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FUNDAMENTAL MATRIX SOLUTIONS OF PIECEWISE SMOOTH

DIFFERENTIAL SYSTEMS

LUCA DIECI AND LUCIANO LOPEZ

Abstract. We consider the fundamental matrix solution associated to piecewise smooth dif-
ferential systems of Filippov type, in which the vector field varies discontinuously as solution
trajectories reach one or more surfaces. We review the cases of transversal intersection and of
sliding motion on one surface. We also consider the case when sliding motion takes place on the
intersection of two or more surfaces. Numerical results are also given.

1. Introduction and Background

Our purpose in this paper is to survey definitions and properties of the fundamental matrix
solution associated to piecewise smooth differential equations. Many of the results we give are
available in the literature, but are not all readily available. Moreover, some of the extensions we
consider herein, such as when there is sliding motion on intersection of surfaces, appear new.

We study differential equations with discontinuous right hand-side, and more precisely equations
in which the right hand-side changes discontinuously as one or more surfaces are crossed. These
surfaces are called discontinuity or switching surfaces and the systems under study are called
piecewise smooth dynamical systems in [9].

We only consider the case of continuous solutions for an initial value problem associated to
these systems (e.g., “impact” systems are not treated). The interesting case is what happens to a
trajectory when it reaches a switching surface. Loosely speaking, there are two things which can
occur: we may cross the surface, or we may stay on it, in which case Filippov’s construction (see
[11]) will define a vector field on the sliding surface and the motion will be called sliding mode.

Piecewise smooth differential equations appear pervasively in applications of various nature (see,
e.g. [5, 14, 15, 17, 24]); for a significative sample of references in the context of control, see e.g.
[25, 26, 27]; in the context of biological systems, see e.g. [7, 8, 15, 24]; in the context of mechanical
systems, see e.g. [13, 20, 21]; see the classical references [4, 11, 26, 27] and the recent book [9]
for a theoretical introduction to these systems, and finally see the recent book [1] for a review of
numerical methods used on these systems.

In [2, 11, 18, 20, 21, 23] the authors consider fundamental matrix solutions of a nonsmooth
system, and introduce the saltation matrix in order to take into account the lack of smoothness
of the differential system as the solution crosses transversally a discontinuity surface. In [16], the
fundamental matrix solutions of a nonsmooth system with two intersecting discontinuity surfaces
has been studied in the case of solutions which cross the intersection transversally. The formal
representation of the fundamental matrix solution has partly been used in defining the concept of
Lyapunov exponents for non-smooth systems (see [19]). All of these cited results are relative to the
case of a solution which crosses transversally a surface of discontinuity (or the intersection of two
such surfaces). In the case of sliding motion on one surface of discontinuity, several authors have
adapted to this case the concept of saltation matrix (see [11, 20, 21, 23]), and this methodology
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has proven valuable in practical experiments as well. But, in the case of sliding on the intersection
of two (or more) surfaces, no clear extension has yet been proposed for the saltation matrix. A
main goal of our work is to provide this extension.

1.1. Background. The simplest modelization of a non smooth system is when a (global) hyper-
surface partitions the state space in two regions:

(1.1) x′(t) = f(x(t)) =

{

f1(x(t)) , x ∈ R1 ,
f2(x(t)) , x ∈ R2 ,

x(0) = x0 ∈ R
n .

The state space R
n is split into two subspaces R1 and R2 by a surface Σ such that R

n = R1∪Σ∪R2.
The surface is defined by a scalar indicator (or event) function h : R

n → R, so that the subspaces
R1 and R2, and the hypersurface Σ, are implicitly characterized as

(1.2) Σ = {x ∈ R
n| h(x) = 0} , R1 = {x ∈ R

n| h(x) < 0} , R2 = {x ∈ R
n| h(x) > 0} .

In (1.1), we will assume that f1 is Ck, k ≥ 1, on R1 ∪ Σ and f2 is Ck, k ≥ 1, on R2 ∪ Σ, but we
will not assume that f1, respectively f2, extends smoothly also in R2, respectively R1. We will
also assume that h ∈ Ck, k ≥ 2, and that ∇h(x) 6= 0 for all x ∈ Σ. Thus, the unit normal to Σ,

n(x) = ∇(h(x))
‖∇(h(x))‖2

, exists and varies smoothly for all x ∈ Σ.

Obviously, in (1.1), f(x(t)) is not defined if x(t) is on Σ and a standard way to overcome this
difficulty is to consider the set valued extension F (x) below:

(1.3) x′(t) ∈ F (x(t)) =







f1(x(t)) x ∈ R1

co {f1(x(t), f2(x(t)} x ∈ Σ
f2(x(t)) x ∈ R2

,

where co(A) denotes the smallest closed convex set containing A. In our particular case:

(1.4) co {f1, f2} = {fΣ ∈ R
n : fΣ = (1 − α)f1 + αf2, α ∈ [0, 1]} .

The extension (or convexification) of a discontinuous system (1.1) into a convex differential inclu-
sion (1.3) is known as Filippov convex method. An absolutely continuous function x : [0, τ) → R

n

is a Filippov solution of (1.1) if for almost all t ∈ [0, τ) it holds that x′(t) ∈ F (x(t)).
Now, suppose that x0 ∈ R1, and consider a trajectory of (1.1). As long as the trajectory remains

in R1, there is nothing special about this solution of (1.1). The interesting case is when we reach
a point x ∈ Σ, a case we consider next.

So, let x ∈ Σ and let n(x) be the unit normal to Σ at x. Let nT (x)f1(x) and nT (x)f2(x) be the
projections of f1(x) and f2(x) onto the normal to the hypersurface Σ. We have two main cases.
a) Transversal Intersection. In case in which, at x ∈ Σ, we have

(1.5) [nT (x)f1(x)] · [nT (x)f2(x)] > 0 ,

then we will leave Σ. We will enter R1, when nT (x)f1(x) < 0, and will enter R2, when nT (x)f1(x) >
0. In the former case we will have (1.1) with f = f1, in the latter case with f = f2. Any solution
of (1.1) reaching Σ at a time t1, and having a transversal intersection there, exists and is unique.
b) Attracting Sliding Mode. An attracting sliding mode at Σ occurs if

(1.6) [nT (x)f1(x)] > 0 and [nT (x)f2(x)] < 0, x ∈ Σ ,

where the inequality signs depend of course on (1.2). When we have an attracting sliding mode
at x0 ∈ Σ, a solution trajectory which reaches x0 does not leave Σ, and will therefore have to
move along Σ. Filippov’s theory provides an extension to the vector field on Σ, consistent with
the interpretation in (1.4), giving rise to sliding motion. During the sliding motion the solution
will continue along Σ with time derivative fΣ given by:

(1.7) fΣ(x) = (1 − α(x))f1(x) + α(x)f2(x)
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Figure 1. Transversal and sliding trajectory.

where α(x) is the value for which fΣ(x) lies in the tangent plane Tx of Σ at x, that is the value
for which nT (x)fΣ(x) = 0. This gives

(1.8) α(x) =
nT (x)f1(x)

nT (x)(f1(x) − f2(x))
.

In other words, an attractive (Filippov) sliding mode is the solution of

(1.9) x′(t) = (1 − α(x))f1(x) + α(x)f2(x) , α(x) =
nT (x)f1(x)

nT (x)(f1(x) − f2(x))
.

Observe that a solution having an attracting sliding mode exists and is unique, in forward time. If
the inner products in (1.6) are of opposite signs we have a repulsive sliding mode which does not
lead to uniqueness of the solution (at any instant of time one may leave with f1 or f2). For this
reason, we will not consider repulsive sliding motion in this work.

We are ready to recall (see [11]) a classical well-posedness result for solutions of (1.1), which
includes the cases of transversal intersection and attracting sliding mode, and a combination of
these:

Theorem 1.1. Let f1,2 be C1 in R1 ∪ Σ and R2 ∪ Σ, respectively, and h be C2 on Σ. If, at any
point x ∈ Σ we have that at least one of nT (x)f1(x) > 0 and nT (x)f2(x) < 0 holds, then there
exists a unique Filippov solution from each initial condition.

We conclude this section with a remark about similarities between an attractive sliding mode on
Σ (a solution of (1.9)), and a related differential-algebraic-equation (DAE) of index 2. The latter
is written as the following system of n differential equations and 1 algebraic constraint, in (n + 1)
unknowns, x and α:

(1.10)

{

x′(t) = f
Σ
(x, α) = (1 − α)f1(x) + αf2(x) ,

h(x(t)) = 0 .

Differentiating once the algebraic constraint, and using the form of f
Σ
, one obtains

(∇h(x))T x′ = (∇h(x))T
[

(1 − α)f1(x) + αf2(x)
]

= 0 ,
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which gives precisely (1.9). However, this formal equivalence is not the full story. The sliding
mode from (1.9) is just one possible mode of motion of the original piecewise smooth system, and
trajectories of this system typically enter, slide on, and exit, the discontinuity surface repeatedly,
whereas the DAE only defines constrained motion on Σ. Moreover, strictly speaking, (1.9) is only
defined for x ∈ Σ, whereas the DAE (1.10) is defined, in the given form, for all values of x in a
neighborhood of Σ. At the same time, this “equivalence” of sliding motion with the DAE (1.10)
will provide important insight in interpreting the variational equation for the fundamental solution
in the next two sections.

2. Fundamental matrix solution: Cross and/or slide on one surface

The fundamental matrix solution associated to the linearized system is a very useful tool in
performing stability and bifurcation study of a smooth dynamical systems. It is natural to suspect
that it should be a useful tool also for nonsmooth dynamical systems. In this and the next sections,
we consider the fundamental matrix solutions for piecewise smooth systems. In this section, we
look at the case in which we cross and/or slide on one surface. In the next section we also consider
the case when the trajectory crosses and/or slides on the intersection of two surfaces.

2.1. Smooth case. Consider the differential system:

(2.1) x′(t) = f(x(t)) , x(0) = x0 ∈ R
n ,

with f continuously differentiable. Denote with φt(x0), for all t ≥ 0, the solution of (2.1). The
fundamental matrix solution is the derivative of the solution with respect to the initial condition.
That is, if we let Φ(t, 0) be the fundamental matrix solution, then

(2.2) Φ(t, 0) = Dx0
φt(x0) ,

so that Φ(t, 0) satisfies

(2.3)

{

Φ′(t, 0) = Df(φt(x0))Φ(t, 0) , t ≥ 0 ,
Φ(0, 0) = I .

By construction, Φ(t, 0) is continuous and nonsingular for all t ≥ 0, and it enjoys several important
properties. The following will be useful.

Composition property. If t > t1 > t0, then we have

(2.4) Φ(t, t0) = Φ(t, t1)Φ(t1, t0) ,

where Φ(t, s) solves the usual differential equation, (2.3) for t ≥ s, and Φ(s, s) = I.
Mapping property. Also, it is easy to see that:

(2.5) f(φt(x0)) = Φ(t, 0)f(x0) , ∀t ≥ 0 ,

and therefore (using (2.4)) the fundamental matrix solution carries vector fields into vector fields
at later time. Using (2.2), (2.5) follows from the fact that its left and right hand sides solve the
same, smooth, differential equation. Formula (2.5) is a key property of the fundamental matrix.

Magnification property. Another key property arises from very definition of the fundamental
matrix, by expanding the solution about the initial condition. Namely, for two different initial
conditions x0 and y0, one has

(2.6) φt(y0)− φt(x0) = Dx0
φt(x0)(y0 − x0) +O(‖y0 − x0‖

2) = Φ(t, 0)(y0 − x0) +O(‖y0 − x0‖
2) ,

that is –at first order– the fundamental matrix acts as magnification factor for nearby initial
conditions.
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Remark 2.1. Ideally, for non-smooth systems, one would like to continue having a fundamental
matrix solution satisfying the three properties above. As we will see below, the properties expressed
by (2.4), (2.5) and (2.6) will essentially continue to hold, for a properly defined fundamental matrix,
though the formal definition of fundamental matrix as solution of (2.3) will not necessarily hold.

2.2. Transversal crossing. Now let us consider the discontinuous ODE:

(2.7) x′(t) = f(x(t)) =

{

f1(x(t)) , x ∈ R1 ,
f2(x(t)) , x ∈ R2 ,

with x(0) = x0 ∈ R1.
Suppose that the solution φt(x0) of (2.7) crosses Σ at x1 = φt1(x0), that is

(2.8) [nT (x1)f1(x1)] · [n
T (x1)f2(x1)] > 0 , nT (x1)f1(x1) > 0 ,

and that there are no further crossing of Σ for t up to t2. Let us still denote by Φ(t, 0) the
“fundamental matrix solution” of the discontinuous system (2.7). Then, it must satisfy:

(2.9)

{

Φ(t, 0) = Φ1(t, 0) , 0 ≤ t < t1,
Φ(t, t1) = Φ2(t, t1) , t1 < t ≤ t2 ,

where Φ1(t, 0) and Φ2(t, t1) are, respectively, the fundamental matrix solutions associated to

(2.10)

{

x′(t) = f1(x), x(0) = x0 : Φ′
1(t, 0) = Df1(φ

t(x0))Φ1(t, 0) , 0 ≤ t ≤ t1 ,
x′(t) = f2(x), x(t1) = x1 : Φ′

2(t, t1) = Df2(φ
t−t1 (x1))Φ2(t, t1) , t1 ≤ t ≤ t2 .

There is a discontinuous behavior at t1 and we write:

(2.11) Φ(t+1 , 0) = SΦ(t−1 , 0) ,

where Φ(t±1 , 0) = limt→t
±

1
Φ(t, 0).

The matrix S in (2.11) is called jump or saltation matrix, and it may be thought of as the
fundamental matrix between t−1 and t+1 , that is S = Φ(t+1 , t−1 ).

The correct expression for the saltation matrix, in this case of transversal intersection at x1,
was first proved in [2], and then in [11, 18, 20, 21, 23]. For completeness, here we review this
derivation.

Lemma 2.2. With above notation, we have

(2.12) S = I + (f2(x1) − f1(x1)) ·
nT (x1)

nT (x1)f1(x1)
, x1 ∈ Σ .

Proof. Let y0 = x0 + ∆x0 be a perturbed initial condition, and suppose that φt(y0) reaches the
surface Σ at time t1 + ∆t. To fix ideas, suppose that ∆t > 0.

We want to look at the first order expansion of the difference

(2.13) φt1+∆t(x0) − φt1+∆t(y0) .

The following expansions hold:

(a) φt1+∆t(x0) = φt1 (x0) + f2(φ
t1 (x0))∆t + O(∆t2) = x1 + f2(x1)∆t + O(∆t2) and

φt1+∆t(y0) = φt1(y0)+f1(φ
t1(y0))∆t+O(∆t2) = φt1 (y0)+f1(x1)∆t+h.o.t., where “h.o.t.”

stands for higher order terms (in any combination of quadratic terms of ∆t and (φt1(y0)−
x1));

(b) 0 = h(φt1+∆t(y0)) = h
(

φt1(y0) + f1(φ
t1 (y0))∆t + O(∆t2)

)

and since

h(φt1(y0)) = h(x1) + (∇h(x1))
T (φt1 (y0) − x1) + O(‖φt1(y0) − x1‖

2) we get
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0 = h(φt1+∆t(y0)) = (∇h(x1))
T (φt1(y0) − x1) + (∇h(x1))

T f1(x1) ∆t + h.o.t., from which
at first order we get

∆t = −
(∇h(x1))

T

(∇h(x1))T f1(x1)

(

φt1(y0) − x1)
)

.

Now, at first order, from (a) we get

φt1+∆t(x0) − φt1+∆t(y0) = φt1 (x0) − φt1(y0) +
[

f2(x1) − f1(x1)
]

∆t ,

and using (b) we obtain the sought first order expansion

(2.14) φt1+∆t(x0) − φt1+∆t(y0) =
[

I+
(

f2(x1) − f1(x1)
) ∇hT (x1)

∇hT (x1)f1(x1)

](

φt1 (x0) − φt1(y0)
)

,

so that (2.12) follows. The case of ∆t < 0 is the same. �

Observe that

(2.15) f2(x1) = Sf1(x1) ,

and that in the smooth case (i.e., f2(x1) = f1(x1)) it is simply S = I. Moreover, since (∇h(x1))
T f2(x1) 6=

0, then S is non singular and

S−1 = I + (f1(x1) − f2(x1)) ·
nT (x1)

nT (x1)f2(x1)
.

We sum up by stressing that the matrix Φ(t, 0) is invertible for all t ∈ [t1, t2] and thus we have
continuous dependence on the initial conditions. The properties expressed by (2.4), (2.5), (2.6)
hold, even though the fundamental matrix is not smooth. [Property (2.6) follows from (2.14), since
φt1(x0) − φt1(y0) = Φ(t1, 0)(x0 − y0) + O(‖y0 − x0‖

2).]
To complete this section, below we summarize a simple spectral property of matrices which are

rank-1 corrections of the identity.

Lemma 2.3. Consider a matrix of the form

(2.16) S = I + urT ,

where all vectors and matrices have dimension n. Then the eigenvalues of S are given by

{

1 + rT u, 1, . . . , 1
}

.

When rT u = −1, the eigenvector associated to the 0 eigenvalue is in the direction of u.

Proof. The proof is by direct verification. [Notice that the eigenvalues at 1 are a consequence of
the fact that S|r⊥ = I]. �

With notation from Lemma 2.3, in case of (2.12), we have

u =
f2(x1) − f1(x1)

nT (x1)f1(x1)
, r = n(x1),

so that rT u + 1 6= 0, because of transversal intersection, confirming that S is invertible.
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2.3. Sliding on a surface. In case in which a solution of (2.7), upon reaching Σ, does not cross
the surface, but slides on it (see (1.7) and (1.9)), then the saltation matrix takes a different form
than in (2.12). As it is well known (see [11, p.119]), the appropriate generalization of (2.12) is

(2.17) S = I + (fΣ(x1) − f1(x1)) ·
nT (x1)

nT (x1)f1(x1)
.

Remark 2.4. We observe that –for attractive sliding motion– the form of the saltation matrix is
the same regardless of whether we are coming from region R1 or R2. This is simply because at
x(t1) we have

I + (fΣ(x1) − f1(x1)) ·
nT (x1)

nT (x1)f1(x1)
= I + (fΣ(x1) − f2(x1)) ·

nT (x1)

nT (x1)f2(x1)
,

upon using the expression for f
Σ

in (1.7) (1.8).

Also, by Lemma 2.3, we observe that (2.17) is not invertible. In fact, in this case (in the notation
of Lemma 2.3) we can write

u =
fΣ(x1) − f1(x1)

nT (x1)f1(x1)
, r = n(x1),

so that rT u = −1 and Su = 0. For later reference, we summarize this simple fact in the following
Lemma.

Lemma 2.5. With above notation, the kernel of S in (2.17) is spanned by the vector

v = fΣ(x1) − f1(x1) .

In particular, since fΣ(x1) ∈ Tx1
, if f1(x1) /∈ Tx1

, then v /∈ Tx1
.

The singularity of the saltation matrix in case of sliding motion witnesses that motion on Σ
will take place on a lower dimensional manifold and moreover that we cannot uniquely trace the
orbit backward in time. As far as the fundamental matrix itself, during the sliding motion, this
will obey the evolution of the linearized problem with respect to the sliding vector field. That is,
suppose that the solution of (2.7) will be a sliding motion for t1 ≤ t ≤ t2. Then, for t ∈ [t1, t2],
the fundamental matrix will be the solution of

(2.18) Φ′
s(t, t1) = Df

Σ
(x, α(x))Φs(t, t1) , Φs(t1, t1) = I ,

where f
Σ

is defined in (1.7) and α in (1.8).

Remark 2.6. By virtue of how we generalized the concept of fundamental matrix, properties
(2.4), (2.5), (2.6), hold even in the case in which the trajectory reaches Σ and slides on it.

The expression (2.18) is insightfully arrived at by considering the point of view of the DAE
(1.10). First, rewrite the DAE (1.10) as F (z, z′) = 0, where z = (x, α), that is

(2.19) F (z, z′) =

(

x′ − (1 − α)f1(x) − αf2(x)
h(x(t))

)

.

Let zs = (xs, αs) be the sliding trajectory (the solution of (1.7)-(1.9)) and consider linearizing
(2.19) about zs, that is take the first variation for the variable z = zs + v (see [6]). From (2.19),
at first order we get:

[Fz′ ]zs
v′ + [Fz ]zs

v = 0 ,

that is
(

I 0
0 0

)

v′ +

(

−(1 − α)Df1 − αDf2 f1 − f2

(∇h)T 0

)

(xs,αs)

v = 0 .
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Figure 2. Sliding on different surfaces

Partitioning v = (w, β), we obtain:

(2.20) (∇h(xs))
T w = 0 ,

(2.21) w′ = Df
Σ
(zs)w , where Df

Σ
(zs) = [(1 − α)Df1 + αDf2 − (f1 − f2)(∇α)T ]zs

,

which justifies (2.18).
Observe that (2.20) tells us that the corrections under the linearized flow are on the tangent

plane to the surface. In fact, as a consequence of (2.21) and (2.20), if we let y1 ∈ Tx1
, and set

y(t) = Φs(t, t1)y1, then y(t) ∈ Tφt(x1). We summarize this observation in the form of a Lemma.

Lemma 2.7. The fundamental matrix Φs(t, t1), associated to linearization along a sliding trajec-
tory on the surface Σ from x1 to φt(x1), brings the tangent space at x1 into the tangent space at
φt(x1).

2.3.1. Finite loss of rank. Suppose we have a trajectory, φt(x0), which reaches Σ non-tangentially
at time t1, and exits the (n − 1) dimensional surface Σ tangentially at a later time t2. Let x1 and
x2 be the corresponding enter and exit points, so that (assuming for simplicity that the solution
comes from, and returns in, the same region R1) the solution arrives in Σ with vector field f1(x1)
and leaves Σ with vector field fΣ(x2) = f1(x2). Let us also assume that the associated (Filippov)
vector field never vanishes. Since the underlying fundamental matrix maps vector fields into vector
fields (property (2.5)), we plainly have that the (non-smooth) fundamental matrix associated to
this trajectory has always at least rank 1. In fact, this remains true even if the trajectory repeatedly
enters (non-tangentially) and exits (tangentially) from Σ (see for instance [22]).

Below, we show that, under reasonable conditions, the fundamental matrix remains always of
rank (n−1), even if a trajectory progressively enters, slides, and exits, from a surface Σ of dimension
(n − 1), regardless of how many sliding segments there are on Σ. In fact, a similar result holds
when we slide on possibly different surfaces, as long as each of them is of dimension (n − 1), see
Fig. 2. To prove the result, we will need that every vector in Tx2

(and not just the vector field
itself) returns to Σ, under the linearized flow, in a different direction than that of the null space of
the corresponding saltation matrix. This is guaranteed if the (n − 1) vectors in R

n spanning the
tangent space cannot be used to obtain a vector in R

n in the direction of the 1-dim null space of
the saltation matrix, a mild requirement.

Theorem 2.8. Consider a trajectory φt(x0) of (2.7) which slides on a surface of dimension (n−1)
(or on several different surfaces, each of dimension (n−1)), between the points x2k+1 = φt2k+1(x0)
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and x2k+2 = φt2k+2 (x0), for k = 0, . . . , K, x2k+1 6= x2k+2. Assume also that the trajectory exits
tangentially (hence, smoothly) at the points x2k+2 and that it enters the surface(s) nontangentially
at x2k+1. Finally, let the trajectory be at x0 at time t = 0 and at xN = φtN (x0), at time tN > t2K+2,
not on the surface. Let S2k+1 be the saltation matrices at the points x2k+1, k = 0, . . . , K. Assume
that S2k+1Φ(t2k+1, t2k)w 6= 0 for any vector w ∈ Tx2k+2

, k = 1, . . . , K. Then, the fundamental
matrix solution Φ(tN , 0) has rank (n − 1), independently of K.

Proof. It suffices to consider the case of the solution sliding on the arcs (x1, x2) and (x3, x4), the
general case will follow by a recursive argument. We can write

Φ(t5, 0) = Φ(t5, t4)Φs(t4, t3)S3Φ(t3, t2)Φs(t2, t1)S1Φ(t1, 0) ,

where S1 and S3 are the two saltation matrices at x1 and x3, respectively, Φs(t2, t1) and Φs(t4, t3)
are the two fundamental matrices on the sliding segments (x1, x2) and (x3, x4), respectively, and
Φ(t1, 0), Φ(t3, t2), Φ(t5, t4) are the fundamental matrices in between [0, t−1 ), [t2, t

−
3 ), [t4, t

−
5 ). To

establish the result, we need to show that the matrix M = Φs(t4, t3)S3Φ(t3, t2)Φs(t2, t1)S1Φ(t1, 0)
is of rank (n − 1).

Let Vx1
∈ R

n×(n−1) be a matrix representation of a basis for Tx1
, and let v1 be a vector in the

null space of S1. Since the trajectory enters x1 non-tangentially, v1 /∈ span(Vx1
). Represent Φ(t1, 0)

in the basis of R
n given by [Vx1

, v1]: Φ(t1, 0) = [Vx1
, v1]B1, where B1 ∈ R

n×n is invertible.
Notice that S1[Vx1

, v1] = [Vx1
, 0] and recall that Φs(t2, t1)Vx1

= Vx2
∈ R

n×(n−1) is a matrix
representation for a basis of Tx2

. So, we have

M = Φs(t4, t3)S3Φ(t3, t2)Vx2
[In−1 , 0]B1 .

Since B1 and Φs(t4, t3) are invertible, we only need to show that A = S3Φ(t3, t2)Vx2
[In−1 , 0] has

rank (n− 1). Clearly, A

[

0
1

]

= 0. By contradiction, suppose there is another vector w ∈ R
n in the

kernel of A, not in the direction of

[

0
1

]

. So, we can partition w =

[

w1

w2

]

with w1 ∈ R
n−1, w1 6= 0.

Then it follows that 0 = Aw = S3Φ(t3, t2)Vx2
w1, which means that Φ(t3, t2) brings a vector from

Tx2
in the direction of the null space of S3, contradicting our assumptions. �

As we will see in Section 3, there can be a more severe loss of rank, by 2, when we slide on the
intersection of two surfaces of dimension (n−1). In that case, the trajectory would be sliding on a
manifold of dimension (n−2), and the dimension of the manifold along which the trajectory slides
impacts the dimension of the null space of the corresponding saltation matrix, hence the rank of
the fundamental matrix.

2.4. Periodic sliding case: 1 surface. Now let us consider the case in which a solution of (2.7)
is periodic. We are interested in two cases.

2.4.1. Case 1. First take φt(x0) to be a periodic solution of minimal period τ > 0, which starts
off Σ, then enters in Σ at a point x1, has attractive sliding motion on it, leaves Σ at x2, re-enters
at x1 and repeats this cycle. Without loss of generality, we suppose that the initial condition x0

belongs to R1, we let x1 = x(t1) the point where the trajectory hits Σ, and by x2 = x(t2) the point
where the trajectory leaves Σ to entry R1, with vector field f1 (that is, we will leave Σ smoothly).

From 0 to t1 the solution evolves in R1 and Φ1(t, 0) is the associated fundamental matrix solution,
from t1 to t2 the solution evolves on Σ and ΦS(t, t+1 ) is the associated fundamental matrix solution,
and from t2 to τ the solution is again in R1 with Φ1(t, t2) the associated fundamental matrix
solution. More complicated scenarios, with several segments of sliding motion, are generalization
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Figure 3. Periodic sliding trajectory

of the present one. Recall that the Filippov’s system is:

(2.22) x′ = f(x) =







f1(x) , x ∈ R1 ,
fΣ(x) , x ∈ Σ ,
f2(x) , x ∈ R2 ,

where fΣ(x) is given by (1.7), (1.8).
Denote with Φ(t, 0) the “fundamental matrix solution” (for t ∈ (0, τ)) of the discontinuous

system (2.22); we want to look at the “monodromy” matrix Φ(τ, 0). An obvious property that the
monodromy must have is that

f(φτ (x0)) = Φ(τ, 0)f(x0) ,

that is it must have an eigenvalue equal to 1.
Now, from (2.5) it follows that:







f1(x1) = Φ1(t
−
1 , 0))f1(x0)

fΣ(x2) = ΦΣ(t2, t1)fΣ(x1)
f1(x(τ)) = Φ1(τ, t2)f1(x2) .

So, the fundamental matrix solution Φ(t, 0) is discontinuous at t1 and:

(2.23) Φ(t+1 , 0) = SΦ(t−1 , 0)

where the saltation matrix is given by (2.17).
From (2.17), observing that f1(x2) = fΣ(x2), we have:

f1(x(τ)) = Φ1(τ, t2)f1(x2) = Φ1(τ, t2)ΦΣ(t2, t
+
1 )fΣ(x1) =

= Φ1(τ, t2)ΦΣ(t2, t
+
1 )Sf1(x1) = Φ1(τ, t2)ΦΣ(t2, t

+
1 )SΦ1(t

−
1 , 0)f1(x0) ,

so that the monodromy matrix has the form

(2.24) Φ(τ, 0) = Φ1(τ, t2)ΦΣ(t2, t
+
1 )SΦ1(t

−
1 , 0) .

By virtue of the discussion in the previous sections, we immediately have:
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Theorem 2.9. The monodromy matrix in (2.24) has one eigenvalue equals to 1 because of peri-
odicity, and one eigenvalue equals to 0, because of the singularity of the saltation matrix S. The
remaining eigenvalues measure stability of the periodic orbit.

2.4.2. Case 2. As a second case, consider the situation in which the periodic solution is an attract-
ing sliding mode. In other words, we have a periodic solution on the surface Σ:

x0 ∈ Σ , φt(x0) ∈ Σ , for all t , φτ (x0) = x0 .

In this case the fundamental matrix satisfies (2.18) and remains always invertible, although the
motion is taking place on a (n−1)-dimensional manifold. This is easily explained by recalling that
–in this case– the fundamental matrix makes vectors in the tangent plane evolve into vectors in the
tangent plane. As a consequence, the monodromy matrix will not only have an eigenvalue equal
to 1 as always, relative to the vector field itself, but will also have an invariant subspace relative
to all vectors in the tangent plane.

Theorem 2.10. Let φt(x0) be an attracting sliding mode, periodic of period τ . Let Φ(τ, 0) be
monodromy matrix associated to the linearized problem for φt(x0), t ∈ [0, τ ]. Then, Φ(τ, 0) has
an invariant subspace of dimension (n − 1) associated to the tangent plane at x0. The remaining
eigenvalue measures the rate of attractivity from directions normal to the surface.

Proof. Let Y0 be a basis for the tangent plane at x0 and let Y ⊥
0 be its orthogonal complement (a

vector in the direction of (∇h(x0))
T in this case). Then Φ(t, 0)Y0 = Yφt(x0) are vectors in the

tangent plane at the point φt(x0), and therefore since the tangent plane at φτ (x0) is the same as
the tangent plane at x0, we must have that Yφt(x0) = Y0C where C ∈ R

n−1,n−1. In other words,
we must have

Φ(τ, 0)[Y0, Y ⊥
0 ] = [Y0, Y ⊥

0 ]

[

C b
0 a

]

and the result follows. �

Remark 2.11. With above notation, the value of a measures the effect of perturbations off Σ,
whereas the eigenvalues of C measure the effect of perturbations with respect to solutions which
remain on Σ. The value of a is measuring the stability of the periodic orbit of the DAE system
which describes the motion on Σ.

Example 2.12. (See Galvanetto and Bishop, [13]). Consider the dynamics of a simple oscillator
consisting of a block of mass m, supported by a moving belt. The block is connected to a fixed
support by a linear elastic spring and by a linear dashpot. The surface between the block and the
belt is rough so that the belt exerts a friction force on the block. Energy is continuously introduced
into the system by the motion of the belt, which moves at constant velocity (the driving velocity v)
and it is transferred to the block by means of the static friction force that allows for the build-up of
potential energy within the spring. The structural damping generated by the dashpot continuously
dissipates energy. The dynamic friction force may either introduce energy into the system, if it
has the same sign as the velocity of the block (this is usually the case at the beginning of a
slip phase), or dissipate energy, if the signs of the friction force and of the velocity are different.
Mechanical systems of this type are referred to as stick-slip since there are times when there is no
relative motion between the block and the belt (stick phase) and others in which the block slips.
A mechanical system of this type may be described, in its simplest form, by means of the following
differential equation

(2.25) mx′′ + cx′ + kx = f(x′ − v) ,
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Figure 4. Periodic sliding trajectory.

where x(t) is the displacement of the oscillator from the position in which the spring assumes
its natural length, x0 the initial displacement, m is the mass, c is the damping coefficient, k the
stiffness of the spring, f(x′ − v) is the friction force of the block which we assume of the form:

(2.26) f(x′ − v) =











1−δ
1−γ(x′−v) + δ + η(x′ − v)2, for v > x′,

−(1−δ)
1+γ(x′−v) − δ − η(x′ − v)2 for v < x′,

where δ, γ, η are constants.
Letting x1 = x, x2 = x′, h(x1, x2) = x2 − v, we can rewrite (2.25) in form of the Filippov

differential system (1.1), with the extension (2.22). Here, we have

f1(x1, x2) =

[

x2

−kx1 −
c
m

x2 + 1−δ
1−γ(x2−v) + δ + η(x2 − v)2

]

,

f2(x1, x2) =

[

x2

−kx1 −
c
m

x2 + −(1−δ)
1+γ(x2−v) − δ − η(x2 − v)2

]

.

In Fig. 4 we show the solution computed by the technique we presented in [10]. Values of
the constants are x0 = [0, 0], m = 1, k = 1, c = 0.1, δ = 0.5, γ = 1, η = 0.001, v = 0.5. The
monodromy matrix has the form (2.24) and, as expected, the numerically computed monodromy
matrix has an eigenvalue 0 (to machine precision) and one eigenvalue (approximately) equal to 1.
In fact, starting with x0

∼= (0.9503, 0.49999) on the limit cycle, after one period (τ = 6.5), a first
order method provides a fundamental matrix with eigenvalues given by 0 and 0.9997.

3. Fundamental matrix solution: Cross and/or slide on two surfaces

Now, suppose that the state space is split into four regions R1, R2, R3 and R4 by two intersecting
hypersurfaces Σ1 and Σ2 which are defined by the scalar functions h1 : R

n → R and h2 : R
n → R,

that is:

R1 = {x ∈ R
n | h1(x) < 0, h2(x) < 0} , R2 = {x ∈ R

n | h1(x) < 0, h2(x) > 0} ,

R3 = {x ∈ R
n | h1(x) > 0, h2(x) > 0} , R4 = {x ∈ R

n | h1(x) > 0, h2(x) < 0} ,
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(see Fig. 5). Consider the system with discontinuous right-hand side:

(3.1) x′(t) = f(x(t)) =















f1(x) , x ∈ R1 ,
f2(x) , x ∈ R2 ,
f3(x) , x ∈ R3 ,
f4(x) , x ∈ R4 ,

with initial point x(0) = x0 ∈ R
n. The functions h1(x) and h2(x) are assumed to be Ck functions

(k ≥ 2) and moreover ∇h1(x) 6= 0, for all x ∈ Σ1, and ∇h2(x) 6= 0, for all x ∈ Σ2. So, we have
well defined unit normals n1(x) and n2(x) to the tangent planes Tx(Σ1) and Tx(Σ2), respectively.
We will also assume that n1(x) and n2(x) are linearly independent for all x ∈ Σ1 ∩ Σ2.

Conditions guaranteeing attracting sliding on Σ1 ∩ Σ2 are given by:

(3.2)















nT
1 (x)f1(x) > 0 , nT

2 (x)f1(x) > 0 ,
nT

1 (x)f2(x) > 0 , nT
2 (x)f2(x) < 0 ,

nT
1 (x)f3(x) < 0 , nT

2 (x)f3(x) < 0 ,
nT

1 (x)f4(x) < 0 , nT
2 (x)f4(x) > 0 ,
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while crossing conditions at x ∈ Σ1 ∩ Σ2 are given by:

(3.3)















nT
1 (x)f1(x) > 0 , nT

2 (x)f1(x) > 0 ,
nT

1 (x)f2(x) > 0 , nT
2 (x)f2(x) > 0 ,

nT
1 (x)f3(x) > 0 , nT

2 (x)f3(x) > 0 ,
nT

1 (x)f4(x) > 0 , nT
2 (x)f4(x) > 0 ,

or similar conditions with opposite signs.
It is well known that in general Filippov’s theory is not able to define uniquely the vector field

on the intersection Σ1 ∩Σ2 of the discontinuity surfaces Σ1 and Σ2, except in particular cases (see
[11, 27]). Recently, two different approaches, the first one based on sigmoid blending techniques
(see [3, 9]), and the second one based on geometric considerations (see [10]), have been proposed
to eliminate the ambiguity of the Filippov’s theory. In both cases, one can unambiguously define a
solution of (3.1) also in case in which the solution slides on the intersection Σ1∩Σ2. Let us call f∩
the chosen vector field on the intersection; for our numerical experiments, we have used the choice
of [10].

Notice that the ambiguity to uniquely define a vector field in the Filippov sense on the inter-
section is simply a consequence of the fact that Filippov convexification method would require to
have

f∩ =

4
∑

i=1

λi(x)fi(x) , λi ≥ 0 .

To the convexity constraint
∑4

i=1 λ1 = 1, one can add two more equations coming from the
requirement that f∩ lies on the tangent plane:

nT
1 (x)f∩(x) = 0 , nT

2 (x)f∩(x) = 0 ,

and clearly we have a generally underdetermined system to solve for the λi’s. Of course, this
same ambiguity shows up when taking the point of view of a DAE modeling sliding motion on the
intersection. In this case, for x ∈ Σ1 ∩ Σ2, considering the (n + 4) variables (x, λ1, λ2, λ3, λ4) and
a general sliding vector field f∩ on the intersection, we would need to satisfy

(3.4)















x′(t) = f
Σ
(x, λ1, λ2, λ3, λ4) ,

h1(x(t)) = 0 ,
h2(x(t)) = 0,
∑4

i=1 λi = 1 .

However, unlike (1.10), this is not an index-2 DAE, and in fact there is no properly defined index
for (3.4).

We now proceed to define appropriate generalizations for the fundamental matrix solution when
the solution trajectory crosses or slides on the intersection of two surfaces. Results in the crossing
case exist (see below), but we have found no work on the fundamental matrix solution when there
is sliding motion on the intersection of two surfaces.

In what follows, we will use the following notation for the Filippov vector field in a regime of
attractive sliding motion along one of the two surfaces Σ1 or Σ2:

(3.5) f i,j
Σr

(x̄) = (1 − α(x̄))fi(x̄) + α(x̄)fj(x̄) , α(x̄) =
nT

r (x)fi(x)

nT
r (x)(fi(x) − fj(x̄))

for i, j = 1, 2, 3, 4, r = 1, 2, with x̄ ∈ Σr.
(i) From Outside to one surface. The case in which, starting with an initial point (say) in R1,
a trajectory crosses Σ1 towards R4 at a point x = x(t), or slides on Σ1, is identical to the cases
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previously discussed (see (2.11), (2.12) and (2.23), (2.17)). The saltation matrix, which links the
components of the fundamental matrix solution at the discontinuity point x, will be given by:

(3.6) S1 = I + (g(x) − f1(x)) ·
nT

1 (x)

nT
1 (x)f1(x)

, with nT
1 (x)f1(x) 6= 0,

and S1 brings the vector field f1(x) into g(x) = f4(x) when the trajectory crosses Σ1, or into the

Filippov’s vector g(x) = f1,4
Σ1

(x̄) of the tangent space Tx(Σ1) when the trajectory slides on Σ1. We
have a similar form of the saltation matrix in the other cases, for instance when we cross Σ1 from
R2 towards R3, or when we cross Σ2 from R4 towards R3 or from R1 towards R2, etc..
(ii) From one surface to the intersection. We now suppose that while sliding on Σ1 with vector field

f1,4
Σ1

, the trajectory arrives at a point x which is on Σ2, hence on the intersection, non-tangentially
with respect to Σ2. In principle, there are several possibilities: (a) We cross the intersection,
while remaining on Σ1, (b) we exit both surfaces tangentially with respect to Σ1, (c) we leave
Σ1 tangentially and remain on Σ2, or (d) we remain on the intersection. All of these cases are
effectively similar to those previously considered. The saltation matrix is given by:

(3.7) SΣ1
= I + (g(x) − f1,4

Σ1
(x̄)) ·

nT
2 (x)

nT
2 (x)f1,4

Σ1
(x)

, with nT
2 (x)f1,4

Σ1
(x) 6= 0 ,

where

(a) g(x) = f2,3
Σ1

(x̄);

(b) g(x) = f2(x) or g(x) = f3(x) (and f1,4
Σ1

(x) = g(x));

(c) g(x) = f1,2
Σ2

(x̄) or g(x) = f3,4
Σ2

(x̄) (and f1,4
Σ1

(x) = g(x));

(d) g(x) = f∩(x).

It is important to emphasize that –in all cases (i) and (ii) above– we still have an extention of the
concept of fundamental solution matrix, as before. This is no longer true in the case we consider
next.

3.1. From outside to the intersection. A most interesting case is when a trajectory φt(x0),
with a value x0 in (say) R1, at time t1 hits the intersection Σ1∩Σ2, that is x1 := φt1(x0) ∈ Σ1∩Σ2.
We will assume that this happens non-tangentially with respect to both Σ1 and Σ2; more precisely,
we assume that (∇h1(x1))

T f1(x1) 6= 0 and (∇h2(x1))
T f1(x1) 6= 0. In this situation, the interesting

cases are when the trajectory either crosses the intersection and continues with vector field f3(x1),
or slides on the intersection; in other words, we will assume that either (3.3) or (3.2) hold at x1.
The case in which the trajectory after arriving on the intersection begins sliding on only one surface
is actually simpler, and it is handled similarly to the situations previously examined: there is going
to be just one jump matrix in this case, like that in (2.17).

The case in which the trajectory crosses the intersection was first considered by Ivanov in [16].
As far as we know, the case where we slide on the intersection was not previosuly considered.
Similarly to what we did in Lemma 2.2, we want to look at what happens to trajectories, φt(y0),
for perturbed initial condition y0 = x0 + ∆x. But now there are new issues to consider since the
perturbed trajectory φt(y0) will not necessarily arrive at the intersection Σ1 ∩ Σ2 from R1, unlike
the case we considered in Lemma 2.2 where the perturbed trajectory reached Σ from R1 just like
the unperturbed one.

What we have now, relatively to φt(y0), are two possibly different times ∆1t and ∆2t where

h1(φ
t1+∆1t(y0)) = 0 , h2(φ

t1+∆2t(y0)) = 0 .

Assume (with no loss of generality) that both ∆1t and ∆2t are positive.
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Expanding h1(φ
t1+∆1t(y0)) and h2(φ

t1+∆1t(y0)) in a similar way to what we did in Lemma 2.2,
retaining first order terms and solving for ∆1t and ∆2t we obtain

(3.8) ∆1t = −
(∇h1(x1))

T
(

φt1(y0) − x1

)

(∇h1(x1))T f1(x1)
6= 0 , and ∆2t = −

(∇h2(x1))
T
(

φt1(y0) − x1

)

(∇h2(x1))T f1(x1)
6= 0 .

If ∆1t < ∆2t, then φt(y0) first meets Σ1 and then meets Σ2. If ∆2t < ∆1t, then φt(y0) first
meets Σ2 and then meets Σ1. Finally, if ∆1t = ∆2t, then φt(y0) meets Σ1 and Σ2 simultaneously,
that is it lands directly on the intersection. Accordingly, we split the region R1, locally, near the
intersection point x1, into three regions,

R1 = R1
1 ∪ R0

1 ∪ R2
1 ,

defined as follows:

(0) y0 ∈ R0
1, if y0 ∈ R1 and the trajectory φt(y0) meets first directly the intersection surface

Σ1 ∩ Σ2;
(1) y0 ∈ R1

1, if y0 ∈ R1 and the trajectory φt(y0) meets first the surface Σ1;
(2) y0 ∈ R2

1, if y0 ∈ R1 and the trajectory φt(y0) meets first the surface Σ2.

Effectively, the region R0
1 is the (local) backward set of points on the intersection itself; since the

intersection is a (n−2)-dimensional manifold, it follows that R0
1 is an (n−1)-dimensional manifold,

invariant under the flow; see Fig. 6. Because of uniqueness of solutions with data in R1, actually
each of R0

1, R1
1 and R2

1 is invariant under the flow.
In all cases above, at first order we have

φt1+∆t(x0) − φt1+∆t(y0) = S
(

φt1(x0) − φt1(y0)
)

where the specific form of the jump matrix S depends on whether ∆1t ⋚ ∆2t and on whether

φt(x0) crosses the intersection at x1 (going from R1 into R3), or begins sliding on it. In accordance
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with the above, and our discussion in the previous section, we have the cases below for the saltation
matrix S.

3.1.1. Cross the intersection. Here φt(x0) crosses the intersection at x1. In the three cases below,
(3.9)-(3.10)-(3.11), the matrix S is invertible, though the specific form of S differs.

Case ∆1t < ∆2t. The perturbed trajectory first crosses Σ1 then Σ2. As a consequence, S is the
product of two saltation matrices:

(3.9) S =

[

I + (f3(x1) − f4(x1)) ·
nT

2 (x1)

nT
2 (x1)f4(x1)

] [

I + (f4(x1) − f1(x1)) ·
nT

1 (x1)

nT
1 (x1)f1(x1)

]

.

Case ∆2t < ∆1t. Now the perturbed trajectory first crosses Σ2 then Σ1, and again S is the product
of two saltation matrices:

(3.10) S =

[

I + (f3(x1) − f2(x1)) ·
nT

1 (x1)

nT
1 (x1)f2(x1)

] [

I + (f2(x1) − f1(x1)) ·
nT

2 (x1)

nT
2 (x1)f1(x1)

]

.

Case ∆1t = ∆2t. The perturbed trajectory passes from R1 to R3 at the intersection. We have
only one jump matrix with two equivalent rewritings, in the sense that for either form below

S =

[

I + (f3(x1) − f1(x1)) ·
nT

1 (x1)

nT
1 (x1)f1(x1)

]

or

S =

[

I + (f3(x1) − f1(x1)) ·
nT

2 (x1)

nT
2 (x1)f1(x1)

]

,

(3.11)

we have φt
+

1 (x0)−φt
+

1 (y0) = S
(

φt
−

1 (x0)−φt
−

1 (y0)
)

; the two equivalent rewritings are a consequence
of (3.8).

3.1.2. Slide on the intersection. We now extend the above to the case in which φt(x0), upon
reaching Σ1 ∩ Σ2 at x1, begins sliding on Σ1 ∩ Σ2.

Case ∆1t < ∆2t. The perturbed trajectory first arrives at Σ1, where it has sliding behavior, then
at Σ2 (hence at the intersection). As a consequence, S is the product of two saltation matrices:
(3.12)

S =

[

I + (f∩(x1) − f1,4
Σ1

(x1)) ·
nT

2 (x1)

nT
2 (x1)f

1,4
Σ1

(x1)

]

[

I + (f1,4
Σ1

(x1) − f1(x1)) ·
nT

1 (x1)

nT
1 (x1)f1(x1)

]

,

where f1,4
Σ1

(x̄) is the sliding vector field on Σ1, which feels the fields f1(x̄) and f4(x̄), that is (3.5).

Case ∆2t < ∆1t. Now the perturbed trajectory first arrives at Σ2, on which it has sliding behavior,
then at Σ1 (hence at the intersection), and again S is the product of two saltation matrices:
(3.13)

S =

[

I + (f∩(x1) − f1,2
Σ2

(x1)) ·
nT

1 (x1)

nT
1 (x1)f

1,2
Σ2

(x1)

]

[

I + (f1,2
Σ2

(x1) − f1(x1)) ·
nT

2 (x1)

nT
2 (x1)f1(x1)

]

,

where f1,2
Σ2

(x̄) is the sliding vector field on Σ2, which feels the fields f1(x̄) and f2(x̄).

Case ∆1t = ∆2t. The perturbed trajectory arrives directly on the intersection. We have only one
jump matrix with two equivalent rewritings, in the sense that for either form below

S =

[

I + (f∩(x1) − f1(x1)) ·
nT

1 (x1)

nT
1 (x1)f1(x1)

]

or

S =

[

I + (f∩(x1) − f1(x1)) ·
nT

2 (x1)

nT
2 (x1)f1(x1)

]

,

(3.14)
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we have φt
+

1 (x0) − φt
+

1 (y0) = S
(

φt
−

1 (x0) − φt
−

1 (y0)
)

.

Remark 3.1. Interpretation. It is important to understand what the above different rewritings
mean. In both cases of crossing and sliding on the intersection, the main implication of the above
different forms for the saltation matric(-ces) is that we do not have a properly (nor uniquely)
defined concept of a fundamental matrix solution. What we have is an expression for a matrix
which shows how initial perturbations are magnified, but the expression itself depends on where
the perturbed initial point y0 is with respect to the unperturbed initial value x0, that is on whether
y0 is in R0

1, R1
1, or R2

1. This effectively inhibits the extension of the concept of fundamental matrix
solution to the case in which linearization occurs along a trajectory which from outside the surfaces
goes directly to the intersection.

The above notwithstanding, some important features are maintained also in this case, in par-
ticular about the rank of the saltation matrix(-ces) in (3.12) and (3.13).

Lemma 3.2. Consider the matrices S(1) and S(2) in (3.12) and (3.13) rewritten as follows:

S(1) = S
(1)
2 S

(1)
1 , S

(1)
1 = I + a1n

T
1 , S

(1)
2 = I + c1n

T
2 ,

and
S(2) = S

(2)
1 S

(2)
2 , S

(2)
1 = I + a2n

T
1 , S

(1)
2 = I + c2n

T
2 ,

where

a1 =
f1,4
Σ1

(x1) − f1(x1)

nT
1 (x1)f1(x1)

, c1 =
f∩(x1) − f1,4

Σ1
(x1)

nT
2 (x1)f

1,4
Σ1

(x1)
,

and

a2 =
f∩(x1) − f1,2

Σ2
(x1)

nT
1 (x1)f

1,2
Σ2

(x1)
, c2 =

f1,2
Σ2

(x1) − f1(x1)

nT
2 (x1)f1(x1)

.

Then, both S(1) and S(2) have (n − 2) eigenvalues equal to 1 and a two dimensional kernel.

Proof. The fact that there are (n − 2) eigenvalues equal to 1 is a direct consequence of the fact
that both S(1) and S(2) leave invariant the tangent plane to the intersection at x1. As far as the
2-d kernel is concerned, a direct verification shows that {a1, c1} are both in the kernel of S(1) and
likewise {a2, c2} are in the kernel of S(2). �

Remark 3.3. The double loss of rank witnesses that the motion is taking place on an (n − 2)-
dimensional manifold. Interestingly, the saltation matrix in (3.14) is of rank (n − 1); this is a
consequence of the fact that it only acts on data coming from R0

1 which itself is a manifold of
dimension (n − 1) and not n.

The last result we give is about motion which is periodic on the intersection, similarly to what
we did in Section 2.4.

3.2. Periodic sliding case on the intersection of two surfaces. Consider the case when we
have attractive periodic sliding motion restricted to the intersection:

x0 ∈ Σ1 ∩ Σ2 , φt(x0) ∈ Σ1 ∩ Σ2 , for all t , φτ (x0) = x0 .

Now there is a properly defined fundamental matrix satisfying

(3.15) Φ′
s(t, 0) = Df

∩
(x, λ(x))Φs(t, 0) , Φs(0, 0) = I ,

where f
∩

is the vector field on the intersection, for example defined as in [10]; as our notation
suggests, we stress that this vector field f

∩
depends on a vector valued function λ defined for

x ∈ Σ1 ∩ Σ2 and which we also need to assume being smooth. Now, (3.15) defines an invertible
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fundamental matrix, even though the motion is taking place on a (n − 2)-dimensional manifold.
As usual, this is because the fundamental matrix maps vectors of the tangent plane into vectors
of the tangent plane.

Theorem 3.4. Let φt(x0) be an attracting sliding mode, periodic of period τ . Let Φs(τ, 0) be
monodromy matrix associated to the linearized problem for φt(x0), t ∈ [0, τ ]. Then, Φ(τ, 0) has
an invariant subspace of dimension (n − 2) associated to the tangent plane at x0. The remaining
eigenvalues measure the attractivity rates from directions normal to the surface.

Proof. The proof is essentially the same as that of Theorem 2.10. Let Y0 be a basis for the
tangent plane at x0 and let Y ⊥

0 be its orthogonal complement. Therefore, Yφt(x0) = Y0C where

C ∈ R
n−2,n−2 and

Φ(τ, 0)[Y0, Y ⊥
0 ] = [Y0, Y ⊥

0 ]

[

C B
0 A

]

.

�

Remark 3.5. The eigenvalues of C measure the stability properties with respect to perturbations
on Σ, whereas the eigenvalues of A measure the effect of perturbations off Σ. But, again, this
statement has to be interpreted with a grain of salt: We are assuming that on the intersection
there is attracting sliding motion, which means that solutions of the nonsmooth system near the
periodic orbit approach this periodic trajectory itself. At the same time, the eigenvalues of A are
measuring the stability of the periodic orbit of the differential-algebraic equation which describes
the motion on the intersection.

The next example illustrates Theorem 3.4.

Example 3.6. Let us consider the three-dimensional differential system x′(t) = f(x(t)), x0 = x(0),
where x = (x1, x2, x3) and f(x(t)) is a discontinuous vector field with respect to the two surfaces:

Σ1 = {x| h1(x) = x1 + x2 + x3 − 1 = 0} , Σ2 = {x| h2(x) = 2x2
1 + 2(x2 − x3)

2 − 1 = 0} .

Σ1 is a plane and Σ2 is a cylinder in R
3. Here, f(x) = A(c1, c2)x + b(c2) where:

A(c1, c2) =





1 − 2c1 2 −2
−2 + c1 −1 − c1 c1

c1 −2 + c1 1 − c1



 , b(c2) =





0
c2

c2



 ,

and

c1 =

{

0, h2(x) < 0
1, h2(x) > 0

, c2 =

{

0, h1(x) > 0
1, h1(x) < 0

.

Thus, we have four different vector fields in the four regions of R
3 isolated by the two surfaces Σ1

and Σ2. On the intersecting surface Σ1 ∩ Σ2 the conditions for attracting sliding are satisfied.
In Fig. 7 we have reported the numerical solution, on the time interval [0, 10], with initial value

in region R1, together with its limit cycle.
As far as the fundamental matrix is concerned, if x0 is a point in region R1, x(t) is a point of

the trajectory on the limit cycle, by using the same arguments we have used to prove (3.20), we
can show that:

(3.16) Φ(t, 0) = Φ∩(t, t+2 )S∩ΦΣ1
(t−2 , t+1 )S1Φ1(t

−
1 , 0) ,

where Φ1(t, 0) for t ∈ [0, t1) denotes the fundamental matrix solution of the differential problem in
R1 starting with x0 and vector field given by f1(x); S1 is the saltation matrix in (3.6) which moves

the vector field f1(x1) into Filippov vector f1,4
Σ1

(x1) (defined in (3.5)) of the tangent space Tx1
(Σ1);

ΦΣ1
(t, t1), for t ∈ [t1, t2), denotes the fundamental matrix solution of the differential problem on

Σ1 starting with x1 and vector field given by the Filippov vector f1,4
Σ1

(x); SΣ1∩Σ2
is the saltation
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Figure 7. Numerical solution and limit cycle.

matrix in (3.7)-(d) which moves the vector fΣ1
(x2) into a vector of the tangent space of Σ1 ∩ Σ2

at x2; Φ∩(t, t2), for t ∈ [t2, t3), denotes the fundamental matrix solution of the differential problem
on Σ1 ∩ Σ2 with initial point x2 and vector field given by f∩(x).

The fundamental matrix in (3.16) has two eigenvalues equal to 0, because of the different
saltation matrices S1 and S∩. In fact, starting with x0 = (0.1,−10,−10), a first order numerical
method provides a fundamental matrix (given by (3.16)) at t = 6.23 with eigenvalues: 0.0, 0.0, 7.1.

On the other hand, if we start with a point x0 = x(0) on the limit cycle, the fundamental matrix
after one period τ will be invertible, and given by

(3.17) Φ(τ, 0) = Φ∩(τ, 0),

which is a matrix with one eigenvalue equal to 1, and the other eigenvalues measuring the rates of
attractivity/repulsivity towards the limit cycle. Indeed, starting with x0

∼= (0.7029, 0.1866, 0.1103)
on the limit cycle, using a first order method a numerical simulation provides the following eigen-
values for the fundamental matrix (3.17) after one period τ = 3.142: 0.085, 1.770, 1.0, which
shows that the periodic orbit of the underlying differential-algebraic equation is hyperbolic.

The final example below highlights the case of a periodic orbit with a portion of the trajectory
sliding on the intersection of two surfaces, the remaining parts either sliding on one single surface or
not sliding on any surface at all; in this case, the effect of the saltation matrices becomes apparent.

Example 3.7. (See Galvanetto, [12]). Now, let us consider a nonsmooth dynamical system the
solution of which slides on the intersection of two surfaces and the fundamental matrix solution
of which has the studied behaviour. In [12] the author studies a mechanical system composed
by two blocks on a moving belt. The velocity of the belt is constant and is called the driving
velocity v. Each block is connected to a fixed support and to the other block by elastic springs.
The surface between the blocks and the belt is rough so that the belt exerts a dry friction force on
each block that sticks on the belt to the point where the elastic forces due to the springs exceed
the maximum static force. At this point the blocks start slipping and the slipping motion will
continue to the point where the velocity of the block will equal that of the belt and the elastic
forces will be equilibrated by the static friction force. The continuous repetition of this type of
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motions generates a stick-slip oscillation. This mechanical system may be described in its simplest
form by the following set of differential equations:

(3.18)

{

m1x
′′
1 = −k1x1 − k12(x1 − x2) + fk1(x

′
1 − v) ,

m2x
′′
2 = −k2x2 − k12(x2 − x1) + fk2(x

′
2 − v) ,

where xi(t) is the displacement, mi is the mass, fki(x
′
i − v) the kinetic friction force of the i−th

block, k1, k2, k12 suitable constants. The kinetic force has the form fk2(x
′ − v) = βfk1(x

′ − v)
with:

(3.19) fk1(x
′ − v) =











1−δ
1−γ(x′−v) + δ + η(x′ − v)2, for v > x′,

−(1−δ)
1−γ(x′−v) − δ − η(x′ − v)2 for v < x′,

where β, δ, γ, η are suitable constants.
If we set x′

1 = x3 and x′
2 = x4 we may rewrite the differential system as a Filippov differential

system (3.18, 3.19) in R
4, with two discontinuity surfaces Σ1 and Σ2, characterized as the 0-sets

of the functions h1 and h2, respectively, where h1(x) = x3 − v, and h2(x) = x4 − v. In Fig. 8 we
report the numerical solution of this nonsmooth differential system together with its limit cycle
for m = 1, k1 = k2 = k12 = 1, δ = 0, γ = 3, η = 0, v = 0.295, β = 1.301. We have reported
the coordinates (x1, x3, x4) of the numerical solution on the time interval [0, 80] with initial point
given by the origin of R

4.
Now, let us consider a periodic solution of (3.18, 3.19) of minimal period τ . Suppose that the

initial point of x0 = x(0) of such a periodic solution lies in the region R1 (that is h1(x0) < 0 and
h2(x0) < 0). Denote by x1 = x(t1) the point where the trajectory hits Σ1, by x2 = x(t2) the
point where the trajectory hits the intersection Σ1 ∩Σ2, x3 = x(t3) the point where the trajectory
leaves Σ2 to entry the region where h1(x) = 0 and h2(x) < 0, and x4 = x(t4) the point where the
trajectory leaves Σ1 also to entry R1. As far as the fundamental matrix is concerned, by using the
same arguments we have used to prove (2.24), we can show that:

(3.20) Φ(τ, 0) = Φ1(τ, t4)ΦΣ1
(t4, t3)Φ∩(t3, t

+
2 )S∩ΦΣ1

(t−2 , t+1 )S1Φ1(t
−
1 , 0) ,

where Φ1(t, 0) for t ∈ [0, t1) denotes the fundamental matrix solution of the differential problem in
R1 starting with x0 and vector field given by f1(x); S1 is the saltation matrix in (3.6) which moves

the vector field f1(x1) into Filippov vector f1,4
Σ1

(x̄1) in (3.5) of the tangent space Tx1
(Σ1); ΦΣ1

(t, t1),
for t ∈ [t1, t2), denotes the fundamental matrix solution of the differential problem on Σ1 starting

with x1 and vector field given by the Filippov vector f1,4
Σ1

(x); S∩ is the saltation matrix in (3.7)-(d)

which moves the vector fΣ1
(x2) into a vector of the tangent space of Σ1 ∩ Σ2 at x2; Φ∩(t, t2), for

t ∈ [t2, t3), denotes the fundamental matrix solution of the differential problem on Σ1 ∩ Σ2 with
initial point x2 and vector field given by f∩(x); ΦΣ1

(t, t3), for t ∈ [t3, t4], is the fundamental matrix
solution of the differential problem on Σ1 starting with x3 and vector field given by the Filippov
vector f1,4

Σ1
(x); Φ1(t, t4), for t ∈ [t4, τ ], denotes the fundamental matrix solution of the differential

problem in R1 starting with x4 and vector field given by f1(x).

Theorem 3.8. The fundamental matrix in (3.20) has one eigenvalue equals to 1 because of peri-
odicity, two eigenvalues equal to 0, because of the singularity of the saltation matrices S and S∩,
and the remaining eigenvalue characterizes stability of the orbit.

Starting with the value x0
∼= (1.222, 1.333, 0.272, 0.148) on the limit cycle, after one period

τ ∼= 5, a simple numerical simulation using a first order method gives the following eigenvalues for
the fundamental matrix (3.20): 0.916, 0.168, 0.0, 0.0, implying that the periodic orbit is stable.
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Figure 8. Numerical solution and limit cycle.
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