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TECHNIQUES FOR CONTINUOUS OPTIMAL TRANSPORT PROBLEM

LUCA DIECI AND DANIYAR OMAROV

Abstract. In this work, we consider and compare several different numerical methods to solve the

classic continuous optimal transport problem between two probability densities, while minimizing the

cost function given by the squared Euclidean distance. Classically, the problem reduces to having to

solve a second order elliptic PDE (the Monge-Ampére PDE). An alternative is to consider the so-called

fluid dynamics formulation of Benamou and Brenier. One of our goals in this work is to compare two

numerical methods used for the fluid-dynamics formulation with a direct discretization of the Monge-

Ampére PDE. Finally, we introduce a very natural new class of problems, which we call separable, for

which we devise very accurate methods. We give implementation details of all the different methods,

and extensive testing on many different problems which we created in order to provide a fairly complete

arrays of the typical difficulties one encounters, and to highlight the benefits of different methods.

With the same level of attention to implementation details, some insight into the relative merits of

the different techniques emerges and we can draw conclusions and provide recommendations on what

techniques to adopt for this problem.

1. Introduction

Optimal transport (OT) problems appear in several applications in various fields, such as machine

learning, mathematical biology, economics, and image processing (e.g., see [18], [21], and the references

in [23]). Indeed, the pervasive nature of OT problems has led to a lot of interest in numerical OT, and

new methods continue to be developed for this task (see the many references below). However, all the

numerical works of which we are aware seem to be concerned with novel algorithmic developments but

not with providing a comparison of these new developments with alternative, pre-existing techniques.

This gap has provided the motivation for our work, and as far as we know our is a first effort to

compare methods for the OT problems.

The first mass transfer problem, a civil engineering problem, was considered by Monge in 1781, [20].

A modern treatment of this problem, in term of probability densities, was formulates by Kantorovich

in [11], who opened the path to viewing the problem in the framework of an optimization task and

to exploit duality, which allowed for great improvements in the theory, and also to obtain powerful

numerical methods.

A useful formulation of the problem considers two given probability densities, ρ0(x), x ∈ Ω, and

ρ1(y), y ∈ Ω, where Ω is a convex and compact subset of Rd. Then, the optimal transport problem

consists in seeking an invertible map T : Ω → Ω which transports one density into the other1, while

minimizing a given cost functional c(x, y) which represents the cost of moving one unit of mass x into

one unit y. In this work, we will only consider the case of dimensions d = 1 or d = 2, and continuous
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1By this, it is meant that T pushes ρ0 forward to ρ1, that is ρ0(T−1(A)) = ρ1(A) for all Borel sets A ⊂ Ω
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densities ρ0 and ρ1, though –in general– also the case of ρ0 and ρ1 being discrete densities is of interest.

Finally, although the cost may be just Euclidean distance or any other p-norm with p > 1, for us in

this work the cost is given by the squared Euclidean distance, that is c(x, y) = ‖x − y‖22. This is the

most widely studied OT problem, and it is well known that this problem has a unique solution; that

is, there is a unique smooth, invertible, map T minimizing the cost, see references below. We will

henceforth just restrict to this case, and so we will just write ‖ · ‖2 rather than ‖ · ‖22.

To recap, the Monge-Kantorovich (or just MK) problem we consider consists of the following.

1. Given ρ0(x) ≥ 0, ρ1(x) ≥ 0, such that
∫

Ω ρ0(x)dx =
∫

Ω ρ1(x)dx = 1, where Ω ⊂ Rd is compact

and convex.

2. Seek a smooth, invertible, map T : Ω→ Ω which achieves

(1)

inf
T :Ω→Ω

∫
Ω
‖x− T (x)‖2ρ0(x)dx

s. t.

∫
x∈A

ρ1(x)dx =

∫
T−1(x)∈A

ρ0(x)dx , for every bounded set A ⊂ Ω,

so that, from the change of variable formula. the last relation rewrites as

ρ1(T (x)) det(∇T (x)) = ρ0(x) .

In the specific case we are considering here, the unique optimal map T is the gradient of a convex

function u (see [23, Theorem 1.17]). In light of this, the change of variable formula rewrites as the

following nonlinear elliptic partial differential equation (PDE), the Monge-Ampére equation (MA for

short):

(2)
det(D2u(x))ρ1(∇u(x)) = ρ0(x)

where u(x) is convex and D2u is its Hessian.

We will shortly discuss appropriate boundary conditions (BCs) for this PDE, at which point a possible

method will suggest itself.

An alternative formulation of the OT problem was given by Benamou & Brenier in [1], where

they showed that the OT problem is equivalent to the following constrained variational problem

(see [23, Theorem 5.28]):

(3)

inf
v

∫ 1

0

∫
Ω
‖v(t, x)‖2ρ(t, x)dxdt such that

∂ρ(t, x)

∂t
+∇ · (v(t, x)ρ(t, x)) = 0 and

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x)

where v(t, x) is a smooth velocity field, and ρ(t, x) is a density interpolation function. The minimization

problem (3) is known as Benamou-Brenier formulation or fluid dynamics formulation. The relation

between the minimization problem (3) and the result giving the optimal map T as gradient of a convex

function u is that ∇u(x) = x+v(0, x) (again, see cited references). The optimal value of the functional

in (3) is the square of the (L2-)Wasserstein distance between ρ0 and ρ1, and it is usually written as

g2
W (ρ0, ρ1). This distance gW has become a popular way to measure distance between distributions,

thanks to its increasing use in statistics and machine learning, e.g., in generative adversarial networks

(GAN).
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Remark 1.1. [Ω = Rd] An important case is when the problem is set on the full space Rd, that

is Ω = Rd in the above. Now we will need to require that ρ0 and ρ1 have finite second moments:∫
Rd ‖x‖2ρ0(x)dx,

∫
Rd ‖x‖2ρ1(x)dx <∞. With this, the existence (and uniqueness) of the optimal map

T : Rd → Rd continues to hold; see [23, Theorem 1.22]. Likewise, the previous equivalence result, that

is ∇u(x) = x+ v(0;x), about the formulations (2) and (3) holds as well.

Remark 1.2. Although we are only considering the continuous optimal transport problem, depending

on whether (one or both of) the densities are discrete or continuous, one has a fully discrete, or a

semi-discrete, or a continuous problem. Naturally, different methods apply in these different situa-

tions. For example, when mapping a discrete density to a discrete density, the resulting discrete OT

problem reduces to an assignment (linear programming) problem and we refer to [3] and [7] for viable

techniques. When mapping a continuous density to a discrete density, one has a so-called semi-discrete

OT problem, which boils down to finding a Laguerre tessellation, and we refer to [8], as well as [17]

and [13] for a review of numerical techniques in this case. Although there are efficient techniques in

the discrete and semi-discrete cases, for a truly continuous optimal transport problem (that is, when

both ρ0 and ρ1 are) we see at least two major difficulties in transitioning from the continuous transport

problem to a fully (or semi) discrete problem: (1) where and how to sample the continuous densities,

and (2) how to extract the optimal map from the joint distribution obtained solving the discrete prob-

lem. As far as we can tell, these two tasks are not generally settled, and that is why we stuck with

techniques designed for the continuous OT problem.

The rest of this paper is organized as follows: in Section 2, we first discuss at a high level (Section

2.1) the three basic numerical methods which we considered for solving the OT problem and then

(in Section 2.2), we give details of their numerical implementation. In Section 3, we introduce a

simple but important class of problems for which one can always solve 1-d (and not 2-d) problems and

the numerical methods considered (especially one of them) become particularly efficient; we also give

details on the well-posedness of these 1-d problems in an Appendix at the end. In Section 4, we give

a list of problems we created as well as numerical results. Conclusions are in Section 5.

2. Algorithms

Below, we review three basic techniques to solve the OT problem based on either solving the Monge-

Ampere PDE, or using the Benamou-Brenier formulation, or using a system of PDEs also resulting

from the Benamou-Brenier formulation.

2.1. Basic Algorithms Description.

2.1.1. Monge-Ampere PDE. The most direct approach to find the Monge map is to solve (a discretized

version of) (2). This has been done many times before; e.g., see [4, 22] for early work, [16] as well

as [5, 9, 10, 19] for more recent discretization efforts, as well as the reformulation as a steady-state of

an associated parabolic problem of [24]. In this work, we will closely follow the algorithm proposed by

Froese in [9]. Before discussing more details, including the choice of BCs, we note that there are two

other issues of concern. First of all, since uniqueness is guaranteed only for the map T (x), a solution

u(x) of (2) is unique only up to a constant. In practice, one can remove this non-uniqueness in several

ways: for example, by enforcing that the solution has mean zero (
∫

Ω u(x)dx = 0) or by fixing a specific
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value a-priori (say, u(x0) = 0). In [9], the mean zero condition was implemented. The second concern

is that we are interested in a convex solution u. A main contribution of [9] on this aspect is related

to the discretization of the determinant operator. In fact, a straightforward discretization of (2) by

centered differences methods will not conserve convexity of the solution during iterations. Froese in [9]

resolves this issue by replacing the determinant operator with the following, and then using centered

difference (see Section 2.2.1)

(4) det+(D2u(x)) = min
(v1,v2)∈V

{
max(uv1v1 , 0) max(uv2v2 , 0) + min(uv2v2 , 0) + min(uv2v2 , 0)

}
where V is the set of all orthonormal bases of R2. Under this specific discretization, Froese gives some

convergence results for the finite difference scheme (see [9, Theorem 5]).

2.1.2. Regularized Benamou-Brenier. The next algorithm we considered is based upon the optimiza-

tion problem expressed by (3). The basic approach based on solving this optimization problem was

discussed already in the original paper [1] where the authors confronted the difficulties arising from

lack of strict convexity of the functional. In our presentation, we will follow the recent work of Li et

al., [14], where the authors expand upon the work [1].

To begin with, the authors of [14] replace (as already done in [1]) the velocity field function v with

the flux function m:

v(t, x) =
m(t, x)

ρ(t, x)

and (3) can be reformulates as

(5)

min
m,ρ

∫ 1

0

∫
Ω

∣∣∣∣∣∣∣∣m(t, x)

ρ(t, x)

∣∣∣∣∣∣∣∣2
2

ρ(t, x)dxdt

∂ρ(t, x)

∂t
+∇ ·m(t, x) = 0

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x),

where the infimum is sought among the flux functions m satisfying zero-flux conditions, [14]. Next,

motivated by the lack of strict convexity and by the fact that if ρ(t, x) becomes 0 (or even close to

0), a numerical scheme will run into difficulties, the authors in [14] regularize (5) as follows. They

perform the change of variable m(t, x) = m̃(t, x) + β∇ρ(t, x), where β is a regularization parameter,

and rewrite (5) as:

(6)

min
m̃,ρ

∫ 1

0

∫
Ω

{ ||m̃(t, x)||2

ρ(t, x)
+ β2(∇ log ρ(t, x))2ρ(t, x)

}
dxdt+ 2βD(ρ1|ρ0)

∂ρ(t, x)

∂t
+∇ · m̃(t, x) = 0

ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x),

where D(ρ1|ρ0) is the constant

D(ρ1|ρ0) =

∫
Ω
ρ1(x) log ρ1(x)dx−

∫
Ω
ρ0(x) log ρ0(x)dx.

We note that with this reformulation the Wasserstein distance gW (ρ0, ρ1) is thus approximated by the

square root of the minimum value in (6).
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The chief difference between (5) and (6) is the Fisher information term I(ρ):

I(ρ) =

∫ 1

0

∫
Ω

(∇ log ρ(t, x))2ρ(t, x)dxdt .

The purpose of this regularization is that adding the Fisher information term maintains the probability

densities strictly positive (it acts as a barrier function), and further introduces strict convexity into

the original minimization problem. Some convergence results as β → 0 of the solution of (6) to that

of (5) are in [12]. But, of course, in practice one cannot let β → 0 and balancing the appropriate value

of β with the discretization level in x and t will be important; see Table 1, which clearly shows the

need to decrease β up to the discretization error level in space and time, but that there is no benefit

beyond that.

dt = 1/6 dt = 1/11 dt = 1/21

β dx = 1
16 dx = 1

32 dx = 1
64 dx = 1

16 dx = 1
32 dx = 1

64 dx = 1
16 dx = 1

32 dx = 1
64

10−1 0.550 0.563 0.567 0.553 0.564 0.567 0.555 0.566 0.569

10−2 0.053 0.046 0.050 0.054 0.052 0.056 0.056 0.054 0.058

10−4 0.028 0.020 0.017 0.031 0.017 0.010 0.036 0.021 0.011

10−8 0.028 0.021 0.018 0.031 0.017 0.010 0.036 0.021 0.011

Table 1. Errors in Optimal Map for Problem 4.1, obtained by the Regularized
Benamou-Brenier method with different β values and varying levels of discretization dt
and dx.

2.1.3. Geodesic. The last technique we present is based on the recent work by Cui et al. [6]. The

technique is based on a reformulation of the Benamou-Brenier problem (3) posed in Rd; see Remark

1.1. The authors of [6] reformulate the problem as the Hamiltonian PDE system

(7)

∂ρ(t, x)

∂t
+∇ · (ρ(t, x)∇S(t, x)) = 0

∂S(t, x)

∂t
+

1

2
||∇S(t, x)||2 = 0

ρ(0, x) = ρ0(x) , ρ(1, x) = ρ1(x) ,

where ∇S = v. Here, the Hamiltonian is given by H(ρ, S) = 1
2

∫
Rd ‖∇S‖2ρdx. When the reformulation

holds (see [6]), then, if S(0, x) is known, for the Wasserstein distance the equality gW (ρ0, ρ1) =√
2H(ρ0(x), S(0, x)) holds as well. Furthermore, the optimal map has the form T (x) = x + v(0, x).

The basic idea of [6] is to find an initial S(0, x) (or v(0, x)) such that the trajectory starting at

(ρ0, S(0, x)) arrives at ρ1 at t = 1. This is the well-known geodesic equation between the two densities

ρ0 and ρ1 on the Wasserstein manifold (see [25]). But, since S is defined only up to an arbitrary

constant, the boundary value problem (7) cannot have a unique solution. Because of this fact, we end

up (just like the authors of [6] did, albeit at the discrete level) using the formulation based on ρ and
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v:

(8)

∂ρ(t, x)

∂t
+∇ · (ρ(t, x)v(t, x)) = 0

∂v(t, x)

∂t
+

1

2
∇||v(t, x)||2 = 0

ρ(0, x) = ρ0(x) , ρ(1, x) = ρ1(x) .

As far as the Wasserstein distance is concerned, one can obtain it from the square root of

(9)

∫
Rd

‖v(0, x)‖2ρ0(x)dx .

2.2. Numerical Implementation. In this Section, we discuss some implementation issues of the

basic algorithms from Section 2.1.

Restriction 2.1. We will consider two types of problems. (a) Periodic problems, which are naturally

formulated on the torus, and (b) Problems given on finite rectangular domains: Ω = [a0, a1]× [b0, b1];

furthermore, for convenience, we also assume that (b1 − b0) and (a1 − a0) are rationally related,

that is there are p, q ∈ N such that p(a1 − a0) = q(b1 − b0).2 In fact, we could also consider two

different rectangular domains for the two different densities, say X = [a0, a1] × [b0, b1] for ρ0 and

Y = [α0, α1]× [β0, β1] for ρ1, but it is a simple linear change of variable to reduce Y to X.

Remark 2.2. Note that consideration of a finite rectangular domain poses some nontrivial restric-

tions on the approach of Section 2.1.3. In particular, the formulation based on (8) of [6] on a finite

domain Ω imposes zero-flux conditions, more specifically homogeneous boundary conditions for v and

homogeneuous Neumann conditions for ρ(t, x): v = 0 and ∂ρ
∂n = 0 on ∂Ω (here, n is the outer normal).

If these are severely violated, the use of this approach on a truncated domain is of dubious value.

2.2.1. Monge-Ampere Discretization. As mentioned in Section 2.1.1, we follow the approach of [9] for

discretizing (2).

The first thing to decide is how to choose the orthonormal vectors in the monotóne discretization

of the derivatives (see (4)). Rather than considering all possible orthonormal bases of R2,we restrict

the set V of (4) to these two bases:

{ṽ1, ṽ2} =

{(
1

0

)
,

(
0

1

)}
, {v̂1, v̂2} =

{
1√
2

(
1

1

)
,

1√
2

(
1

−1

)}
Using these sets, we derived centered difference formulas for both first and second derivatives. (The

first derivatives of course are needed to evaluate ρ1(∇u).) For example, for the first derivatives we

have

[Dṽ1u]ij =
ui+1,j − ui−1,j

2h
, [Dṽ2u]ij =

ui,j+1 − ui,j−1

2h
,

[Dv̂1u]ij =
ui+1,j+1 − ui−1,j−1

2
√

2h
, [Dv̂2u]ij =

ui,+1,j−1 − ui−1,j+1

2
√

2h
.

where h is the mesh size of the grid (recall that we can take same mesh-size in both coordinate

direction). Similarly for the second derivative approximations (see [9]).

2Note that this assumption allows us to restrict consideration to discretizations having the same mesh-size in both x1
and x2 directions.
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The second key aspect of the algorithm is how to select the boundary conditions. For periodic

problems, we cannot use (2) as given, since there cannot be any periodic convex function u (except

the constants) satisfying ρ1 detD2u = ρ0 with ρ0 and ρ1 periodic. The appropriate setup now is not

for u to be convex but rather 1
2‖x‖

2 − u to be (e.g., see [16] and [23, pp. 211–214]), so that the the

optimal map will be its gradient, that is T (x) = x−∇u(x) (in the periodic sense), and now u satisfies

this Monge-Ampere PDE:

ρ1 (x−∇u) det(I −D2u) = ρ0(x) .(10)

For rectangular domains, we followed the approach of [9] and implemented the so-called transport

boundary conditions: “The gradient of u maps the boundary onto the boundary”. That is:

(11) ∇u(∂Ω) = ∂Ω .

These are particularly easy to implement when we have two rectangular regions (in fact, for more

general polygonal regions as well) X = [a0, a1]× [b0, b1] and Y = [α0, α1]× [β0, β1]. Then (11) become:

ux1(a0, x2) = α0, ∀x2 ∈ [b0, b1], ux1(a1, x2) = α1, ∀x2 ∈ [b0, b1],

ux2(x1, b0) = β0, ∀x1 ∈ [a0, a1], ux2(x1, b1) = β1, ∀x2 ∈ [a0, a1].
(12)

Let h be the mesh size of the N × M grid, such that (x1)1 = a0, (x1)N = a1, (x2)1 = b0, and

(x2)M = b1. Then (12) are discretized as:

u3,j − u1,j

2h
= α0, ∀j ∈ [2,M − 1],

uN,j − uN−2,j

2h
= α1, ∀j ∈ [2,M − 1],

ui,3 − ui,1
2h

= β0, ∀i ∈ [2, N − 1],
ui,M − ui,M−2

2h
= β1, ∀i ∈ [2, N − 1],

and at the corners:

u3,3 − u1,1

2
√

2h
=
α0 + β0√

2
,

uN,1 − uN−2,3

2
√

2h
=
α1 − β0√

2
,

u1,M − u3,M−2

2
√

2h
=
−α0 + β1√

2
,

uN,M − uN−2,M−2

2
√

2h
=
α1 + β1√

2
.

Finally, we add the condition u11 = 0 to remove the ambiguity resulting from the fact that u(x) is

defined only up to a constant.

Remark 2.3. To be able to handle non-polygonal domains X and Y , in [2] the authors proposed to

use boundary conditions inherited from the signed distance function σ(∇u(x)):

σ(∇u(x)) = dist(∇u(x), ∂Y ) = 0, ∀x ∈ ∂X.

Unfortunately, we were not successful in implementing this type of boundary conditions and to replicate

the results of [2].

Once the previous discretization is adopted, the Monge-Ampére PDE is replaced by its difference

analog and the discretized system is solved using Newton’s method. As usual, for Newton’s method it

is important to give a good initial guess. To this end, we experimented with three different approaches.

Initial Guess for Newton.

(i) Trivial. Here we use the identity as the approximation to the optimal map, that is u(x) =
1
2‖x‖

2.
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(ii) Interpolation. We interpolate a solution obtained on a coarse grid to obtain an initial guess for

the fine grid. In other words, assuming that N and M are both even, the initial guess u0 on the

N ×M grid is the solution u∗ defined on the N
2 ×

M
2 grid, which is interpolated on the N ×M

grid (we used the MATLAB built-in function interp2 which does linear interpolation). This is

done recursively (for as long as division by 2 returns an integer answer) until maxN,M ≤ 8.

Finally, for the coarsest grid we used the identity map as an initial guess.

(iii) Homotopy. Here, let X = Y . We introduce an artificial source probability density ρ̃0(µ, x):

ρ̃0(µ, x) = (1− µ)ρ1(x) + µρ0(x)

and transport ρ̃0 to ρ1 as µ goes from zero to one. At µ = 0 we are mapping ρ1 to ρ1, which

corresponds to the identity mapping. We begin with ∆0 = 1/10 or 1/100 and update it based

on the number of Newton iterations in the previous step:

∆i = 2
4−k
3 ∆i−1, µi = µi−1 + ∆i

where k is the number of Newton iterations required to solve problem at µi−1.

The results of Table 2 compare performance of the above different options to initialize Newton’s

method, and they are typical, showing that in the end the simplest option of using the trivial initial

guess is also the most efficient. Of course, in all cases the same solution was recovered.

Identity Interpolation Homotopy

dx Newton Time Newton Time Nsteps, Newton Time

Problem 4.9

1
8 6 0.01 6 0.03 12, 50 0.05

1
16 6 0.02 10 0.05 16, 66 0.18

1
32 8 0.19 12 0.34 15, 62 1.47

1
64 9 2.78 16 5.25 15, 62 20.2

1
128 17 78.3 21 101 13 ,54 262

Problem 4.10

1
8 7 0.23 7 0.19 3, 20 0.06

1
16 6 0.50 7 0.66 5, 40 0.16

1
32 6 1.91 11 2.65 7, 60 1.60

1
64 8 9.17 15 13.8 7, 61 22.1

1
128 12 81.9 14 104 4, 32 281

Table 2. Total number of Newton’s iterations, number of homotopy steps if applicable,
and execution times, when the nonlinear Monge-Ampére discretization is solved with
different initial guesses for Newton’s method.
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2.2.2. Regularized Benamou-Brenier Discretization. Here, we need to solve problem (6) by discretizing

it on a spatial and temporal grid. Note that the dependence of the discretized constraints on m̃ and ρ

is linear when standard finite difference schemes are used for derivative approximations. This method

is well suited for rectangular domains, but not when we pose the problem on the torus (periodic

problems), because of the requirement of 0-flux on m.

Under Restriction 2.1, let the domain Ω = [a0, a1]× [b0, b1] be discretized with a uniform meshsize h

such that (x1)i = a0+h(i−1), i = 1, 2, . . . , N , (x2)j = b0+h(j−1), j = 1, 2, . . . ,M . In addition, let L be

the number of internal time values such that tl = ldt, l = 0, 1, . . . , L+1 and dt = 1
L+1 . The probability

density values ρ(tl, (x1)i, (x2)j) are defined on the grid vertices and m̃(tl, (x1)i+0.5, (x2)j+0.5) are defined

on the grid edges. Then, the discretization of (6) is:

(13)
min
U
f(U)

s. t. AU = b

where U =

(
mx1 (:)
mx2 (:)
R(:)

)
∈ R((N−1)M+N(M−1))(L+1)+LNM represent the grid analog comprising the two

components of m̃ and of ρ and we need to impose/maintain positivity of R.

So, mx1 ∈ R(N−1)×M×(L+1), mx2 ∈ RN×(M−1)×(L+1), R ∈ RN×M×L, and the objective function

f(U) is given by

(14)

f(U) = f(mx1 ,mx2 , R) =

=
L∑
l=0

N−1∑
i=1

M−2∑
j=1

2(mx1
i+0.5,j,l)

2

ρi,j,l + ρi+1,j,l
+
β2

h2
(log(ρi,j,l)− log(ρi+1,j,l))

2 ρi,j,l + ρi+1,j,l

2
+

+

L∑
l=0

N−2∑
i=1

M−1∑
j=1

2(mx2
i,j+0.5,l)

2

ρi,j,l + ρi,j+1,l
+
β2

h2
(log(ρi,j,l)− log(ρi,j+1,l))

2 ρi,j,l + ρi,j+1,l

2

and A ∈ R((L+1)NM+L)×(((N−1)M+N(M−1))(L+1)+LNM) and b ∈ R(L+1)NM+L are obtained from the

constraints:

(15)

ρi,j,l+1 − ρi,j,l
dt

+
1

h
((mx1

i+0.5,j,l −m
x1
i−0.5,j,l) + (mx2

i,j+0.5,l −m
x2
i,j−0.5,l)) = 0

i = 1, 2, . . . , N ; j = 1, 2, . . . ,M ; l = 0, 1, 2, . . . , L

N∑
i=1

M∑
j=1

ρi,j,l = 1 l = 1, 2, . . . , L

and the zero flux condition is used for ghost cells: mx1
0.5,j,l = mx1

N+0.5,j,l = 0 and mx2
i,0.5,l = mx2

i,M+0.5,l =

0. Then, we solve the discrete minimization problem (13) by moving from the current iterate in

the direction of the best quadratic approximation (a modified Newton’s method) subject to linear

constraints and positivity constraints on the components R of U (cfr. with [14]):

Uk+1 = Uk + αdk , Rk+1 > 0 ,(16)

where

dk = arg min
d
dT∇f(Uk) +

1

2
dTH(uk)d

s.t. Ad = 0 ,
(17)
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where∇f(u) andH(u) are the gradient and the Hessian of f(u), respectively. This is a classic quadratic

minimization problem for d in the kernel of A, subject to positivity constraints on the subset of the

variables associated to R. We solve this problem in three steps: (i) First we find an orthonormal basis

for the kernel of A, call W its matrix representation; then (ii) we write d = Wc for some c; (iii) finally,

we reformulate the minimization problem for c, by requiring positivity of the relevant variables. We

solve this last problem by the tried and true MATLAB function quadprog. Finally, we refer to Section

4 for the values of α in (16) that we used in practice.

2.2.3. Geodesic discretization: Multiple shooting method. The authors of [6] provided a Matlab code

on github implementing a multiple shooting approach to solve the discretized version of (7)-(8), for

both 1-d and 2-d. We have used their code in our 2-d experiments, as well as implemented our own

versions for 1-d problems.

For completeness, we next describe our discretization for ρ(t, x) and v(t, x). Let the domain X =

Y = [a0, a1] be discretized by a uniform mesh of n points with spacing dx, and let L be the number

of internal time points with spacing dt = 1
L+1 . Density values ρ(tl, xi) are defined on grid points and

v(tl, xi+0.5) are defined on the grid edges.

Then, the discretized problem (8) can be formulated as:

ρi,l+1 − ρi,l
dt

+ ρi,l
νi+0.5,l − νi−0.5,l

dx
+
vi+0.5,l + vi−0.5,l

2
·
ρi+1,l − ρi−1,l

2dx
= 0, i = 1, 2, . . . , n

vi+0.5,l+1 − vi+0.5,l

dt
+ vi+0.5,l

vi+1.5 − vi−0.5

2dx
= 0, i = 1, 2, . . . , n− 1

where l = 0, 1, . . . , L. For periodic boundary conditions, we then impose

ρ−1,l = ρn−1,l , ρn+1,l = ρ2,l , l = 0, 1, . . . , L

Instead, zero flux condition on v(x, t) and homogeneous Neumann conditions on ρ(x, t) give

v0.5,l = vn+0.5,l = 0, l = 0, 1, . . . , L

ρ2,l − ρ−1,l

2dx
=
ρn+1,l − ρn−1,l

2dx
= 0, l = 0, 1, . . . , L

Remark 2.4 (Wasserstein distance approximation). In the fluid-flow formulation, the minimum value

of (3) gives g2
W (ρ0, ρ1), the square of the Wasserstein distance between ρ0 and ρ1. To obtain this

distance when we have just the optimal map (say, by solving the Monge-Ampére PDE), one needs to

approximate the integral below

(18) g2
W =

∫
Ω
‖T (x)− x‖2ρ0(x)dx ,

and approximating this integral on the grid where we have solved for T (x) renders an approximation

scheme for g2
W . Of course, this is also a very inexpensive procedure once T (x) is known.

Remark 2.5. Ideally, the two different fluid-flow formulations that we considered, that based on (5)

and that based on (8) , should recover the same geodesic trajectory from ρ0 to ρ1. However, in general,

this is not borne out in practice, well beyond the discretization error level; e.g., see Figure 1 for a plot

of the (sup-norm of the) difference between the two trajectories obtained by the two different methods.

This discrepancy highlights the need to make sure that the assumptions underlying validity of different

formulations are satisfied.
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Figure 1. Sup-norm of the difference on the grid between ρ(t, x) obtained by the
techniques based on (6) (with β = 10−5) and (7) on Problem 4.2.

2.3. Hybrid technique: From v(0, x) to the full geodesic evolution. One more method with

which we have experimented rests on a very natural idea. Suppose we are able, for example by

exploiting separability (see Section 3 and especially Section 3.3.1), to obtain the initial velocity v(0, x)

in the fluid-flow formulation. Then, we can approximate the geodesic by solving the PDE system (7),

with no need to iterate to find the correct initial velocity. The resulting hybrid method allows to obtain

the full evolution of the density without the need to solve a nonlinear problem to get the correct initial

velocity. For example, the density evolution of Figure 5 was obtained using this hybrid technique,

with the initial velocity obtained from the approach in Section 3.3.1. In principle, for as long as the

conditions relating the optimal map T to the initial velocity v(0, x) hold, namely T (x) = x+ v(0, x),

then one may obtain the initial velocity also from the solution of the Monge-Ampére PDE, that is

from T ; the advantage of this point of view is that it applies even if the problem is not separable.

3. Separable Class of OT Problems

As it turns out, many of the problems that arise in the study of optimal transport are of a special

type, which we will call separable, in analogy to the technique of separation of variables commonly

performed for PDEs. To witness, examples of separable problems are in the works [6, 9, 14], and in

fact the common case of Gaussian distributions ρ0 and ρ1 with diagonal covariance matrices (or with

covariance matrices simultaneously diagonalizable), as well as the case of uniform distribution, are all

separable. Below, for these separable problems we will give some new theoretical results and devise

much more accurate and efficient versions of the previously examined numerical techniques, specifically

for the solution of the Monge-Ampére PDE. By contrast, in the above cited works, the separability of

the OT problems was neither recognized nor exploited.
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3.1. Separation Process. We describe the process on rectangular domains, but with minimal changes

everything carries over to Rd or Tp. Let the rectangular domains of ρ0(x) and ρ1(y) be X =

[a0, a1]× [b0, b1] and Y = [α0, α1]× [β0, β1].

Definition 3.1. We say that the pair of positive probability densities ρ0 and ρ1 is a separable pair of

densities on X, respectively Y , if

(19) ρ0(x) = R1(x1)R2(x2), x ∈ X, ρ1(y) = S1(y1)S2(y2), y ∈ Y.

Equivalently, we will just say that ρ0 and ρ1 are separable.

Lemma 3.2. Let ρ0 and ρ1 be a separable pair of densities as in Definition 3.1. Then, we can always

assume that

(20)

R1(x1) > 0,

∫ a1

a0

R1(x1)dx1 = 1, R2(x2) > 0,

∫ b1

b0

R2(x2)dx2 = 1,

S1(y1) > 0,

∫ α1

α0

S1(y1)dy1 = 1, S2(y2) > 0,

∫ β1

β0

S2(y2)dy2 = 1.

Proof. The claim follows from the fact that ρ0(x1, x2) and ρ1(y1, y2) are probability densities and

therefore:

1 =

∫ b1

b0

∫ a1

a0

ρ0(x1, x2)dx1dx2 =

∫ b1

b0

∫ a1

a0

R1(x1)R2(x2)dx1dx2 =

∫ b1

b0

∫ a1

a0

m

m
R1(x1)R2(x2)dx1dx2

1 =

∫ b1

b0

∫ a1

a0

mR1(x1)
1

m
R2(x2)dx1dx2 =

[ ∫ a1

a0

mR1(x1)dx1

][ ∫ b1

b0

1

m
R2(x2)dx2

]
1 =

∫ β1

β0

∫ α1

α0

ρ1(y1, y2)dy1dy2 =

∫ β1

β0

∫ α1

α0

S1(y1)S2(y2)dy1dy2 =

∫ β1

β0

∫ α1

α0

n

n
S1(y1)S2(y2)dy1dy2

1 =

∫ β1

β0

∫ α1

α0

1

n
S1(y1)nS2(y2)dy1dy2 =

[ ∫ α1

α0

1

n
S1(y1)dy1

][ ∫ β1

β0

nS2(y2)dy2

]
for some constants m and n. Therefore, we can always renormalize R1, R2, S1 and S2, as stated in

(20). �

Next, we look at the implication of having separable densities on the two formulation considered in

this work: the Monge Ampére PDE and the Benamou-Brenier formulation.

3.2. Separable Monge-Ampére. Recall that, on the rectangular domains X and Y , we need to

solve the following problem for positive ρ0 and ρ1:

(21)

det (D2u(x)) =
ρ0(x)

ρ1(∇u(x))

ux1(a0, x2) = α0, ∀x2 ∈ [b0, b1], ux1(a1, x2) = α1, ∀x2 ∈ [b0, b1],

ux2(x1, b0) = β0, ∀x1 ∈ [a0, a1], ux1(x1, b1) = β1, ∀x2 ∈ [a0, a1],

and that the solution u(x) is unique, up to a constant.

Theorem 3.3. Let ρ0 and ρ1 be separable densities as in Definition 3.1. Then, the 2-d Monge-Ampére

problem (21) can be reduced to the two 1-d Monge-Ampére problems (22).



Continuous optimal transport techniques 13

Proof. Since the densities are separable, we seek a solution of (21) of the form u(x) = u1(x1) +u2(x2).

If so, the BCs in (21) rewrite as

u′1(a0) = α0, u
′
1(a1) = α1, u

′
2(b0) = β0, u

′
2(b1) = β1.

The differential part of (21) rewrites as

det(D2u(x1, x2)) = ux1x1ux2x2 − u2
x1x2 =

ρ0(x1, x2)

ρ1(ux1 , ux2)
⇐⇒ u′′1(x1)u′′2(x2) =

R1(x1)R2(x2)

T1(u′1(x1))T2(u′2(x2))

which we can formally rewrite as

u′′1(x1)S1(u′1(x1))

R1(x1)
=

R2(x2)

u′′2(x2)S2(u′2(x2))
= c 6= 0

where c is some constant (this is because the left, respectively right, hand sides above is a function

only of x1, respectively of x2), and R1, R2, S1, S2, are normalized as in Lemma 3.2. By selecting the

constant c = 1, we get

u′′1(x1) =
R1(x1)

S1(u′1(x1))
, u′′2(x2) =

R2(x2)

S2(u′2(x2))
.

As a result, we obtain the two 1-d Monge-Ampere equations:

(22)
S1(u′1(x1))u′′1(x1) = R1(x1), u′1(a0) = α0, u′1(a1) = α1

S2(u′2(x2))u′′2(x2) = R2(x2), u′2(b0) = β0, u′2(b1) = β1.

In conclusion, we can take the solution u(x) of (21) given by the representation u(x) = u1(x1)+u2(x2)

with u1 and u2 satisfying (22). �

Corollary 3.4. Under the conditions of Theorem 3.3, the unique optimal map T (x) = ∇u(x) rewrites

as

(23) T (x) =

[
T1(x1)

T2(x2)

]
=

[
u1
′(x1)

u2
′(x2)

]
where u1 and u2 solve (22).

Moreover, the Wasserstein distances enjoy a separability result as well:

(24) g2
W (ρ0, ρ1) = g2

W (R1, S1) + g2
W (R2, S2) .

Proof. The rewriting (23) is immediate from Theorem 3.3. The result on the Wasserstein distance

comes from the following reasoning. We have∫
X
‖x− T (x)‖2ρ0(x)dx =

∫ a1

x1=a0

∫ b1

x2=b0

‖

[
x1 − T1(x1)

x2 − T2(x2)

]
‖2 R1(x1)R2(x2)dx2dx1

=

∫ a1

x1=a0

∫ b1

x2=b0

[
(x1 − T1(x1))2 + (x2 − T2(x2))2

]
R1(x1)R2(x2)dx1dx2

=

∫ a1

a0

∫ b1

b0

R2(x2)dx2(x1 − T1(x1))2R1(x1)dx1 +

∫ b1

b0

∫ a1

a0

R1(x1)dx1(x2 − T2(x2))2R2(x2)dx2

=

∫ a1

a0

(x1 − T1(x1))2R1(x1)dx1 +

∫ b1

b0

(x2 − T2(x2))2R2(x2)dx2

and the result follows. �
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Remark 3.5. The result on separability of the Wasserstein distance is consistent with the result

in [15], where the authors consider a restricted class of separable densities and in [15, Proposition 5]

provide separability result for the “Wasserstein Information Matrix”, and further in [15, Equation (2)]

relate the Wasserstein distance to the Wasserstein Information Matrix.

We reiterate that when the domains of ρ0 and ρ1 are rectangles, and the probability densities form

a separable pair, it is possible to simplify the task of solving the original 2-d Monge-Ampére problem

by solving two 1-d problems.

We refer to the Appendix at the end of the present paper for a result showing that (22) is well

posed in the sense of Hadamard. This will imply that it must be possible to devise robust numerical

methods for its solution, and hence for solving the Monge-Ampére equation (21) relative to separable

densities.

3.3. Separable Densities with Benamou-Brenier Formulation. Here we discuss the impact of

having a separable density pair with respect to the Benamou-Brenier formulation (3).

Definition 3.6. We say that the velocity field v(t, x) in (3) is separable if it has the form v(t, x) =[
v1(t, x1)

v2(t, x2)

]
for all (t, x1, x2). Similarly, we say that the density ρ(t, x) is separable if it can be written

as product of 1-d densities: ρ(t, x) = R1(t, x1)R2(t, x2).

Lemma 3.7. Let ρ0 and ρ1 be separable densities as in Definition 3.1. Then, the velocity field at

t = 0, v0(x) = v(0, x), is separable.

Proof. This is a consequence of the relation between the optimal map T (x1, x2) and the velocity field

v(t, x1, x2):

T (x1, x2) =

(
x1

x2

)
+ v(0, x1, x2) =

(
x1

x2

)
+

[
v1(0, x1, x2)

v2(0, x1, x2)

]
.

Therefore, as a consequence of Corollary 3.4, the initial velocity field is separable:

v(0, x1, x2) =

[
v0

1(x1)

v0
2(x2)

]
.

�

Theorem 3.8. Let ρ0 and ρ1 be separable densities as in Definition 3.1. Consider the formulation

(8) of the OT problem. Then, the velocity field is separable for all t ∈ [0, 1]: v(t, x) =

[
v1(t, x1)

v2(t, x2)

]
.

Proof. Using the Benamou-Brenier formulation (8) the velocity field can be found by solving the PDE

(25)
∂v(t, x)

∂t
+∇(

1

2
||v(t, x)||2) = 0.

Writing

v(t, x1, x2) =

(
v1(t, x1, x2)

v2(t, x1, x2)

)
,

(25) can be explicitly rewritten as(
∂v1(t,x1,x2)

∂t
∂v2(t,x1,x2)

∂t

)
+

(
∂v1(t,x1,x2)

∂x1
v1(t, x1, x2) + ∂v2(t,x1,x2)

∂x1
v2(t, x1, x2)

∂v1(t,x1,x2)
∂x2

v1(t, x1, x2) + ∂v2(t,x1,x2)
∂x2

v2(t, x1, x2)

)
= 0
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Now, from Lemma 3.7 we know that the velocity field is separable at t = 0: v(0, x1, x2) =

[
v0

1(x1)

v0
2(x2)

]
.

But then, the evolution in time of v will preserve this property. This is a consequence of the fact that

the derivative at t = 0 of v(t, x) is separable. In fact, from (25) one has that[
∂

∂t
v(t, x1, x2)

]
t=0

= −

(
∂v1(0,x1,x2)

∂x1
v1(0, x1, x2) + ∂v2(0,x1,x2)

∂x1
v2(0, x1, x2)

∂v1(0,x1,x2)
∂x2

v1(0, x1, x2) + ∂v2(0,x1,x2)
∂x2

v2(0, x1, x2)

)
that is, using Lemma 3.7: [

∂

∂t
v(t, x1, x2)

]
t=0

= −

(
(∂x1v

0
1(x1))v0

1(x1)

(∂x2v
0
2(x2))v0

2(x2)

)
and thus

(26)

(
∂
∂tv1(t, x1)
∂
∂tv2(t, x2)

)
= −

(
(∂x1v1(t, x1))v1(t, x1)

(∂x2v2(t, x2))v2(t, x2)

)
.

�

Remark 3.9. [Is ρ(t, x) separable?] Under the same conditions of Theorem 3.8, it is unclear whether

the probability density ρ(t, x1, x2) is separable for all t, even when at times t = 0 and t = 1 one has

a separable pair. That is, if ρ(0, x1, x2) = R1(x1)R2(x2) and ρ(1, x1, x2) = S1(x1)S2(x2), can we

conclude that ρ(t, x1, x2) = R1(t, x1)R2(t, x2) for all t ∈ (0, 1)? In general, this is not clear to us.

However, we point out that in order for it to be true then one would need the following to hold (using

Theorem 3.8)

∂

∂t
R1(t, x1) +

∂

∂x
(v1(t, x1)R1(t, x1)) = 0

∂

∂t
R2(t, x2) +

∂

∂x
(v2(t, x2)R2(t, x2)) = 0

(27)

along with the velocity equations from (26). Below, we give some evidence that this fact does not hold,

by comparing the solutions obtained by assuming that ρ is separable, and using (27), versus solving

the problem for ρ(t, x) without assuming separability of ρ explicitly. As it can be seen from Figure 2,

it appears that the density ρ(t, x) is not separable, in general.

3.3.1. Fluid-flow, optimal map, separability. In spite of Remark 3.9, it is still possible to take advantage

of separability when using the fluid-flow formulation. In fact, from separability of the Monge-Ampére

problem, we know that the optimal T (x) rewrites as T (x) =

[
T1(x1)

T2(x2)

]
, where T1 (respectively T2) is

the optimal map for the transport from the 1-d density R1 to S1 (respectively, R2 to S2). Then, one

approach is to use the fluid-flow formulation (in either form (5) or (8)) to perform the 1-d transfers

from R1 to S1 and from R2 to S2 to obtain the initial velocity

[
v1(0, x1)

v2(0, x2)

]
. This can then be used to

integrate directly for the density evolution, for example integrating (7), but also to approximate the

optimal map (for as long as the conditions leading to the equality below hold)

T (x) =

[
T1(x1)

T2(x2)

]
=

[
x1 + v1(0, x1)

x2 + v2(0, x2)

]
.
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Figure 2. Checking separability of ρ(t, x) on Problem 4.8. Sup-norm of the difference
on the grid, at different times, between the solutions obtained pretending that ρ is
separable, and using (27), and ρ(t, x) obtained by multiple shooting without assuming
separability of ρ; here, dx = 1

32 .

We used this approach to approximate the optimal map on all separable 2-d problems in Section 4

when using the methods (6) or (8) based on the fluid-flow formulation, that is solving 1-d problems.

Finally, motivated by the previous discussion on separability, we conclude this Section with some

results on the numerical discretization of the 1-d Monge Ampére PDE and on the impact of periodic

boundary conditions, also in this 1-d case.

3.4. Numerical Solution of 1-d Monge Ampére. As we saw before, the Monge-Ampére equation

in 1-d reduces to solving the two-point boundary value problem:

(28)
ρ1(y(x))y′(x) = ρ0(x)

y′(a) = α, y′(b) = β

where y(x) = u′(x) and ∫ b

a
ρ0(x)dx =

∫ β

α
ρ1(y)dy = 1

ρ0(x) > 0,∀x ∈ [a, b] and ρ1(y) > 0, ∀y ∈ [α, β] .

Then one approach to solve this problem is to use the analytical form of the exact solution; see [23,

Theorem 2.5], which requires computing cumulative distribution functions after performing separation

of variables. A more practical way to solve (28), and the one we adopted in this work, is to discretize by

a Runge-Kutta (RK) scheme the scalar ODE (28) with only the initial condition y′(a) = α. This way

we can recover the terminal condition y′(b) = β to any desired accuracy. In our numerical experiments

we have used the classical RK4 method to solve (28) as an initial value problem from a to b with a

fixed stepsize h = b−a
N+1 . Finally, since we are using RK4, we enforce the normalization of the values
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of ρ0(xi) in the following way:

let γ =
h

6

N∑
i=0

[ρ0(xi) + 4ρ0(xi + h/2) + ρ0(xi+1)]

then renormalize ρi0 =
1

γ
ρ0(xi) .

With the above normalization, the final value yN+1 will be accurate to β at O(h4).

3.5. Optimal map on 1-d torus. For one-dimensional MA problem on the torus, the correct for-

mulation now seeks a convex function of the form x2/2− u (see (10)), and the optimal map will be of

the form

T (x) = x− u′(x)

where u satisfies

(29) 1− u′′(x) =
ρ0(x)

ρ1(x− u′(x))
, u(0) = u(1),

for x ∈ [0, 1], mod 1.

To solve (29), we exploit the fact that the solution is unique only up to a constant and so we fix

the value u(0) = 0, and rewrite (29) as the second-order two-point boundary value problem:

(30)

 1− u′′(x) = ρ0(x)
ρ1(x−u′(x))

u(0) = 0, u(1) = 0 .

For solving (30) we used a single shooting method, by integrating the initial value problem with initial

data u(0) = 0, u′(0) = s, and seeking (via Newton’s method) the correct initial velocity u′(0) so that

at the end point we get u(1) = 0. This is a standard approach, and in our implementation we carried

out the numerical integration of the initial value problem with RK4.

Remark 3.10. A major simplification, allowing to bypass using single shooting and Newton’s method,

occurs when ρ1(y) is uniform (i.e. ρ1(y) = 1). This is because (30) rewrites as a first-order scalar

initial value problem by letting y(x) = u′(x):

(31) 1− y′(x) = ρ0(x) , y(0) =

∫ 1

0
R0(s)ds− 1

2
,

where R0(x) is the cumulative distribution function of ρ0(x):

R0(x) =

∫ x

0
ρ0(s)ds .

It is simple to justify the initial condition for y(x) in (31) as follows. Rewrite

u′′(x) = 1− ρ0(x) =⇒ u′(x) = x−
∫ x

0
ρ0(s)ds+ u′(0)

=⇒ u(x) =
1

2
x2 −

∫ x

0
R0(s)ds+ xu′(0) + u(0).

So, enforcing periodicity condition u(0) = u(1) gives u′(0) =
∫ 1

0 R(s)ds− 1
2 .
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4. Computational Examples and Numerical Results

In this section we will provide the set of problems which we have used to test accuracy and overall

performance of our implementation for the numerical methods previously presented. Whenever we

have an expression for the optimal map, we will report on the error in approximating it. Likewise,

we will report on the value we obtain for the approximation of the Wasserstein distance gW (ρ0, ρ1),

by using the three different approaches we implemented: when solving the Monge-Ampére problem,

gW is approximated by (18) as outlined in Remark 2.4, for the fluid-flow implementation of (6) it is

approximated by the square root of the value in (6), and for the approach based on the geodesic we

take the square root of the value in (9).

For all implementations requiring to solve a nonlinear system, we iterated until either the update

in norm was less than a preassigned value TOL, or we exceeded maxit iterations.

4.1. Problems and Results in 1D. Below, X = [a, b] and Y = [α, β] are the domains of the two

densities ρ0(x) and ρ1(y).

For these problems, we either have the explicit formula for the optimal map, or we can obtain it

implicitly as follows. Since ρ1(y)dy = ρ0(x)dx, then we get
∫ y
α ρ1(y)dy =

∫ x
a ρ0(x)dx or R1(y) = R0(x).

So, for any given x, we find y(x) (the optimal map) as the solution of

R1(y(x))−R0(x) = 0 .

To find the root of this equation, we used the routine fzero of Matlab.

Example 4.1. This is a problem used to compare the numerical solution of the 1-d MA with the

solution of the Benamou-Brenier formulation (6). The formulation (7) does not apply here, since the

implied BCs do not hold. The densities are linear, and the map can be found easily. We have

X = Y = [0, 1], ρ0(x) =
2x+ 1

2
, ρ1(y) =

3− 2y

2

and the optimal transport map is

T (x) =
1

2
(3−

√
9− 4x− 4x2) .

As it can be seen from Table 3, solving the system (13), and exploiting the RK integration for the

1-d Monge-Ampére solution, we recover first and the fourth orders of convergence for the respective

methods, as expected. In addition, the execution time of RK4 is very short. Multiple shooting

method outputs small error too, which is comparable with Regularized Benamou-Brenier method’s

error. However, it does not show desired order of convergence. In fairness, Example 4.1 is not one

where we expected the method based on (8) to work well, since the implied no-flux BCs do not hold.

Example 4.2. This is a map from a Gaussian to a two-bumps Gaussian. We have

X = Y = [0, 1], ρ0(x) = c1e
−5(x−0.5)2 , ρ1(y) = c2[e−50(y−0.25)2 + e−50(y−0.75)2 ],

where c1 and c2 are normalization constants.

Table 4 shows numerical results for this example. No method performs well for this problem, and

the main culprit appears to be the fact that ρ1 is near 0 at the endpoints.
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Regularized Benamou-Brenier Multiple Shooting
1-d MA: Explicit RK-4

dt = 1
21 , β = 10−5, α = 0.5, TOL = 10−8, maxit = 40 dt = 1

128 , ∆t = dt
32 , TOL = 10−12, maxit = 20

dx Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time

1
16 3.6022 ∗ 10−2 2.0241 ∗ 10−1 4.28 26 7.0847 ∗ 10−2 2.0644 ∗ 10−1 2.36 5 2.4340 ∗ 10−5 1.7951 ∗ 10−1 6.11 ∗ 10−3

1
32 2.0514 ∗ 10−2 1.9079 ∗ 10−1 19.9 26 5.7057 ∗ 10−2 1.9231 ∗ 10−1 4.21 5 2.0546 ∗ 10−6 1.7953 ∗ 10−1 1.69 ∗ 10−3

1
64 1.1055 ∗ 10−2 1.8512 ∗ 10−1 117 26 5.0202 ∗ 10−2 1.8529 ∗ 10−1 14.1 5 1.4717 ∗ 10−7 1.7953 ∗ 10−1 1.69 ∗ 10−3

1
128 5.7552 ∗ 10−3 1.8232 ∗ 10−1 760 26 4.6811 ∗ 10−2 1.8182 ∗ 10−1 248 5 9.7792 ∗ 10−9 1.7953 ∗ 10−1 9.05 ∗ 10−4

Table 3. Numerical Results for Example 4.1

Regularized Benamou-Brenier Multiple Shooting
1-d MA: Explicit RK-4

dt = 1
21 , β = 10−5, α = 0.5, TOL = 10−8, maxit = 40 dt = 1

128 , ∆t = dt
32 , TOL = 10−12, maxit = 20

dx Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time

1
16 2.4776 ∗ 10−2 6.3886 ∗ 10−2 6.61 26 3.1463 ∗ 10−2 6.6372 ∗ 10−2 2.51 5 1.7424 ∗ 102 20.261 3.40 ∗ 10−2

1
32 2.1508 ∗ 10−2 6.2688 ∗ 10−2 27.6 27 3.4132 ∗ 10−2 6.5357 ∗ 10−2 4.28 5 6.8561 ∗ 101 5.4739 2.87 ∗ 10−2

1
64 1.5208 ∗ 10−2 6.2503 ∗ 10−2 143 27 3.1703 ∗ 10−2 6.5075 ∗ 10−2 16.5 6 1.5420 ∗ 10−3 6.2603 ∗ 10−2 6.00 ∗ 10−2

1
128 1.1248 ∗ 10−2 6.2494 ∗ 10−2 939 27 3.2718 ∗ 10−2 6.5012 ∗ 10−2 308 6 9.5382 ∗ 10−4 6.2678 ∗ 10−2 1.02 ∗ 10−3

Table 4. Numerical Results for Example 4.2

Figure 3. Evolution of probability density in Example 4.2 with dx = 1
64 , solved with

the regularized Benamou-Brenier method

Example 4.3. Here we have nonuniform periodic densities

X = Y = [0, 1] mod 1, ρ0(x) = 1− 1

32
cos(2π(x+ 0.5)), ρ1(y) = 1− 1

32
cos(2πy) .
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As it can be seen from Table 5, all three methods exhibit expected order of convergence for the

map. However, the regularized Benamou-Brenier method show some instability at x = 1 for the density

evolution, see Figure 4. This is because this method assumes zero flux condition at the boundaries,

and this condition is violated for periodic problems. For the discretization of the geodesic equation,

we used the scheme in Section 2.2.3, and single shooting proved adequate on this problem.

Regularized Benamou-Brenier Multiple Shooting 1-d MA: Shooting Method with RK-4

dt = 1
21 , β = 10−5, α = 0.5, TOL = 10−8, maxit = 40 dt = 1

128 , ∆t = dt, TOL = 10−5, maxit = 10 TOL = 10−12

dx Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time

1
16 1.5127 ∗ 10−3 7.7011 ∗ 10−3 3.96 19 FAIL (Singular Jacobian) 9.7941 ∗ 10−8 7.0329 ∗ 10−3 1.0595

1
32 8.6542 ∗ 10−4 7.3647 ∗ 10−3 15.6 19 1.4069 1.3346 1.44 ∗ 10−2 9 6.0470 ∗ 10−9 7.0329 ∗ 10−3 1.4939

1
64 4.5942 ∗ 10−4 7.1982 ∗ 10−3 93.5 19 6.1075 ∗ 10−2 5.9121 ∗ 10−2 2.40 ∗ 10−2 4 3.7646 ∗ 10−10 7.0329 ∗ 10−3 1.9254

1
128 2.3887 ∗ 10−4 7.1154 ∗ 10−3 559 19 3.4884 ∗ 10−3 7.7983 ∗ 10−3 8.18 ∗ 10−2 4 2.4216 ∗ 10−11 7.0329 ∗ 10−3 1.6242

Table 5. Numerical Results for Example 4.3

(a) Regularized Benamou-Brenier Method (b) Multiple Shooting Method

Figure 4. Evolution of probability density in Example 4.3 with dx = 1
128

Example 4.4. This is Example 4.4 of [6]. We have

X = Y = [0, 2], ρ0(x) =
1

2
, ρ1(y) = ce−25(y−1)2 ,

where c is the normalization constant.

Table 6 shows numerical results for this Example 4.4. Similar to Example 4.2, the explicit RK4

method to solve the Monge-Ampére problem initially gives large error but it eventually shows a

fourth order decrease in the error as dx gets smaller. Neither of the Benamou-Brenier methods show

convergence. The most likely reasons for this fact are that ρ1 is nearly 0 near the end-points, and for

the method based on the formulation of Section 2.1.3 the truncation from the infinite domain does

not hold for a constant density.



Continuous optimal transport techniques 21

Regularized Benamou-Brenier Multiple Shooting
1-d MA: Explicit RK-4

dt = 1
21 , β = 10−5, α = 0.5, TOL = 10−8, maxit = 40 dt = 1

60 , ∆t = dt
20 , TOL = 10−12, maxit = 20

dx Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time

0.1 4.2075 ∗ 10−1 1.6099 ∗ 10−1 11.3 30 3.1705 ∗ 10−1 5.9022 ∗ 10−1 3.74 8 9.8686 ∗ 101 5.6616 ∗ 101 5.8265 ∗ 10−2

0.05 4.8934 ∗ 10−1 1.5549 ∗ 10−1 52.7 30 4.3462 ∗ 10−1 5.9402 ∗ 10−1 2.76 8 9.7865 ∗ 101 5.5880 ∗ 101 4.5646 ∗ 10−2

0.025 5.6196 ∗ 10−1 1.5288 ∗ 10−1 318 31 5.7931 ∗ 10−1 5.9005 ∗ 10−1 7.84 9 2.7722 ∗ 10−2 4.3975 ∗ 10−1 8.4420 ∗ 10−2

0.0125 6.1689 ∗ 10−1 1.5163 ∗ 10−1 2052 30 6.4925 ∗ 10−1 5.8709 ∗ 10−1 33.4 11 2.4734 ∗ 10−2 4.4027 ∗ 10−1 1.6293 ∗ 10−1

0.00625 FAIL (Out of Time) FAIL (Singular Jacobian) 1.2359 ∗ 10−3 4.4021 ∗ 10−1 3.2514 ∗ 10−1

Table 6. Numerical Results for Example 4.4

4.2. Problems and Results for Separable 2D Examples. These are all separable 2-d problems.

For all of these, we either have the exact optimal map, or can compute using the technique outlined

at the beginning of Section 4.1.

Example 4.5. This is similar to Example 4.1, and here the formulation (7) does not hold, since the

implied BCs do not hold. We have

X = Y = [0, 1]× [−1, 1], ρ0(x) =
1

12
[(2x1 + 1)(x2 + 3)], ρ1(y) =

1

12
[(3− 2y1)(3− y2)]

and the optimal transport map is

T (x1, x2) =

(
1
2(3−

√
9− 4x1 − 4x2

1)

3−
√

11− 6x2 − x2
2

)
.

Table 7 shows numerical results for this example. Since Example 4.5 can be reformulated as two 1D

problems, which are similar to Example 4.1, the Regularized Benamou-Brenier and RK4 algorithms

give first and fourth orders of convergence for the optimal map, respectively. Surprisingly, we see

decrease in error for the multiple shooting method, but not of the nominal order of 1.

Regularized Benamou-Brenier Multiple Shooting
Two 1-d MA: Explicit RK-4

dt = 1
21 , β = 10−5, α = 0.5, TOL = 10−8, maxit = 40 dt = 1

128 , ∆t = dt
32 , TOL = 10−12, maxit = 20

dx Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time

1
16 4.7129 ∗ 10−2 5.1595 ∗ 10−2 8.26 [26, 25] 7.0847 ∗ 10−2 5.3654 ∗ 10−2 6.58 [5, 5] 2.4340 ∗ 10−5 4.3364 ∗ 10−2 5.01 ∗ 10−3

1
32 2.3748 ∗ 10−2 4.7455 ∗ 10−2 34.8 [26, 25] 5.7057 ∗ 10−2 4.8140 ∗ 10−2 17.9 [5, 5] 2.0546 ∗ 10−6 4.3368 ∗ 10−2 3.81 ∗ 10−3

1
64 1.1954 ∗ 10−2 4.5355 ∗ 10−2 215 [26, 25] 5.0202 ∗ 10−2 4.5506 ∗ 10−2 273 [5, 5] 1.4717 ∗ 10−7 4.3368 ∗ 10−2 1.49 ∗ 10−2

1
128 7.3160 ∗ 10−3 4.4313 ∗ 10−2 1350 [26, 25] FAIL (Out of Memory) 9.7792 ∗ 10−9 4.3368 ∗ 10−2 5.88 ∗ 10−3

Table 7. Numerical Results for Example 4.5

Example 4.6. This is an instance of a mapping of a Gaussian to uniform distribution. This example

was also used in [14] and [6], but separability was not exploited in these works. We have

X = Y = [0, 1]2, ρ0(x) = ρ0(x) = c0e
−2[(x1−0.25)2+(x2−0.75)2] , ρ1(y1, y2) = 1,
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where c0 is the normalization constant so that
∫
X ρ0dx = 1. The optimal transport map is

T (x1, x2) =

(
c1

∫ x1
0 e−2(s−0.25)2ds

c2

∫ x2
0 e−2(s−0.75)2ds

)
, c1 =

1∫ 1
0 e
−2(s−0.25)2ds

, c2 =
1∫ 1

0 e
−2(s−0.75)2ds

.

As it can be seen from Table 8, in Example 4.6 all three numerical methods show decrease in

optimal map’s error as dx gets smaller. However, once again only Regularized Benamou-Brenier and

Runge-Kutta methods show the order. Notice that Regularized Benamou-Brenier algorithm does not

have linear decrease in the last row, which can be indicating that one needs to decrease dt and/or β

values to get better convergence.

Regularized Benamou-Brenier Multiple Shooting
Two 1-d MA: Explicit RK-4

dt = 1
21 , β = 10−5, α = 0.5, TOL = 10−8, maxit = 40 dt = 1

128 , ∆t = dt
32 , TOL = 10−12, maxit = 20

dx Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time

1
16 1.9393 ∗ 10−2 7.8880 ∗ 10−3 9.31 [25, 25] 3.7402 ∗ 10−2 8.3962 ∗ 10−3 4.68 [5, 5] 8.0319 ∗ 10−8 6.6608 ∗ 10−3 2.75 ∗ 10−2

1
32 9.5747 ∗ 10−3 7.2625 ∗ 10−3 41.1 [25, 25] 2.6983 ∗ 10−2 7.3999 ∗ 10−3 8.82 [5, 5] 5.0100 ∗ 10−9 6.6607 ∗ 10−3 2.48 ∗ 10−2

1
64 4.8743 ∗ 10−3 6.9575 ∗ 10−3 237 [25, 25] 2.2044 ∗ 10−2 6.9299 ∗ 10−3 27.3 [5, 5] 3.1351 ∗ 10−10 6.6607 ∗ 10−3 4.23 ∗ 10−2

1
128 3.1003 ∗ 10−3 6.8079 ∗ 10−3 1501 [25, 25] 1.9558 ∗ 10−2 6.7029 ∗ 10−3 517 [5, 5] 1.9593 ∗ 10−11 6.6607 ∗ 10−3 6.87 ∗ 10−2

Table 8. Numerical Results for Example 4.6

Example 4.7. We have

X = Y = T2, ρ0(x1, x2) = (1− 1

32
sin(2πx1))(1− 1

32
cos(2πx2)), ρ1(y1, y2) = 1,

where T2 = [0, 1]2 is the 2-torus. The optimal transport map is:

T (x1, x2) =

(
x1 + 1

64π cos(2πx1)

x2 − 1
64π sin(2πx2)

)
.

Table 9 shows numerical results for this example. For this periodic, and separable, problem, the

discretization of Section 2.2.3 outperformed the Regularized Benamou-Brenier method, and single

shooting to find the initial velocity was adequate. Nevertheless, the explicit RK4 method still gives

the best result among all three methods.

Regularized Benamou-Brenier Multiple Shooting
Two 1-d MA: Explicit RK-4

dt = 1
21 , β = 10−5, α = 0.5, TOL = 10−8, maxit = 40 dt = 1

128 , ∆t = dt, TOL = 10−5, maxit = 50

dx Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time

1
16 9.7683 ∗ 10−4 1.1674 ∗ 10−5 8.03 [22, 17] FAIL (Singular Jacobian) 8.2517 ∗ 10−8 1.2368 ∗ 10−5 1.89 ∗ 10−2

1
32 4.3948 ∗ 10−4 1.2001 ∗ 10−5 34.9 [24, 17] FAIL (Singular Jacobian) 5.1396 ∗ 10−9 1.2368 ∗ 10−5 3.86 ∗ 10−3

1
64 2.3508 ∗ 10−4 1.2181 ∗ 10−5 207 [26, 17] 4.5351 ∗ 10−6 1.2184 ∗ 10−5 0.13 [10, 10] 3.2095 ∗ 10−10 1.2368 ∗ 10−5 3.24 ∗ 10−3

1
128 1.2172 ∗ 10−4 1.2270 ∗ 10−5 1342 [28, 17] 1.1279 ∗ 10−6 1.2274 ∗ 10−5 0.17 [4, 4] 2.0054 ∗ 10−11 1.2368 ∗ 10−5 2.69 ∗ 10−3

1
256 FAIL (Out of Time) 7.1512 ∗ 10−7 1.2320 ∗ 10−5 0.45 [3, 3] 1.2537 ∗ 10−12 1.2368 ∗ 10−5 5.05 ∗ 10−3

Table 9. Numerical Results for Example 4.7
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Example 4.8. This is a problem used in [1] and in [23]. We have

X = Y = [0, 1]2, ρ0(x) = ce−10[(x1−0.5)2+(x2−0.5)2], ρ1(y) = ρ0(y1 + 0.5 [mod 1], y2 + 0.5 [mod 1])

where c is the normalization constant.

As Table 10 shows, only the explicit RK4 method shows convergence with desired order. Both

Benamou-Brenier algorithms converge with small error but order is not there and give different values

for the Wasserstein distance. Figure 5 shows density evolution for this example, which was constructed

through hybrid technique and matches that reported in [1].

Regularized Benamou-Brenier Multiple Shooting
Two 1-d MA: Explicit RK-4

dt = 1
21 , β = 10−5, α = 0.5, TOL = 10−8, maxit = 40 dt = 1

128 , ∆t = dt
32 , TOL = 10−12, maxit = 20

dx Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time

1
16 4.2148 ∗ 10−2 3.5447 ∗ 10−2 11.5 [28, 18] 1.0370 ∗ 10−1 3.3534 ∗ 10−2 8.12 [6, 6] 9.2316 ∗ 10−2 2.8575 ∗ 10−2 5.48 ∗ 10−2

1
32 2.9934 ∗ 10−2 3.1972 ∗ 10−2 59.1 [27, 27] 8.6082 ∗ 10−2 3.0213 ∗ 10−2 10.7 [6, 6] 1.7530 ∗ 10−2 2.9157 ∗ 10−2 5.88 ∗ 10−2

1
64 2.1585 ∗ 10−2 3.0434 ∗ 10−2 327 [28, 28] 7.7826 ∗ 10−2 2.8763 ∗ 10−2 35.8 [7, 7] 1.9884 ∗ 10−3 2.9259 ∗ 10−2 1.11 ∗ 10−1

1
128 2.1062 ∗ 10−2 2.9719 ∗ 10−2 2154 [28, 28] 7.4088 ∗ 10−2 2.8092 ∗ 10−2 607 [7, 7] 1.5436 ∗ 10−4 2.9272 ∗ 10−2 2.15 ∗ 10−1

Table 10. Numerical Results for Example 4.8

4.3. Problems and Results for Non-Separable 2D Examples. Last, we consider two non-

separable 2-d problems.

Example 4.9. We have

X = Y = [−0.5, 0.5]2, ρ1(y) = 1

and

ρ0(x) =
(
a1 + a2e

0.5x21x1 + 0.01π sin(πx1) sin(πx2)
)

(
b1 + b2e

0.5x22x2 + 0.01π sin(πx1) sin(πx2)
)
− 0.012π2 cos2(πx1) cos2(πx2)

a0 = −1; a1 = 1; a2 = −a0e
−0.125; b0 = −1; b1 = 1; b2 = −b0e−0.125.

The optimal transport map is:

T (x1, x2) =

(
a0 + a1x1 + a2e

0.5x21 − 0.01 cos(πx1) sin(πx2)

b0 + b1x2 + b2e
0.5x22 − 0.01 sin(πx1) cos(πx2)

)
Table 11 shows numerical results for Example 4.9. The Monge-Ampere discretization of Section

2.2.1 shows linear convergence to the exact map, as expected. Multiple shooting method has decrease

in error too but order is not linear. Regularized Benamou-Brenier method converges, but the error

is large and not decreasing as dx is halved. In addition, increase in computation time is significant

compared to the 1D problems. As a result, evaluations for smaller dx values did not succeed. Figure

6 illustrates density evolution for this example with dx = 1
32 , when solved with multiple shooting

method.

Example 4.10. Here we consider mapping a Gaussian to a two-bumps Gaussian. We have

X = Y = [0, 1]2, ρ0(x1, x2) = c0e
−5[(x1−0.5)2+(x2−0.5)2]
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(a) t = 0 (b) t = 0.125 (c) t = 0.25

(d) t = 0.375 (e) t = 0.5 (f) t = 0.625

(g) t = 0.75 (h) t = 0.875 (i) t = 1

Figure 5. Evolution of probability density for Example 4.8, solved with the multiple
shooting method, dx = 1

64 . Here, we first obtained the initial velocity v(0, x) solving
by multiple shooting two 1-d problems, and then integrated in time for ρ and v the
system (7) using the time integrator from [6].

Regularized Benamou-Brenier Multiple Shooting 2-d Monge-Ampere (Identity)

dt = 1
21 , β = 10−3, α = 0.3, TOL = 10−6, maxit = 40 dt = 1

21 , ∆t = dt
32 , TOL = 10−5, maxit = 20 TOL = 10−8, maxit = 20

dx Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time Newton Map Error gW (ρ0, ρ1) Time Newton

1
8 0.12680 2.4279 ∗ 10−3 268 11 5.4786 ∗ 10−2 1.5900 ∗ 10−1 1.74 4 5.1241 ∗ 10−2 1.5014 ∗ 10−1 0.01 6

1
16 0.12823 1.2956 ∗ 10−3 4526 4 3.4618 ∗ 10−2 1.3876 ∗ 10−1 18.9 4 2.3174 ∗ 10−2 1.3623 ∗ 10−1 0.02 6

1
32 FAIL (Out of Time) 2.4568 ∗ 10−2 1.2859 ∗ 10−1 631 4 1.1108 ∗ 10−2 1.3017 ∗ 10−1 0.19 8

1
64 FAIL (Out of Time) FAIL (Out of Memory) 5.4616 ∗ 10−3 1.2731 ∗ 10−1 2.78 9

1
128 FAIL (Out of Time) FAIL (Out of Memory) 2.7276 ∗ 10−3 1.2593 ∗ 10−1 78.3 17

Table 11. Numerical Results for Example 4.9

and

ρ1(y1, y2) = c1[e−20[(y1−0.25)2+(y2−0.75)2] + e−20[(y1−0.75)2+(y2−0.25)2]]
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(a) t = 0 (b) t = 0.19 (c) t = 0.43

(d) t = 0.62 (e) t = 0.81 (f) t = 1

Figure 6. Evolution of probability density in Example 4.9 with dx = 1
32 , solved with

multiple shooting method.

where c0, c1 are normalization constants. Here, we do not have an expression for the optimal map.

Table 12 gives the results for this 2D example, showing that the Regularized BB method is very

costly to say the least. Figure 7 shows density evolution for this example when solved by multiple

shooting method.

Regularized Benamou-Brenier Multiple Shooting 2-d MA (Identity)

dt = 1
21 , β = 10−3, α = 0.3, TOL = 10−6, maxit = 40 dt = 1

21 , ∆t = dt
32 , TOL = 10−5, maxit = 20 TOL = 10−8, maxit = 20

dx gW (ρ0, ρ1) Time Newton gW (ρ0, ρ1) Time Newton gW (ρ0, ρ1) Time Newton

1
8 2.4279 ∗ 10−2 420 16 1.8587 ∗ 10−1 1.96 5 8.5576 ∗ 10−2 0.23 7

1
16 3.6912 ∗ 10−2 10956 9 1.8737 ∗ 10−1 24.6 6 7.9610 ∗ 10−2 0.50 6

1
32 FAIL (Out of Time) 1.8717 ∗ 10−1 928 7 7.6449 ∗ 10−2 1.91 6

1
64 FAIL (Out of Time) FAIL (Out of Memory) 7.4841 ∗ 10−2 9.17 8

1
128 FAIL (Out of Time) FAIL (Out of Memory) 7.4034 ∗ 10−2 81.9 12

Table 12. Numerical Results for Example 4.10

5. Conclusion

In this work, we provided a numerical study of three different methods to solve the classic OT

problem with quadratic cost, posed in 1-d or 2-d, restricting to problems posed on finite rectangular

domains (intervals in 1-d) or with periodic data, hence posed on the torus. We gave implementation

details and numerical comparison of three approaches. The first rests on solving the Monge-Ampére

PDE to target the optimal map directly; for periodic problems, our approach is standard (as it was
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(a) t = 0 (b) t = 0.24 (c) t = 0.43

(d) t = 0.62 (e) t = 0.86 (f) t = 1

Figure 7. Evolution of probability density in Example 4.10 with dx = 1
32 , solved with

multiple shooting method.

used already in [16]), whereas for problems posed on a rectangular domain we imposed the so-called

transport boundary conditions and followed more closely the approach of Froese in [10]. The other

two methods are different interpretations/implementations of the fluid–dynamics (Benamou-Brenier)

formulation of the problem, and target the entire time evolution of the density, ρ(t, x), from initial to

final configurations. In one case, we considered an implementation which is well suited to deal with

finite domains, and we followed the regularized minimization approach of [14]. In the other case, we

followed the recent interpretation of [6] of the fluid-flow formulation as a pair of PDEs; these PDEs

are given on all of Rd and their use for problems given on the torus is particularly advantageous,

whereas their use for truncated domains requires no mass escape from the boundary, which places

a potentially unwanted restriction on the problems one can handle. Further, a novel theoretical

contribution of our work has been the introduction of separable structure, which is shared by many

OT problems. Exploiting this viewpoint proved very valuable in obtaining much more efficient and

accurate techniques. Finally, we proposed a hybrid technique, whereby the “exact” initial velocity

(found by either solving the Monge-Ampére PDE via the optimal map, or by exploiting separability

and using 1-d fluid-flow problems) is fed into the time stepping scheme of [6] in order to recover the

time evolution of the density.

With similar level of sophistication in implementing the various techniques, our results show that

if one is interested in the optimal map (the Monge map), then direct solution of the Monge-Ampére

equation is the most efficient way to proceed, especially when we have, and exploit, separable structure.

For those situation where the time evolution of the density is needed (as it is the case when we want

to find the geoedesic trajectory), then the two formulations of [14] and [6] offer some advantages

with respect to each other: (i) in general, the formulation of [6] is less costly than that of [14], and
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outperforms it for periodic problems, but (ii) on a truncated domain the formulation of [14] performs

better, though it remains somewhat expensive. In the end, although one can find justification for

failure of any of the techniques we considered, in our opinion this defeats the purpose of a well designed

numerical method for solving the OT problem: one should assume that it delivers the desired result

and not wander why it does not. In this light, the hybrid technique of Section 2.3 proved to be a

simple and effective way to obtain the density evolution for separable problems, without having to

solve large nonlinear systems, and we recommend adopting it whenever applicable and the density

evolution is desired.
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Appendix

Consider the two-point boundary value problem (cfr. with (22))

(32)

 ρ1(y)y′ = ρ0(x)

y(a) = α, y(b) = β

where ∫ b

a
ρ0(x)dx =

∫ β

α
ρ1(y)dy = 1

ρ0(x) > 0, ∀x ∈ [a, b], ρ1(y) > 0, ∀y ∈ [α, β].

Claim. The boundary value problem (32) is well-posed in the sense of Hadamard.

Proof. The existence and uniqueness of the solution is a consequence of results for the Monge-Ampére

equation. We observe that the solution y of (32) can be expressed implicity using the cumulative

distribution functions R0(x) =
∫ x
a ρ0(s)ds and R1(y) =

∫ y
α ρ1(z)dz, that is from the relation

R1(y) = R0(x)(33)

where R0(a) = 0, R0(b) = 1, R1(α) = 0, and R1(β) = 1.

We show the continuous dependence on the data, therefore consider four possible perturbations, in

α, in β, in ρ0, and in ρ1.

• Perturbation in α. Consider

ρ1(ỹ)ỹ′ = ρ0(x)

ỹ(a) = α+ ε, ỹ(b) = β̃
(34)

where |ε| is small, and
∫ β̃
α+ε ρ1(z)dz = 1 holds. Then, the solution of (34) satisfies:∫ ỹ

α+ε
ρ1(z)dz =

∫ x

a
ρ0(s)ds(35)
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From (33):
∫ y
α ρ1(z)dz =

∫ x
a ρ0(s)ds. As a result, it follows that:

0 =

∫ ỹ

α+ε
ρ1(z)dz −

∫ y

α
ρ1(z)dz =

∫ ỹ

α
ρ1(z)dz −

∫ α+ε

α
ρ1(z)dz −

∫ y

α
ρ1(z)dz,

0 =

∫ ỹ

y
ρ1(z)dz −

∫ α+ε

α
ρ1(z)dz =⇒

∫ ỹ

y
ρ1(z)dz =

∫ α+ε

α
ρ1(z)dz∣∣∣∣ ∫ ỹ

y
ρ1(z)dz

∣∣∣∣ ≤ ∫ max(y,ỹ)

min(y,ỹ)
ρ1(z)dz ≤ |ε|max

z
|ρ1(z)| =⇒ |y − ỹ| ≤ |ε|maxz |ρ1(z)|

minz |ρ1(z)|

• Perturbation in β. This proceeds similarly to the above. Considering

ρ1(ỹ)ỹ′ = ρ0(x)

ỹ(a) = α̃, ỹ(b) = β + ε,
(36)

where |ε| is small and
∫ β+ε
α̃ ρ1(z)dz = 1 holds, one now obtains

|y − ỹ| ≤ |ε|maxz |ρ1(z)|
minz |ρ1(z)|

.

• Perturbation of ρ0(x). Now we need to consider small zero average perturbations of ρ0. That is, we

consider

ρ1(ỹ)ỹ′ = ρ0(x) + ε(x)

ỹ(a) = α, ỹ(b) = β
(37)

where
∫ b
a ε(s)ds = 0 and |ε(x)| is small for all x. The solution of (37) satisfies:∫ ỹ

α
ρ1(z)dz =

∫ x

a
ρ0(s)ds+

∫ x

a
ε(s)ds(38)

From (33):
∫ y
α ρ1(z)dz =

∫ x
a ρ0(s)ds. As a result, it follows that∫ ỹ

α
ρ1(z)dz −

∫ y

α
ρ1(z)dz =

∫ x

a
ε(s)ds =⇒

∫ ỹ

y
ρ1(z)dz =

∫ x

a
ε(s)ds∣∣∣∣ ∫ ỹ

y
ρ1(z)dz

∣∣∣∣ = ρ1(ẑ)|y(x)− ỹ(x)| =⇒ |y(x)− ỹ(x)| ≤ |x− a|maxs |ε(s)|
ρ1(ẑ)

where min(y, ỹ) ≤ ẑ ≤ max(y, ỹ).

• Perturbation of ρ1(ỹ). This is similar to the previous case. We consider small zero average pertur-

bations of ρ1:

[ρ1(ỹ) + ε(ỹ)]ỹ′ = ρ0(x)

ỹ(a) = α, ỹ(b) = β
(39)

where
∫ β
α ε(s)ds = 0 and |ε(ỹ)| is small for all ỹ. The solution of (39) satisfies:∫ ỹ

α
ρ1(z)dz +

∫ ỹ

α
ε(z)dz =

∫ x

a
ρ0(s)ds(40)
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From (33):
∫ y
α ρ1(z)dz =

∫ x
a ρ0(s)ds. As a result, it follows that∫ y

α
ρ1(z)dz −

∫ ỹ

α
ρ1(z)dz =

∫ ỹ

α
ε(z)dz =⇒

∫ y

ỹ
ρ1(z)dz =

∫ ỹ

α
ε(z)dz∣∣∣∣ ∫ ỹ

y
ρ1(z)dz

∣∣∣∣ = ρ1(ẑ)|y(x)− ỹ(x)| =⇒ |y(x)− ỹ(x)| ≤ |β − α|maxs |ε(s)|
ρ1(ẑ)

where min(y, ỹ) ≤ ẑ ≤ max(y, ỹ). �
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