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Abstract In this short paper, event location techniques for a difida¢ system the
solution of which is directed towards a surfaEedefined as the 0-set of a smooth
functionh: Z = {x € R" : h(x) =0 } are considered. It is assumed that the exact
solution trajectory hitss non-tangentially, and numerical techniques guaranteeing
that the trajectory approach&9rom one side only (i.e., does not cross it) are studied.
Methods based on Runge Kutta schemes which arrivE to a finite humber of
steps are proposed. The main motivation of this paper conoas integration of
discontinuous differential systems of Filippov type, wdéocation of events is of
paramount importance.
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1 Introduction
2 Introduction

Let a given surfacg be defined as

S={xeR"h(x)=0}, h:R"> R, (2.1)
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Fig. 2.1 Trajectory and event surface.

whereh € CK, k> 2, andOh(x) # 0 for allx € X. At least locally,Z separates region
of phase space, and we Rt= {x € R"| h(x) < 0 }. Such surface is also called an
event seand pointx € 2 are also calle@vent points
Consider a differential system of the form
X = f(x) ,whenx e R,
{X(0)=Xoe R, 22)
and writex(t,Xo) for its solution. Also, definéd > 0 by the relatiorh(Xp) = —H.
Hereafter, the functioffi is assumed to be sufficiently smooth, so that the results late
on (for example, Proposition 4.1 or Section 5) are meaningfu
In applications, quite often the functidmis a (hyper-)plane:

h(x) := d'x+e, deR", ecR. (2.3)

This situation arises especially in control engineeringere it is crucially important

to make sure that a numerically computed trajectory land&tgkon >, to avoid
undesired numerical chattering (e.g., see [2], [4], [1A})the same time, there are
applications wheré is a more complicated nonlinear function, see the work on ter
minal sliding mode control theory (e.g., [19]) and in rolest{e.g., [10]).

Now, consider a solution trajectory of (2.2). The intenegtcase is when this
trajectory is directed towards (X is attractive and reaches it in a finite tinigwhich
of course depends o@), arriving on it non-tangentially; in other words{, xg) € X
and (Oh)T f # 0 atx(f,x). What happens after we reach an event point is not our
present concern (e.g., see [12], [1], [7], [8] and refereribere).

First of all, for points inR, we characterize attractivity &f as follows.There
exists a positive constad such that, for all x¢ R and sufficiently close t&, we
have

hY (x)f(x) >3>0. (2.4)

Remark 2.1Since along a solution trajectory we have

d
Py =hIX=hlf,

then (2.4) implies that the functidnmonotonically increases along a solution trajec-
tory in R (and close ta>), until eventually the trajectory hit& non-tangentially at
the event point.
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Although in most applications the functidnis well defined in an open neighbor-
hood ofZ, there are situations where one cannot extesdoothly past the surface
2, e.g., see [6], [10], [15], [17]. In this work, we are inteted in numerical proce-
dures in which the discontinuity surface is approached fomm side and the numer-
ical trajectory reache& in afinite number of steps. We will call these procedures
exact event location methdds

A plan of this paper is as follows. In Section 2 we review stadcevent location
techniques, and briefly discuss a new one we considered.clinB8e8 we give our
main result, and propose a systematic way to reparameimizein a manner which
is conducive to exact event location methods for the caseeftesurfaces which are
planar (see (2.3)) or quadratic. In Section 4, we adapt thateeof Section 3, along
the lines of [9], to deal with the case of general event seda€inally, in Section 5
we report on numerical results for several test problems.

3 Review of event location techniques

Consider a grid: O=tg <t; < ..., with t,y =t + 7, for k=0,1,.... Let x; be
the approximation tx(t) attj, j =0,1,...,k, obtained by a one-step or multistep
method; we can assume that all these valueg,of=0,1... k, are inR.

The straightforward idea of standard event location tegqines is the following.
When the numerical solutioxy, 1, obtained by using the time stap, lands on the
other side o2, an event point is typically located by looking for a root bétscalar
functionh(xc;1(7)) = 0.

Different methods come about from hawvis found. For example, if a continuous
extension of the same order of the underlying scheme, orympuiial interpolant,
is available (as it is for some explicit Runge Kutta (RK) nuath, or for multistep
Adams-Bashforth methods, see [5], [3], [18]), then it isunak to use it in order
to solveh(x;1(7)) = 0. Alternatively, one may make part of the unknowns to
solve for and embed the constralti. 1(7)) = 0 in the construction of the step; for
example, this is done for implicit RK methods in [13]. Howe\a! of these methods
most likely require evaluation of at points outside oRU X, which is not desirable
for us; moreover, there may also be multiple roots for theltesy nonlinear scalar
function. The class of sub-diagonal explicit RK methods thastudied in [9] avoids
these problems, but requires monitoring the position (wétbpect to>) of all the
internal stages and this can be cumbersome.

Within the class of one-step schemes, an alternative id¢letanethods men-
tioned above would be to use RK schemes with step-size depetableaux, and
adjust the coefficients so to enforce the desired monotohaviia in the numerical
trajectory. We exemplify this below, see Example 3.1, indase of the event surface
being a plane. The idea is to build a RK-like method for whicky) increases by a
fixed positive valua at each steg. This way, we would reach the event surface in a
finite number of steps.

1 The word exact refers to locating an event point exactly,cafrse in general this will be a numerical
approximation to the exag(t, xo)
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Example 3.1 (Explicit RK scheme with variable tableRe}trict to the case &f(x)
as in (2.3),h(x) = d"x+ e, and consider the class of explicit second order Runge
Kutta schemes. These are defined by the tableau

0f 0 O
c 0 , (3.1)
1-bb
subject to
1
We impose the monotonicity conditions
h(§) = (k)+'72 (a)
3.3
{ N4ss) =hx) +n (b 59

wheren; = dn, andd > 0 (there is some freedom in specifyidgsee below). Now
we can solve the nonlinear system (3.2)-(3.3). In fact, f(8r8.a)

n2

AT (%0

and so (using (3.2))

et =X+ U= 050+ DIOQ) =Xt g7 o [(1-B) F(9 DO

So, from (3.3.b)b is a root of the quadratic equation
—1b?*+b--— =0, (3.4)

wherea =dT f(x), andB = dT f(x¢). If £ > 1, there are two real roots of different

sign and we only take the positive root, while§f< 1, both roots are positive and
one may take either one. [In the case- B andn, = n, we get the familiar scheme
with b = % andc = 1, hence we would be inclined to take the root of (3.4) closer t
1/2].

Similar considerations may be applied to explicit RK method higher order.
However, this way of proceeding is not appealing as a geperglose methodology,
and downright impractical ifi is not of the form (2.3). O

4 Time reparametrization and RK schemes

Here we propose our new technique, whose simple idea is toietlge monotonicity
of halong solution trajectories. In fact, given (2.4), the flioc

s = h(x(t)) (4.1
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is monobne and can be used instead.diVe propose to do just this. From the chain
rule,

dx/dt = f(x) — (dx/ds)(ds/dt) = f(x) — (dx/ds)(h] (X)f (X)) = F(x) ,

and thus we obtain the system

dx
(Ts:g(x)7 —HSSSO, 4.2
T “2
where
f(x)
= , XER. 4.3
Observe that (2.4) becomes simply
hf(x)g(x) =1, xeR. (4.4)

Of course, we have just reparametrized time, so that therajectoriesx(s, Xo)
of (4.2) fors e [—H,0] andx(t,xo) of (2.2) fort € [0,t], represent the same curve
in state space. At first glance, little has changed, but it tfaere are interesting
computational advantages when working with the formufa(i.2) instead of (2.2),
as we show below.

Consider the generalstage RK scheme defined by the tableau

ClA
b
whereA = (aj) € RP*P, c= () € RP, b = (by) € RP. We will always assume the
familiar conditions

p p _
Zbizlazaijzcivlzlw"ap?
i= =1

and are further (exclusively) interested in the case of
0<¢g<1l,i=1,...,p.

Starting fromxp, one step of a RK method with time step> 0 applied to (4.2)
(we reserve for the stepsize of a discretization of (2.2)), reads

X =X+03 bg0),
i _ N N (4.5)
X =X+031aj9(%), i=1...,p.
The following result holds for any RK scheme, explicit or iioft, and suggests
that whenX is a plane there are advantages to using the formulatioh #tich RK
formula to use will of course depend on whether (4.2) is stiffiot.
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Theorem 4.1 Let the event surfacE be defined by (x) = O, with h given by (2.3).
Consider a discretization of the intervgtH, 0l as 9= —H <51 < ... <sy-1 <
sy =0, where g, 1 = 5+ 0k, withk=0,...,N—1, and Iet{xk}E:0 be the numerical
solution of (4.2) obtained by any RK scheme as above. Then

s=h(x), fork=1,....N,

and in particular i{xn) = 0. Further, (X,) = sc+ciok, foralli =1,...,p, and k=
0,...,N—1. This result is independent of the stepsiaggsk=0,...,N—1.

Proof Rewrite the system (4.2) in the form

dx _
{ &~ gly(x) ,whenx € R, (4.6)
dv — =

with initial conditionx(—H) = X, S(—H) = . Lety = ()S() and rewrite the problem
as:

%:G(y), whereG(y) = (g()i)) ;Y(=H) = (ég) , (4.7)

subject to the constraint
h(x) —s=0.

In other words, we have rewritten the problem so to have atfigenstraint for the
variableyin (4.7) and can now proceed in a similar way to what is donbércbntext
of geometric integration of ODEs on manifods (see [14]).

Consider a RK step:

{V1ZYO+0kZip1biG(YO_+UOZ,P1aijy|j<) (4.8)

YLZYO-FGOZJP:laijG(yH() ,i=1...,p.

Rewrite this explicitly (usings; bj = 1):

p ) p oyl
<)§) _ (ng) —|—O'0(Zi1blg(xo+fozjl a'JX0)>

where for the stage values
{Xi):xw 0y 1aj9(%0+ 00y ajxp)
=S+T0y) 8 =S+G0o, i=1....p.

For us,h(x) = d"x+e, andd"g(xo + To z}’:la”x(j)) =1,s0

) p p . p
h(xp) =d"xo+e+00 Y ajdg(xo+00 y aijxy) = h(xo)+00 Y aj =h(xo)+cico,
= = =
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fori=1,...,p, thatis,g, = h(x,). Also,
L p .
h(x) = h(xo) + do Zibid g(xo+ 0o Y @&jXy) = h(xo) + 0o
i= =1

that ish(x1) = s1. The proof now follows by realizing that we can change thesind
with the indexk in the above. O

In case of a quadratic surface, we obtain a similar resulBfnss RK methods.
Theorem 4.2 Assume that the event surface is defined byOteet of the function
h(x) := x" Ax+dTx+ e, where Ac R™". Consider a discretization of the interval
[FH,0las9=-H <s1<...<sy-1 < Sy =0, where g1 = &+ 0k, with k=
0,...,N—1, and Iet{xk}E:0 be the numerical solution of (4.2) obtained by a RK
scheme satisfying the algebraic condition

bib; — bia;; —bja; =0, i,j=1,...,p. (4.9

Then
s=h(x), fork=1,....N,

and in particular lxy) = 0.

Proof As in the proof of Theorem 4.1, we use the variapte (2) , SO that we have

(4.7) subject to the constraint

X'Ax+d"x+e—s=0, or y'"My+u'y+e=0

M:('g‘?)) , ut=[d"-1].

Suppose the constraint is satisfiedjatthis is obviously true ayg), and consider a
step of a RK method for which (4.9) holds:

where

P .
Y1 = Yk + Ok Zl biG(yk)
i=

where:

_ p .
y'k:yk+akZaHG(yﬂ<), i=1,...,p. (4.10)
=1

Evaluating the constraint &, we have:

Yo aMyki1 +U i +e=
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(yl + okibieT w) M (yk+ akibie(vo) +u’ (yk+ wib@(ﬁ)) +e

ibi (GT (YOMyic+ Yk MG(y})) ++u" G(¥i)

= YT Myi + uTyi + e+ o

p . :
+62 Y bibiGT (YIMG(y}).
=1

Now, using (4.10), writg/ = Y}, — KT G(yﬂ;) and use it in the two occurrencesyqf
in the bracket multiplied by, to obtain that the constraint is preserved if

003 b [6 (M + TGO + 4T GO) +

[bibj — biaij — bja;i] GT (y))MG(y,) = 0.
1

o
[

™M=

Using (4.9), then the result follows if we show
GT (VM + (%) "MG(¥}) +u"G(yj) = 0.
Using the forms of5, M andu, this is equivalent to say that:
9" (A% + () TAgK) +dTg(x) —1=0,
which can be further rewritten (recall (4.3)) as
FT(4)A% + (X TAT(4) +dT F () — hy (X) F(4) =0,

and this is trivially true sinc@] (x)y = y" Ax+yTATx+y'd. i

Remark 4.1

(@) Inthe case offi(x) = x" Ax+d"x+ e, under the assumptions of Theorem 4.2 we
haveh(xx) = s, but in general we do not have such property for the stageesalu
That is, in generaly, # h(x, ), and we cannot infer tha(xc) < h(X,) < h(Xc;1)-
This fact can be a concern in case the internal stages end thye ather side of
z.

(b) The result of Theorem 4.2 holds when the stage valuescanpuatedexactly. In
practice, the nonlinear system (4.10) will be solved onlthvai certain accuracy,
saytol. In this case, we may have tHaix) —sc = O(ktol), k=1,2,....

Finally, in case the functioh(-) is neither linear nor quadratic ¥p no RK scheme
on the problem (4.2) will maintain the relatisp= h(x«) exactly. Before proposing a
remedy to this case of genetalwe have the following result which is an immediate
consequence of standard error results.
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Proposition 4.1 Suppose thatfy is not identically0. Consider the problem (4.2)
with g sufficiently smooth. LetH = 55 < 5 < ... < sy = 0 be a segmentation with
Si1=%+0,0=H/N,k=0,...,N—1, and suppose we use a RK integrator of
order g. Then fxy) = 0(a9).

We end up this section with some important consideratiolaive to working
with the formulation (4.2), and thedvantagesof adopting this formulation.

Remark 4.2

(a) The overall method appears to be quite a bit simpler thartraditional event
methods working with the variablg™ Of course, we need that (2.4) hold, and
in practice this limits the applicability of the change ofiedles= h(x(t)) to a
neighborhood of where (2.4) holds.

(b) In case of linear or quadratic functidn the method locates exactly an event
pointonX. This is in contrast with standard methods which requirera finding
routine or the continuous extensions of the numerical eniueven wher® is a
plane. Further, in the case afbeing a plane, and proceeding with any (explicit
or implicit) RK scheme with fixed stepsize, our method wikkeb> in an a-priori
determined number of steps. In case>obeing a quadratic surface, the same is
true for Gauss RK methods.

(c) Whenh(.) is linear inx, and (as we said) & ¢; < 1, foralli =1,...,p, then
h(x,) < h(x) + dk, and there is no need to reduce the stepsize order to stay
below the valuén(x.1) (cfr. with [9], and see also Section 5).

(d) Naturally, a result like Proposition 4.1 is also valid fbe problem in the original
formulation (2.2). [In fact, this type of result is alwaysiéron a finite interval].
The difference is that the end-point of integration for §2s2not known a-priori,
unlike the case of the formulation (4.2). Indeed, in our {ediexperience with
constant stepsizes, the formulation (4.2) is always sapéwi the original for-
mulation. We expected this when is a plane. But, in fairness, there may be
situations where the original formulation (2.2) is advaetaus, as when the re-
gion of validity of (2.4) is just a small neighborhood &f For this reason, one
may think of a hybrid method, switching between integrath@) and (2.2).

5 Monotonicity

In case the functioh(-) is neither linear or quadratic ixj then the subdiagonal ex-
plicit RK schemes considered in [9], on the formulation J&.2an be made mono-
tone (for stepsize sufficiently small). The argument is similar to one we usef®]n
and we show it just for Heun method, a RK schemes of order hémtocess, we
will show it also for forward Euler and the explicit midpoimtethods).

2 Of course, we are assuming that (2.4) holds
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Heun method is defined by the following tableau:

With stepsizeog, one step of Heun method reads

K= %o+ 013000) 000+ 20000+ s0006))] . (61)
that is
1 3
X1 = %o+ 0[79(%0) +7908)] » (5.2)
= X0+22908) . (5.3)
X5 = Xo+ %g(xo) , and so (5.4)
xg = X0+2%Q(XO+%Q(XO))« (5.5)

So,x% is just a step of Euler method with stepsiz¢3, andxg is one step of the

explicit midpoint method with stepsiz%. We want these two values to be such that

h(x3) andh(x) are both irR (and eventually less than, or equalligx)); conditions

ensuring that this can be always achieved e@ufficiently small— are given next.
Recall that (4.4) holds for any valuen R. In particular, this implies that foyin

a sufficiently small neighborhood @f there exist a value & ¢ < 1 such that

he (Y)a(x) > 1—c. (5.6)

Moreover, assuming thatandg are sufficiently smooth, we can always bouji||,
|IDg]|, and||g]|, in a closed ball centered at any poit R. In particular, this means
that we can always assume to have lower bounds for expredgien) (x)Dg(y)g(2)
for x,y,z€ R, close to one another.

Theorem 5.1 Let () = X0+ $9(X0) and %(0) = xo+2%9(Xo + $9(x0)). Then,
there existsyp > 0, such that, for all0 < o < gy, h(x3(0)) and h(x3(0)) are strictly
increasing functions ofr.

Proof We have
d 2 _ 0 1,2
1o h0é(9)) = Sh; (8(0))g0x0).

N

Because of (5.6), fou sufficiently small, one hak] (x3(0))g(x0) > 1 — y1, with
0 < y1 < 1 and the result fox3 follows.
Also,

L 108(0)) = 20 0(0)) [ 0+ Zax0)) + 2Dl + a(x0)) 900
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Now, for all o sufficiently small, because of (5.6), there exigts0 < y» < % such
that
(xg 0))g (X + $9(X0)) > 1— yo. Now, let p, > 0 such thath} (x3(0))Dg(xo +
£9(x0))9(%0) > p2 Then, the result fox3 follows from the requirement

2 20
g(l—w)—gpz >0,

which is certainly true foo sufficiently small. O
For Heun method we also have a similar monotonicity result.

Theorem 5.2 Let x(0) = o+ 0[%g(xo) + %g(xg(a))]. Then, there existsp > 0,
such that ix, (o)) is a strictly increasing function af, for all 0 < o < ap.

Proof Note that because of Theorem 5.1, we can assume that thes wdltiee func-
tionsx3(o) andx3(o) are inR.
Take the derlvatlve of1(0):

2 hoa(0)) = 2T 0a(0)) [g0e) + 3303(0)]
2
+ 2L (xa(0))Dg(3(9))g0¢(0)) + -] (x1(9))Dg§(9))DYOG(0))glx0).

Because of (4.4), for alb sufficiently small, there exists a constapt 0 < y5 < %
such thathy (x1(0)) [9(X0) +390¢(0))] > 1— ys. Also, letps > 0 andns > 0 be
such that

h% (x1(0))Dg(x3(0))g5(0))
hy (x1(0))Dg(X5(0))Dg(X5(0))9 (%)

Then, the result will follow from the requirement

1 1 1
Z(l—w) 50P3— 0 ns >0,

which is surely true foo sufficiently small. O

Remark 5.1

(&) In[9], we had derived a result similar to Theorem 5.2atieély to the original
formulation (2.2). The key difference is that, in that cotteve needed a condi-
tion guaranteeing that} (x, (7)) [ f (xo) +3f (x3(1))] /4 > 6 —c > 0, with  from
(2.4). Although this is doable, it is bound to place a stromgsize restriction on
T in caseh] (x) f (x) is small.

(b) A result like that in Theorem 5.2 can also be given for tlessical RK scheme
of order 4, following the arguments of the proof of Theore &nd [9].
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6 Numerical tests

Here we report on some numerical experiments, comparingethéts of numerical

integration of (2.2) and (4.2). Numerical integration isidavith the classic 4th order
RK scheme (ERK4) and/or the implicit midpoint scheme of (&RK of order 2,

GRK2 below), always using constant step sizes. In each @nobi refers to the

vector field of (2.2) and the functidmis such that = {x: h(x) = 0}.

Example 6.1Take

X2 .

f(x) = ( 1 ), h(x) = axi +x2 — Bsin(x1) — 0.4.
X1+ 155,

Here,a andf3 control the nonlinearity of, and the attractivity rate to it. We report

on the results obtained with ERK4, in the two cases belovedliror nonlineaz):

@ a=1,8=0,(x(0),%(0)=(-0.2-0.2):
(b) a=20,B=20,(x(0),%(0)) = (—0.5,~0.5) .

(a). TakingN = 80 steps on the formulation (4.7), ERK4 givex) = —5.5 x
1017, whereas 80 steps of ERK4 on (2.2) give) = —0.0121 and the 81-st step
givesh(x) = 0.004. IncreasindN while solving (2.2) gives only marginal improve-
ments; e.g., after 725068 and 725069 steps, diyes= —4.249x 10~ andh(x) =
1.3613x 106, respectively.

(b). TakingN = 160 steps of ERK4 on (4.7) givéxx) = —5.2512x 108, ERK4
applied to the original problem reachEswith the same accuracy only if we use ex-
tremely small constant time stepsfor instance, if we take = 10> after 98434 and
98435 steps, we gétx) = —4.5355x 10~° andh(x) = 1.0547x 104, respectively.

Example 6.2Take

f(x):(_x)l(i_l)’ h(xa, %) =843 —5=0, (x(0),%(0)) = (~1,1).

After 80 steps, ERK4 applied to (4.2) givie&) = 2.2087x 10~8. 80 steps of GRK2
on (4.2), solving the nonlinear equation with toleraned = eps, gives h(x) =
—6.2 x 10715, Notice the deterioration of’(80to1), as we had anticipated in Re-
mark 4.1-(ii).

Example 6.3This is a discontinuous differential system which modelghepiake
phenomena (see [6]), and was used in [16] as a test problerhaVée

X2
f(Xl, X2, X3) = (0.5(4.1X2 —210125¢ — U(Xl,Xz) — 28i|’(14X3)) ) s
1
whereu is the discontinuous function (below= 2.47 x 10°):

0 if  x <0.005
u(xg,x2) = { c(xg —0.005)%2 4 1.98(c(x1 — 0.005)%/2)1/2xy if x; > 0.005 Xp >0
c(x, — 0.005)%/2 if X >0.005x; <0
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08
07+ ~ h(x)=0
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03t

o2f

oif s
\

2

o2l .
-0.35 -0.3 -0.25 -0.
x(1)

X(2)

08
orr h(x)=0
06f
o5t

0.4r

x(2)

0.3r

0.2r

0.1r

Y- .
-0.35 -0.3 -0.25 -0.2
x(1)

Fig. 6.1 Example 6.1-(a). ERK4 on (4.2), left, and (2.2), right.

Initial condition isx(0) = (0.05,—0.2,0). There are two discontinuity planes; =
0.005, andx, = 0, and —for the given initial condition— the trajectory reasX =
{x: h(x) =0: x; —0.005= 0}.

After N = 500 steps, ERK4 applied to (4.2) givie) ~ 1.01 x 106, Here, the
(relatively speaking) small stepsize 0k9.0~° is due to the stiffness of the problem.
Using GRK2 (with toleranceol = 2.2 x 10~13 to solve the nonlinear system), after
N = 50 steps giveh(x) = 1.8 x 1017,

7 Conclusions

Through a simple reparametrization of time, we have shoatahy RK scheme pro-
duces numerical trajectories reaching exactly a planantesteface> which attracts
nearby dynamics, in a finite number of steps. We have showsah® result for a
guadratic surfac& when using Gauss RK schemes. Further, we have discussed how
to obtain mondine schemes even whenis neither planar nor quadratic. Finally,
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Fig. 6.2 Example 6.1-(b). ERK4 applied to (4.2), left, and (2.2), tigh

we have given numerical evidence that RK schemes on thddramsd problem out-
perform (in constant stepsize mode) the same schemes éppliee problem in the
original time variable. We believe that our work will be pauiarly useful for the nu-
merical integration of discontinuous Filippov-like sysi® especially those arising
in control engineering, where the discontinuity surfactyscally a plane, to avoid
undesired numerical chattering phenomena.
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