark 2.2. If p is the number of distinct eigenvalues of A, in formulas (2.1) and(2.2) it is convenient to take q = p. That is, each �k encloses precisely one of thedistinct eigenvalues of A.The norm of the Fr�echet derivative is kf 0(A)k = maxkZk=1 kf 0(A)Zk. This is auseful indicator of numerical conditioning of the evaluation of f(A) (see [2, 4, 8, 11,12]). In fact, let X = f(A) and suppose X 6= 0, and let X +�X = f(A+E), wherekEk is small. Then, at �rst order we havek�XkkXk � kf 0(A)k kAkkXk kEkkAk : (2.3)Thus, kf 0(A)k acts as an absolute error magni�cation factor, whereas the quantitykf 0(A)k kAkkXk acts as a relative error magni�cation factor, and it is called the conditionnumber of f at A. Of course, this is a measure of conditioning based on worse typebehavior and more re�ned estimates are possible if A has a particular structure andone restricts to matrices E for which A+E has this same structure.Unfortunately, to obtain a sharp estimate of kf 0(A)k from (2.2), is generallynontrivial. A typical line of action goes as follows. According to Remark 2.2, considerthe case q = p in (2.2). Let V �1AV = J = h J1 ::: Jp i be a grouping of the Jordanform of A, so that Jk comprises all Jordan blocks relative to the eigenvalue �k. Thus,we havef 0(A)E = V 12�i pXk=1 Z�k f(z)(zI � J)�1(V �1EV )(zI � J)�1dzV �1 : (2.4)Next, since (zI � J)�1 are easy to write down explicitly, repeated use of the Cauchyformula for analytic functions eventually gives a closed expression for the Fr�echetderivative. But not a particularly useful one for computational purposes, since onetypically gets stuck with the condition number of V . A great simpli�cation occursif A is normal, because then V is unitary and J is diagonal. This is the content ofthe following Lemma, whose proof is a simple application of the Cauchy formula on(2.4). A result like this Lemma 2.3 was known to be true for f analytic (see [8] and[12, (1.4)]).Lemma 2.3. If A is a normal matrix, for the Fr�echet derivative (2.2) of theprimary matrix function f(A) in (2.1) we havekf 0(A)kf = max� max1�j�p jf 0(�j)j ; max1�j;k�p; j 6=k jf(�j)� f(�k)jj�j � �k j � : � (2.5)Next, we restrict to the case of f(A) being log(A), and specialize the study ofthe Fr�echet derivative to this case. Of course, we must understand that log(z) makessense in the complex plane slit along a ray going from 0 to in�nity, and naturally suchray must not contain any eigenvalue �i of A. So, (2.1) is specialized to read as followslog(A) = 12�i pXk=1 Z�k log(z)(zI �A)�1dz ; (2.6)



4 LUCA DIECI and ALESSANDRA PAPINIwhere the �k do not intersect one another, nor the ray along which we had slit thecomplex plane. It has to be stressed that log(z) is a single valued analytic functionwithin each �k, but it is not required to be so in a domain enclosing [k�k. To beprecise, suppose the plane is slit along the ray arg z = � and we �x � < arg z < �+2�for all z 2 [k�k, thenlog(z) = log jzj+ i(arg z + 2�m); z 2 �k ; (2.7)for some m = 0;�1;�2; : : : , but the values of m are not required to be the same fordi�erent �k. With this in mind, by construction, (2.6){(2.7) characterize all primarylogarithms. If A is real with no negative eigenvalues, then it has (in general, in�nitelymany) real primary log(A). To characterize these, (2.6) is too general. First, we slitalong the negative real axis, so that �� < arg z < �. Then, relative to a complexconjugate pair of eigenvalues of A, in (2.7) we must take log(�e�i�) = �� i(�+2�m).These choices characterize all real primary logarithms.One can use Lemma 2.3 in the case of log(A), to classify primary logarithms ofnormal matrices in terms of which ones minimize kf 0(A)kf . For example, one easilygets:(a) \if A and log(A) are complex, and we have chosen the same value of m in(2.7) in each �k, then all logarithms give identical value of kf 0(A)kf";(b) \if A is 2� 2 (real or complex), then the logarithm giving the smallest valueof kf 0(A)kf is the one which minimizes the distance between the imaginaryparts of its eigenvalues." Therefore, if A is real, normal, with real primarylog(A), it is not necessarily true that the principal logarithm gives a smallervalue of kf 0(A)kf than a complex logarithm.3. Inherent di�culties and scaling procedures. Sensitivity assessmentbased on the Fr�echet derivative is of course restricted to primary matrix functions. Inessence, this type of sensitivity study tells us if we may (or may not) expect that thecomputed logarithm ~L = L+ F is close to the exact logarithm L = log(A). See (2.3)and also [2, 3, 8, 12]. For the sake of the present section, let us henceforth assume thatF is of small norm. On the other hand, L in general has only an indirect meaning, assolution of the matrix equation eL = A; therefore, if evaluation of the exponential ofL is sensitive, calculation of L is intrinsically hard, since we cannot reliably verify towhat extent we have solved eL = A. For this reason, in this section we propose a simpleindicator to assess the inherent di�culty of computing the logarithm, which attemptsto measure how reliably we can verify if we have solved eL = A. Our indicator is notrestricted to primary logarithms, and is similar in spirit to the square root indicatorof [1] and [4]; we take this similarity further by elucidating the interplay between ourindicator and the square root indicator in the context of the popular inverse scalingand squaring procedure.So, we let e~L = ~A = A + E, and ask when we can expect E to be of smallnorm. Or, in a somewhat backward way, is there a reasonable hope that we haveveri�ably found the logarithm of a matrix close to the original matrix A? To answerthis question, we are thus led to considerkEkkAk = eL+F � eLkAk (3.1)and the issue has shifted to how to obtain sharp bounds for (3.1). Several di�erentbounds for (3.1) have been obtained by K�agstr�om in [7] and Van Loan in [11]. We



CONDITIONING AND PAD�E APPROXIMATION 5are interested in bounds which take the formkEkkAk � g(� kFk) �(L) ; where � is a positive constant ; (3.2)and we require that(i) g is monotone increasing and g(x) = x+O(x2) for 0 < x� 1,(ii) � : L 2 Rn�n ! R+ , �(0) = 1 and �(L) � 1.Our idea is to regard � as an indicator of intrinsic di�culties in computing log(A). Inpractice, the success of this approach will depend on how tight is the bound in (3.2).Generally, g can be expressed as (see [7, (4.1)])g(� kFk) = e�kFk � 1 ; (3.3)and we have experimented with the choices (3.4), (3.5) and (3.8) below for � and �in (3.2){(3.3). From [6, Corollary 6.2.32], we get� = 1 ; and �(L) = ekLkkAk : (3.4)From [7, (4.9)], the following is obtained (a small re�nement of [11, (3.2)])� = 1 ; �(L) = e�(L)kAk ; (3.5)where �(L) is the logarithmic norm of L. Recall that, for a matrix B, the logarithmicnorm is (see [17])�(B) = limh!0+ kI + hBk � 1h = limh!0+ log(ehB)h ; (3.6)and, in the 2{norm, �(B) is the largest eigenvalue of (B+B�)=2. For later purposes,it is useful to notice that the second of (3.6) gives�(B) = limk!1 2k log(eB=2k) : (3.7)Finally, from [7, (4.15)] (a slight re�nement of [11, (3.4)]) we also get� = n�1Xk=0 kNkkk! ; �(L) = ea(L)�kAk ; (3.8)where a(L) is the spectral abscissa of L (i.e., the largest real part of the eigenvalues ofL), and N is the o� diagonal part of a Schur form of L. That is, if Q : Q�LQ = D+Nis a Schur form of L, then D = diag(�i), and N is the strictly upper triangular part.To be precise, in (3.8) � is �(L) and hence g also depends on L in this case; forsimplicity we omit this dependence. Notice that � in (3.8) is trivial to obtain ifcomputation of a primary logarithm is done after Schur reduction of A.Lemma 3.1. For all choices of � in (3.4), (3.5), and (3.8), we always have � � 1and �(0) = 1. For � given in (3.5) and (3.8), we also have �(L+ cI) = �(L) for anyreal number c, and if L is normal �(L) = 1.Proof. That �(L) � 1 in (3.4) is obvious. For (3.5), it follows from e�(L) � eL,and for (3.8) is similar (see [11]). When L is normal, a simple computation shows



6 LUCA DIECI and ALESSANDRA PAPINIthat e�(L) = ea(L) = eL, and thus �(L) = 1 in (3.5), and (3.8). The statementabout L+ cI is also an immediate veri�cation.Remark 3.2. If the original matrix A is highly structured, and the algorithm usedto compute L exploits this structure, it may be possible to provide re�nement of thebound (3.2). An obvious case is if A is block{diagonal: A = diagAii; i = 1; : : : ; p,and one computes Lii = log(Aii); then, in this case, it is more appropriate to look atthe factors � relative to each diagonal block. A less trivial instance of this occurrencewill be seen in x4.Remark 3.3. Our numerical experiments showed that, in general, the bound (3.4)is not satisfactory, and (3.5) is often only a modest improvement over (3.4), whereas(3.8) gives the most satisfactory results. This is in agreement with the results of [11].Nonetheless, the � values in (3.4) and (3.5) are so inexpensive to compute that wehave included them in this study.Next, we restrict to principal logarithms of real matrices. In such case, a popularprocedure to compute the logarithm exploits the relationlogA = 2k log(A1=2k ) ; (3.9)where the progressive square roots have been taken so that the arguments of theireigenvalues are in the strip (��=2k; �=2k). Since A1=2k approaches the identity, fork su�ciently large it should be easy to compute log(A1=2k ) to full precision, andthen obtain logA. This approach, known as \inverse scaling and squaring," was �rstput forward in [8]. The crux of the technique is the computation of square roots ofmatrices. In [1] and [4], the authors propose an indicator to quantify the inherentdi�culty of computation of a square root of A; this indicator is de�ned as�(A1=2) = A1=22kAk ; (3.10)and clearly �(A1=2) � 1. Also, �(A1=2) = 1 if A is normal and A1=2 is a primarysquare root (see [4]). Next, we want to understand whether or not the inverse scalingand squaring procedure may have introduced additional di�culties (as detected bythe factor �) with respect to the intrinsic di�culty of computation of the logarithm(as detected by the factor �).Lemma 3.4. With respect to the choices of �(L) in (3.4) and (3.5), we have�(L) = (�(L=2))2�(A1=2) ; (3.11)whereas with respect to (3.8) we have�(L) = (�(L=2))2�(A1=2) �(L)�2(L=2) : (3.12)Proof. To prove (3.11) for � in (3.4) is simple:� ekL=2kA1=2�2 = ekLkkAk kAkA1=22 :In a similar way, for � in (3.5), (3.11) is true since �(L=2) = �(L)=2. To show (3.12),we have ��(L=2)�2 = ea(L)�(L)kAk kAkA1=22 [�(L=2)]2�(L) :



CONDITIONING AND PAD�E APPROXIMATION 7Corollary 3.5. Let k be a positive integer. For �(L) in (3.4) and (3.5), wehave �(L) = (�(L=2k))2k kYj=1��(A1=2j )�2j�1 : (3.13)For � in (3.8), instead, we have�(L) = (�(L=2k))2k kYj=1��(A1=2j )�2j�1 �(L)(�(L=2k))2k : (3.14)�Corollary 3.6. For � given in (3.8), in (3.12) we have[�(L=2)]2�(L) � 1 ; (�(L=2))2�(A1=2) � �(L) : (3.15)Proof. Some algebra gives�2(L=2) = �(L) + S; S := 2n�2Xk=n kNkk2k 1k!�2k � 2 k�nXi=0 �ki�� :Therefore, we have ��(L=2)�2 = �(L)�(A1=2)�1 + S�(L)� :We are now ready to answer whether or not computation of log(A) through theinverse scaling and squaring procedure may have introduced additional di�culties withrespect to the intrinsic di�culty of computation of log(A). The general situation isalready clear after one square root, that is when we use log(A) = 2 log(A1=2). Wehave to compare �(L), with the product �(L=2) �(A1=2). By putting together theresults of Lemma 3.4 and Corollary 3.6, it is easy to obtain:With respect to � in (3.4) and (3.5), taking square roots does not lead to a hardercomputational task, that is: �(L=2)�(A1=2) � �(L) : (3.16)With respect to � in (3.8), we instead have�(L) = �(L=2)�(A1=2) � ea(L=2)A1=2 �(L)�(L=2)� : (3.17)The correct interpretation of (3.16) is more a statement about the inadequacy of thefactors � in (3.4){(3.5) to reveal computational di�culties, than a statement aboutreal simpli�cations in computing log(A) which occurs when using inverse scaling andsquaring. Instead, (3.17) lends itself to a more insightful and honest interpretation. Ingeneral, taking square roots may ease the computational task, or increase it, dependingon whether the quantity in bracket in (3.17) is greater or less than 1. A completecharacterization of matrices for which the quantity in bracket in (3.17) is greater than



8 LUCA DIECI and ALESSANDRA PAPINI1 seems out of reach, but we observe that for normal matrices it is 1; in fact, sinceboth � and � equal 1, for normal matrices taking square roots does not change theinherent di�culties of computing log(A). Otherwise, the following examples showthat computational di�culties, as measured by the ratio �(L)�(L=2)�(A1=2) of (3.17), canbe either increased or decreased by inverse scaling and squaring.Example 3.7. ConsiderA = � ec bec0 ec �, with logarithmL = [ c b0 c ]. For this example,taking square roots may makematters worse. In the �gureon the right we show a \log-log" plot of the ratio�(L)�(L=2)�(A1=2) for b 2 [10; 105].
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Example 3.8. Consider now the matrix A = " 0:68 0:21 0:45 0:39 0:610:21 0:61 0:04 0:68 0:020:84 0:63 0:03 0:09 0:020:63 0:37 0:32 0:04 0:190:13 0:58 0:01 0:61 0:59# : In this case,we have �(L)�(L=2)�(A1=2) � 6:24, and hence the computational task is eased by takingsquare roots.Clearly, no matter which factor � we are using, since �(0) = 1, and �(L=2k) � 1,limk!1 �(L=2k) = 1. This tells us, if needed, that it is easy to compute the principallogarithm of a matrix close to the identity. However, it is of practical interest to studythe rate at which �(L=2k)! 1. We need the following result on the logarithmic norm.Lemma 3.9. Let A 2 Rn�n be invertible with no eigenvalues on the negativereal axis, and let L be its principal logarithm. For each k 2 Z+, let A1=2k := eL=2kbe the k{th root of A whose eigenvalues have arguments in (��=2k; �=2k), and let�(A1=2k ) = A1=2k2kA1=2k�1k . Thene�(L) = limk!1 A1=2k2k ; (3.18)and e�(L) = kAk limk!1 kYj=1��(A1=2j )�2j�1 : (3.19)Proof. Using (3.7) to characterize �(L), (3.18) is obvious:e�(L) = elimk!1 log(eL=2k2k ) = limk!1 eL=2k2k :Now, (3.19) follows from (3.18) and the identityA1=2k2kkAk = �(A1=2)(�(A1=4))2 � � � (�(A1=2k ))2k�1 :Lemma 3.10. Under the same assumptions of Lemma 3.9, we have:



CONDITIONING AND PAD�E APPROXIMATION 9(i) for � in (3.4): limk!1��(L=2k)�2k = ekLk��(L) ; (3.20)(ii) for � in (3.5): limk!1��(L=2k)�2k = 1 ; (3.21)(iii) for � in (3.8): limk!1��(L=2k)�2k = ekNk+a(L)��(L) ; (3.22)where N is the strictly upper triangular part in a Schur form of L. In particular,asymptotically, �(L=2k) � e(a(L)��(L))=2k(1 + kNk2k ) : (3.23)Proof. Let us begin showing (3.21). Upon using (3.19) and (3.13), we have�(L) = limk!1��(L=2k)�2k �(L) ;which is (3.21). (3.20) follows similarly from (3.19) and (3.13). To show (3.22), wepass to the limit as k !1 in (3.14), and use (3.19), to obtainlimk!1��(L=2k)�2k = ea(L) e��(L) limk!1��(L=2k)�2k :Recalling that �(L=2k) =Pn�1j=0 kN=2kkjj! , we have1 + kNk2k � �(L=2k) � ekNk=2k ;and therefore limk!1��(L=2k)�2k = ekNk, and (3.22) and (3.23) follow.4. Block triangular matrices and Schur{Fr�echet method. In this section,we revisit the familiar Briggs method (inverse scaling and squaring with Pad�e approx-imants) for computing the principal logarithm L of a (real) block triangular matrix R:L = log(R) (hereafter, the notation \log" always refers to the principal logarithm).We can think of the triangular matrix R as the result of Schur reduction of a matrixA. Thus, we haveR = "R11 R12 ::: R1p0 R22 ::: R2p::: ::: ::: :::0 ::: 0 Rpp # ; L = log(R) = " L11 L12 ::: L1p0 L22 ::: L2p::: ::: ::: :::0 ::: 0 Lpp # : (4.1)Clearly, in (4.1), Lii = log(Rii). The issue is how to determine the o� diagonalblocks Lij . Restrict to the case of p = 2 in (4.1):R = �R11 R120 R22 � ; L = log(R) = �L11 L120 L22 � : (4.2)



10 LUCA DIECI and ALESSANDRA PAPINIBefore discussing ways to obtain L12, we must understand if computation of L12presents some \inherent di�culties." We proceed along the lines of x3.Let R and L be as in (4.2). In agreement with our previous Remark 3.2, weassume that the chosen algorithm of solution has respected this block structure, andthus may look at relative errors in a block sense. That is, with F = � F11 F120 F22 �, whereL+ F represents the computed logarithm, we look ateL11+F11 �R11kR11k ; eL22+F22 �R22kR22k ; (eL+F )12 �R12kR12k : (4.3)Then, there are three distinct inherent di�culties in computing L: one relative toL11, one relative to L22 and one relative to L12. The �rst two we treated in x3, herewe deal with the third one. We will need the familiar formula (e.g., see [11]):eL = h eL11 X0 eL22 i ; X = Z 10 eL11(1�s)L12eL22sds : (4.4)We let (eL+F )12 = Y , and with some algebra getkY �XkkXk � kF12kkXk Z 10 h(s)ds + kL12k+ kF12kkXkZ 10 h(s)�g(�1(1� s) kF11k)g(�2s kF22k)�((1� s)L11)�(sL22)+ g(�1(1� s) kF11k)�((1� s)L11) + g(�2s kF22k)�(sL22)�ds ; (4.5)where h(s) := e(1�s)L11 esL22 and g and � are the functions in (3.2), and (3.3).Recall that we assume that g(x) = x + O(x2) for 0 < x � 1, and that the valuesof � and � in which we are interested are given in (3.8). Now, we assume thatk�iFiik � � ; i = 1; 2; with � � 1, and therefore from (4.5) we getkY �XkkXk � kF12kkXk Z 10 h(s)(1 + �b(s))ds+ � kL12kkXk Z 10 h(s)b(s)ds+O(�2) ; (4.6)where b(s) := �((1 � s)L11) + �(sL22). Since obviously h(0) = keL11k and h(1) =keL22k, we arrive at the interesting conclusion that obtaining L12 may be an intrin-sically hard computational task whenever h(s); 0 < s < 1; is much larger than themaximum of keL11k and keL22k. This cannot happen if Lii are normal (that is, if Riiare). This claim can be veri�ed as follows. Suppose that Rii; i = 1; 2; are normal,and recall that for normal matrices �(�) = 1. Then, with notation and results fromLemma 3.1, we havee(1�s)L11 = e(1�s)a(L11) ; esL22 = esa(L22) ;where a(Lii) indicates the spectral abscissa of the Lii; i = 1; 2. Therefore, in thiscase, h(s) = e(1�s)a(L11)+sa(L22), which is a monotone function, and the claim follows.Example 4.1. Consider again Example 3.7. Obviously R11 = R22 are normal, andthere is no intrinsic di�culty in computing L12 = b which is not already reected in(and by) the computation of L11 and L22.Next, consider possible ways to approximate L12 in (4.2).



CONDITIONING AND PAD�E APPROXIMATION 11(a) Parlett's method. This well known general procedure rests on the identityRL = LR (see [14]). From this, if �(R11) \ �(R22) = ;, one can uniquely�nd L12 by solvingR11L12 � L12R22 = L11R12 � R12L22 : (4.7)Remark 4.2. If the blocks R11 and R22 are su�ciently separated, so that theSylvester equation (4.7) is well conditioned (see [5]), then it is hard for us tothink of a better method to determine L12 than this one. The di�culty of thisapproach is to determine a priori if the Sylvester equation is well conditioned.In [2], we used a simple criterion based on the spectra of the diagonal blocks,and found it to be empirically reliable. However, if use of the identity (4.7) isnot computationally feasible (say, the equation is singular), then some otherway to obtain L12 must be found.(b) Pad�e approximation. Here, one uses Pad�e rational functions to approximatelog(R) = log((R� I) + I). Therefore, L12 is obtained at once along with L11and L22. Good choices are diagonal Pad�e approximants.Since Pad�e approximations are accurate only when R is \close to the identity,"a standard practice is to exploit the relation (3.9) (with R there) and use Pad�eapproximants for log(R1=2k). The resulting approach is known as Briggs'method; it was �rst put forward in [8], and has enjoyed good success.From a practical point of view, because of Remark 4.2, we think that Briggs'method is of greater appeal when solution of the system (4.7) is not advisable.Since our scope in this section is to revisit this Briggs' technique, we willassume that \the matrix R 2 Rn�n in (4.2) does not have a blocking withR11 and R22 well separated." In particular, if R is in real Schur form, andwe label its eigenvalues �i; i = 1; : : : ; k; k � n; writing only once a complexconjugate pair but repeating multiple eigenvalues, then for each �xed �i thereexists a �j ; j 6= i, such that j�i � �j j � �.(c) Fr�echet technique. This is also a general procedure, which for the logarithmconsists in exploiting the Fr�echet identityL = �L11 00 L22 �+ log0(�R11 00 R22 �) � 0 R120 0 � ; (4.8)where log0(B)Z is the Fr�echet derivative of the logarithm at B in the directionZ. Therefore, one needs to getL12 =� log0(�R11 00 R22 �) � 0 R120 0 � �12 : (4.9)The Fr�echet method proposed in [10] is based on approximating the Fr�echetderivative of the logarithm in (4.9) by means of the hyperbolic tangent func-tion.Naturally, no matter what approach we use to obtain L12, we must be at thesame time solving (4.7) and satisfying (4.9).Theorem 4.3. Let R and L be as in (4.2). Then we haveL12 = Z 10 ((R11 � I)t+ I)�1R12((R22 � I)t+ I)�1 dt ==: Z 10 L1(t)R12L2(t)dt =: Z 10 F (t; R12)dt ; (4.10)



12 LUCA DIECI and ALESSANDRA PAPINIwhere we have set Li(t) := ((Rii � I)t + I)�1; i = 1; 2. L12 in (4.10) is the onlysolution of (4.7) which eventually gives a principal logarithm L. Also, the expressions(4.10) and (4.9) are identical.Proof. To show (4.10), just use (1.1) and the block structure. To check that(4.10) solves (4.7), regardless of whether the spectra of R11 and R22 are disjoint,substitute L12 from (4.10) and use (1.1) for both L11 and L22. That (4.10) and (4.9)give the same expression for L12 is veri�ed using the analytic expression of the Fr�echetderivative given in [2, (3.13)].Theorem 4.3 suggests that to approximate the Fr�echet derivative of the logarithmin (4.9) one might approximate the integral in (4.10) with a quadrature rule. Forargument sake, suppose we do so, say with any of the standard polynomial rules.Then, it is simple to observe that to obtain good bounds for the quadrature error wegenerally need R11 and R22 close to the identity. However, R12 does not necessarilyhave to be close to 0 if we are interested in relative accuracy for L12. This observationis at the basis of our revisitation of Briggs' method.We must appreciate that in previous works on computation of the logarithm, inparticular in [2, 9, 8], Pad�e approximations were used to approximate L in (4.2) byattempting to control the absolute error. That is, if L̂ was the computed approxi-mation, one tried to ensure that L� L̂ � � ; (4.11)where � is a small number, say the machine precision EPS. Since the original errorestimates in [9], it has been clear that Pad�e approximations cannot obtain a smallabsolute error in (4.11), unless kI � Rk is su�ciently small. For this reason, peoplehave been using (3.9) to work with R1=2k , where k was chosen so that kI�R1=2kk wassu�ciently small. E.g., in [2], we chose k so that kI � R1=2kk � 0:35 and then usedthe (9; 9) diagonal Pad�e approximant, which guarantees {in absence of other errors{a value of � below EPS (see the �rst estimate in (4.14)). We also remarked thatuse of (3.9) may lead to undesired attening (towards the identity) of the spectra ofR1=2k11 and R1=2k22 , and observed that (in some ill conditioned problems) this eventuallyproduced loss of precision. In [10], the authors imputed this loss of precision onthe possible loss of signi�cance incurred when forming I � R1=2k . Indeed, in [10],the declared motivation for the Fr�echet method and the direct approximation ofthe Fr�echet derivative by the hyperbolic tangent, was the intent to avoid formingI � R1=2k . Kenney and Laub claimed that this technique allowed them to obtainbetter accuracy than with the standard Pad�e method. However, we believe that thereal reason behind the reported success of the approach in [10] has nothing to do withavoiding the subtraction I � R1=2k , or the Pad�e method. To substantiate our claim,let us begin by looking at a simple Example.Example 4.4. In Table 1 we report on some results relative to Example 3.7 (seealso [10, Example 2]) for several values of c and constant b, b = 106. The results havebeen obtained exploiting the relation log(R) = 2k log(R1=2k ), and we used the (9; 9)diagonal Pad�e approximation to obtain the logarithm of R1=2k . In Table 1, k is thenumber of square roots taken before using the Pad�e approximation for the logarithm,! = kI�R1=2kk1, !i = kI�R1=2kii k1 ; i = 1; 2; \abs" refers to the matrix of absoluteerrors: absij = ���Lij � L̂ij���, and \rel" is the matrix of relative errors: relij =absij= jLij j. These numerical experiments were performed in Matlab, with machine



CONDITIONING AND PAD�E APPROXIMATION 13Table 1Briggs-Pad�e method on Example 3.7: I.c k ! !1 = !2 abs rel0.1 0 1.105E6 0.105 � 8E�17 1E�100 8E�17 � � 8E�16 1E�160 8E�16 �0.1 22 0.22 1+2.4E-8 � 3E�10 6E�100 3E�10 � � 3E�9 6E�160 3E�9 �0.3 0 1.35E6 0.3498 � 5:5E�17 8E�100 5:5E�17 � � 2E�16 8E�160 2E�16 �0.9 2 3E5 0.25 � 2:2E�16 1:2E�100 2:2E�16 � � 2:5E�16 1:2E�160 2:5E�16 �precision EPS � 2:2E � 16 (exponential notation is used throughout). In Table 2,we instead report on the absolute and relative error matrices after exponentiatingL̂, \ABS" and \REL," where ABSij = ���(R� eL̂)ij ��� and RELij = ABSij= jRij j (see x3and (4.3)), for the same values of c and k as in Table 1. The results highlight someTable 2Briggs{Pad�e method on Example 3.7: II.c k ABS REL0.1 0 [ 0 00 0 ] [ 0 00 0 ]0.1 22 � 3:3E�10 3:3E�40 3:3E�10 � � 3E�10 3E�100 3E�10 �0.3 0 � 0 9:3E�100 0 � � 0 6:9E�160 0 �0.9 2 � 4:4E�16 9:3E�100 4:4E�16 � � 1:8E�16 3:8E�160 1:8E�16 �interesting features: (i) taking as many square roots as would have been needed toobtain I �R1=2k � 0:35; as in the second row of Table 1, then we eventually loseseven digits along the diagonal of L, but the (1; 2) entry has full accuracy (look at therelative errors in Table 1); (ii) taking k so to bring only the diagonal of R to within! (rows 1, 3 and 4 of Table 1) gives full precision on the diagonal of L and maintainaccuracy for the (1; 2) entry. The loss of precision observed for c = 0:1 and k = 22 iseasily explained as follows: write (ec)1=222 = 1+ x. After 22 square roots the numberec has the �nite precision representation 1:000000023841858, so that only eight digitsof x are retained. Now, since log(1 + x) = x � x2=2 + x3=3 � : : : ; in the doubleprecision representation of the number log(1 + x) we should not expect anythingbetter than eight digits accuracy (seemingly, we got nine). It is important to stressthat the observed loss of digits is unavoidable given the �nite precision representationof x, and no algorithm to approximate the logarithm can avoid it, subtracting 1 ornot. Apparently, the only way to avoid it is to take fewer square roots, so that x hasmore (say, sixteen) signi�cant digits. To explain why the (1; 2) entry is always fullyaccurate, we need to wait until Theorem 4.6 below. Finally, the results of Table 2are in striking agreement with the bound (4.6); in particular, for the second row ofTable 2, with the notation from (4.6), � � 10�10, kL12kkXk � 1, and h(s) � 1.Example 4.4 makes it evident that the approximation goal expressed by (4.11)(with � � EPS) is not attainable, in general. Moreover, the legitimate suspicion is



14 LUCA DIECI and ALESSANDRA PAPINIthat problems are caused by taking square roots. We quantify this next.Lemma 4.5. Let R1=2k and R̂1=2k be the exact and computed k-th square rootsof R respectively, where k has been chosen so that kI � R̂1=2kk = ! < 1. Let L̂(k) bethe approximation obtained for log R̂1=2k , for example with the (N;N) diagonal Pad�e.Let k log R̂1=2k � L̂(k)k � � be the absolute error in approximating the logarithm, andkR1=2k�R̂1=2kkkR1=2kk � � be the relative error in the computed k-th root. Then, we havelogR1=2k � L̂(k) � � + �1� ! R1=2k+O(�2) ; (4.12)and therefore with L̂ = 2kL̂(k) one haslogR� L̂ � 2k(� + �1� ! R1=2k+O(�2)) : (4.13)Proof. We havelogR1=2k � L̂(k) � logR1=2k � log R̂1=2k+ log R̂1=2k � L̂(k)� log0(R̂1=2k ) R1=2k � R̂1=2k+ log R̂1=2k � L̂(k)+O(R1=2k � R̂1=2k2) :Now we use [2, estimate after (3.2)] to get k log0(R̂1=2k )k � 11�! and the proof iscomplete.Suppose we use a very accurate formula to approximate log R̂1=2k , so that (theo-retically) � � EPS. Then, the overall computational error is controlled by the relativeaccuracy in the k-th root, �, and the magni�cation factor 2k. In the best case, � � EPS,an approximate equality which can be achieved in case R is normal, but even in thiscase these O(EPS) errors may be magni�ed by 2k.Another important feature exhibited by Example 4.4 is that L12 is accurate. Thisis a consequence of the following result.Theorem 4.6. Let R be partitioned as in (4.2) with R11 2 Rn1�n1 , R22 2Rn2�n2 , and R12 2 Rn1�n2 . Let R(k) := R1=2k and write R(k) = �R(k)11 R(k)120 R(k)22 �, wherek is the smallest integer such that I �R(k)11  � !1 < 1 and I �R(k)22  � !2 < 1for preassigned values of !1 and !2. Let ! = max(!1; !2), and let P = � P11 P120 P22 �be the approximation obtained with the (N;N) diagonal Pad�e approximant for L(k) =log(R(k)). Then, we have the following error boundsL(k)ii � Pii � c(N)(2N)!� !i1� !i �2N+1 ; i = 1; 2 ;L(k)12 � P12 � c(N) R(k)12  (2N + 1)!(1� !)2 � !1� ! �2N ; (4.14)where c(N) = (N !)4(2N+1)((2N)!)3 : Further, we have the following bounds for kR(k)12 k(1� !) L(k)12  � R(k)12  � 11� ! L(k)12  ; (4.15)



CONDITIONING AND PAD�E APPROXIMATION 15which lead to a computable relative error bound in the second of (4.14).Proof. The starting point of the proof is to recall that the (N;N) Pad�e approx-imant is the same as the N -point Gauss{Legendre quadrature rule for the integralin (1.1); therefore, with M = I � R(k), we have the following error estimate (see [2,Theorem 4.3 and Corollary 4.4])L(k) � P = c(N) 1Xj=0(2N + j) : : : (j + 1)M2N+j+1�jj ; (4.16)where 0 � �j � 1. Now, partition M = [A C0 B ], and notice that Mp =hAp Pp�1j=0 Ap�jCBj0 Bp i. By assumption we have kAk � !1 < 1 and kBk � !2 < 1,so that (taking norms of sub-blocks on the right hand side of (4.16)) we immediatelyget L(k)ii � Pii � c(N)P1j=0(2N + j) : : : (j + 1)!2N+j+1i ; i = 1; 2 ;L(k)12 � P12 � c(N) kCkP1j=0(2N + j) : : : (j + 1)P2N+jl=0 !2N+j�l1 !l2� c(N) kCkP1j=0(2N + j + 1) : : : (j + 1)!2N+j :To complete the proof of (4.14), we observe that1Xj=0(2N + j) : : : (j + 1)xj = (2N)!(1� x)2N+1 ;from which (4.14) follows. To obtain (4.15), we �rst use (4.10) to getL(k)12 = Z 10 ((R(k)11 � I)t+ I)�1R(k)12 ((R(k)22 � I)t+ I)�1dt ;and we notice that if kR(k)ii � Ik � !i then k((R(k)ii � I)t+ I)�1k � 11�!it ; i = 1; 2 :Therefore, L(k)12  � R(k)12  Z 10 dt(1� !1t)(1� !2t) :On the other hand, from (4.4), we also haveR(k)12  � L(k)12  Z 10 eL(k)11 (1�s) eL(k)22 s ds :Now, keL(k)ii tk � ekL(k)ii kt, and kL(k)ii k � !i R 10 dt1�!it = � log(1� !i) : Thus, keL(k)ii tk �1(1�!i)t ; from these, we getR(k)12  � L(k)12  Z 10 dt(1� !1)1�t(1� !2)t :Finally, to get (4.15), it is enough to observe that (1�!1)1�t(1�!2)t � (1�!), andalso 1(1�!1t)(1�!2t) � 1(1�!t)2 , for 0 � t � 1.Remark 4.7. From (4.14) and (4.15), if ! = max(!1; !2) � 0:30, we should get afully accurate approximation for L(k)12 , in agreement with the results of Example 4.4.



16 LUCA DIECI and ALESSANDRA PAPINIThe fundamental implication of Theorem 4.6 is that a (diagonal) Pad�e approxi-mation for L produces an approximation for L12 accurate in a relative error sense, ifthe resulting approximations for L11 and L22 are accurate in an absolute error sense.To be precise, the estimates (4.15){(4.14) predict a loss of precision: for ! = 0:3, therelative eror bound for the approximation to L12 is about 50 times as large as theabsolute error bound in the approximations of L11 and L22. The situation is quitesimilar to what was obtained in [10]. However, we carry out the approximation ofL12 indirectly by using Pad�e approximations for all of L at once, rather than directlyas done in [10], without sacri�cing accuracy. The need for the k-th square root inTheorem 4.6 is also present in the Schur{Fr�echet algorithm of Kenney and Laub; thisis what \Step 1" of the algorithm in [10, p. 651] accomplishes. However, it should berealized that in our Theorem 4.6 the value of k is not chosen so that kI �R1=2kk < 1;like in [10, Lemma 3.1 and later], but only so that kI � R1=2kii k < 1 ; i = 1; 2 : Fi-nally, as we had already remarked, there is no true issue associated to forming thesubtraction kI � R1=2kk; regardless, the shift of emphasis from a global error boundas in (4.11) to such an estimate only for the diagonal blocks makes it quite likely thatfewer square roots of R must be taken, and thus less likely that accuracy gets lost(see Lemma 4.5).It is of course possible to extend the above considerations hinged on Theorem 4.6to matrices as in (4.1). Although there are many subtle algorithmic issues which arisewhen we increase the number of blocks, Theorem 4.6 continues to hold for all possiblechoices of block-(2 � 2) submatrices. For example, suppose we have a block-(3 � 3)matrix: �R11 R12 R130 R22 R230 0 R33 �. Now, assume that kI � Riik � !i < 1 ; i = 1; 2; 3 ; and thatkI � �R11 R120 R22 � k � !12 < 1 ; or kI � �R22 R230 R33 � k � !23 < 1 (or both). Finally,take the (N;N) Pad�e approximant for logR (all of it). Theorem 4.6 applies and wecan use the most favorable error estimates predicted by the theorem. We will thinkof the computed L12 and L23 as coming from the approximation to the logarithmof �R11 R120 R22 � and �R22 R230 R33 �, respectively; the approximation for L13; instead, can bethought of as coming from two di�erent block partitionings: (i) R = �R11 [R12 R13 ]0 hR22 R230 R33 i �,or (ii) R = � hR11 R120 R22 i hR13R23 i0 R33 �. We are free to pick whichever block partitioning ismore convenient for us, in particular gives us better error estimates from (4.14).5. Conclusions. In this work we have:(i) classi�ed, and obtained conditioning information for, primary logarithms ofmatrices by using piecewise analytic functions theory;(ii) proposed an indicator of the inherent di�culty to compute the logarithm ofa matrix;(iii) revisited Pad�e approximation techniques to compute principal logarithms ofblock triangular matrices.From the practical point of view, the most important outcome of this work isthat we have shown that the familiar Pad�e approximation technique with inversescaling and squaring is still a viable way to compute the logarithm L of a triangularmatrix R as in (4.2) with close eigenvalues; however, there are situations where oneshould not try to obtain an absolute error bound for the approximate L, but onlyfor its diagonal blocks, while a relative error criterion is more appropriate for theo� diagonal block. As a consequence, the number of square roots which we need to
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