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Abstract. In this paper we consider the issue of sliding motion in Filippov systems on the
intersection of two or more surfaces. To this end, we propose an extension of the Filippov sliding
vector field on manifolds of co-dimension p, with p ≥ 2. Our model passes through the use
of a multivalued sign function reformulation. To justify our proposal, we will restrict to cases
where the sliding manifold is attractive. For the case of co-dimension p = 2, we will distinguish
between two types of attractive sliding manifold: “node-like” and “spiral-like”. The case of
node-like attractive manifold will be further extended to the case of p ≥ 3. Finally, we compare
our model to other existing methodologies on some examples.

1. Introduction

In this work we consider autonomous differential systems with discontinuous right-hand side,
also called piecewise-smooth systems, PWS systems for short. PWS systems have been studied
for a long time, and are presently receiving a great deal of attention from both analytical and
numerical communities because of the ability to model complex systems of practical relevance. The
books [1] and [14] present a recent account of numerical works on the subject, and the references
[4, 5, 6, 7, 9, 10, 11, 12, 13, 17, 19, 23, 25, 24, 32, 34, 35] provide a representative sample of the
many applications that PWS systems have in control engineering, mechanical engineering, and
biological sciences.

The basic problem we consider can be written as follows. There is a discontinuous differential
equation (ODE)

(1.1) x′ = f(x) , f(x) = fi(x) , x ∈ Ri , i = 1, . . . , m ,

to be studied for t in some interval [0, T ], subject to initial condition x(0) = x0. In (1.1), Ri ⊆ R
n

are open, disjoint and connected sets, whose closures cover R
n: R

n =
⋃

i Ri; also, fi is smooth

on Ri and R
n \

⋃
i Ri has zero (Lebesgue) measure. So, in each region Ri, we have a standard

differential equation with smooth vector field fi. On the boundaries of these regions, the vector field
is not properly defined. A standard way to overcome this difficulty, and the one we consider in this
work, is to work with the differential inclusion obtained by the so-called Filippov convexification

method, see [18].
Filippov considers the set valued function

(1.2) F (x) = co{ lim
i→∞

f(xi), xi → x, xi ∈ Ri} ,

where co(A) is the convex hull of A. In other words, F (x) is the convex hull of the values of
f(x) obtained approaching x through (smooth) regions Ri. At this point, Filippov considers the
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differential inclusion obtained by replacing f with F :

(1.3) x′ ∈ F (x) .

A Filippov solution is a classical solution of this differential inclusion. That is, an absolutely
continuous function x : [0, T ] → R

n such that x′ ∈ F (x(t)) for almost all t ∈ [0, T ]. Existence
of Filippov solutions can be guaranteed with the help of the concept of upper semi-continuity of
set-valued functions; we refer to [3, 18] for details. For completeness, we recall the basic result
of Filippov (see [18]) “If F is locally bounded, and the map x → F (x) is upper semicontinuous,
then there exists a Filippov solution of x′ ∈ F (x), for any x0.” Uniqueness is more complicated,
and cannot be settled simply by looking at properties of F . It is necessary to characterize what
happens on the boundaries of the regions Ri’s.

We now assume that the regions Ri’s are separated (again, locally) by (hyper-)surfaces charac-
terized as zero sets of smooth functions with linearly independent gradients. Moreover, we will also
assume that if the separating surface, call it Σ, has co-dimension p, then (locally, in a neighborhood
of Σ) there are 2p regions Ri’s and therefore 2p vector fields fi’s. In other words, Σ will always be
of the form

Σ = {x ∈ R
n : h(x) = 0 , h : R

n → R
p} ,

where for all x ∈ Σ: h(x) =

[
h1(x)

...
hp(x)

]
, ∇hj(x) 6= 0, j = 1, . . . , p, and the vectors {∇h1(x), . . . ,∇hp(x)}

are linearly independent. Geometrically, we have p co-dimension 1 surfaces Σ1, . . . , Σp, Σj = {x ∈
R

n : hj(x) = 0 , hj : R
n → R}, j = 1, . . . , p, and Σ is the co-dimension p surface given by the

intersection of these surfaces. Moreover, in a neighborhood of Σ, there are 2p regions Ri and inside
each of these (1.1) holds, with vector fields fi, i = 1, . . . , 2p; see Figure 1. Filippov convexification
for x in a neighborhood of Σ reads

(1.4) x′ ∈ F (x) =
2p∑

i=1

λi(x)fi(x) , where λi(x) ≥ 0 , and
2p∑

i=1

λi(x) = 1 .

A most important and interesting case is when for any initial condition near Σ the corresponding
solution trajectories are attracted to Σ. In this case, which will be characterized below, a trajectory
which arrives on Σ is forced to remain on Σ: The surface Σ is globally attracting. Filippov realized
that in this situation the motion continues on Σ, giving rise to what he termed sliding motion. He
further realized that as long as this motion takes place, necessarily it must occur with a vector field
that lies in the tangent plane at x ∈ Σ, and therefore such vector field must be perpendicular to the
gradients ∇hj(x), j = 1, . . . , p, for any x ∈ Σ. By this line of thought, during sliding motion, one
is lead to consider a vector field fF in the above convex-hull, which we will call Filippov (sliding)
vector field, given by:

(a) x′ = fF :=

2p∑

i=1

λi(x)fi(x) , with λi(x) ≥ 0 ,

2p∑

i=1

λi(x) = 1 , and

(b) (∇hj(x))T fF(x) = 0 , for all j = 1, . . . , p .

(1.5)

Moreover, the solution of this system, the λi’s, ought to be smooth functions of x. But, for each
x ∈ Σ, (1.5)-(b) defines a system of (p + 1) equations in 2p unknowns (the λi’s), and thus clearly
(1.5)-(b) is an underdetermined system of equations for p ≥ 2, and there is an ambiguity on how
to select an appropriate Filippov vector field in these cases. Of course, this ambiguity had been
observed by Filippov himself in [18], and there are special cases where this ambiguity does not
arise (see [18] and Section 5). However, in general, there is no uniquely defined Filippov sliding
vector. For the case of general value of p, under appropriate attractivity assumptions (the “nodal
attractivity” conditions of the present work), in [16] we proposed a systematic approach to select an
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Figure 1. Regions and surfaces.

unique, well defined, sliding vector field. However, the choice we made in [16] does not necessarily
reduce to a particular choice of a Filippov vector field of the form in (1.5), and this fact prompted
us to reconsider the issue in this work.

In this paper, again under appropriate attractivity assumptions, for the case of sliding motion
on surface(s) of co-dimension p, with p > 1, we will propose and justify a definition of the sliding
vector field which is fully consistent with Filippov choice (1.5). For the case of p = 1, our present
choice reduces to the classical choice of Filippov vector field. For the case of p = 2 and nodal
attractivity (see Section 2), we recover the sigmoid blending choice of Alexander and Seidman, see
[2]. As far as we could determine, the cases of p = 2 and spiral attractivity, and of p > 2, are new
and amount to selecting a particular vector field in (1.5) by reducing the unknowns from 2p to p.
Complete details will be given for the cases of co-dimension p = 2, where we will give existence
and uniqueness results and the construction of a unique, smoothly varying, vector field on Σ. We
will further prove existence for p ≥ 3.

Problems with sliding motion on surfaces of co-dimension p ≥ 2 are not only of mathematical
interest, but arise also naturally in mechanical systems (see Example 5.1), and in control applica-
tions whenever there are multiple discontinuous control variables. There are two main advantages
of selecting a sliding vector field (1.5), rather than dealing with the more complicated differential
inclusion (1.4): (a) it is simple to develop numerical methods during the sliding regime (e.g., as
done in [16]), and (b) it becomes possible to carry out a non-ambiguous study of the dynamics of
the system (e.g., see Examples 5.2, 5.3, 5.4).

Remark 1.1. It must be appreciated that in a general situation one may have solution trajectories
that slide on (parts of) surfaces of different co-dimension, and enter and exits such surfaces repeat-
edly. Therefore, a robust simulation of these types of problem will require to be able to detect when
a different regime is reached and to select the appropriate vector fields in these different regimes.
To simplify matters, and also as an alternative to define a vector field in agreement with (1.5)
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during a sliding regime, several authors have studied the possibility of regularizing the problem so
to avoid having to deal with a discontinuous system in the first place. These studies have been so
far restricted to the case of a discontinuity surface of co-dimension 1. For example, see [26, 27] for
possible regularization in practical cases, see the works of Teixeira and coworkers, [30, 29, 28], for
a systematic exploration from the point of view of singular perturbation theory, and see the recent
work of Fusco and Guglielmi for regularization through a certain averaging process, [20]. In spite
of the potential simplifications of having a regularized problem, all of the proposed choices above
ultimately modify the vector field in a neighborhood of the discontinuity surface, and this may
possibly lead to undesired dynamical behavior (e.g., solutions may oscillate around the disconti-
nuity surface). Partly because of this, we are not presently interested in regularization techniques
as a mean to solve the original problem. However, since in all cases above the regularized problem
depends on a small parameter ǫ, the limiting process (as ǫ → 0) is of interest. For the cases of
co-dimension 1, it is to be expected that any well designed regularization should reproduce (in the
ǫ → 0 limit) the uniquely defined Filippov vector field. For the cases of higher co-dimension, this
study is being undertaken in [15].

A plan of the paper is as follows. In the remainder of this introduction we review the case of
sliding motion on a co-dimension 1 surface (the classical case of Filippov). We will also revisit
this case by adopting a rewriting introduced in [1], and which will be conducive to appropriate
generalizations in Sections 2 and 3 where we deal in details with the cases of co-dimensions 2 and
3, respectively. In Section 4 we discuss the case of p > 3. Section 5 is dedicated to several examples
which illustrate the theoretical results.

1.1. Co-dimension 1 case. To clarify the previous setup, consider the simplest case, when the
state space is (at least locally) split into two regions by a co-dimension 1 surface. Thus, we have

(1.6) x′(t) = f(x(t)) =

{
f1(x(t)) , x ∈ R1 ,
f2(x(t)) , x ∈ R2 ,

with x(0) = x0 ∈ R
n. The regions R1 and R2 are separated by a co-dimension one surface Σ,

defined as the zero-set of a smooth scalar valued function h : R
n → R, the so-called event function.

So, the regions R1, R2, and the surface Σ, are characterized as

(1.7) Σ = {x ∈ R
n| h(x) = 0}, R1 = {x ∈ R

n| h(x) < 0}, R2 = {x ∈ R
n| h(x) > 0}.

In (1.6), we assume that f1 is Ck, k ≥ 1, on R1 ∪ Σ, that f2 is Ck, k ≥ 1, on R2 ∪ Σ, and that
h ∈ Ck, k ≥ 2, for x on, and in a neighborhood of, Σ, and that the gradient hx(x) 6= 0 for all
x ∈ Σ. In other words, Σ is a true surface with well defined and smoothly varying unit normal n

at all points x ∈ Σ, perpendicular to the tangent plane Tx(Σ): n(x) = hx(x)
‖hx(x)‖ .

Filippov convexification gives the set valued function

(1.8) x′(t) ∈ F (x(t)) =






f1(x(t)) x ∈ R1

co {f1(x(t), f2(x(t)} x ∈ Σ
f2(x(t)) x ∈ R2

,

where

(1.9) co {f1, f2} = {(1 − α)f1 + αf2, α ∈ [0, 1]} .

We recall a fundamental result of Filippov on existence and uniqueness of solutions in the present
case.

Theorem 1.2. [18] Let f1 and f2 be C1 in R1 ∪ Σ, respectively on R2 ∩ Σ, and let h be C2 in

a neighborhood of Σ. If, at any point x ∈ Σ, we have that at least one of nT (x)f1(x) > 0 and

nT (x)f2(x) < 0 holds, then there exists a unique Filippov solution from each initial condition.
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Figure 2. Discontinuity surface

The cases allowed by Theorem 1.2 are those of transversal intersection, attractive sliding mode,
see Figure 2, and smoothly leaving Σ to enter in the region R1 or R2.

(a) Transversal Intersection. When, at x ∈ Σ, we have

(1.10) [nT (x)f1(x)] · [nT (x)f2(x)] > 0 ,

then we will leave Σ. We will enter R1, when nT (x)f1(x) < 0, and will enter R2, when
nT (x)f1(x) > 0. Any solution reaching Σ at a time t1, and having a transversal intersection
there, exists and is unique, in forward time.

(b) Attracting Sliding Mode. An attracting sliding mode at Σ occurs if

(1.11) [nT (x)f1(x)] > 0 and [nT (x)f2(x)] < 0, x ∈ Σ ,

where the inequality signs depend of course on (1.7). When we have an attracting sliding
mode at x0 ∈ Σ, a solution trajectory which reaches x0 cannot leave Σ. According to
Filippov vector field, sliding motion on Σ will take place with the smooth vector field

(1.12) fF(x) = (1 − α(x))f1(x) + α(x)f2(x) ,

where α(x) is such that nT (x)fF(x) = 0, and therefore

(1.13) α(x) =
nT (x)f1(x)

nT (x)(f1(x) − f2(x))
.

(c) Smooth exits. Either (i) nT (x)f1(x) = 0 and nT (x)f2(x) < 0, or (ii) nT (x)f1(x) > 0 and
nT (x)f2(x) = 0. In other words, one of the vector fields f1 or f2 is already in the tangent
plane. In this case, we expect to leave Σ and enter into R1 in case (i) or R2 in case (ii).
These tangential exits are a generic property of solution curves.

Remark 1.3. Observe that Filippov construction in the case of attractive sliding (1.11) requires
non-vanishing vector fields. As such, it is a first order theory. Our generalizations below for the
case p ≥ 2 will also require non-vanishing vector fields.

Remark 1.4. A case not covered by Theorem 1.2 is the ill-posed case of repulsive sliding. This
occurs when one has

[nT (x)f1(x)] < 0 and [nT (x)f2(x)] > 0, x ∈ Σ .

Though in principle one may enforce sliding by selecting α just as in (1.13), this case is ill-posed
because at any instant of time we may leave Σ with either f1 or f2.
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Reinterpretation, p = 1 case. We revisit in a new notation the case of attractive sliding motion.
Let us begin by rewriting the problem in the form of a complementarity system as done by Acary
and Brogliato in [1] and which is related to a rewriting first adopted by Stewart in [31].

We have the vector fields:

f1 when h < 0 , and f2 when h > 0 ,

and rewrite the Filippov differential inclusion (1.8) as

(1.14) ẋ ∈
1 − σ(h(x))

2
f1(x) +

1 + σ(h(x))

2
f2(x) ,

where h(x) = 0 defines the discontinuity surface and where the function σ(·) is the multi-valued
sign function

(1.15) σ(x) =






1 x > 0
[−1, 1] x = 0
−1 x < 0

.

Note that this rewriting is exactly Filippov convexification formulation (1.8). Now, let us consider
the case of x being on the surface, x : h(x) = 0. We seek a smooth selector (a function) s(x),
taking values in [−1, 1], so that Filippov vector field becomes

ẋ =
1 − s(x)

2
f1(x) +

1 + s(x)

2
f2(x) , or ẋ = (1 − α)f1(x) + αf2(x) ,

where we have set s(x) = 2α(x) − 1.
To obtain the Filippov sliding vector field (1.5) we need to find the function α so that nT (x)ẋ = 0.

We use the following notation (all quantities are understood to be evaluated at x ∈ Σ)

w1 = nT f1 , w2 = nT f2 ,

so that the assumption of attractivity of the surface means the following insofar as the signs for
w1, w2:

Table 1. Vector w: p = 1.

Component i = 1 i = 2

wi, i = 1, 2 > 0 < 0

The relation to be satisfied by α can be written as

(1.16)
[
w1 w2

] [
(1 − α)

α

]
= 0 .

so that α = w1

w1−w2

, which is of course the same function of (1.13). [Of course, (1.16) has a unique

solution, which can be trivially found from (1.16), as long as w1 6= w2, but we are presently only
concerned with the case of attractive sliding motion.]

We conclude this introduction with a simple result which will be useful in the next sections.

Lemma 1.5. Let s1, s2, . . . , sp be real numbers. Consider the 2p non repeated products of the form

(1 ± s1)(1 ± s2) · · · (1 ± sp). Let Sp be the sum of all of these products. Then, Sp = 2p.
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Figure 3. Intersection of discontinuity surfaces.

Proof. The proof is by induction on p. For p = 1, there are two terms to add: (1− s1) and (1+ s1)
which obviously add to 2. Now, suppose that the result is true for (p − 1) and let’s show it for
p. The observation is that there are two terms to add, the first is (1 − sp)Sp−1, the second is
(1 + sp)Sp−1. Using the induction hypothesis, we have

(1 − sp)Sp−1 + (1 + sp)Sp−1 = 2Sp−1 = 2p .

�

Remark 1.6. For us, the values s1, s2, . . . , sp in Lemma 1.5 will all be in [−1, 1].

2. Co-dimension 2 case

Here Σ is the intersection of two co-dimension 1 surfaces, Σ = Σ1 ∩ Σ2, where Σ1 = { x :
h1(x) = 0 , h1 : R

n → R} and Σ2 = { x : h2(x) = 0 , h2 : R
n → R}, and they have smoothly

varying unit normals n1 and n2, respectively, which we further assume to be linearly independent
for x ∈ Σ. So, locally, the two surfaces split the phase space into four regions R1, R2, R3 and R4

and we have (1.1) with four smooth functions fi, i = 1, . . . , 4. We will use the labeling (see Figure
3):

(R1) f1 when h1 < 0 , h2 < 0 , (R2) f2 when h1 < 0 , h2 > 0 ,

(R3) f3 when h1 > 0 , h2 < 0 , (R4) f4 when h1 > 0 , h2 > 0 .

As we remarked in the introduction, it is well known that there is an ambiguity in defining the
Filippov sliding vector field (1.5) on Σ, except in particular cases (e.g., see [18, 34] and Section
5). Recently, two different approaches have been proposed to eliminate this ambiguity when Σ
satisfies appropriate attractivity assumptions (the nodal attractivity assumptions below). The



8 L. DIECI AND L. LOPEZ

first approach is due to Alexander and Seidman and is based on sigmoid blending techniques (see
[2, 14]), the second one is based on geometric considerations and we proposed it in [16].

We now examing this case of p = 2 from a new viewpoint. First, rewrite the problem as (see
[1])

ẋ ∈
1 − σ(h1(x))

2

1 − σ(h2(x))

2
f1(x) +

1 − σ(h1(x))

2

1 + σ(h2(x))

2
f2(x)

+
1 + σ(h1(x))

2

1 − σ(h2(x))

2
f3(x) +

1 + σ(h1(x))

2

1 + σ(h2(x))

2
f4(x) ,

(2.1)

where σ(·) is the sign function in (1.15). Off Σ, this rewriting is equivalent to Filippov convexi-
fication, in the sense that it represents the most general convex combination we can take (this is
true also when x is on Σ1 or Σ2). Consider now x ∈ Σ. We want to replace the set valued sign
functions σ(h1(x)) and σ(h2(x)) in (2.1) with smooth functions s1(x) and s2(x), defined for x in
Σ and taking values in [−1, 1], and consider the differential equation (see (2.1))

ẋ =
1 − s1(x)

2

1 − s2(x)

2
f1(x) +

1 − s1(x)

2

1 + s2(x)

2
f2(x)

+
1 + s1(x)

2

1 − s2(x)

2
f3(x) +

1 + s1(x)

2

1 + s2(x)

2
f4(x) ,

(2.2)

and from Lemma 1.5 we have
1 − s1

2

1 − s2

2
+

1 − s1

2

1 + s2

2
+

1 + s1

2

1 − s2

2
+

1 + s1

2

1 + s2

2
= 1 .

Remark 2.1. In other words, for each x ∈ Σ, the functions s1(x) and s2(x) are specific selectors
chosen from the set valued functions σ(h1(x)) and σ(h2(x)). By using scalar valued functions s1(x)
and s2(x), with s1,2 taking values in [−1, 1], for all x in Σ = Σ1 ∩ Σ2, we are taking a smooth
convex combination of the vector fields, consistent with Filippov convexification approach.

To be consistent with previous notation, we set s1(x) = 2α(x)− 1 and s2(x) = 2β(x)− 1, where
α, β ∈ [0, 1], for all x of interest. [Unless truly necessary, we will omit highlighting the dependence
on x, which is implicitly assumed.] Then, we look for a Filippov sliding vector field and differential
equation on the intersection of the form

(2.3) ẋ = (1 − α)(1 − β)f1(x) + (1 − α)βf2(x) + α(1 − β)f3(x) + αβf4(x)

and α, β ∈ [0, 1] must be found so that nT
1 (x)ẋ = nT

2 (x)ẋ = 0. The expression (2.3) is the same
equation obtained in [2]. We now show that α and β can be uniquely found and are smooth
functions if Σ is attractive.
Attractive Σ. We use the following notation (all quantities to be evaluated at x)

w1
1 = nT

1 f1 , w1
2 = nT

1 f2 , w1
3 = nT

1 f3 , w1
4 = nT

1 f4 ,

w2
1 = nT

2 f1 , w2
2 = nT

2 f2 , w2
3 = nT

2 f3 , w2
4 = nT

2 f4 ,

and set W =
[
w1 w2

]
∈ R

4×2, so that the system to be satisfied by α, β can be written as

WT a = 0 , a =





(1 − α)(1 − β)
(1 − α)β
α(1 − β)

αβ



 .

For each given x, this is a nonlinear system in α, β, which we rewrite as

(1 − α)
[
(1 − β)w1

1(x) + βw1
2(x)

]
+ α

[
(1 − β)w1

3(x) + βw1
4(x)] = 0

(1 − β)
[
(1 − α)w2

1(x) + αw2
3(x)

]
+ β

[
(1 − α)w2

2(x) + αw2
4(x)] = 0 ,

(2.4)
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or more compactly as

α
[
A1

1(x, β) − A1
2(x, β)

]
+ A1

2(x, β) = 0

β
[
A2

1(x, α) − A2
1(x, α)

]
+ A2

2(x, α) = 0 ,
(2.5)

where
A1

1 = (1 − β)w1
3(x) + βw1

4(x) , A1
2 = (1 − β)w1

1(x) + βw1
2(x) ,

A2
1 = (1 − α)w2

2(x) + αw2
4(x) , A2

2 = (1 − α)w2
1(x) + αw2

3(x) .

We now make the assumption of attractivity of the intersection, and further differentiate
between three different cases of attractivity.
(a): Nodal Attractivity. This is the attractivity case considered in [2] and [16]. This case is
analogous to the case of a stable node in a planar system, and it is characterized by the constraints
on the signs of w1 and w2 expressed in Table 2.

Table 2. Matrix W : p = 2. Nodal Attractivity.

Component i = 1 i = 2 i = 3 i = 4

w1
i , i = 1 : 4 > 0 > 0 < 0 < 0

w2
i , i = 1 : 4 > 0 < 0 > 0 < 0

Remark 2.2. What does the assumption of nodal attractivity mean? The geometrical meaning
of it is that if a trajectory is near Σ, it will be attracted towards Σ and if the trajectory is on
either one of the two co-dimension 1 surfaces Σ1 or Σ2, then it will slide on this lower co-dimension
surface while approaching the intersection Σ. See Figure 4.

Existence1 Because of the signs in Table 2, we have that for all (α, β) ∈ [0, 1] × [0, 1]:

A1
1(x, β) < 0 , A1

2(x, β) > 0 ,

A2
1(x, α) < 0 , A2

2(x, α) > 0 .

1In this case, unique solvability for for α and β in (2.3) was also obtained in [2] by somewhat different means.
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So, formally expressing α and β from the first, respectively the second, relation in (2.5), we can

formulate the problem as a nonlinear fixed point problem,

[
α
β

]
= T (α, β):

α =
A1

2(x, β)

A1
2(x, β) − A1

1(x, β)
,

β =
A2

2(x, α)

A2
2(x, α) − A2

1(x, α)
,

(2.6)

and by virtue of the signs of the coefficients we have that the map T is a continuous map from
[0, 1] × [0, 1] into itself. Therefore, there is a fixed point in the unit square and a solution α, β of
(2.5).
Uniqueness. The issue of uniqueness is more complex, because it is not easy to verify if the map
T is a contraction.

Remark 2.3. The reason why is not easy to verify (a priori) that T is a contraction can be seen

as follows. We have the map T :

[
α
β

]
→

[
T1(β)
T2(α)

]
, and its derivative is DT =

[
0 T ′

1(β)
T ′

2(α) 0

]
, so

that DT cannot have norm less than 1 if either T ′
1(β) or T ′

2(α) are greater than 1 (in magnitude).
Explicit computation gives

T ′
1(β) =

1

A1
2 − A1

1

[
(1 − α)(w1

2 − w1
1) − α(w1

3 − w1
4)

]

and it is not possible to decide priori if |T ′
1(β)| < 1 for α, β ∈ [0, 1]2, without putting extra

requirements on the wi
j ’s besides those of Table 2 (and we do not want to do this). Similarly for

T ′
2(α). Notice that we are not saying that T is not a contraction at its fixed point, we do not know

this for sure, but simply that it is not possible to decide a priori that DT has norm bounded by 1
for all α, β ∈ [0, 1].

Nevertheless, it is possible to decide that the fixed point is unique, that is that there is a unique
solution (α, β) ∈ [0, 1]2, by reasoning in geometrical terms.

First, from (2.6), we substitute the relation satisfied by α in the formula expressing β and obtain
a quadratic equation for β, P (β) = 0, where P (β) = c2β

2 + c1β + c0, and

c2 = (w1
2w

2
4 + w1

1w
2
3) − (w1

1w2
4 + w1

2w
2
3) − (w2

2w
1
4 + w2

1w
1
3) + (w2

1w
1
4 + w2

2w
1
3)

c1 = w1
1w

2
4 + w1

2w
2
3 − 2w1

1w
2
3 − w2

1w
1
4 − w2

2w
1
3 + 2w2

1w
1
3 , c0 = w1

1w
2
3 − w2

1w
1
3 .

We seek β ∈ [0, 1] satisfying this equation. Because of the signs in Table 2 above, we have

P (0) = c0 = w1
1w

2
3 − w2

1w
1
3 > 0 P (1) = c2 + c1 + c0 = w1

2w
2
4 − w2

2w
1
4 < 0 ,

and therefore there is a root β∗ in [0, 1] and since the function is a parabola the root in [0, 1] is
unique. Using this for α in (2.6) we have that also α varies smoothly (in x).

Again, there is no guarantee that |P ′(β)| < 1 nor that P ′(β) 6= 0, for β ∈ [0, 1], though clearly
P ′(β∗) 6= 0 (see Figure 2).

Example 2.4. As an alternative to directly solving the nonlinear system nT
1 ẋ = nT

2 ẋ = 0, to
find α and β for each x ∈ Σ, it is possible to find the solution by solving an eigenvalue problem.
We have to solve

WT a = 0 , a =




(1 − α)

[
1 − β

β

]

α

[
1 − β

β

]



 .
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Figure 5. p = 2: Possible intersections.

By virtue of the signs in Table 2 above, the leading (2×2) matrix in WT is invertible, which means
that we need to solve a problem of the form

[
I B

]
a = 0, which is the eigenvalue problem

[
α(I − B) − I

][1 − β
β

]
= 0 .

This gives at most two solutions, and we want the one with α ∈ [0, 1] and the eigenvector normalized
with positive entries and 1-norm 1.

The other cases of attractive Σ we consider is when the intersection is attractive in a spiral-like
manner. We distinguish between two such cases.

(b-1): Spiral-like Attractivity: Case 1. This is analogous to the case of a stable spiral in
a planar system. Recent work by Brogliato, [8], seems concerned with a similar situation. The
clockwise situation is characterized by the constraints on the signs of w1 and w2 and by the addi-
tional well-posedness conditions on the relative magnitudes of w1

i and w2
i , i = 1, . . . , 4, expressed

in Table 3. These are required to hold on –and in a sufficiently small neighborhood of– Σ. There
is of course an obvious counter-clockwise situation as well.

Table 3. Matrix W : p = 2. Spiral Attractivity: Case 1.

Component i = 1 i = 2 i = 3 i = 4

w1
i , i = 1 : 4 > 0 < 0 > 0 < 0

w2
i , i = 1 : 4 < 0 < 0 > 0 > 0

Well posedness conditions: w1
1 > −w2

1 , w1
2 > w2

2 , w2
3 > w1

3 , −w1
4 > w2

4

Remark 2.5. Near the intersection, the surfaces Σ1,2 are crossed, but the distance between succes-
sive crossings decreases. The well posedness condition is necessary to guarantee that the surface
Σ is attractive, see Figure 6 for a sketch of the situation. We emphasize that with the condi-
tions expressed in Table 3, the function V (x(t)) = |h1(x(t))| + |h2(x(t))| decreases along solution
trajectories.
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Figure 6. Attractive Σ: Spiral case 1.

Verifying existence and uniqueness of the solution of (2.4) goes in a similar way to the case of

nodal attractivity. Letting α̂ = β and β̂ = 1 − α in (2.4), the system to be solved is rewritten as

(1 − α̂)
[
(1 − β̂)w1

3(x) + β̂w1
1(x)

]
+ α̂

[
(1 − β̂)w1

4(x) + β̂w1
2(x)] = 0

(1 − β̂)
[
(1 − α̂)w2

3(x) + α̂w2
4(x)

]
+ β̂

[
(1 − α̂)w2

1(x) + α̂w2
2(x)] = 0 .

(2.7)

At this point, formally solving for α̂ from the first equation in (2.7) and substituting in the

second equation, we end up with the following quadratic equation for β̂:

P (β̂) = 0 , P (β̂) = c0 + c1β̂ + c2β̂
2 ,

where

c0 = w1
3w

2
4 − w1

4w
2
3 , c1 = 2w1

4w
2
3 − w1

4w
2
1 − w1

2w
2
3 − 2w1

3w
2
4 + w1

1w
2
4 + w1

3w
2
2 ,

c2 = w1
1w

2
2 − w1

2w
2
1 − w1

4w
2
3 + w1

4w
2
1 + w1

2w
2
3 + w3qw

2
4 − w1

1w
2
4 − w1

3w
2
2 .

Now, using the signs of Table 3, this gives P (0) = c0 > 0 and P (1) = w1
1w

2
2 − w1

2w
2
1 < 0 and

again there is a unique solution β in (0, 1).
We note that the well-posedness condition of Table 3 is not needed to obtain a unique solution

to (2.7); the signs of w1
i , w2

i , i = 1, . . . , 4, in Table 3 are sufficient for this. The well-posedness
condition renders Σ attractive. Without this well-posedness condition, one may have ill-posed
repulsive sliding motion, similarly to the situation of Remark 1.4,

(b-2): Spiral-like Attractivity: Case 2. This case has no immediate similarity with a smooth
planar dynamical system. One of the surfaces is crossed on both sides of the intersection, while
the other surface is crossed on one side, but sliding motion towards Σ occurs on the other side.
The clockwise situation when we slide on the portion of Σ1 to the right of Σ is characterized by
the constraints on the signs of the entries of w1 and w2 expressed in Table 4, and by the additional
well-posedness condition expressed in Table 4. These conditions must hold on –and in a sufficiently
small neighborhood of– Σ. Naturally, there are similar counter-clockwise situations, as well as when
we slide on the other side of Σ1 or on Σ2.
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Table 4. Matrix W : p = 2. Spiral Attractivity: Case 2.

Component i = 1 i = 2 i = 3 i = 4

w1
i , i = 1 : 4 > 0 > 0 > 0 < 0

w2
i , i = 1 : 4 < 0 < 0 > 0 > 0

Well posedness condition: −w1
4w

2
2 + w1

2w
2
4 < 0

f
f

1
2

Σ

Σ1

2

3f f 4

Figure 7. Attractive Σ: Spiral case 2.

Remark 2.6. The conditions expressed in Table 4, including the well-posedness condition, guar-
antee that near the intersection the surface Σ2 is crossed, as it is the portion of Σ1 on the left of
the intersection. However, upon reaching Σ1 on the right, the motion becomes a sliding motion
towards Σ. The well posedness condition is crucial to guarantee that the surface Σ is reached, see
Figure 7. Indeed, on the portion of Σ1 to the right of Σ, we will have attractive sliding motion

with vector field fF = (1 − α)f2 + αf4 and α =
w1

2

w1

2
−w1

4

; to reach the intersection Σ, we are asking

to have nT
2 fF < 0, which leads to the well-posedness condition −w1

4w
2
2 + w1

2w
2
4 < 0.

To show existence and uniqueness of the solution to (2.4) in this case, we proceed as follows.

Letting α̂ = 1 − α and β̂ = β in (2.4), the system to be solved is rewritten as

(1 − α̂)
[
(1 − β̂)w1

3 + β̂w1
4

]
+ α̂

[
(1 − β̂)w1

1(x) + β̂w1
2(x)] = 0

(1 − α̂)
[
(1 − β̂)w2

3 + β̂w2
4

]
+ α̂

[
(1 − β̂)w2

1(x) + β̂w2
2(x)] = 0 .

(2.8)

Solving for α̂ from the second equation in (2.8), and substituting in the first equation, we end

up with the following quadratic equation for β̂:

P (β̂) = 0 , P (β̂) = c0 + c1β̂ + c2β̂
2 ,

where

c0 = w1
1w

3
3 − w1

3w
2
1 , c1 = 2w1

3w
2
1 − w1

4w
2
1 − w1

3w
2
2 − 2w1

1w
2
3 + w1

1w
2
4 + w1

2w
2
3 ,

c2 = w1
4w

2
1 − w1

3w
2
1 + w1

3w
2
2 − w1

4w
2
2 + w1

1w
2
3 − w1

1w
2
4 − w1

2w
2
3 + w1

2w
2
4 .
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Using Table 4, this gives P (0) = w1
3w

2
4−w1

4w
2
3 > 0 and P (1) = −w1

3w
2
1 +w1

2w
2
4 which is negative

because of the well-posedness condition of Table 4. So, again, there is a unique solution β ∈ (0, 1),
smoothly varying in x ∈ Σ. We stress that in this situation, the well-posedness condition of Table
4 is needed to obtain a unique solution to (2.8).

3. Co-dimension p = 3

Again, we will consider the problem by taking into account the structure of the data which
we have on the intersection. We only consider the case of nodal attractivity, though appropriate
generalizations of the case of spiral attractivity also should be possible.

We have Σ = Σ1 ∩ Σ2 ∩ Σ3, and the three co-dimension 1 surfaces Σ1 = { x : h1(x) = 0},
Σ2 = { x : h2(x) = 0} and Σ3 = { x : h3(x) = 0}, have smoothly varying and well defined unit
normals n1, n2 and n3, respectively, which are linearly independent on Σ. Locally, Σ separates R

n

in eight regions Ri inside which we have eight smooth functions fi, i = 1, . . . , 8. We assume that
they are labeled as follows:

f1 when h1 < 0 , h2 < 0 , h3 < 0 , f2 when h1 < 0 , h2 < 0 , h3 > 0 ,

f3 when h1 < 0 , h2 > 0 , h3 < 0 , f4 when h1 < 0 , h2 > 0 , h3 > 0 ,

f5 when h1 > 0 , h2 < 0 , h3 < 0 , f6 when h1 > 0 , h2 < 0 , h3 > 0 ,

f7 when h1 > 0 , h2 > 0 , h3 < 0 , f8 when h1 > 0 , h2 > 0 , h3 > 0 .

Similarly to before, near Σ, we rewrite the problem (1.1) as

ẋ ∈
1 − σ(h1(x))

2

1 − σ(h2(x))

2

1 − σ(h3(x))

2
f1(x) +

1 − σ(h1(x))

2

1 − σ(h2(x))

2

1 + σ(h3(x))

2
f2(x)

+
1 − σ(h1(x))

2

1 + σ(h2(x))

2

1 − σ(h3(x))

2
f3(x) +

1 − σ(h1(x))

2

1 + σ(h2(x))

2

1 + σ(h3(x))

2
f4(x)

+
1 + σ(h1(x))

2

1 − σ(h2(x))

2

1 − σ(h3(x))

2
f5(x) +

1 + σ(h1(x))

2

1 − σ(h2(x))

2

1 + σ(h3(x))

2
f6(x)

+
1 + σ(h1(x))

2

1 + σ(h2(x))

2

1 − σ(h3(x))

2
f7(x) +

1 + σ(h1(x))

2

1 + σ(h2(x))

2

1 + σ(h3(x))

2
f8(x) ,

(3.1)

where of course the function σ(·) is the multivalued sign function of (1.15).
In our search for a specific Filippov vector field on Σ, similarly to what we did before, we

seek selectors to replace the set valued functions σ(h1(·)), σ(h2(·)) and σ(h3(·)) with some smooth
(single valued) functions s1, s2 and s3. That is, for each x ∈ Σ, we seek s1(x), s2(x), s3(x),
and replace the inclusion (3.1) by the differential equation given by the following special convex
combination (see Lemma 1.5 and (1.5))

ẋ =
1 − s1(x)

2

1 − s2(x)

2

1 − s3(x)

2
f1(x) +

1 − s1(x)

2

1 − s2(x)

2

1 + s3(x)

2
f2(x)

+
1 − s1(x)

2

1 + s2(x)

2

1 − s3(x)

2
f3(x) +

1 − s1(x)

2

1 + s2(x)

2

1 + s3(x)

2
f4(x)

+
1 + s1(x)

2

1 − s2(x)

2

1 − s3(x)

2
f5(x) +

1 + s1(x)

2

1 − s2(x)

2

1 + s3(x)

2
f6(x)

+
1 + s1(x)

2

1 + s2(x)

2

1 − s3(x)

2
f7(x) +

1 + s1(x)

2

1 + s2(x)

2

1 + s3(x)

2
f8(x) .

(3.2)
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To be consistent with previous notation, for all x ∈ Σ, we set s1(x) = 2α(x)−1, s2(x) = 2β(x)−1
and s3(x) = 2γ(x)− 1, where the functions α, β, γ map x ∈ Σ into [0, 1] and must be found. Then,
the differential equation on the intersection becomes

ẋ =(1 − α)(1 − β)(1 − γ)f1(x) + (1 − α)(1 − β)γf2(x) + (1 − α)β(1 − γ)f3(x)+

(1 − α)βγf4(x) + α(1 − β)(1 − γ)f5(x) + α(1 − β)γf6(x)

+ αβ(1 − γ)f7(x) + αβγf8(x)

and α, β, γ ∈ [0, 1] must be found so that nT
1 (x)ẋ = nT

2 (x)ẋ = nT
3 (x)ẋ = 0. We use the following

notation (all quantities to be evaluated at x)

w1 = (w1
i )8i=1 : w1

i = nT
1 fi , i = 1, . . . , 8 ,

w2 = (w2
i )8i=1 : w2

i = nT
2 fi , i = 1, . . . , 8 ,

w3 = (w3
i )8i=1 : w3

i = nT
3 fi , i = 1, . . . , 8 ,

and form the matrix W =
[
w1 w2 w3

]
∈ R

8×3, so that the system to be satisfied by α, β, γ can
be written as

WT a = 0 , a =





(1 − α)(1 − β)(1 − γ)
(1 − α)(1 − β)γ
(1 − α)β(1 − γ)

(1 − α)βγ
α(1 − β)(1 − γ)

α(1 − β)γ
αβ(1 − γ)

αβγ





.

For each given x, this is a nonlinear system in α, β, γ, which we rewrite compactly as

α
[
A1

1(x, β, γ) − A1
2(x, β, γ)

]
+ A1

2(x, β, γ) = 0

β
[
A2

1(x, α, γ) − A2
2(x, α, γ)

]
+ A2

2(x, α, γ) = 0

γ
[
A3

1(x, α, β) − A3
2(x, α, β)

]
+ A3

2(x, α, β) = 0 ,

(3.3)

where

A1
1 = (1 − β)(1 − γ)w1

5(x) + (1 − β)γw1
6(x) + β(1 − γ)w1

7 + βγw1
8 ,

A1
2 = (1 − β)(1 − γ)w1

1(x) + (1 − β)γw1
2(x) + β(1 − γ)w1

3 + βγw1
4 ,

A2
1 = (1 − α)(1 − γ)w2

3(x) + (1 − α)γw2
4(x) + α(1 − γ)w2

7 + αγw2
8 ,

A2
2 = (1 − α)(1 − γ)w2

1(x) + (1 − α)γw2
2(x) + α(1 − γ)w2

5 + αγw2
6 ,

A3
1 = (1 − α)(1 − β)w3

2(x) + (1 − α)βw3
4(x) + α(1 − β)w3

6 + αβw3
8 ,

A3
2 = (1 − α)(1 − β)w3

1(x) + (1 − α)βw3
3(x) + α(1 − β)w3

5 + αβw3
7 .

As before, we make the assumption of nodal attractivity of the intersection. In the present
context, this means the assumption on the signs of w1, w2, w3, summarized in Table 5. Again, we

Table 5. Matrix W : p = 3.

Component i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

w1
i , i = 1 : 8 > 0 > 0 > 0 > 0 < 0 < 0 < 0 < 0

w2
i , i = 1 : 8 > 0 > 0 < 0 < 0 > 0 > 0 < 0 < 0

w3
i , i = 1 : 8 > 0 < 0 > 0 < 0 > 0 < 0 > 0 < 0
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observe that our assumption of attractivity means that (locally, near Σ), trajectories approach Σ,
and further that we have attracting sliding motions on the lower co-dimensions (1 and 2) surfaces
intersecting on Σ, with all such sliding vector fields leading toward Σ.

Using Table 5, we observe that for all (α, β, γ) ∈ [0, 1] × [0, 1]× [0, 1]:

A1
1(x, β, γ) < 0 , A1

2(x, β, γ) > 0 ,

A2
1(x, α, γ) < 0 , A2

2(x, α, γ) > 0 ,

A3
1(x, α, β) < 0 , A3

2(x, α, β) > 0 .

So, solving for α, β and γ, from the first, second, and third, respectively, equation in (3.3), we can

formulate the problem as the nonlinear fixed point problem,




α
β
γ



 = T (α, β, γ):

α =
A1

2(x, β, γ)

A1
2(x, β, γ) − A1

1(x, β, γ)
,

β =
A2

2(x, α, γ)

A2
2(x, α, γ) − A2

1(x, α, γ)
,

γ =
A3

2(x, α, β)

A3
2(x, α, β) − A3

1(x, α, β)
,

(3.4)

and by virtue of the signs of Table 5, the map T is a continuous map from [0, 1]× [0, 1]× [0, 1] into
itself. Therefore, there is a fixed point in the unit cube and a solution α, β, γ of (3.3).

Remark 3.1. Proving uniqueness appears to be considerably more complicated. Based upon
genericity arguments, we do expect the solution to be isolated. This statement is easy to justify
since the expressions in (3.4) represent three surfaces in the unit cube in R

3 and, generically, we
expect that if they intersect (and we know they do) they do so at isolated points.

4. Case of general co-dimension p > 3

In this section we show how to generalize the previous construction of a Filippov vector field.
That is, we obtain a solution to the nonlinear system arising from the specific form of the convex
combination we seek on the intersection of p surfaces.

To be specific, the general form of the problem we seek to solve is the following.
We have p surfaces in R

n, Σ1, Σ2, . . . , Σp, with n ≥ p + 1, and Σ is their intersection: Σ =⋂p
i=1 Σi. Each surface Σi is characterized as the zero set of a scalar function hi(x), i = 1, . . . , p ,

and we assume to have well defined, smooth, and linearly independent gradients ∇hi(x) 6= 0, for
x ∈ Σ. Let n1(x), n2(x), . . . , np(x) be the unit normals. Locally, the intersection of these p surfaces
divides the space R

n in 2p regions with respective vector fields fi, i = 1, . . . , 2p, and Filippov’s
convexification is given in (1.4). To select a specific Filippov vector field, we reason as follows.

First, we label the 2p vector fields fi’s in a similar way to what we did in Sections 2 and 3.
Specifically, we will label f1 the function in the region R1 := {x : hi(x) < 0 , i = 1, . . . , p}, f2

the function in the region R2 := {x : hi(x) < 0 , i = 1, . . . , p − 1, hp(x) > 0}, etc.. To have a
systematic description, we adopt the following notation. Let 1k be the row vector of all 1’s, of size
2k (k = 1, . . . , p − 1). For given value of p, define the (p, 2p) sign matrix B inductively as:

(4.1) B(1) =
[
−1 1

]
, B(k) =

[
−1k−1 1k−1

B(k−1) B(k−1)

]
, k = 2, . . . , p , B = B(p) .
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For i = 1, . . . , 2p, each function fi corresponds to the region Ri := {x : sign(hj(x)) = Bj,i, j =
1, . . . , p}. With this, we rewrite Filippov’s convexification (1.4) in the form

(4.2) x′(t) ∈

2p∑

i=1

p∏

k=1

1 + Bk,iσ(hk(x))

2
fi(x) ,

where σ(·) is the usual multi-valued sign function of (1.15).
Similarly to what we have done in the previous sections, we seek single valued functions sk(x),

k = 1, . . . , p, to replace the set valued functions σ(hk(x)) for x on the intersection Σ, and the
differential inclusion (4.2) with the differential equation on Σ:

(4.3) x′(t) =

2p∑

i=1

p∏

k=1

1 + Bk,isk(x)

2
fi(x) .

In order to have a sliding solution, as usual we ask that the vector field in (4.3) be in the tangent
plane. This requires solving the nonlinear system

(4.4)






2p∑

i=1

p∏

k=1

1 + Bk,isk(x)

2

(
nT

1 (x)fi(x)
)

= 0 ,

. . . . . . . . . . . . . . .

2p∑

i=1

p∏

k=1

1 + Bk,isk(x)

2

(
nT

p (x)fi(x)
)

= 0 ,

for the p unknowns s1(x), . . . , sp(x), at a given x ∈ Σ.
The next task is to show that this system is solvable, which we will do under conditions of

nodal attractivity of Σ. To state these conditions, we use a notation similar to what we did in
Sections 2 and 3. First, let

sk(x) = 2αk(x) − 1 , αk : x ∈ Σ → [0, 1] , k = 1, . . . , p ,

and let

wk = (wk
i )2

p

i=1 , wk
i = nT

k fi , i = 1, . . . , 2p , k = 1, . . . , p .

Thus, the nonlinear system (4.4) is rewritten as (omitting x for simplicity)

(4.5)
2p∑

i=1

( p∏

k=1

1 − Bk,i + 2Bk,iαk

2

)
wj

i = 0 , j = 1, . . . , p ,

or
2p∑

i=1

[
(
1 − Bj,i

2
+ Bj,iαj)

p∏

k=1,k 6=j

(
1 − Bk,i

2
+ Bk,iαk)

]
wj

i = 0 , j = 1, . . . , p .

Now, for each j = 1, . . . , p, among the 2p terms Bj,i there are 2p−1 terms which are equal to
−1, and 2p−1 terms which are equal to 1. Accordingly, we break the sum in (4.5) as

∑

i: Bj,i=−1

[
(1 − αj)

p∏

k=1,k 6=j

(
1 − Bk,i

2
+ Bk,iαk)

]
wj

i +

∑

i: Bj,i=1

[
αj

p∏

k=1,k 6=j

(
1 − Bk,i

2
+ Bk,iαk)

]
wj

i = 0 , j = 1, . . . , p ,

(4.6)

and there are 2p−1 indices i in each sum.
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With these preparations, we rewrite the nonlinear system (4.6) by explicitly expressing αj from
the j-th equation. For all j = 1, . . . , p, we can write:

(4.7) αj =
Aj

2(α1, . . . , αj−1, αj+1, . . . , αp)

Aj
2(α1, . . . , αj−1, αj+1, . . . , αp) − Aj

1(α1, . . . , αj−1, αj+1, . . . , αp)
,

where

Aj
1 =

∑

i: Bj,i=1

[ p∏

k=1,k 6=j

(
1 − Bk,i

2
+ Bk,iαk)

]
wj

i

and

Aj
2 =

∑

i: Bj,i=−1

[ p∏

k=1,k 6=j

(
1 − Bk,i

2
+ Bk,iαk)

]
wj

i .

So, altogether, we have rewritten the nonlinear system (4.7) as the map α = T (α), for α =
(α1 . . . , αp)

T .
At this point, we make the key observation that, in agreement with the choice we adopted for

the sign matrix B, our assumption of nodal attractivity of the (intersection) surface Σ means the
following assumption on the signs of the wk ’s:

sign(WT ) = −B , where W =
[
w1 w2 · · · wp

]
;

in particular: wj
i > 0 when Bj,i = −1 and wj

i < 0 when Bj,i = 1. We further notice that the term
p∏

k=1,k 6=j

(
1 − Bk,i

2
+ Bk,iαk) is always the product of terms like αk or (1 − αk), and therefore it is

always in [0, 1] if each αk ∈ [0, 1]. As a consequence, we have that

Aj
1 < 0 and Aj

2 > 0 ,

for all j = 1, . . . , p, and all αj ∈ [0, 1], j = 1, . . . , p. Therefore, the map α = T (α), maps the
hypercube [0, 1]p into itself (strictly), and thus it has a fixed point there. That is, there is a
solution to the nonlinear problem (4.4) as we wanted to show.

Uniqueness is more elusive. Although extensive computational experiments, and several partial
results, lead us to suspect that –under our nodal attractivity assumptions– the solution in the unit
cube is unique, a complete proof is still lacking.

Remark 4.1. As already remarked in Section 1, an interesting task is to explore the connection
of the Filippov vector field we selected in this work to the limiting behavior of some regularized
vector field. For co-dimension p > 1, this study is being done in [15].

5. Some examples

Here we consider several examples, to highlight certain specific features of our construction and
contrast it to the choice of vector field we made in [16]; henceforth, we will call fDL the vector field
choice we made in [16], to which we refer for details.

First, we consider a mechanical system where the physics of the problem itself renders a unique
Filippov solution, regardless of the nominal co-dimension of the sliding surface. Then, we will
consider examples in the style of the control problems from [33], to highlight that there may be
ambiguities in the constructions of either Filippov and Utkin vector fields.
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Figure 8. The stick-slip 3 blocks system.

Example 5.1. (The stick-slip 3 blocks system, see Galvanetto, [21, 22]). This is an example of
the classic stick–slip class, in which all the known techniques give the same sliding vector field.

The general mechanical model under investigation is depicted in Figure 8. There are three
blocks arranged along a line. Each block is connected to the adjacent blocks and to a fixed body
by linear springs and is supported by a moving belt. The velocity of the belt is constant and is
called the driving velocity v > 0. See [21, 22] for a detailed description of the model.

The model may be described by the following discontinuous differential system in R
6

(5.1)

y′
1 = y2

y′
2 = − 1

m1

[k1y1 + k12(y1 − y3) + k13(y1 − y5)] +






Fs,1

1−γ(y2−v) , when y2 < v ,

−
Fs,1

1+γ(y2−v) , when y2 > v ,

y′
3 = y4

y′
4 = − 1

m2

[k2y3 + k12(y3 − y1) + k23(y3 − y5)] +






Fs,2

1−γ(y4−v) , when y4 < v ,

−
Fs,2

1+γ(y4−v) , when y4 > v ,

y′
5 = y6

y′
6 = − 1

m3
[k3y5 + k13(y5 − y1) + k23(y5 − y3)] +






Fs,3

1−γ(y6−v) , when y6 < v ,

−
Fs,3

1+γ(y6−v) , when y6 > v .

where k1, k2, k3 k12, k13, k23, Fs,1, Fs,2, Fs,3, are suitable constants. Hence, by setting h1(y) = y2−v,
h2(y) = y4 − v, h3(y) = y6 − v, these three functions define three planes Σi =

{
y ∈ R

6|hi(y) = 0
}

for i = 1, 2, 3, which divide the space into 8 regions Rj with respective vector fields fj, j, . . . , 8.
Let us denote:

A(y1, y3, y5) = −
1

m1
[k1y1 + k12(y1 − y3) + k13(y1 − y5)] ,

B(y1, y3, y5) = −
1

m2
[k2y3 + k12(y3 − y1) + k23(y3 − y5)] ,

C(y1, y3, y5) = −
1

m3
[k3y5 + k13(y5 − y1) + k23(y5 − y3)] ,
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then the vector fields fi(y), for i = 1, . . . , 8, on the intersection Σ1 ∩ Σ2 ∩ Σ3, (where y2 = y4 =
y6 = v) are given by:
(5.2)

f1(y) =





v
A + Fs,1

v
B + Fs,2

v
C + Fs,3




, f2(y) =





v
A + Fs,1

v
B + Fs,2

v
C − Fs,3




, f3(y) =





v
A + Fs,1

v
B − Fs,2

v
C + Fs,3




, f4(y) =





v
A + Fs,1

v
B − Fs,2

v
C − Fs,3




,

(5.3)

f5(y) =





v
A − Fs,1

v
B + Fs,2

v
C + Fs,3




, f6(y) =





v
A − Fs,1

v
B + Fs,2

v
C − Fs,3




, f7(y) =





v
A − Fs,1

v
B − Fs,2

v
C + Fs,3




, f8(y) =





v
A − Fs,1

v
B − Fs,2

v
C − Fs,3




.

The unit normal vectors to the surfaces Σi for i = 1, 2, 3, are respectively n1 = [0, 1, 0, 0, 0, 0]T ,
n2 = [0, 0, 0, 1, 0, 0]T , n3 = [0, 0, 0, 0, 0, 1]T . Hence, it follows that:

(5.4)






nT
1 fi = [fi]2 = A + Fs,1 i ∈ {1, 2, 3, 4} ; nT

1 fi = [fi]2 = A − Fs,1 i ∈ {5, 6, 7, 8}
nT

2 fi = [fi]4 = B + Fs,2 i ∈ {1, 2, 5, 6} ; nT
2 fi = [fi]4 = B − Fs,2 i ∈ {3, 4, 7, 8}

nT
3 fi = [fi]6 = C + Fs,3 i ∈ {1, 3, 5, 7} ; nT

3 fi = [fi]6 = C − Fs,3 i ∈ {2, 4, 8, 8}

where [fi]j , for i = 1, . . . , 8, and j = 1, . . . , 6, denotes the j−th component of fi.
Observe that on the intersection we must have y2 = y4 = y6 = v, and therefore we anticipate

that we must have y′
2 = y′

4 = y′
6 = 0. Further, since y′

1 = y2, y
′
3 = y4, y

′
5 = y6, we know that –on

physical grounds– the vector field on the intersection will be [v, 0, v, 0, v, 0]T . For didactic purposes,
we verify algebraically that this is indeed the case for all methods.

The sliding Filippov’s vector field is given by fF =
∑8

i=1 λifi where λi ≥ 0, for i = 1, . . . , 8, and∑8
i=1 λi = 1. The coefficients λi must be found by imposing the following orthogonality conditions:

(5.5)

8∑

i=1

λin
T
j fi = 0, j = 1, 2, 3.

By setting λ1 + λ2 + λ3 + λ4 = 1 − α, λ1 + λ2 + λ5 + λ6 = 1 − β, λ1 + λ3 + λ5 + λ7 = 1 − γ, and
by considering (5.4), then the linear system (5.5) becomes:

(5.6)






A + Fs,1[(1 − α) − α] = 0 ⇔ α =
Fs,1+A

2Fs,1

B + Fs,2[(1 − β) − β] = 0 ⇔ β =
Fs,2+B

2Fs,2

C + Fs,3[(1 − γ) − γ] = 0 ⇔ γ =
Fs,3+C

2Fs,3
,

from which it follows that the sliding Filippov vector is given by fF = [v, 0, v, 0, v, 0]T . In other
words, there is no ambiguity in selecting a unique Filippov vector field. As a consequence, also the
approach proposed in our present work must give the same sliding vector field. Let us verify this
fact formally. We have the following vector field on the intersection:

fS = (1 − α)(1 − β)(1 − γ)f1 + (1 − α)(1 − β)γf2 + (1 − α)β(1 − γ)f3 + (1 − α)βγf4+

(5.7) +α(1 − β)(1 − γ)f5 + α(1 − β)γf6 + αβ(1 − γ)f7 + αβγf8 .
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Since this is a convex combination, from (5.2) it follows that [fS ]1 = [fS ]3 = [fS ]5 = v. The
coefficients α, β, γ are determined by imposing:

(5.8) nT
j fS = 0, j = 1, 2, 3,

which, by using (5.4), is just the linear system in (5.6). Then the sliding vector field (on the
intersection Σ1 ∩ Σ2 ∩ Σ3) obtained by this approach is indeed fS = [v, 0, v, 0, v, 0]T .

We next determine the sliding vector on the intersection Σ1∩Σ2∩Σ3 by employing the approach
used in [16]. Set N = [n1, n2, n3], and form the projector on the intersection Σ1 ∩ Σ2 ∩ Σ3:

Π = I − N(NT N)−1NT =





1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0




.

The projections of the 8 vector fields in (5.2) on Σ1 ∩ Σ2 ∩ Σ3 are all the same, that is Πfi =
[v, 0, v, 0, v, 0]T , for i = 1, . . . , 8. Since the sliding vector field fDL on Σ1 ∩ Σ2 ∩ Σ3 is given by

fDL =
∑8

i=1 αi Πfi, with coefficients αi ≥ 0, i = 1, . . . , 8, and
∑8

i=1 αi = 1, again we must have
fDL = [v, 0, v, 0, v, 0]T .

To recap, this generalized stick-slip problem leads to a unique vector on the tangent plane, and
therefore a unique Filippov vector field, which coincides also with fDL. We further remark that
the same situation will arise if we considered an arbitrary number of connected blocks, not just
three.

The next three examples are variations on an example of Utkin from [33]. Before presenting
the examples, we recall that Utkin considers discontinuous PWS systems of the form x′ = f(x, u),
where u are control variables which change discontinuously as a solution trajectory reaches one
or more discontinuity surfaces. By letting N to be the matrix collecting the normal(s) to the
surface, Utkin searches for the sliding vector field in the form of fU = f(x, ueq), where ueq must
be found from solving the nonlinear system NT f(x, ueq) = 0. If the controls appear nonlinearly,
in general the classical constructions of Utkin and Filippov do not uniquely select a sliding vector
field. To exemplify, we now present three examples with different features: In Example 5.2, from
[33], Filippov construction is ambiguous, but Utkin’s is not, in Example 5.3, Filippov construction
is not ambiguous, but Utkin’s is, and in Example 5.4 both Filippov and Utkin’s constructions
are ambiguous. In all cases, the vector field we set forth in this paper is well defined, and it
further coincides with the one we introduced in [16] (but see Remark 5.5). The aforementioned
ambiguities are reflected in different dynamical behaviors on the sliding surfaces. In particular,
in the simple examples considered below, our selection choice always gives a (stable) equilibrium
solution, whereas the other choices in general do not.

Example 5.2. [33, p. 64] This is an example where Filippov approach gives an ambiguous
vector field, while Utkin’s approach does not. Both the approach considered in this paper and the
approach we introduced in [16] give the same vector field as with Utkin’s approach.

Consider the system:

(5.9)






x′
1 = u1

x′
2 = u2

x′
3 = u1u2

,
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with the two discontinuous controls u1 and u2:

u1 =

{
+1 when x1 < 0
−1 when x1 > 0

, u2 =

{
+1 when x2 < 0
−1 when x2 > 0

.

So, we have two event functions h1(x) = x1, h2(x) = x2, two discontinuity planes Σ1 = {(x1, x2, x3) : x1 = 0}
and Σ2 = {(x1, x2, x3) : x2 = 0} and four vector fields:

(5.10) f1 =




1
1
1



 , f2 =




1
−1
−1



 , f3 =




−1
1
−1



 , f4 =




−1
−1
1



 .

The normal vectors to Σ1 and Σ2 are simply nT
1 = [1, 0, 0] and nT

2 = [0, 1, 0] from which it is trivial
to verify that the attractivity conditions of Table 2 are satisfied.

Filippov sliding vector field fF =
∑4

i=1 λifi in (1.5) requires us to impose nT
1 fF = 0, nT

2 fF = 0,
and this leads to the underdetermined system

(5.11)






λ1 + λ2 − λ3 − λ4 = 0 ,
λ1 − λ2 + λ3 − λ4 = 0 ,
λ1 + λ2 + λ3 + λ4 = 1 .

The solution can be written as λ1 = λ4, λ2 = λ3 = 1/2 − λ1 and λ1 is an undefined value in
[0, 1/2], which leads to a family of vector fields on the intersection Σ1 ∩Σ2: fF = [0, 0,−1+ 4λ1]

T .
Utkin’s equivalent control approach requires x′

1 = u1,eq = 0, x′
2 = u2,eq = 0, and thus Utkin’s

sliding vector is fU = [0, 0, 0]T .
Consider now the approach we used in [16]. Let N = [n1, n2], and form the projector on the

intersection Σ1 ∩ Σ2:

Π = I − N(NT N)−1NT =




0 0 0
0 0 0
0 0 1



 .

Take the projections of the four vector fields in (5.10) on Σ1 ∩ Σ2:

(5.12) v1 = Πf1 =




0
0
1



 , v2 = Πf2 =




0
0
−1



 , v3 = Πf3 =




0
0
−1



 , v4 = Πf4 =




0
0
1



 .

The approach in [16] suggests to take the sliding vector on the intersection as a convex linear
combination of these four projected vectors, that is

fDL =

4∑

i=1

αi vi =




0
0

α1 − α2 − α3 + α4



 .

To find the coefficients αi’s, in [16] we form the vectors wi’s of Section 2:
(5.13)

w1 =

[
nT

1 f1

nT
2 f1

]
=

[
1
1

]
, w2 =

[
nT

1 f2

nT
2 f2

]
=

[
1
−1

]
, w3 =

[
nT

1 f3

nT
2 f3

]
=

[
−1
1

]
, w4 =

[
nT

1 f4

nT
2 f4

]
=

[
−1
−1

]
,

and select

(5.14) a1 =

[
1
1

]
, a2 =

[
−1
1

]
, a3 =

[
1
−1

]
, a4 =

[
1
1

]
.

Then we take
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(5.15) µi =

[∏4
j=1,j 6=i aT

j wj

]

[∏4
j=1,j 6=i aT

j wj

]
− aT

i wi

, αi =
µi∑4

i=1 µi

, for i = 1, . . . , 4 .

From (5.13) and (5.14) it follows that µ1 = µ2 = µ3 = µ4 = 4/5 , α1 = α2 = α3 = α4 = 1/4 , and

the sliding vector is given by fDL =
∑4

i=1 αi vi = [0, 0, 0]T .
The choice we presented in the present paper, instead, seeks the sliding vector field in the form

(5.16) fS = (1 − α)(1 − β)f1 + (1 − α)βf2 + α(1 − β)f3 + αβf4 ,

where α and β are determined from solving nT
1 fS = 0, nT

2 fS = 0. In this case, this gives

(5.17)

{
(1 − α)(1 − β) + (1 − α)β − α(1 − β) − αβ = 0
(1 − α)(1 − β) − (1 − α)β + α(1 − β) − αβ = 0 ,

the solution of which is given by α = β = 1/2 and so once more fS = [0, 0, 0]T .

Example 5.3. This is an example where Filippov approach gives a well defined vector field, which
is also recovered by the approach we considered in this paper and the approach we introduced in
[16], while Utkin’s approach gives an ambiguous vector field.

Let

(5.18)






x′
1 = u1

x′
2 = u2

x′
3 = (u1)

2u2

,

with the two discontinuous controls u1 and u2:

u1 =

{
+1 when x1 < 0
−1 when x1 > 0

, u2 =

{
+1 when x3 < 0
−1 when x3 > 0

,

which define two event functions h1(x) = x1, h2(x) = x3, two discontinuity planes Σ1 = {(x1, x2, x3) : x1 = 0}
and Σ2 = {(x1, x2, x3) : x3 = 0} and four vector fields:

(5.19) f1 =




1
1
1



 , f2 =




1
−1
−1



 , f3 =




−1
1
1



 , f4 =




−1
−1
−1



 ,

respectively in the regions R1, R2, R3 and R4.
The normal vectors to Σ1 and Σ2 are nT

1 = [1, 0, 0] and nT
2 = [0, 0, 1] from which it is easy to

verify that the attractivity conditions of Table 2 are satisfied. Just like in Example 5.2, Filippov’s
approach leads to the ambiguous choice λ1 = λ4, λ2 = λ3 = 1/2−λ1. Nevertheless, this now gives
a unique Filippov sliding vector: fF = [0, 0, 0]T .

On the other hand, Utkin’s equivalent control approach requires x′
1 = u1,eq = 0, x′

3 = (u1,eq )2u2,eq =
0, so x′

3 could be zero for any value of u2,eq and Utkin’s vector is ambiguous: fU = [0, u2, 0].
If we consider the approach of [16], similar computations to those we performed in Example 5.2

give the sliding vector fDL =
∑4

i=1 αi vi = [0, 0, 0]T .
Finally, the approach considered in the present paper –selecting a Filippov vector field– also

renders fS = [0, 0, 0]T .
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Example 5.4. In this last example, both Filippov and Utkin approaches give an ambiguous vector
field, while the approach considered in this paper and the approach introduced in [16] give a well
defined vector field. Consider the following systems in R

4:

(5.20)






x′
1 = u1

x′
2 = (u1)

2u2

x′
3 = (u1)

2u3

x′
4 = u2u3

,

with the three discontinuous controls u1, u2 and u3:

u1 =

{
+1 when x1 < 0
−1 when x1 > 0

, u2 =

{
+1 when x2 < 0
−1 when x2 > 0

, u3 =

{
+1 when x3 < 0
−1 when x3 > 0

,

which define three discontinuity planes Σ1 = {(x1, x2, x3) : x1 = 0} and Σ2 = {(x1, x2, x3) : x2 = 0},
Σ3 = {(x1, x2, x3) : x3 = 0} and eight vector fields:

(5.21) f1 =





1
1
1
1



 , f2 =





1
1
−1
−1



 , f3 =





1
−1
1
−1



 , f4 =





1
−1
−1
1



 ,

(5.22) f5 =





−1
1
1
1



 , f6 =





−1
1
−1
−1



 , f7 =





−1
−1
1
−1



 , f8 =





−1
−1
−1
1



 ,

respectively in the regions Ri, for i = 1 . . . , 8. On Σ, the normal vectors ni, i = 1, 2, 3, are just the
first three unit vectors, from which it is easy to verify that the attractivity conditions of Table 5
are satisfied.

Filippov sliding vector field (1.5) has the form fF =
∑8

i=1 λi fi, where the coefficients λi ≥ 0,

for i = 1, . . . , 8, and
∑8

i=1 λi = 1. By imposing the orthogonality conditions (nT
1 fF = 0, nT

2 fF = 0,
nT

3 fF = 0), Filippov’s approach leads to solve the following linear system

(5.23)






λ1 + λ2 + λ3 + λ4 − (λ5 + λ6 + λ7 + λ8) = 0 ,
λ1 + λ2 − λ3 − λ4 + λ5 + λ6 − λ7 − λ8 = 0 ,
λ1 − λ2 + λ3 − λ4 + λ5 − λ6 + λ7 − λ8 = 0 ,
λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 = 1 ,

which implies that the Filippov sliding vector is fF = [0, 0, 0, 4(λ4 + λ8) − 1]T , and thus fF is
undetermined.

Utkin’s approach requires x′
1 = u1,eq = 0, x′

2 = (u1,eq )2u2,eq = 0, x′
3 = (u1,eq )2u3,eq = 0,

thus x′
2 or x′

3 could be zero for any value of u2,eq, u3,eq and Utkin’s sliding vector field is fU =
[0, 0, 0, u2,eq u3,eq ] and again the last component is undetermined.

Next, consider our approach in [16]. This requires us to seek the vector on Σ as convex com-
bination of the projections of the vector fields fi’s on the tangent plane. In this case, this means
that we have

fDL =





0
0
0

α1 − α2 − α3 + α4 + α5 − α6 − α7 + α8



 ,
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where the nonnegative coefficients αi, for i = 1, . . . , 8, have to be found in the following way.
Consider the vectors wi, i = 1, . . . , 8, from Section 3, that is:

wi =




nT

1 fi

nT
2 fi

nT
3 fi



 , i = 1, . . . , 8 ,

and select

a1 =




1
1
1



 , a2 =




−1
−1
1



 , a3 =




−1
1
−1



 , a4 =




−1
1
1



 ,

a5 =




1
−1
−1



 , a6 =




1
−1
1



 , a7 =




1
1
−1



 , a8 =




1
1
1



 ,

such that aT
1 w1 > 0, and aT

i wi < 0, for i = 2, . . . , 8. Then we will take:

(5.24) µi =

[∏8
j=1,j 6=i aT

j wj

]

[∏8
j=1,j 6=i aT

j wj

]
− aT

i wi

, αi =
µi∑4

i=1 µi

, for i = 1, . . . , 8 .

In this specific case, we get µi = 7/8, and αi = 1/8, for i = 1, . . . , 8, and the sliding vector will be
given by fDL = [0, 0, 0, 0]T .

Finally, consider the approach presented in the present paper. The sliding vector is of the form:

fS = (1 − α)(1 − β)(1 − γ)f1 + (1 − α)(1 − β)γf2 + (1 − α)β(1 − γ)f3 + (1 − α)βγf4+

+α(1 − β)(1 − γ)f5 + α(1 − β)γf6 + αβ(1 − γ)f7 + αβγf8 ,

where α, β and γ are determined by imposing the orthogonality conditions nT
1 fS = 0, nT

2 fS = 0,
nT

3 fS = 0, which gives:





(1 − α)(1 − β)(1 − γ) + (1 − α)(1 − β)γ + (1 − α)β(1 − γ) + (1 − α)βγ−
−α(1 − β)(1 − γ) − α(1 − β)γ − αβ(1 − γ) − αβγ = 0

(1 − α)(1 − β)(1 − γ) + (1 − α)(1 − β)γ − (1 − α)β(1 − γ) − (1 − α)βγ+
+α(1 − β)(1 − γ) + α(1 − β)γ − αβ(1 − γ) − αβγ = 0

(1 − α)(1 − β)(1 − γ) − (1 − α)(1 − β)γ + (1 − α)β(1 − γ) − (1 − α)βγ+
+α(1 − β)(1 − γ) − α(1 − β)γ + αβ(1 − γ) − αβγ = 0 .

This is a trivial linear system in disguise, with the unique solution α = β = γ = 1/2. Therefore,
once more we have fS = [0, 0, 0, 0]T .

Remark 5.5. The fact that for Examples 5.2, 5.3 and 5.4 the vector fields fS and fDL coincide is
due to the symmetries present in the problems. Likewise, also the fact that the system to be solved
for fS (to find α, β, γ) is linear is a consequence of the symmetries in the problem. In general,
neither of these facts is true: fS and fDL are generally different, and to find α, β, γ, . . . to form fS

one generally needs to solve a nonlinear system.
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6. Conclusions

In this paper we have considered piecewise smooth dynamical systems, and in particular how
to define a Filippov sliding vector field on a surface of co-dimension p ≥ 2. In this case, it is well
understood that –in general– there is no uniquely defined Filippov vector field. Yet, it is desirable
to arrive at a non ambiguous definition of sliding motion, in order to perform numerical simulation
of the system and to obtain information on the system’s dynamics.

For this reason, we proposed a selection of a Filippov sliding vector field in the case of co-
dimension p ≥ 2, for the case when the surface is attractive. In the co-dimension p = 2 case, we
distinguished between three different types of attractive surface (nodal, and spiral-like) and in all
cases proved existence, uniqueness, and smoothness of the resulting Filippov sliding field. In the
case of co-dimension p ≥ 3, and nodal attractivity assumption, we proved existence. We further
illustrated our construction, and compared it with alternatives, on several examples.
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