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Abstract In this short paper, event location techniques for a differential system the
solution of which is directed towards a surfaceΣ defined as the 0-set of a smooth
function h: Σ = {x ∈ R

n : h(x) = 0 } are considered. It is assumed that the exact
solution trajectory hitsΣ non-tangentially, and numerical techniques guaranteeing
that the trajectory approachesΣ from one side only (i.e., does not cross it) are studied.
Methods based on Runge Kutta schemes which arrive toΣ in a finite number of
steps are proposed. The main motivation of this paper comes from integration of
discontinuous differential systems of Filippov type, where location of events is of
paramount importance.
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1 Introduction

2 Introduction

Let a given surfaceΣ be defined as

Σ = {x∈ R
n| h(x) = 0} , h : Rn → R , (2.1)
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Fig. 2.1 Trajectory and event surface.

whereh∈Ck, k≥ 2, and∇h(x) 6= 0 for all x∈ Σ . At least locally,Σ separates region
of phase space, and we letR= {x∈ R

n| h(x)< 0 }. Such surfaceΣ is also called an
event setand pointsx∈ Σ are also calledevent points.

Consider a differential system of the form
{

x′ = f (x) ,whenx∈ R,
x(0) = x0 ∈ R ,

(2.2)

and writex(t,x0) for its solution. Also, defineH > 0 by the relationh(x0) = −H.
Hereafter, the functionf is assumed to be sufficiently smooth, so that the results later
on (for example, Proposition 4.1 or Section 5) are meaningful.

In applications, quite often the functionh is a (hyper-)plane:

h(x) := dTx+e , d ∈ R
n, e∈ R . (2.3)

This situation arises especially in control engineering, where it is crucially important
to make sure that a numerically computed trajectory lands exactly on Σ , to avoid
undesired numerical chattering (e.g., see [2], [4], [11]).At the same time, there are
applications whereh is a more complicated nonlinear function, see the work on ter-
minal sliding mode control theory (e.g., [19]) and in robotics (e.g., [10]).

Now, consider a solution trajectory of (2.2). The interesting case is when this
trajectory is directed towardsΣ (Σ is attractive) and reaches it in a finite timet (which
of course depends onx0), arriving on it non-tangentially; in other words,x(t,x0) ∈ Σ
and(∇h)T f 6= 0 at x(t,x0). What happens after we reach an event point is not our
present concern (e.g., see [12], [1], [7], [8] and references there).

First of all, for points inR, we characterize attractivity ofΣ as follows.There
exists a positive constantδ such that, for all x∈ R and sufficiently close toΣ , we
have

hT
x (x) f (x)≥ δ > 0 . (2.4)

Remark 2.1Since along a solution trajectory we have

d
dt

h(x) = hT
x x′ = hT

x f ,

then (2.4) implies that the functionh monotonically increases along a solution trajec-
tory in R (and close toΣ ), until eventually the trajectory hitsΣ non-tangentially at
the event point.
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Although in most applications the functionf is well defined in an open neighbor-
hood ofΣ , there are situations where one cannot extendf smoothly past the surface
Σ ; e.g., see [6], [10], [15], [17]. In this work, we are interested in numerical proce-
dures in which the discontinuity surface is approached fromone side and the numer-
ical trajectory reachesΣ in a finite number of steps. We will call these procedures
exact event location methods1.

A plan of this paper is as follows. In Section 2 we review standard event location
techniques, and briefly discuss a new one we considered. In Section 3 we give our
main result, and propose a systematic way to reparametrize time in a manner which
is conducive to exact event location methods for the case of event surfaces which are
planar (see (2.3)) or quadratic. In Section 4, we adapt the results of Section 3, along
the lines of [9], to deal with the case of general event surfaces. Finally, in Section 5
we report on numerical results for several test problems.

3 Review of event location techniques

Consider a grid: 0= t0 < t1 < .. ., with tk+1 = tk + τk, for k = 0,1, . . .. Let x j be
the approximation tox(t) at t j , j = 0,1, . . . ,k, obtained by a one-step or multistep
method; we can assume that all these values ofx j , j = 0,1. . . ,k, are inR.

The straightforward idea of standard event location techniques is the following.
When the numerical solutionxk+1, obtained by using the time stepτk, lands on the
other side ofΣ , an event point is typically located by looking for a root of the scalar
functionh(xk+1(τ)) = 0.

Different methods come about from howτ is found. For example, if a continuous
extension of the same order of the underlying scheme, or a polynomial interpolant,
is available (as it is for some explicit Runge Kutta (RK) methods, or for multistep
Adams-Bashforth methods, see [5], [3], [18]), then it is natural to use it in order
to solveh(xk+1(τ)) = 0. Alternatively, one may makeτ part of the unknowns to
solve for and embed the constrainth(xk+1(τ)) = 0 in the construction of the step; for
example, this is done for implicit RK methods in [13]. However, all of these methods
most likely require evaluation off at points outside ofR∪Σ , which is not desirable
for us; moreover, there may also be multiple roots for the resulting nonlinear scalar
function. The class of sub-diagonal explicit RK methods that we studied in [9] avoids
these problems, but requires monitoring the position (withrespect toΣ ) of all the
internal stages and this can be cumbersome.

Within the class of one-step schemes, an alternative idea tothe methods men-
tioned above would be to use RK schemes with step-size dependent tableaux, and
adjust the coefficients so to enforce the desired monotone behavior in the numerical
trajectory. We exemplify this below, see Example 3.1, in thecase of the event surface
being a plane. The idea is to build a RK-like method for whichh(xk) increases by a
fixed positive valueη at each stepk. This way, we would reach the event surface in a
finite number of steps.

1 The word exact refers to locating an event point exactly, of course in general this will be a numerical
approximation to the exactx(t̄,x0)
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Example 3.1 (Explicit RK scheme with variable tableau)Restrict to the case ofh(x)
as in (2.3),h(x) = dTx+ e, and consider the class of explicit second order Runge
Kutta schemes. These are defined by the tableau

0 0 0
c c 0

1−b b
, (3.1)

subject to

cb=
1
2
. (3.2)

We impose the monotonicity conditions
{

h(x2
k) = h(xk)+η2 (a)

h(xk+1) = h(xk)+η (b)
(3.3)

whereη2 = δη , andδ > 0 (there is some freedom in specifyingδ , see below). Now
we can solve the nonlinear system (3.2)-(3.3). In fact, from(3.3.a)

cτ =
η2

dT f (xk)
,

and so (using (3.2))

xk+1 = xk+ τ [(1−b) f (xk)+b f(x2
k)] = xk+

2η2b
dT f (xk)

[(1−b) f (xk)+b f(x2
k)] .

So, from (3.3.b),b is a root of the quadratic equation

[
β
α
−1]b2+b−

1
2

η
η2

= 0 , (3.4)

whereα = dT f (xk), andβ = dT f (x2
k). If β

α > 1, there are two real roots of different

sign and we only take the positive root, while ifβ
α < 1, both roots are positive and

one may take either one. [In the caseα = β andη2 = η , we get the familiar scheme
with b= 1

2 andc= 1, hence we would be inclined to take the root of (3.4) closer to
1/2].

Similar considerations may be applied to explicit RK methods of higher order.
However, this way of proceeding is not appealing as a generalpurpose methodology,
and downright impractical ifh is not of the form (2.3). ⊓⊔

4 Time reparametrization and RK schemes

Here we propose our new technique, whose simple idea is to exploit the monotonicity
of h along solution trajectories. In fact, given (2.4), the function

s = h(x(t)) (4.1)
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is monot̀one and can be used instead oft. We propose to do just this. From the chain
rule,

dx/dt = f (x)→ (dx/ds)(ds/dt) = f (x)→ (dx/ds)(hT
x (x) f (x)) = f (x) ,

and thus we obtain the system

{

dx
ds = g(x) , −H ≤ s≤ 0 ,
x(−H) = x0 ,

(4.2)

where

g(x) =
f (x)

hT
x (x) f (x)

, x∈ R . (4.3)

Observe that (2.4) becomes simply

hT
x (x)g(x) = 1 , x∈ R . (4.4)

Of course, we have just reparametrized time, so that the two trajectories,x(s,x0)
of (4.2) for s∈ [−H,0] andx(t,x0) of (2.2) for t ∈ [0, t̄], represent the same curve
in state space. At first glance, little has changed, but in fact there are interesting
computational advantages when working with the formulation (4.2) instead of (2.2),
as we show below.

Consider the generalp-stage RK scheme defined by the tableau

c A
bT

whereA = (ai j ) ∈ R
p×p, c= (ci) ∈ R

p, b = (bi) ∈ R
p. We will always assume the

familiar conditions

p

∑
i=1

bi = 1 ,
p

∑
j=1

ai j = ci , i = 1, . . . , p ,

and are further (exclusively) interested in the case of

0≤ ci ≤ 1 , i = 1, . . . , p .

Starting fromx0, one step of a RK method with time stepσ > 0 applied to (4.2)
(we reserveτ for the stepsize of a discretization of (2.2)), reads

x1 = x0+σ ∑p
i=1big(xi

0) ,

xi
0 = x0+σ ∑p

j=1ai j g(x
j
0) , i = 1, . . . , p .

(4.5)

The following result holds for any RK scheme, explicit or implicit, and suggests
that whenΣ is a plane there are advantages to using the formulation (4.2). Which RK
formula to use will of course depend on whether (4.2) is stiffor not.
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Theorem 4.1 Let the event surfaceΣ be defined by h(x) = 0, with h given by (2.3).
Consider a discretization of the interval[−H,0] as s0 = −H < s1 < .. . < sN−1 <
sN = 0, where sk+1 = sk+σk, with k= 0, . . . ,N−1, and let{xk}

N
k=0 be the numerical

solution of (4.2) obtained by any RK scheme as above. Then

sk = h(xk) , for k= 1, . . . ,N ,

and in particular h(xN) = 0. Further, h(xi
k) = sk+ciσk, for all i = 1, . . . , p, and k=

0, . . . ,N−1. This result is independent of the stepsizesσk, k= 0, . . . ,N−1.

Proof Rewrite the system (4.2) in the form

{ dx
dv = g(x) ,whenx∈ R,
ds
dv = 1 ,

(4.6)

with initial conditionx(−H) = x0, s(−H) = s0. Lety=

(

x
s

)

and rewrite the problem

as:
dy
dv

= G(y), whereG(y) =

(

g(x)
1

)

, y(−H) =

(

x0

s0

)

, (4.7)

subject to the constraint

h(x)−s= 0 .

In other words, we have rewritten the problem so to have a linear constraint for the
variabley in (4.7) and can now proceed in a similar way to what is done in the context
of geometric integration of ODEs on manifods (see [14]).

Consider a RK step:

{

y1 = y0+σk ∑p
i=1biG(y0+σ0 ∑p

j=1ai j y
j
k)

yi
k = y0+σ0 ∑p

j=1ai j G(y j
k) , i = 1, . . . , p .

(4.8)

Rewrite this explicitly (using∑i bi = 1):

(

x1

s1

)

=

(

x0

s0

)

+σ0

(

∑p
i=1big(x0+σ0 ∑p

j=1 ai j x
j
0)

1

)

where for the stage values







xi
0 = x0+ τ0 ∑p

j=1ai j g(x0+σ0 ∑p
j=1ai j x

j
0)

si
0 = s0+ τ0 ∑p

j=1ai j = s0+ciσ0 , i = 1, . . . , p .

For us,h(x) = dTx+e, anddTg(x0+ τ0 ∑p
j=1ai j x

j
0) = 1, so

h(xi
0)= dTx0+e+σ0

p

∑
j=1

ai j d
Tg(x0+σ0

p

∑
j=1

ai j x
j
0)= h(x0)+σ0

p

∑
j=1

ai j = h(x0)+ciσ0,
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for i = 1, . . . , p, that is,si
0 = h(xi

0). Also,

h(x1) = h(x0)+σ0

p

∑
i=1

bid
Tg(x0+σ0

p

∑
j=1

ai j x
j
0) = h(x0)+σ0

that ish(x1) = s1. The proof now follows by realizing that we can change the index 0
with the indexk in the above. ⊓⊔

In case of a quadratic surface, we obtain a similar result forGauss RK methods.

Theorem 4.2 Assume that the event surface is defined by the0-set of the function
h(x) := xTAx+ dTx+ e, where A∈ R

n×n. Consider a discretization of the interval
[−H,0] as s0 = −H < s1 < .. . < sN−1 < sN = 0, where sk+1 = sk +σk, with k=
0, . . . ,N− 1, and let{xk}

N
k=0 be the numerical solution of (4.2) obtained by a RK

scheme satisfying the algebraic condition

bib j −biai j −b ja ji = 0 , i, j = 1, . . . , p . (4.9)

Then

sk = h(xk) , for k= 1, . . . ,N ,

and in particular h(xN) = 0.

Proof As in the proof of Theorem 4.1, we use the variabley=

(

x
s

)

, so that we have

(4.7) subject to the constraint

xTAx+dTx+e−s= 0, or yTMy+uTy+e= 0

where

M =

(

A 0
0 0

)

, uT = [dT −1] .

Suppose the constraint is satisfied atyk (this is obviously true aty0), and consider a
step of a RK method for which (4.9) holds:

yk+1 = yk+σk

p

∑
i=1

biG(yi
k)

where:

yi
k = yk+σk

p

∑
j=1

ai j G(y j
k) , i = 1, . . . , p. (4.10)

Evaluating the constraint atyk+1 we have:

yT
k+1Myk+1+uTyk+1+e=
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(

yT
k +σk

p

∑
i=1

biG
T(yi

k)

)

M

(

yk+σk

p

∑
i=1

biG(yi
k)

)

+uT

(

yk+σk

p

∑
i=1

biG(yi
k)

)

+e

= yT
k Myk+uTyk+e+σk

[

p

∑
i=1

bi
(

GT(yi
k)Myk+yT

k MG(yi
k)
)

++uTG(yi
k)

]

+σ2
k

p

∑
i, j=1

bib jG
T(yi

k)MG(y j
k) .

Now, using (4.10), writeyk = yi
k−∑ j ai j G(y j

k) and use it in the two occurrences ofyk

in the bracket multiplied byσk, to obtain that the constraint is preserved if

σk

p

∑
i=1

bi
[

GT(yi
k)Myi

k+(yi
k)

TMG(yi
k)+uTG(yi

k)
]

+

σ2
k

p

∑
i, j=1

[bib j −biai j −b ja ji ]G
T(y j

k)MG(yi
k) = 0 .

Using (4.9), then the result follows if we show

GT(yi
k)Myi

k+(yi
k)

TMG(yi
k)+uTG(yi

k) = 0 .

Using the forms ofG, M andu, this is equivalent to say that:

gT(xi
k)Axi

k+(xi
k)

TAg(xi
k)+dTg(xi

k)−1= 0 ,

which can be further rewritten (recall (4.3)) as

f T(xi
k)Axi

k+(xi
k)

TA f(xi
k)+dT f (xi

k)−hT
x (x

i
k) f (xi

k) = 0 ,

and this is trivially true sincehT
x (x)y= yTAx+yTATx+yTd. ⊓⊔

Remark 4.1

(a) In the case ofh(x) = xTAx+dTx+e, under the assumptions of Theorem 4.2 we
haveh(xk) = sk, but in general we do not have such property for the stage values.
That is, in general,si

k 6= h(xi
k), and we cannot infer thath(xk)≤ h(xi

k)≤ h(xk+1).
This fact can be a concern in case the internal stages end up onthe other side of
Σ .

(b) The result of Theorem 4.2 holds when the stage values are computedexactly. In
practice, the nonlinear system (4.10) will be solved only with a certain accuracy,
saytol. In this case, we may have thath(xk)−sk = O(k tol), k= 1,2, . . ..

Finally, in case the functionh(·) is neither linear nor quadratic inx, no RK scheme
on the problem (4.2) will maintain the relationsk = h(xk) exactly. Before proposing a
remedy to this case of generalh, we have the following result which is an immediate
consequence of standard error results.
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Proposition 4.1 Suppose that hxxx is not identically0. Consider the problem (4.2)
with g sufficiently smooth. Let−H = s0 < s1 < .. . < sN = 0 be a segmentation with
sk+1 = sk +σ , σ = H/N, k= 0, . . . ,N−1, and suppose we use a RK integrator of
order q. Then h(xN) = O(σq).

We end up this section with some important considerations relative to working
with the formulation (4.2), and theadvantagesof adopting this formulation.

Remark 4.2

(a) The overall method appears to be quite a bit simpler than the traditional event
methods working with the variable “t”. Of course, we need that (2.4) hold, and
in practice this limits the applicability of the change of variables= h(x(t)) to a
neighborhood ofΣ where (2.4) holds.

(b) In case of linear or quadratic functionh, the method locates exactly an event
point onΣ . This is in contrast with standard methods which require a zero finding
routine or the continuous extensions of the numerical solution, even whenΣ is a
plane. Further, in the case ofΣ being a plane, and proceeding with any (explicit
or implicit) RK scheme with fixed stepsize, our method will reachΣ in an a-priori
determined number of steps. In case ofΣ being a quadratic surface, the same is
true for Gauss RK methods.

(c) Whenh(·) is linear inx, and (as we said) 0≤ ci ≤ 1, for all i = 1, . . . , p, then
h(xi

k)≤ h(xk)+σk, and there is no need to reduce the stepsizeσk in order to stay
below the valueh(xk+1) (cfr. with [9], and see also Section 5).

(d) Naturally, a result like Proposition 4.1 is also valid for the problem in the original
formulation (2.2). [In fact, this type of result is always true on a finite interval].
The difference is that the end-point of integration for (2.2) is not known a-priori,
unlike the case of the formulation (4.2). Indeed, in our limited experience with
constant stepsizes, the formulation (4.2) is always superior to the original for-
mulation. We expected this whenΣ is a plane. But, in fairness, there may be
situations where the original formulation (2.2) is advantageous, as when the re-
gion of validity of (2.4) is just a small neighborhood ofΣ . For this reason, one
may think of a hybrid method, switching between integrating(4.2) and (2.2).

5 Monotonicity

In case the functionh(·) is neither linear or quadratic inx, then the subdiagonal ex-
plicit RK schemes considered in [9], on the formulation (4.2)2, can be made mono-
tone (for stepsizeσ sufficiently small). The argument is similar to one we used in[9],
and we show it just for Heun method, a RK schemes of order 3 (in the process, we
will show it also for forward Euler and the explicit midpointmethods).

2 Of course, we are assuming that (2.4) holds
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Heun method is defined by the following tableau:

0 0 0 0
1
3

1
3 0 0

2
3 0 2

3 0
1
4 0 3

4

.

With stepsizeσ , one step of Heun method reads

x1 = x0+σ [
1
4

g(x0)+
3
4

g(x0+
2
3

σg(x0+
1
3

σg(x0)))] , (5.1)

that is

x1 = x0+σ [
1
4

g(x0)+
3
4

g(x3
0)] , (5.2)

x3
0 = x0+2

σ
3

g(x2
0) , (5.3)

x2
0 = x0+

σ
3

g(x0) , and so (5.4)

x3
0 = x0+2

σ
3

g(x0+
σ
3

g(x0)) . (5.5)

So, x2
0 is just a step of Euler method with stepsizeσ/3, andx3

0 is one step of the
explicit midpoint method with stepsize2σ

3 . We want these two values to be such that
h(x2

0) andh(x3
0) are both inR (and eventually less than, or equal to,h(x1)); conditions

ensuring that this can be always achieved –forσ sufficiently small– are given next.
Recall that (4.4) holds for any valuex in R. In particular, this implies that fory in

a sufficiently small neighborhood ofx, there exist a value 0< c< 1 such that

hT
x (y)g(x)≥ 1−c. (5.6)

Moreover, assuming thath andg are sufficiently smooth, we can always bound‖hx‖,
‖Dg‖, and‖g‖, in a closed ball centered at any pointx∈ R. In particular, this means
that we can always assume to have lower bounds for expressions likehT

x (x)Dg(y)g(z)
for x,y,z∈ R, close to one another.

Theorem 5.1 Let x2
0(σ) = x0+

σ
3 g(x0) and x30(σ) = x0+2σ

3 g(x0+
σ
3 g(x0)). Then,

there existsσ0 > 0, such that, for all0< σ ≤ σ0, h(x2
0(σ)) and h(x3

0(σ)) are strictly
increasing functions ofσ .

Proof We have
d

dσ
h(x2

0(σ)) =
σ
3

hT
x (x

2
0(σ))g(x0) .

Because of (5.6), forσ sufficiently small, one hashT
x (x

2
0(σ))g(x0) ≥ 1− γ1, with

0≤ γ1 < 1 and the result forx2
0 follows.

Also,

d
dσ

h(x3
0(σ)) =

2
3

hT
x (x

3
0(σ))

[

g
(

x0+
σ
3

g(x0)
)

+
σ
3

Dg(x0+
σ
3

g(x0))g(x0)
]

.
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Now, for all σ sufficiently small, because of (5.6), there existsγ2, 0 ≤ γ2 ≤
1
2 such

that
hT

x (x
3
0(σ))g

(

x0+
σ
3 g(x0)

)

≥ 1− γ2. Now, let ρ2 ≥ 0 such thathT
x (x

3
0(σ))Dg(x0 +

σ
3 g(x0))g(x0)≥−ρ2. Then, the result forx3

0 follows from the requirement

2
3
(1− γ2)−

2σ
9

ρ2 > 0,

which is certainly true forσ sufficiently small. ⊓⊔

For Heun method we also have a similar monotonicity result.

Theorem 5.2 Let x1(σ) = x0 +σ [1
4g(x0) +

3
4g(x3

0(σ))]. Then, there existsσ0 > 0,
such that h(x1(σ)) is a strictly increasing function ofσ , for all 0< σ ≤ σ0.

Proof Note that because of Theorem 5.1, we can assume that the values of the func-
tionsx2

0(σ) andx3
0(σ) are inR.

Take the derivative ofx1(σ):

d
dσ

h(x1(σ)) =
1
4

hT
x (x1(σ))

[

g(x0)+3g(x3
0(σ))

]

+
σ
4

hT
x (x1(σ))Dg(x3

0(σ))g(x2
0(σ))+

σ2

6
hT

x (x1(σ))Dg(x3
0(σ))Dg(x2

0(σ))g(x0) .

Because of (4.4), for allσ sufficiently small, there exists a constantγ3, 0 ≤ γ3 ≤
1
2

such thathT
x (x1(σ))

[

g(x0)+3g(x3
0(σ))

]

≥ 1− γ3. Also, let ρ3 ≥ 0 andη3 > 0 be
such that

hT
x (x1(σ))Dg(x3

0(σ))g(x2
0(σ))≥−ρ3 ,

hT
x (x1(σ))Dg(x3

0(σ))Dg(x2
0(σ))g(x0)≥−η3 .

Then, the result will follow from the requirement

1
4
(1− γ3)−

1
2

σρ3−
1
6

σ2η3 > 0,

which is surely true forσ sufficiently small. ⊓⊔

Remark 5.1

(a) In [9], we had derived a result similar to Theorem 5.2, relatively to the original
formulation (2.2). The key difference is that, in that context, we needed a condi-
tion guaranteeing thathT

x (x1(τ))
[

f (x0)+3 f (x3
0(τ))

]

/4≥ δ −c> 0, with δ from
(2.4). Although this is doable, it is bound to place a strong stepsize restriction on
τ in casehT

x (x) f (x) is small.
(b) A result like that in Theorem 5.2 can also be given for the classical RK scheme

of order 4, following the arguments of the proof of Theorem 5.2 and [9].
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6 Numerical tests

Here we report on some numerical experiments, comparing theresults of numerical
integration of (2.2) and (4.2). Numerical integration is done with the classic 4th order
RK scheme (ERK4) and/or the implicit midpoint scheme of (Gauss RK of order 2,
GRK2 below), always using constant step sizes. In each problem, f refers to the
vector field of (2.2) and the functionh is such thatΣ = {x : h(x) = 0}.

Example 6.1Take

f (x) =

(

x2

−x1+
1

1.2−x2

)

, h(x) = αx1+x2−β sin(x1)−0.4.

Here,α andβ control the nonlinearity ofΣ , and the attractivity rate to it. We report
on the results obtained with ERK4, in the two cases below (linear or nonlinearΣ ):

(a) α = 1 , β = 0 , (x1(0),x2(0)) = (−0.2,−0.2) ;

(b) α = 20 , β = 20 , (x1(0),x2(0)) = (−0.5,−0.5) .

(a). TakingN = 80 steps on the formulation (4.7), ERK4 givesh(x) = −5.5×
10−17, whereas 80 steps of ERK4 on (2.2) giveh(x) = −0.0121 and the 81-st step
givesh(x) = 0.004. IncreasingN while solving (2.2) gives only marginal improve-
ments; e.g., after 725068 and 725069 steps, givesh(x) =−4.249×10−7 andh(x) =
1.3613×10−6, respectively.

(b). TakingN = 160 steps of ERK4 on (4.7) givesh(x) =−5.2512×10−8. ERK4
applied to the original problem reachesΣ with the same accuracy only if we use ex-
tremely small constant time stepsτ; for instance, if we takeτ = 10−5 after 98434 and
98435 steps, we geth(x) =−4.5355×10−5 andh(x) = 1.0547×10−4, respectively.

Example 6.2Take

f (x) =

(

x2

−x1+1

)

, h(x1,x2) = x2
1+x2

2−5= 0 , (x1(0),x2(0)) = (−1,1) .

After 80 steps, ERK4 applied to (4.2) givesh(x) = 2.2087×10−8. 80 steps of GRK2
on (4.2), solving the nonlinear equation with tolerancetol = eps, gives h(x) ≈
−6.2× 10−15. Notice the deterioration ofO(80tol), as we had anticipated in Re-
mark 4.1-(ii).

Example 6.3This is a discontinuous differential system which models earthquake
phenomena (see [6]), and was used in [16] as a test problem. Wehave

f (x1,x2,x3) =





x2

0.5(−4.1x2−210.125x1−u(x1,x2)−2sin(14x3))
1



 ,

whereu is the discontinuous function (below,c= 2.47×106):

u(x1,x2) =







0 if x1 < 0.005
c(x1−0.005)3/2+1.98(c(x1−0.005)3/2)1/2x1 if x1 > 0.005, x2 > 0
c(x1−0.005)3/2 if x1 > 0.005 x2 < 0
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Fig. 6.1 Example 6.1-(a). ERK4 on (4.2), left, and (2.2), right.

Initial condition isx(0) = (0.05,−0.2,0). There are two discontinuity planes:x1 =
0.005, andx2 = 0, and –for the given initial condition– the trajectory reachesΣ =
{x : h(x) = 0 : x1−0.005= 0}.

After N = 500 steps, ERK4 applied to (4.2) givesh(x)≈ 1.01×10−16. Here, the
(relatively speaking) small stepsize of 9×10−5 is due to the stiffness of the problem.
Using GRK2 (with tolerancetol= 2.2×10−13 to solve the nonlinear system), after
N = 50 steps givesh(x) = 1.8×10−17.

7 Conclusions

Through a simple reparametrization of time, we have shown that any RK scheme pro-
duces numerical trajectories reaching exactly a planar event surfaceΣ which attracts
nearby dynamics, in a finite number of steps. We have shown thesame result for a
quadratic surfaceΣ when using Gauss RK schemes. Further, we have discussed how
to obtain monot́one schemes even whenΣ is neither planar nor quadratic. Finally,
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Fig. 6.2 Example 6.1-(b). ERK4 applied to (4.2), left, and (2.2), right.

we have given numerical evidence that RK schemes on the transformed problem out-
perform (in constant stepsize mode) the same schemes applied to the problem in the
original time variable. We believe that our work will be particularly useful for the nu-
merical integration of discontinuous Filippov-like systems, especially those arising
in control engineering, where the discontinuity surface istypically a plane, to avoid
undesired numerical chattering phenomena.
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