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FUNDAMENTAL MATRIX SOLUTIONS OF PIECEWISE SMOOTH
DIFFERENTIAL SYSTEMS

LUCA DIECI AND LUCIANO LOPEZ

ABSTRACT. We consider the fundamental matrix solution associated to piecewise smooth dif-
ferential systems of Filippov type, in which the vector field varies discontinuously as solution
trajectories reach one or more surfaces. We review the cases of transversal intersection and of
sliding motion on one surface. We also consider the case when sliding motion takes place on the
intersection of two or more surfaces. Numerical results are also given.

1. INTRODUCTION AND BACKGROUND

Our purpose in this paper is to survey definitions and properties of the fundamental matrix
solution associated to piecewise smooth differential equations. Many of the results we give are
available in the literature, but are not all readily available. Moreover, some of the extensions we
consider herein, such as when there is sliding motion on intersection of surfaces, appear new.

We study differential equations with discontinuous right hand-side, and more precisely equations
in which the right hand-side changes discontinuously as one or more surfaces are crossed. These
surfaces are called discontinuity or switching surfaces and the systems under study are called
piecewise smooth dynamical systems in [9].

We only consider the case of continuous solutions for an initial value problem associated to
these systems (e.g., “impact” systems are not treated). The interesting case is what happeuns to a
trajectory when it reaches a switching surface. Loosely speaking, there are two things which can
occur: we may cross the surface, or we may stay on it, in which case Filippov’s construction (see
[11]) will define a vector field on the sliding surface and the motion will be called sliding mode.

Piecewise smooth differential equations appear pervasively in applications of various nature (see,
e.g. [5, 14, 15, 17, 24]); for a significative sample of references in the context of control, see e.g.
[25, 26, 27]; in the context of biological systems, see e.g. [7, 8, 15, 24]; in the context of mechanical
systems, see e.g. [13, 20, 21]; see the classical references [4, 11, 26, 27] and the recent book [9]
for a theoretical introduction to these systems, and finally see the recent book [1] for a review of
numerical methods used on these systems.

In [2, 11, 18, 20, 21, 23] the authors consider fundamental matrix solutions of a nonsmooth
system, and introduce the saltation matrix in order to take into account the lack of smoothness
of the differential system as the solution crosses transversally a discontinuity surface. In [16], the
fundamental matrix solutions of a nonsmooth system with two intersecting discontinuity surfaces
has been studied in the case of solutions which cross the intersection transversally. The formal
representation of the fundamental matrix solution has partly been used in defining the concept of
Lyapunov exponents for non-smooth systems (see [19]). All of these cited results are relative to the
case of a solution which crosses transversally a surface of discontinuity (or the intersection of two
such surfaces). In the case of sliding motion on one surface of discontinuity, several authors have
adapted to this case the concept of saltation matrix (see [11, 20, 21, 23]), and this methodology
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has proven valuable in practical experiments as well. But, in the case of sliding on the intersection
of two (or more) surfaces, no clear extension has yet been proposed for the saltation matrix. A
main goal of our work is to provide this extension.

1.1. Background. The simplest modelization of a non smooth system is when a (global) hyper-
surface partitions the state space in two regions:

/ _ _ fl(x(t)) ) IeRl 3 _ n
(1.1) 2'(t) = f(z(t) = {fg(:zz(t)) i eR,. z(0) =zo € R™ .
The state space R™ is split into two subspaces R; and Rg by a surface 3 such that R = RjUXURs.
The surface is defined by a scalar indicator (or event) function h : R™ — R, so that the subspaces
Ry and Rs, and the hypersurface X, are implicitly characterized as

(1.2) Y={zeR" h(z) =0}, Ri={zxeR" h(z)<0}, Ry={xreR" h(z)>0}.

In (1.1), we will assume that f; is C¥,k > 1, on Ry UY and fy is C¥,k > 1, on Ry U, but we
will not assume that f;, respectively fo, extends smoothly also in Ry, respectively R;. We will

also assume that h € C¥, k > 2, and that Vh(z) # 0 for all z € ¥. Thus, the unit normal to %,

n(x) = %, exists and varies smoothly for all z € 3.

Obviously, in (1.1), f(z(t)) is not defined if z(¢) is on ¥ and a standard way to overcome this
difficulty is to consider the set valued extension F'(z) below:

Si(x(t)) z € Ry
(1.3) 2(t) € F(z(t)) = ¢ {fi(x(t), f2(x(t)}  weX,

fg(l‘(t)) T € Ro
where €6(A) denotes the smallest closed convex set containing A. In our particular case:
(1.4) co{fi,fol={fseR" : fs=(1-a)fi+afy, ac[0,1]} .

The extension (or convexification) of a discontinuous system (1.1) into a convex differential inclu-
sion (1.3) is known as Filippov convex method. An absolutely continuous function z : [0,7) — R"
is a Filippov solution of (1.1) if for almost all ¢ € [0, 7) it holds that '(t) € F(z(t)).

Now, suppose that g € Ry, and consider a trajectory of (1.1). Aslong as the trajectory remains
in Ry, there is nothing special about this solution of (1.1). The interesting case is when we reach
a point x € ¥, a case we consider next.

So, let x € ¥ and let n(x) be the unit normal to X at z. Let nT (z)f1(x) and n” (z) f2(z) be the
projections of fi(x) and fa(z) onto the normal to the hypersurface 3. We have two main cases.
a) Transversal Intersection. In case in which, at € ¥, we have

(1.5) [ (2) f1(2)] - [n" () fa(2)] > 0,

then we will leave 3. We will enter Ry, when n” () f1(x) < 0, and will enter R, when n” (z) f1 (z) >
0. In the former case we will have (1.1) with f = f1, in the latter case with f = f5. Any solution
of (1.1) reaching ¥ at a time ¢1, and having a transversal intersection there, exists and is unique.
b) Attracting Sliding Mode. An attracting sliding mode at ¥ occurs if

(1.6) [T (z)fi(x)] >0 and [n?(z)fa(z)] <O, rEY,

where the inequality signs depend of course on (1.2). When we have an attracting sliding mode
at xg € X, a solution trajectory which reaches xg does not leave 3, and will therefore have to
move along Y. Filippov’s theory provides an extension to the vector field on ¥, consistent with
the interpretation in (1.4), giving rise to sliding motion. During the sliding motion the solution
will continue along ¥ with time derivative fx; given by:

(1.7) fo(z) = (1 = a(z)) fr(2) + a(z) f2(2)
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FIGURE 1. Transversal and sliding trajectory.

where «(z) is the value for which fx(x) lies in the tangent plane T, of ¥ at z, that is the value
for which n” (z)fs,(z) = 0. This gives

) = MA@
(@) (@) — L)

In other words, an attractive (Filippov) sliding mode is the solution of

n' () fi(x)
)(fi(z) = fa(@))

Observe that a solution having an attracting sliding mode exists and is unique, in forward time. If
the inner products in (1.6) are of opposite signs we have a repulsive sliding mode which does not
lead to uniqueness of the solution (at any instant of time one may leave with f1 or fs). For this
reason, we will not consider repulsive sliding motion in this work.

(1.8)

(L9) Y1) = (= a@)hE) Fol@h)  a@)= o

We are ready to recall (see [11]) a classical well-posedness result for solutions of (1.1), which
includes the cases of transversal intersection and attracting sliding mode, and a combination of
these:

Theorem 1.1. Let f12 be C' in Ry UY and Ry UX, respectively, and h be C% on X. If, at any
point * € ¥ we have that at least one of n”(z)fi(z) > 0 and nT(z)f2(x) < 0 holds, then there
exists a unique Filippov solution from each initial condition.

We conclude this section with a remark about similarities between an attractive sliding mode on
% (a solution of (1.9)), and a related differential-algebraic-equation (DAE) of index 2. The latter
is written as the following system of n differential equations and 1 algebraic constraint, in (n + 1)
unknowns, x and «a:

'(t) = fo(@,a)=(1-a)fi(z) +af(z),
(1.10) {h(a:(t)) =0,

Differentiating once the algebraic constraint, and using the form of £, one obtains

(Vh(@)"a" = (Vh(@)" [(1 - @) fi(z) + afa(z)] =0,
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which gives precisely (1.9). However, this formal equivalence is not the full story. The sliding
mode from (1.9) is just one possible mode of motion of the original piecewise smooth system, and
trajectories of this system typically enter, slide on, and exit, the discontinuity surface repeatedly,
whereas the DAE only defines constrained motion on Y. Moreover, strictly speaking, (1.9) is only
defined for = € X, whereas the DAE (1.10) is defined, in the given form, for all values of z in a
neighborhood of ¥. At the same time, this “equivalence” of sliding motion with the DAE (1.10)
will provide important insight in interpreting the variational equation for the fundamental solution
in the next two sections.

2. FUNDAMENTAL MATRIX SOLUTION: CROSS AND/OR SLIDE ON ONE SURFACE

The fundamental matrix solution associated to the linearized system is a very useful tool in
performing stability and bifurcation study of a smooth dynamical systems. It is natural to suspect
that it should be a useful tool also for nonsmooth dynamical systems. In this and the next sections,
we consider the fundamental matrix solutions for piecewise smooth systems. In this section, we
look at the case in which we cross and/or slide on one surface. In the next section we also consider
the case when the trajectory crosses and/or slides on the intersection of two surfaces.

2.1. Smooth case. Consider the differential system:
(2.1) () = flz(t)), z(0) =z € R™,

with f continuously differentiable. Denote with ¢'(zo), for all ¢ > 0, the solution of (2.1). The
fundamental matrix solution is the derivative of the solution with respect to the initial condition.
That is, if we let ®(¢,0) be the fundamental matrix solution, then

(2.2) ®(t,0) = Dqgyd'(w0)
so that ®(t,0) satisfies

@'(t,0) = Df(¢*(x0))2(t,0) , t=0,
(2:3) {cb(o,o) o

By construction, ®(t,0) is continuous and nonsingular for all ¢ > 0, and it enjoys several important
properties. The following will be useful.
Composition property. If t > t1 > tg, then we have

(2.4) D(t,tg) = P(t, t1)P(t1,t0) ,

where ®(t, s) solves the usual differential equation, (2.3) for ¢ > s, and ®(s,s) = I.
Mapping property. Also, it is easy to see that:

(2.5) F(@'(x0)) = @(t,0)f(z0) , V¥t >0,

and therefore (using (2.4)) the fundamental matrix solution carries vector fields into vector fields
at later time. Using (2.2), (2.5) follows from the fact that its left and right hand sides solve the
same, smooth, differential equation. Formula (2.5) is a key property of the fundamental matrix.

Magnification property. Another key property arises from very definition of the fundamental
matrix, by expanding the solution about the initial condition. Namely, for two different initial
conditions xy and yp, one has

(2.6) ¢'(yo) — &' (z0) = Dayd' (z0)(yo — z0) + Ollyo — zol|*) = ®(£,0)(yo — x0) + O(llyo — zol?) ,

that is —at first order— the fundamental matrix acts as magnification factor for nearby initial
conditions.



SALTATION MATRIX 5

Remark 2.1. Ideally, for non-smooth systems, one would like to continue having a fundamental
matrix solution satisfying the three properties above. As we will see below, the properties expressed
by (2.4), (2.5) and (2.6) will essentially continue to hold, for a properly defined fundamental matrix,
though the formal definition of fundamental matrix as solution of (2.3) will not necessarily hold.

2.2. Transversal crossing. Now let us consider the discontinuous ODE:

) — _ JhE®), el
@7) o0 = 1ty = {00 TER
with ,T(O) =1x9 € R;.
Suppose that the solution ¢!(zg) of (2.7) crosses ¥ at z; = ¢ (z0), that is

(2.8) (0" (21) f1(21)] - [n" (21) f2(21)] > 0, " (z1)fi(z1) >0,

and that there are no further crossing of ¥ for ¢ up to t3. Let us still denote by ®(¢,0) the
“fundamental matrix solution” of the discontinuous system (2.7). Then, it must satisfy:
{ O(t,0) =D1(t,0), 0<t<ty,

(29) (I)(t,tl) = ‘I)Q(t,tl) , i1 <t<tq,

where ®4(t,0) and $y(¢,¢1) are, respectively, the fundamental matrix solutions associated to

(2 10) {:E/(t) = fl($)7 ZE(O) =Zo : ‘I)/l(t,()) = Df1(¢t($0))q)1(t70) ) 0<t<ty,
' () = fa(x), a(t1)=x1 : Ph(t,t1) = Dfo(d' 1 (21))Po(t, t1) , t1 <t <ty.

There is a discontinuous behavior at t; and we write:
(2.11) B(t},0) = SB(t7,0) |

where ®(t7,0) = lim, = ®(t,0).

The matrix S in (2.11) is called jump or saltation matrix, and it may be thought of as the
fundamental matrix between ¢, and ¢}, that is S = ®(t], ).

The correct expression for the saltation matrix, in this case of transversal intersection at z,
was first proved in [2], and then in [11, 18, 20, 21, 23]. For completeness, here we review this
derivation.

Lemma 2.2. With above notation, we have
(

(2.12) S=I+(f2($1)—f1($1))'nTn ) T1 €Y.

(1) fr(z1)’
Proof. Let yo = wo + Az be a perturbed initial condition, and suppose that ¢f(yo) reaches the
surface ¥ at time t; + At. To fix ideas, suppose that At > 0.

We want to look at the first order expansion of the difference

(2.13) PR (o) — ¢ (yo) -
The following expansions hold:
(a) ¢t1+At(I0) = (btl (.Io) + f2(¢t1 ({E()))At + O(Atz) =T + fg(xl)At + O(Atz) and
PR (yo) = ¢ (yo) + f1(0" (%0)) At +O(AE?) = ¢ (yo) + f1 (1) At+h.0.t., where “h.o.t.”
stands for higher order terms (in any combination of quadratic terms of At and (¢ (yo) —
1));
(b) 0= h(¢" T2 (yo)) = h(4" (y0) + f1(#" (y0)) At + O(At?)) and since
(6" (o)) = h(z1) + (Vh(21))T (" (yo) — 21) + O(|¢" (yo) — 21]|*) we get
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0= h(¢1+24(yo)) = (VA(@1))T (6" (yo) — 21) + (Vh(21))7 fi(21) At + hodt., from which
at first order we get

(Vh(z1)"

A= )T ()

(6" (o) — 1)) -
Now, at first order, from (a) we get

¢ (o) — 01 (o) = ¢ (20) — 6" (o) + [fa(wr) — frlwr)] At
and using (b) we obtain the sought first order expansion

VhT(Il)
VR (z1) fi (1)

so that (2.12) follows. The case of At < 0 is the same. 0

(2.14)  ¢" A (o) — ¢ TR (yo) = [T+(fa(21) — fu(z1)) 1 (" (z0) — " (y0))

Observe that

(2.15) fao(z1) = Sfi(z1)

and that in the smooth case (i.e., fo(z1) = f1(x1)) it is simply S = I. Moreover, since (Vh(z1))T fa(x1) #
0, then S is non singular and

L nT(iﬂl)
ST =T+ (hlw) = folen)) - Z7e S s

We sum up by stressing that the matrix ®(¢,0) is invertible for all ¢ € [t1,¢2] and thus we have
continuous dependence on the initial conditions. The properties expressed by (2.4), (2.5), (2.6)
hold, even though the fundamental matrix is not smooth. [Property (2.6) follows from (2.14), since
¢ (20) — ¢ (y0) = (t1,0)(x0 — o) + O([lyo — 2ol?).]

To complete this section, below we summarize a simple spectral property of matrices which are
rank-1 corrections of the identity.

Lemma 2.3. Consider a matriz of the form

(2.16) S=T+w",

where all vectors and matrices have dimension n. Then the eigenvalues of S are given by
{1+r"u,1,...,1} .

When rTu = —1, the eigenvector associated to the 0 eigenvalue is in the direction of wu.

Proof. The proof is by direct verification. [Notice that the eigenvalues at 1 are a consequence of
the fact that S}, = I]. O

With notation from Lemma 2.3, in case of (2.12), we have

= 2@1) = filz1)
nT(x1) fi(x1)

so that 77u + 1 # 0, because of transversal intersection, confirming that S is invertible.

r=n(x),
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2.3. Sliding on a surface. In case in which a solution of (2.7), upon reaching %, does not cross
the surface, but slides on it (see (1.7) and (1.9)), then the saltation matrix takes a different form
than in (2.12). As it is well known (see [11, p.119]), the appropriate generalization of (2.12) is
n’ (z1)
2.17 S=1+ 1) — fi(x1))  ————— .
(2.17) (Folen) = fi) - a2
Remark 2.4. We observe that —for attractive sliding motion— the form of the saltation matrix is
the same regardless of whether we are coming from region R; or Ro. This is simply because at
x(t1) we have
x1) nT(

= I+ (fu(z1) — fa(z1)) -

,Tl)

I+ (fs(@) = fil@n) - — T (21) fo(ar)

(
(1) f1(21)
upon using the expression for f, in (1.7) (1.8).

Also, by Lemma 2.3, we observe that (2.17) is not invertible. In fact, in this case (in the notation
of Lemma 2.3) we can write

= 2@ = filz)
n?(xy) fi(zr)

so that r"u = —1 and Su = 0. For later reference, we summarize this simple fact in the following
Lemma.

r=n(),

Lemma 2.5. With above notation, the kernel of S in (2.17) is spanned by the vector

v = fe(z1) — fi(z1).
In particular, since fs(x1) € Ty, if f1(z1) ¢ Ty, then v & Ty, .

The singularity of the saltation matrix in case of sliding motion witnesses that motion on X
will take place on a lower dimensional manifold and moreover that we cannot uniquely trace the
orbit backward in time. As far as the fundamental matrix itself, during the sliding motion, this
will obey the evolution of the linearized problem with respect to the sliding vector field. That is,
suppose that the solution of (2.7) will be a sliding motion for ¢; <t < to. Then, for ¢ € [t1,t2],
the fundamental matrix will be the solution of

(218) (I)/S(t,tl) = sz (,T,Oé(l‘))q)s(t,tl) 5 (I)S(tl,tl) =1 y
where f,, is defined in (1.7) and « in (1.8).

Remark 2.6. By virtue of how we generalized the concept of fundamental matrix, properties
(2.4), (2.5), (2.6), hold even in the case in which the trajectory reaches ¥ and slides on it.

The expression (2.18) is insightfully arrived at by considering the point of view of the DAE
(1.10). First, rewrite the DAE (1.10) as F(z,z’) = 0, where z = (z, «), that is

(7 gl )

Let zs = (x5, a5) be the sliding trajectory (the solution of (1.7)-(1.9)) and consider linearizing
(2.19) about zg, that is take the first variation for the variable z = z5 + v (see [6]). From (2.19),
at first order we get:

[For]zv + [Felav = 0,

(g 8) o (—(1—a(>é)hf)1T ~aDf, f15f2><zs,as>” ~ 0.

that is
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FIGURE 2. Sliding on different surfaces

Partitioning v = (w, 3), we obtain:

(2.20) (Vh(zs)Tw = 0,

(221)  w' = Dfy(2)w, where Df,(2)=[1-0a)Dfi +aDfs~(fr = f)(Va)]., ,

which justifies (2.18).

Observe that (2.20) tells us that the corrections under the linearized flow are on the tangent
plane to the surface. In fact, as a consequence of (2.21) and (2.20), if we let y; € T,, and set
y(t) = @s(t,t1)y1, then y(t) € Tyt(,,). We summarize this observation in the form of a Lemma.

Lemma 2.7. The fundamental matriz ®4(t,t1), associated to linearization along a sliding trajec-
tory on the surface ¥ from z1 to ¢'(x1), brings the tangent space at x1 into the tangent space at

¢ (1)

2.3.1. Finite loss of rank. Suppose we have a trajectory, ¢!(xq), which reaches ¥ non-tangentially
at time ¢1, and exits the (n — 1) dimensional surface ¥ tangentially at a later time ¢o. Let 1 and
x9 be the corresponding enter and exit points, so that (assuming for simplicity that the solution
comes from, and returns in, the same region R;) the solution arrives in ¥ with vector field f(x1)
and leaves ¥ with vector field fx(z2) = f1(22). Let us also assume that the associated (Filippov)
vector field never vanishes. Since the underlying fundamental matrix maps vector fields into vector
fields (property (2.5)), we plainly have that the (non-smooth) fundamental matrix associated to
this trajectory has always at least rank 1. In fact, this remains true even if the trajectory repeatedly
enters (non-tangentially) and exits (tangentially) from ¥ (see for instance [22]).

Below, we show that, under reasonable conditions, the fundamental matrix remains always of
rank (n—1), even if a trajectory progressively enters, slides, and exits, from a surface 3 of dimension
(n — 1), regardless of how many sliding segments there are on X. In fact, a similar result holds
when we slide on possibly different surfaces, as long as each of them is of dimension (n — 1), see
Fig. 2. To prove the result, we will need that every vector in T,, (and not just the vector field
itself) returns to ¥, under the linearized flow, in a different direction than that of the null space of
the corresponding saltation matrix. This is guaranteed if the (n — 1) vectors in R™ spanning the
tangent space cannot be used to obtain a vector in R™ in the direction of the 1-dim null space of
the saltation matrix, a mild requirement.

Theorem 2.8. Consider a trajectory ¢'(xq) of (2.7) which slides on a surface of dimension (n—1)
(or on several different surfaces, each of dimension (n—1)), between the points xop1 = ¢+ (zp)
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and Topyo = G242 (), for k = 0,..., K, Topr1 # Togr2. Assume also that the trajectory ewits
tangentially (hence, smoothly) at the points xoxto and that it enters the surface(s) nontangentially
at zop 1. Finally, let the trajectory be at xg at timet = 0 and at xn = H* (x0), at time ty > tag 42,
not on the surface. Let Sogy1 be the saltation matrices at the points xopy1, k=10,..., K. Assume
that Sop+1®P(taky1,tox)w # 0 for any vector w € Ty,, .., k = 1,..., K. Then, the fundamental
matriz solution ®(tn,0) has rank (n — 1), independently of K.

Proof. Tt suffices to consider the case of the solution sliding on the arcs (z1,x2) and (x3,xz4), the
general case will follow by a recursive argument. We can write

D(t5,0) = D(ts,ta)Ps(ta, t3)S3P(t3, t2)Ps(t2,t1)S19P(t1,0),

where S7 and S3 are the two saltation matrices at 1 and 3, respectively, ®(to, t1) and P(t4,t3)
are the two fundamental matrices on the sliding segments (x1,x2) and (x3,x4), respectively, and
®(t1,0), D(ts,t2), D(t5,t4) are the fundamental matrices in between [0, ), [t2,t5 ), [ta,t5). To
establish the result, we need to show that the matrix M = ®(t4,t3)S3P(t3, t2)Ps(t2, t1)S1P(t1,0)
is of rank (n — 1).

Let V,, € R™*("=1) he a matrix representation of a basis for T}, , and let v; be a vector in the
null space of ;. Since the trajectory enters z; non-tangentially, v1 ¢ span(Vy, ). Represent ®(t1,0)
in the basis of R™ given by [V, , v1]: ®(¢1,0) = [V, , v1]B1, where By € R™ " is invertible.
Notice that S;[Vy, , v1] = [V, , 0] and recall that ®4(ta,t1)Ve, = Vi, € R™ ™71 is a matrix
representation for a basis of T;,. So, we have

M = (I)S(t4, t3)53q)(t3, tg)VmQ [In—l R O]Bl .
Since By and ®(t4,t3) are invertible, we only need to show that A = S3®(ts,t2)Ve,[ln—1 , 0] has

rank (n —1). Clearly, A 0

L = 0. By contradiction, suppose there is another vector w € R™ in the

kernel of A, not in the direction of O} . So, we can partition w = [Zl} with w, € R, w; # 0.

1 2
Then it follows that 0 = Aw = S3®(¢3,t2)V,, w1, which means that ®(t3,t2) brings a vector from
T,, in the direction of the null space of S3, contradicting our assumptions. O

As we will see in Section 3, there can be a more severe loss of rank, by 2, when we slide on the
intersection of two surfaces of dimension (n —1). In that case, the trajectory would be sliding on a
manifold of dimension (n —2), and the dimension of the manifold along which the trajectory slides
impacts the dimension of the null space of the corresponding saltation matrix, hence the rank of
the fundamental matrix.

2.4. Periodic sliding case: 1 surface. Now let us consider the case in which a solution of (2.7)
is periodic. We are interested in two cases.

2.4.1. Case 1. First take ¢'(x9) to be a periodic solution of minimal period 7 > 0, which starts
off 33, then enters in ¥ at a point z1, has attractive sliding motion on it, leaves ¥ at xo, re-enters
at 1 and repeats this cycle. Without loss of generality, we suppose that the initial condition xg
belongs to Ry, we let 21 = 2(t1) the point where the trajectory hits 3, and by xo = z(¢2) the point
where the trajectory leaves ¥ to entry Ry, with vector field f; (that is, we will leave ¥ smoothly).

From 0 to ¢; the solution evolves in Ry and ®1(¢,0) is the associated fundamental matrix solution,
from ¢; to t5 the solution evolves on ¥ and ®5(t,¢]) is the associated fundamental matrix solution,
and from ¢2 to 7 the solution is again in R; with ®;(¢,¢2) the associated fundamental matrix
solution. More complicated scenarios, with several segments of sliding motion, are generalization
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FI1GURE 3. Periodic sliding trajectory

of the present one. Recall that the Filippov’s system is:

fl(:E) , T € R1 R
(2.22) 7= f(z) =4 fu(x), zeEY,
fQ(.TE) , T € R2 R

where fx(z) is given by (1.7), (1.8).

Denote with ®(¢,0) the “fundamental matrix solution” (for ¢ € (0,7)) of the discontinuous
system (2.22); we want to look at the “monodromy” matrix ®(r,0). An obvious property that the
monodromy must have is that

f(¢7(w0)) = @(7,0) f (o) ,
that is it must have an eigenvalue equal to 1.
Now, from (2.5) it follows that:

fi(x1) = @1(t7,0)) f1(20)
fs(z2) = (I)E(t%tl)fE(xl)
fi(z(7)) = @1(7,t2) f1(2) -

So, the fundamental matrix solution ®(t,0) is discontinuous at ¢; and:
(2.23) ®(tF,0) = S®(¢,,0)

where the saltation matrix is given by (2.17).
From (2.17), observing that fi(z2) = fu(z2), we have:

fi(z(7)) = ©1(7, t2) f1(22) = P1(7, t2) Px(ta, t]) fu(21) =
= ‘1)1(7', tQ)‘I)E(tQ, ti’_)Sfl(xl) = (1)1(7', tQ)‘I)E(tQ, t-li_)S(I)l(tl_, O)fl (Io) 5

so that the monodromy matrix has the form
(224) (I)(T, 0) = ‘1)1(7', tg)q)z(tg,ti’_)sq)l(tl_,()) .

By virtue of the discussion in the previous sections, we immediately have:



SALTATION MATRIX 11

Theorem 2.9. The monodromy matriz in (2.24) has one eigenvalue equals to 1 because of peri-
odicity, and one eigenvalue equals to 0, because of the singularity of the saltation matriz S. The
remaining eigenvalues measure stability of the periodic orbit.

2.4.2. Case 2. As a second case, consider the situation in which the periodic solution is an attract-
ing sliding mode. In other words, we have a periodic solution on the surface 3:

r9 €Y, ¢'(x0) €, forallt , ¢"(x0) = z0-

In this case the fundamental matrix satisfies (2.18) and remains always invertible, although the
motion is taking place on a (n — 1)-dimensional manifold. This is easily explained by recalling that
—in this case— the fundamental matrix makes vectors in the tangent plane evolve into vectors in the
tangent plane. As a consequence, the monodromy matrix will not only have an eigenvalue equal
to 1 as always, relative to the vector field itself, but will also have an invariant subspace relative
to all vectors in the tangent plane.

Theorem 2.10. Let ¢p'(xg) be an attracting sliding mode, periodic of period 7. Let ®(7,0) be
monodromy matriz associated to the linearized problem for ¢'(xzo), t € [0,7]. Then, ®(7,0) has
an invariant subspace of dimension (n — 1) associated to the tangent plane at xo. The remaining
eigenvalue measures the rate of attractivity from directions normal to the surface.

Proof. Let Yy be a basis for the tangent plane at zg and let Y- be its orthogonal complement (a
vector in the direction of (Vh(xo))” in this case). Then ®(£,0)Yy = Yyr(4,) are vectors in the
tangent plane at the point ¢f(x¢), and therefore since the tangent plane at ¢ (o) is the same as
the tangent plane at xo, we must have that Yy:(,,) = YoC where C € R L7=1 In other words,
we must have
L L |C b
PO, Y] = b 51§ 1)
and the result follows. O

Remark 2.11. With above notation, the value of a measures the effect of perturbations off X,
whereas the eigenvalues of C' measure the effect of perturbations with respect to solutions which
remain on Y. The value of @ is measuring the stability of the periodic orbit of the DAE system
which describes the motion on .

Example 2.12. (See Galvanetto and Bishop, [13]). Consider the dynamics of a simple oscillator
consisting of a block of mass m, supported by a moving belt. The block is connected to a fixed
support by a linear elastic spring and by a linear dashpot. The surface between the block and the
belt is rough so that the belt exerts a friction force on the block. Energy is continuously introduced
into the system by the motion of the belt, which moves at constant velocity (the driving velocity v)
and it is transferred to the block by means of the static friction force that allows for the build-up of
potential energy within the spring. The structural damping generated by the dashpot continuously
dissipates energy. The dynamic friction force may either introduce energy into the system, if it
has the same sign as the velocity of the block (this is usually the case at the beginning of a
slip phase), or dissipate energy, if the signs of the friction force and of the velocity are different.
Mechanical systems of this type are referred to as stick-slip since there are times when there is no
relative motion between the block and the belt (stick phase) and others in which the block slips.
A mechanical system of this type may be described, in its simplest form, by means of the following
differential equation

(2.25) mz” + ct' + kx = f(z' —v),
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FIGURE 4. Periodic sliding trajectory.

where x(t) is the displacement of the oscillator from the position in which the spring assumes
its natural length, xg the initial displacement, m is the mass, c is the damping coefficient, k the
stiffness of the spring, f(z’ — v) is the friction force of the block which we assume of the form:

%—l—&—l—?’](l‘l—v)a for v > 2,

(2.26) fl@'—v)=
%—5—77@’—1;)2 for v < 2/,
where 6,,n are constants.
Letting x1 = x, zo = 2/, h(x1,22) = 22 — v, we can rewrite (2.25) in form of the Filippov
differential system (1.1), with the extension (2.22). Here, we have

filerze) = 7 1-
? —kxl—%$2+m+5+n(x2_”)2 ’
T2
falwr, w2) = [—kwl — =x2 + % =0 —n(z2 - U)2‘|

In Fig. 4 we show the solution computed by the technique we presented in [10]. Values of
the constants are zyp = [0,0], m =1, k=1, ¢=0.1,§ = 0.5,y =1, n = 0.001, v = 0.5. The
monodromy matrix has the form (2.24) and, as expected, the numerically computed monodromy
matrix has an eigenvalue 0 (to machine precision) and one eigenvalue (approximately) equal to 1.
In fact, starting with z¢ 2 (0.9503,0.49999) on the limit cycle, after one period (7 = 6.5), a first
order method provides a fundamental matrix with eigenvalues given by 0 and 0.9997.

3. FUNDAMENTAL MATRIX SOLUTION: CROSS AND/OR SLIDE ON TWO SURFACES

Now, suppose that the state space is split into four regions Ry, R2, R3 and R4 by two intersecting
hypersurfaces ¥; and 35 which are defined by the scalar functions h; : R — R and hy : R™ — R,
that is:

Ry = {.I cR" | hl(I) <0, hQ(I) < O}, Ry = {I e R" | hl({E) <0, hQ(I) > O},

R3 = {.I cR" | hl(I) >0, hQ(I) > O}, Ry = {I e R" | hl({E) > 0, hQ(I) < O},
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FI1GURE 5. The intersection of two sliding surfaces.

(see Fig. 5). Consider the system with discontinuous right-hand side:

fl(;zj) , T € Rl )
5.1) (1) = f(a(t) = j;g% j iggi Z
fa(x), € Ry,

with initial point 2(0) = 29 € R™. The functions hi(z) and ha(z) are assumed to be C* functions

(k > 2) and moreover Vhy(z) # 0, for all z € ¥4, and Vha(z) # 0, for all x € X2. So, we have

well defined unit normals nq(z) and na(x) to the tangent planes T,(2;1) and T, (X2), respectively.

We will also assume that n1(z) and ng(z) are linearly independent for all z € ¥; N Xs.
Conditions guaranteeing attracting sliding on 1 N X5 are given by:

(3.2)
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while crossing conditions at x € 31 N ¥q are given by:

ni (z)fi(x) >0, nj(x)fi(z) >0,
' ni (z)f3(x) >0, nj(x)fs(z) >0,
ni (2)fa(2) >0, nf(x)fa(z) >0,

or similar conditions with opposite signs.

It is well known that in general Filippov’s theory is not able to define uniquely the vector field
on the intersection X1 N X5 of the discontinuity surfaces X7 and X, except in particular cases (see
[11, 27]). Recently, two different approaches, the first one based on sigmoid blending techniques
(see [3, 9]), and the second one based on geometric considerations (see [10]), have been proposed
to eliminate the ambiguity of the Filippov’s theory. In both cases, one can unambiguously define a
solution of (3.1) also in case in which the solution slides on the intersection ¥ NX5. Let us call fr
the chosen vector field on the intersection; for our numerical experiments, we have used the choice
of [10].

Notice that the ambiguity to uniquely define a vector field in the Filippov sense on the inter-
section is simply a consequence of the fact that Filippov convexification method would require to

have
4

fa=>_Xi@)fi(x), X =0.

=1

To the convexity constraint 2?21 A1 = 1, one can add two more equations coming from the
requirement that fn lies on the tangent plane:

ni (@) fn(@) =0, n3(2)fn(z) =0,

and clearly we have a generally underdetermined system to solve for the A;’s. Of course, this
same ambiguity shows up when taking the point of view of a DAE modeling sliding motion on the
intersection. In this case, for € X1 N Xg, considering the (n + 4) variables (z, A1, A2, A3, Ay) and
a general sliding vector field f on the intersection, we would need to satisfy

x'(t) = fz:((‘r)u)Ala)\QuABa)\él)a
hi(z(t)) =
(34) ha(e(t) —

Z?:l Ai =

However, unlike (1.10), this is not an index-2 DAE, and in fact there is no properly defined index
for (3.4).

We now proceed to define appropriate generalizations for the fundamental matrix solution when
the solution trajectory crosses or slides on the intersection of two surfaces. Results in the crossing
case exist (see below), but we have found no work on the fundamental matrix solution when there
is sliding motion on the intersection of two surfaces.

In what follows, we will use the following notation for the Filippov vector field in a regime of
attractive sliding motion along one of the two surfaces ¥; or Xo:

0,
0,
1.

¥ ny (7) fi(7)
(3.5) [51(@) = (1 = a(@)fi(2) + a(2) f;(2), F) = == -
' ! nf () (fi(T) — f;(2))
fori,j =1,2,3,4,7r=1,2, with z € %,.
(i) From Outside to one surface. The case in which, starting with an initial point (say) in Ry,
a trajectory crosses %; towards Ry at a point T = x(%), or slides on Y1, is identical to the cases
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previously discussed (see (2.11), (2.12) and (2.23), (2.17)). The saltation matrix, which links the
components of the fundamental matrix solution at the discontinuity point =, will be given by:

ni (7)

@ A@
and S; brings the vector field f1(Z) into g(ZT) = f4(T) when the trajectory crosses X1, or into the
Filippov’s vector g(T) = 1’14 (Z) of the tangent space Tz(X1) when the trajectory slides on ;. We
have a similar form of the saltation matrix in the other cases, for instance when we cross X1 from
Rs towards R3, or when we cross s from R4 towards R3 or from Ry towards Rs, etc..
(ii) From one surface to the intersection. We now suppose that while sliding on ¥; with vector field

5’14, the trajectory arrives at a point T which is on X5, hence on the intersection, non-tangentially
with respect to Yo. In principle, there are several possibilities: (a) We cross the intersection,
while remaining on ¥;, (b) we exit both surfaces tangentially with respect to X1, (c) we leave

3, tangentially and remain on X3, or (d) we remain on the intersection. All of these cases are
effectively similar to those previously considered. The saltation matrix is given by:

(3.6) S1=1+(9() - f1(T)) - with n{ (%) f1(T) # 0,

nT T
(3.7) Sx, =1+ (9(T) — f5 () -~ (_2) (1,)4(_)7 with n3 () fy () # 0,
ny (T)fy, (T

) )
) = fo(@) or g(Z) = f3(7) (and fy(7) = g(T));
) z) or g(F) = fy,, (z) (and fy;(T) = g(7));

(d) 9(Z) = fn(T).
It is important to emphasize that —in all cases (i) and (ii) above— we still have an extention of the
concept of fundamental solution matrix, as before. This is no longer true in the case we consider
next.

3.1. From outside to the intersection. A most interesting case is when a trajectory ¢¢(xo),
with a value g in (say) Ry, at time ¢; hits the intersection ¥, N Xy, that is z1 := ¢ (z0) € L1 N Y.
We will assume that this happens non-tangentially with respect to both 31 and 3s; more precisely,
we assume that (Vhi(z1))? fi(z1) # 0 and (Vha(21))T f1(z1) # 0. In this situation, the interesting
cases are when the trajectory either crosses the intersection and continues with vector field f5(z1),
or slides on the intersection; in other words, we will assume that either (3.3) or (3.2) hold at z.
The case in which the trajectory after arriving on the intersection begins sliding on only one surface
is actually simpler, and it is handled similarly to the situations previously examined: there is going
to be just one jump matrix in this case, like that in (2.17).

The case in which the trajectory crosses the intersection was first considered by Ivanov in [16].
As far as we know, the case where we slide on the intersection was not previosuly considered.
Similarly to what we did in Lemma 2.2, we want to look at what happens to trajectories, ¢!(yo),
for perturbed initial condition yg = o + Az. But now there are new issues to consider since the
perturbed trajectory ¢f(yo) will not necessarily arrive at the intersection ¥; N3y from Ry, unlike
the case we considered in Lemma 2.2 where the perturbed trajectory reached ¥ from R; just like
the unperturbed one.

What we have now, relatively to ¢!(yo), are two possibly different times A1t and Ast where

hi(@" T2 (yo)) =0,  ha(¢"1 T2 (yg)) = 0.

Assume (with no loss of generality) that both At and Ast are positive.



16 L. DIECI AND L. LOPEZ

Ajt=At
X
z:|.

FIGURE 6. The intersection of two sliding surfaces.

Expanding hy (¢ T2 (yo)) and ha (¢ 214 (y0)) in a similar way to what we did in Lemma 2.2,
retaining first order terms and solving for Ayt and Ayt we obtain

(Vha(21)" (9" (yo) — 1) (Vha(21))" (9" (o) — 1) 40

(Vhi(z1))" fi(z1) (Vha(z1))" fi(z1) '
If Ayt < Ast, then ¢f(yg) first meets 1 and then meets Yo, If Agt < Ajt, then ¢'(yq) first
meets Yo and then meets ¥1. Finally, if A1t = Agt, then ¢(yo) meets X1 and X5 simultaneously,
that is it lands directly on the intersection. Accordingly, we split the region Ri, locally, near the
intersection point x1, into three regions,

Ry = RIURVUR?,

(38) Alt = — 75 0 5 and Agt = —

defined as follows:

(0) yo € RY, if yo € Ry and the trajectory ¢!(yo) meets first directly the intersection surface

YN Xg;

(1) yo € Ri, if yo € Ry and the trajectory ¢!(yo) meets first the surface X1;

(2) yo € R2, if yo € Ry and the trajectory ¢!(yo) meets first the surface Y.
Effectively, the region RY is the (local) backward set of points on the intersection itself; since the
intersection is a (n —2)-dimensional manifold, it follows that RY is an (n— 1)-dimensional manifold,
invariant under the flow; see Fig. 6. Because of uniqueness of solutions with data in R;, actually
each of RY, R and R? is invariant under the flow.

In all cases above, at first order we have

¢ (@) — 1T (yo) = S (6" (o) — ¢ (w0))

where the specific form of the jump matrix S depends on whether Ajt § Aot and on whether
#'(z0) crosses the intersection at z; (going from R; into R3), or begins sliding on it. In accordance
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with the above, and our discussion in the previous section, we have the cases below for the saltation
matrix S.

3.1.1. Cross the intersection. Here ¢(xq) crosses the intersection at z1. In the three cases below,
(3.9)-(3.10)-(3.11), the matrix S is invertible, though the specific form of S differs.

Case Ayt < Agt. The perturbed trajectory first crosses 7 then ¥5. As a consequence, S is the
product of two saltation matrices:

89 s=[1+ ) - a2 14 () - o) O
' o YT (@) fa(w) VIR T e fi() |

Case Agt < Ajt. Now the perturbed trajectory first crosses Yo then 31, and again S is the product
of two saltation matrices:

(3.10) S= {1+(f (;pl)_fz(xl)).M] [I+(f2($1)—f1(x1))- ng (1) }
' ’ ni (21) fa(z1) nE(xy) fr(er) |

Case A1t = Ast. The perturbed trajectory passes from R; to Rz at the intersection. We have
only one jump matrix with two equivalent rewritings, in the sense that for either form below

nT Ty
5= [u (fslor) = filan) - %} .

nd (x
S = [I—i— (fs(z1) — fi(z1)) - Wfile)} 7

we have ¢'1 (z)— ¢! (yo) = S (6" (z0)— " (yo)); the two equivalent rewritings are a consequence
of (3.8).

(3.11)

3.1.2. Slide on the intersection. We now extend the above to the case in which ¢'(z), upon
reaching 1 N Yo at x1, begins sliding on 1 N Xs.

Case A1t < Ast. The perturbed trajectory first arrives at 31, where it has sliding behavior, then

at 3o (hence at the intersection). As a consequence, S is the product of two saltation matrices:
(3.12)

= |1+ Unten) = o)t [T+ ke o) ]

nd (x1) £ (21) ni (x1) f1(z1)
where féf(i) is the sliding vector field on X, which feels the fields f1(Z) and f4(Z), that is (3.5).

Case Aat < Ajt. Now the perturbed trajectory first arrives at o, on which it has sliding behavior,
then at ¥; (hence at the intersection), and again S is the product of two saltation matrices:
(3.13)

S:

L2 ] ni (1) 1,2 _ ) ng (1)
I+ (fa(@1) = f5) (1)) T o) 22 () I+ (fg) (x1) = fi(21)) Tanh@)]
ny (@ (T Ny (T1)J1(T1

where féf (Z) is the sliding vector field on 3o, which feels the fields f1(Z) and f2(Z).

Case A1t = Agt. The perturbed trajectory arrives directly on the intersection. We have only one
jump matrix with two equivalent rewritings, in the sense that for either form below

nt(z
S = [I+ (fr(z1) = fi(z1)) - #fi)xl)} .

s19 i
)il

T
1
nd (z1) fr «Tl):| 7

Sz[LHh@ﬂ—ﬁ@m-
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we have ¢'1 (z9) — ¢'1 (yo) = S (¢'1 (z0) — &' (y0))-

Remark 3.1. Interpretation. It is important to understand what the above different rewritings
mean. In both cases of crossing and sliding on the intersection, the main implication of the above
different forms for the saltation matric(-ces) is that we do not have a properly (nor uniquely)
defined concept of a fundamental matrix solution. What we have is an expression for a matrix
which shows how initial perturbations are magnified, but the expression itself depends on where
the perturbed initial point yq is with respect to the unperturbed initial value xg, that is on whether
Yo is in RY, R{, or R}. This effectively inhibits the extension of the concept of fundamental matrix
solution to the case in which linearization occurs along a trajectory which from outside the surfaces
goes directly to the intersection.

The above notwithstanding, some important features are maintained also in this case, in par-
ticular about the rank of the saltation matrix(-ces) in (3.12) and (3.13).

Lemma 3.2. Consider the matrices S and S@) in (3.12) and (3.13) rewritten as follows:
SW =Mt s = rpaind, S8 =T+ end

and
§@ =55 5% = I paml | S8 =T+ el
where » »
o = 1% (1) — f1(z1) . fa(zy) = f57 (1)
1= ) 1= )
ni (z1) f1(x1) nd (z1) fs (1)
and 1,2 1,2
0 — falz1) = fg) (1) o fsy (1) = fi(21)
2 — ) 2 — .
nf (1) fs 2 (21) ng (1) f1(z1)

Then, both SN and S have (n — 2) eigenvalues equal to 1 and a two dimensional kernel.

Proof. The fact that there are (n — 2) eigenvalues equal to 1 is a direct consequence of the fact
that both S and S leave invariant the tangent plane to the intersection at z;. As far as the
2-d kernel is concerned, a direct verification shows that {a1,c;} are both in the kernel of S™) and
likewise {as,co} are in the kernel of S, O

Remark 3.3. The double loss of rank witnesses that the motion is taking place on an (n — 2)-
dimensional manifold. Interestingly, the saltation matrix in (3.14) is of rank (n — 1); this is a
consequence of the fact that it only acts on data coming from RY which itself is a manifold of
dimension (n — 1) and not n.

The last result we give is about motion which is periodic on the intersection, similarly to what
we did in Section 2.4.

3.2. Periodic sliding case on the intersection of two surfaces. Consider the case when we
have attractive periodic sliding motion restricted to the intersection:
To €1 NNy, ¢l(xg) €X1Ny, forallt, ¢"(x) = 0.
Now there is a properly defined fundamental matrix satisfying
(3.15) (1,0) = Df. (2. Mx))®,(£0) , ®,(0,0)=1,
where f is the vector field on the intersection, for example defined as in [10]; as our notation

suggests, we stress that this vector field f, depends on a vector valued function A defined for
x € X1 N Xy and which we also need to assume being smooth. Now, (3.15) defines an invertible
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fundamental matrix, even though the motion is taking place on a (n — 2)-dimensional manifold.
As usual, this is because the fundamental matrix maps vectors of the tangent plane into vectors
of the tangent plane.

Theorem 3.4. Let ¢'(xg) be an attracting sliding mode, periodic of period T. Let ®4(T,0) be
monodromy matriz associated to the linearized problem for ¢'(x¢), t € [0,7]. Then, ®(7,0) has
an invariant subspace of dimension (n — 2) associated to the tangent plane at xo. The remaining
eigenvalues measure the attractivity rates from directions normal to the surface.

Proof. The proof is essentially the same as that of Theorem 2.10. Let Y, be a basis for the
tangent plane at zg and let YOJ- be its orthogonal complement. Therefore, Yy (,,) = YoC where
C € R""27=2 and

OIS R AR

O

Remark 3.5. The eigenvalues of C' measure the stability properties with respect to perturbations
on Y, whereas the eigenvalues of A measure the effect of perturbations off ¥. But, again, this
statement has to be interpreted with a grain of salt: We are assuming that on the intersection
there is attracting sliding motion, which means that solutions of the nonsmooth system near the
periodic orbit approach this periodic trajectory itself. At the same time, the eigenvalues of A are
measuring the stability of the periodic orbit of the differential-algebraic equation which describes
the motion on the intersection.

The next example illustrates Theorem 3.4.

Example 3.6. Let us consider the three-dimensional differential system z’(t) = f(x(t)), 0 = x(0),
where & = (z1, 22, x3) and f(z(t)) is a discontinuous vector field with respect to the two surfaces:

Y ={x| hi(x) =21 + 29+ 23 — 1 =0}, T = {x| ho(z) = 227 + 2(22 —23)* — 1 =0} .
¥ is a plane and ¥ is a cylinder in R®. Here, f(z) = A(cy, ca)x + b(cz) where:

1—2¢ 2 -2 0
A(Cl, 02) =|-24c -1—¢ Cc1 R b(CQ) = | co ,
c1 —24c 1—c C2

and
o {o, ha(x) <0 {o, hi(z) >0
L k(@) >0 PTL, mi(r) <0
Thus, we have four different vector fields in the four regions of R? isolated by the two surfaces 1
and Yo. On the intersecting surface ¥; N Xy the conditions for attracting sliding are satisfied.
In Fig. 7 we have reported the numerical solution, on the time interval [0, 10], with initial value
in region Ry, together with its limit cycle.
As far as the fundamental matrix is concerned, if x( is a point in region Ry, z(t) is a point of
the trajectory on the limit cycle, by using the same arguments we have used to prove (3.20), we
can show that:

(3.16) D(t,0) = Pn(t,t3) S P, (t5 , 1) S1®1 (7 ,0) ,

where ®4(¢,0) for ¢t € [0,%;) denotes the fundamental matrix solution of the differential problem in
R; starting with z¢ and vector field given by f1(z); S; is the saltation matrix in (3.6) which moves
the vector field f1(z1) into Filippov vector fé’fl (x1) (defined in (3.5)) of the tangent space Ty, (X1);
Oy, (t,t1), for ¢ € [t1,t2), denotes the fundamental matrix solution of the differential problem on
¥, starting with x; and vector field given by the Filippov vector fé’f(:c); Sy, ns, is the saltation
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FIGURE 7. Numerical solution and limit cycle.

matrix in (3.7)-(d) which moves the vector fx, (22) into a vector of the tangent space of ¥; N Xy
at xa; Pn(t, ta), for t € [ta,t3), denotes the fundamental matrix solution of the differential problem
on X1 N Xy with initial point 22 and vector field given by fn(z).

The fundamental matrix in (3.16) has two eigenvalues equal to 0, because of the different
saltation matrices S7 and Sn. In fact, starting with g = (0.1, —10, —10), a first order numerical
method provides a fundamental matrix (given by (3.16)) at ¢ = 6.23 with eigenvalues: 0.0, 0.0, 7.1.

On the other hand, if we start with a point zy = x(0) on the limit cycle, the fundamental matrix
after one period 7 will be invertible, and given by

(3.17) ®(7,0) = @ (7,0),

which is a matrix with one eigenvalue equal to 1, and the other eigenvalues measuring the rates of
attractivity /repulsivity towards the limit cycle. Indeed, starting with z¢ = (0.7029,0.1866,0.1103)
on the limit cycle, using a first order method a numerical simulation provides the following eigen-
values for the fundamental matrix (3.17) after one period 7 = 3.142: 0.085, 1.770, 1.0, which
shows that the periodic orbit of the underlying differential-algebraic equation is hyperbolic.

The final example below highlights the case of a periodic orbit with a portion of the trajectory
sliding on the intersection of two surfaces, the remaining parts either sliding on one single surface or
not sliding on any surface at all; in this case, the effect of the saltation matrices becomes apparent.

Example 3.7. (See Galvanetto, [12]). Now, let us consider a nonsmooth dynamical system the
solution of which slides on the intersection of two surfaces and the fundamental matrix solution
of which has the studied behaviour. In [12] the author studies a mechanical system composed
by two blocks on a moving belt. The velocity of the belt is constant and is called the driving
velocity v. Each block is connected to a fixed support and to the other block by elastic springs.
The surface between the blocks and the belt is rough so that the belt exerts a dry friction force on
each block that sticks on the belt to the point where the elastic forces due to the springs exceed
the maximum static force. At this point the blocks start slipping and the slipping motion will
continue to the point where the velocity of the block will equal that of the belt and the elastic
forces will be equilibrated by the static friction force. The continuous repetition of this type of
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motions generates a stick-slip oscillation. This mechanical system may be described in its simplest
form by the following set of differential equations:

(3.18) {mlw’f = —hizy = kiz(@1 — 22) + fua (@) —v) |

' mawy = —koxa — k12(r2 — 1) + fra(wy —v) ,
where x;(t) is the displacement, m; is the mass, fi;(x; — v) the kinetic friction force of the i—th
block, k1, k2, k12 suitable constants. The kinetic force has the form fra(2’ — v) = Bfr1(z’ — v)
with:

%4‘54—77(.%/—1))2, fOI"U>$/7

(3.19) fri(z' —v) =

%—5—77(1’—@)2 for v < o',

where (3, 6,,n are suitable constants.

If we set o} = x5 and z}, = r4 we may rewrite the differential system as a Filippov differential
system (3.18, 3.19) in R*, with two discontinuity surfaces ¥; and Y, characterized as the O-sets
of the functions h; and hs, respectively, where hi(z) = x5 — v, and ha(z) = x4 — v. In Fig. 8 we
report the numerical solution of this nonsmooth differential system together with its limit cycle
form=1,k =k =ki2=1,0=0,v=3,7=0,v=0.295 8 = 1301. We have reported
the coordinates (x1, s, z4) of the numerical solution on the time interval [0,80] with initial point
given by the origin of R%.

Now, let us consider a periodic solution of (3.18, 3.19) of minimal period 7. Suppose that the
initial point of zg = x(0) of such a periodic solution lies in the region Ry (that is hq(zo) < 0 and
ha(z9) < 0). Denote by z1 = z(t1) the point where the trajectory hits ¥1, by x2 = x(t2) the
point where the trajectory hits the intersection 31 N Xa, x3 = x(¢3) the point where the trajectory
leaves ¥ to entry the region where hi(x) = 0 and hz(x) < 0, and x4 = x(t4) the point where the
trajectory leaves ¥; also to entry R;. As far as the fundamental matrix is concerned, by using the
same arguments we have used to prove (2.24), we can show that:

(320) (I)(T, O) = (1)1 (T, t4)(1)z;1 (t4, t3)(1)m (t3, t;)sm@zl (t;, tf)Slfbl (t;, 0) )

where ®1(t,0) for t € [0,¢1) denotes the fundamental matrix solution of the differential problem in
R, starting with z¢ and vector field given by f1(x); Sy is the saltation matrix in (3.6) which moves
the vector field f1(z1) into Filippov vector fé’f(:il) in (3.5) of the tangent space Ty, (X1); ®x, (¢, 1),
for ¢ € [t1,t2), denotes the fundamental matrix solution of the differential problem on 3; starting
with z; and vector field given by the Filippov vector fé’;l(:z:); Sn is the saltation matrix in (3.7)-(d)
which moves the vector fs,(x2) into a vector of the tangent space of 1 N Xq at xo; Pn(¢,ta), for
t € [t2,t3), denotes the fundamental matrix solution of the differential problem on 3; N ¥y with
initial point x5 and vector field given by fn(z); ®x, (¢, t3), for t € [ts,t4], is the fundamental matrix
solution of the differential problem on ¥; starting with x3 and vector field given by the Filippov
vector fé’f(x); Dy (t,tq), for t € [tq, 7], denotes the fundamental matrix solution of the differential
problem in R; starting with x4 and vector field given by fi(x).

Theorem 3.8. The fundamental matriz in (3.20) has one eigenvalue equals to 1 because of peri-
odicity, two eigenvalues equal to 0, because of the singularity of the saltation matrices S and Sn,
and the remaining eigenvalue characterizes stability of the orbit.

Starting with the value zg 2 (1.222,1.333,0.272,0.148) on the limit cycle, after one period
7 =5, a simple numerical simulation using a first order method gives the following eigenvalues for
the fundamental matrix (3.20): 0.916, 0.168, 0.0, 0.0, implying that the periodic orbit is stable.
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