
Numerical Algorithms
https://doi.org/10.1007/s11075-024-01903-y

RESEARCH

Solving semi-discrete optimal transport problems: star
shapedeness and Newton’s method

Luca Dieci1 · Daniyar Omarov1

Received: 22 January 2024 / Accepted: 24 July 2024
© Crown 2024

Abstract
In this work, we propose a novel implementation of Newton’s method for solving
semi-discrete optimal transport (OT) problems for cost functions which are a positive
combination of p-norms, 1 < p < ∞. It is well understood that the solution of a
semi-discrete OT problem is equivalent to finding a partition of a bounded region in
Laguerre cells, and we prove that the Laguerre cells are star-shaped with respect to the
target points. By exploiting the geometry of the Laguerre cells, we obtain an efficient
and reliable implementation of Newton’s method to find the sought network structure.
We provide implementation details and extensive results in support of our technique
in 2-d problems, as well as comparison with other approaches used in the literature.

Keywords Semi-discrete optimal transport · Laguerre tessellation · star-shaped ·
Newton’s method

Mathematics Subject Classification (2010) 65D99 · 65K99 · 49M15

1 Introduction

In this work we provide an implementation of Newton’s method to solve semi-discrete
optimal transport (OT) problems, for several cost functions given by combination of
p-norms (p �= 1,∞), several source and target probabilities, and several different
domains. Our main goals are: (i) to justify and exploit the geometry of the decomposi-
tion in Laguerre cells of the underlying solution of the problem, (ii) to provide robust
algorithmic development, (iii) to give extensive numerical testing of our implementa-
tion on several examples, and (iv) to give quantitative measure of the goodness of our
results, also in comparison with existing approaches.

B Daniyar Omarov
domarov3@gatech.edu

Luca Dieci
dieci@math.gatech.edu

1 School of Mathematics, Georgia Institute of Technology, GA 30332 Atlanta, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-024-01903-y&domain=pdf

Numerical Algorithms

Optimal transport problems have been receiving considerable attention from the
analytical community for many years. The history of the field dates back 200+ years
with the work of Monge in 1781, [34], though it was only in the 1940’s with the works of
Kantorovich, [26, 27], that the very fruitful relation to optimization, duality, and linear
programming ideas made it possible to settle important theoretical questions as well
as open the door to development of numerical methods. Because of this history, it is
common to use the naming of Monge-Kantorovich (MK) problem for the classical OT
problem. Numerical techniques for approximating the solution of OT problems have
followed suite in the past 30-35 years, and new methods continue being developed and
analyzed, in no small part due to the many applications (e.g., in imaging, economics,
machine learning) where OT problems arise.

As we said, the scope of this work involves the study of numerical methods for
semi-discrete OT problems with cost functions given by a positive combination of
p−norms, c(x, y) = ∑m

l=1 αl ||x − y||pl , αl ≥ 0, pl ∈ (1,∞). This specific case of
cost function has received less attention in the literature compared to the Euclidean
and the squared Euclidean cost functions, despite its numerous important applications.
First, we can approach, from above/below, a solution for the ill-posed cases of the 1-
norm (the absolute deviation problem) and the sup-norm (the max-deviation problem);
see Example 5.3. Secondly, the case of a single p−norm corresponds to generalized
hyperbola in Minkowski geometry (e.g. see [3, 23, 25]). Finally, a very significant
application involves using a combination of p−norms to approximate an unknown cost
function from data samples. This is particularly valuable, e.g. in city delivery services,
when the cost function is unknown but it satisfies distance properties. For example,
consider a set of data samples: {yi , x j , ci j }, i = 1, 2, . . . , K1, j = 1, 2, . . . , K2, where
ci j represents the observed cost value between points yi and x j . Here, the points yi

can be regarded as distribution centers and the points x j as delivery addresses. By
using a model cost function, c(x, y) = ∑m

l=1 αl ||x − y||pl , with positive coefficients
αl ’s, we can extract an approximation to the underlying (but unknown) cost function,
e.g., in the least-squares sense. See Example 5.7.

Excellent expository books of both theory and numerics of OT problems have
recently appeared and we refer to these as general introduction to the topic; in partic-
ular, see the book of Santambrogio, [38], and also the more computationally oriented
monograph of Peyré and Cuturi, [35].

A fairly general formulation is the following. We are given two compactly supported
measures μ and ν on R

n , n > 1, absolutely continuous with respect to Lebesgue
measure, and with respective supports X and Y . Further, let c : X × Y → R

+ be a
cost function, whereby c(x, y) describes the cost of transporting one unit of mass x
to y. The original Monge problem is to find

inf
T : T�μ=ν

∫

X
c(x, T (x))dμ(x) ,

where T� is the push-forward of μ through T , that is (T�μ)(A) = μ(T −1(A)). As
stated, it is far from obvious that a map (Monge map) T can be found, and in fact the
theoretical problem stayed open until the relaxation introduced by Kantorovich in the

123

Numerical Algorithms

1940’s. After the work of Kantorovich, the MK problem was reformulated as finding
a transport plan π of probability densities while minimizing a cost functional.

That is, the MK problem consists in determining the optimal transport plan, that
is the joint pdf π ∈ M(X × Y), with marginals μ and ν, which realizes the inf of the
functional J (π) below:

inf
π

J :=
∫

X×Y
c(x, y) dπ . (1)

Under suitable assumptions on μ, ν, c, as well explained in the book of Santambrogio
[38], thanks to works by Ambrosio, Benamou, Brenier, Gangbo, McCann, Villani, and
others, (see [1, 4, 19, 42]), it was established that an optimal plan exists and can be
chosen as a measure concentrated in R

n × R
n on the graph of a map T : R

n → R
n ,

the optimal transport map. Oversimplifying the theory, a key point was to restrict to
a strictly convex cost like c(x, y) = ‖x − y‖2

2. In this case, the map is obtained as
gradient of a smooth potential φ that satisfies the Monge-Ampere partial differential
equation; numerical methods in this case have also been studied, e.g., see [5, 18] as
well as our recent comparison [13] of different methods for solving the continuous
OT problem with cost given by the 2-norm square.

However, here our own interest is when ν is discrete, that is it is supported at finitely
many distinct points yi ’s: ν(y) = νiδ(yi), i = 1, . . . , N , νi > 0 and

∑N
i=1 νi = 1.

These are called semi-discrete optimal transport problems, and one has the restriction
that the yi ’s are in X . In this case, a remarkable consequence of duality affords a major
simplification of the structure of the optimal map, under fairly general conditions on
the cost function. The dual formulation of the MK problem Eq. 1 is

sup
φ,ψ

D :=
∫

X
φ dμ +

∫

Y
ψ dν ,

s. t. φ(x)+ ψ(y) ≤ c(x, y), ∀(x, y) ∈ X × Y ,

(2)

where φ(x) and ψ(y) are absolutely integrable functions.

Lemma 1.1 (Observation 4.3.2 in [31]) Let ψc(x) = inf y∈Y [c(x, y) − ψ(y)]. If the
pair (φ,ψ) is admissible in Eq. (2), then the pair (ψc, ψ) is admissible as well.
Proof

ψc(x)+ψ(y) = inf
y′∈Y

[c(x, y′)−ψ(y′)]+ψ(y) ≤ c(x, y)−ψ(y)+ψ(y) = c(x, y).

��
Lemma 1.2 (Observation 4.3.3 in [31]) If the pair (φ,ψ) is admissible for Eq. (2),
then one obtains a better pair in terms of the value of the objective function value by
replacing φ with ψc.
Proof

{
ψc(x) = inf y∈Y [c(x, y)− ψ(y)]
φ(x) ≤ c(x, y)− ψ(y), ∀y ∈ Y

}

⇒ φ(x) ≤ ψc(x).

��

123

Numerical Algorithms

Thus, using the above two lemmas, we can rewrite the dual formulation Eq. 2 as
follows:

sup
ψ

D :=
∫

X
inf
y∈Y

[c(x, y)− ψ(y)] dμ +
∫

Y
ψ dν. (3)

Then, when ν is discrete, Y = {yi }N
i=1, and yi ∈ X , equation Eq. 3 becomes:

D =
∫

X
inf
y∈Y

[c(x, y)− ψ(y)] dμ +
∫

Y
ψ dν ,

=
∫

X
inf
yi∈Y

[c(x, yi)− ψi] dμ +
N∑

i=1

ψiνi ,

=
N∑

i=1

∫

A(yi)

[c(x, yi)− ψi] dμ +
N∑

i=1

ψiνi ,

where

A(yi) = {x ∈ X | c(x, yi)− ψi ≤ c(x, y j)− ψ j , j �= i}, i = 1, 2, . . . , N .

To be consistent with the standard semi-discrete OT problem notation, let X = 	 and
wi = ψi . Then the minimization problem for the semi-discrete OT problem has the
following form:

min
w∈RN

(w) := −
N∑

i=1

∫

A(yi)

[c(x, yi)− wi] dμ −
N∑

i=1

wiνi , (4)

where

A(yi) = {x ∈ 	 | c(x, yi)− wi ≤ c(x, y j)− w j , j �= i}, i = 1, 2, . . . , N .

In the literature, the vector w is called a shift (or weight) vector and the partition
{A(yi)}N

i=1 of the domain	 are known as Laguerre cells of	. Once an optimal vector
of weights is determined, and for as long as the cells’ boundaries have μ-measure 0,
it is a simple observation that there is an optimal map T (x) and that it is piecewise
constant, in that it maps every x ∈ A(yi) to the same yi , up to sets of μ-measure 0.

Given the relevance in applications, there are several works concerned with numer-
ical solution of semi-discrete OT problems, the chief differences between them being
the cost functions considered. By far, the most widely studied case is for the cost
function given by the 2-norm square: c(x, y) = ‖x − y‖2

2. In this case, the Laguerre
tessellation is also known as “Power Diagram”, see [2]. The beauty of this case is in
the simplicity of the cells’ structure: they are polytopes, their boundaries are given
by (hyper) planes. Unsurprisingly, very elegant and efficient tools of computational
geometry are used to compute power diagrams, with remarkable success and stunning

123

Numerical Algorithms

display of the resulting subdivision. A likely incomplete list of computational works
which tackle semi-discrete optimal transport in the case of the 2-norm squared includes
the works [2], [41], [11], [40], [35, Chapter 5], [30], [32], [37], [12], [29], [8]. Conceiv-
ably, the reason for the algorithmic successes in this case of the 2-norm squared as cost
is given by the intimate relation of power diagrams and Voronoi tessellation. In fact, a
most useful algorithmic result in this case allows to lift a power diagram to be the same
as a Voronoi tessellation in one higher space dimension, see [30], and computation
of Voronoi tessellation has reached remarkable maturity in computational geometry:
in the plane, the classical sweeping algorithm of Fortune [17] is still very popular,
though there are of course several more modern presentations, e.g. [16], and there are
also widely available codes for commonly used computational environments, like the
Matlab functions voronoi and voronoin.

The situation for other cost functions is much less developed, and it is our present
concern. To be sure, there are important theoretical results for more general costs than
the 2-norm squared, for example see [21]. However, computational techniques do not
appear to be very well developed, probably because of the lack of simple geometrical
shapes of the Laguerre cells. Notable exceptions are the work [14], that considered
general p-norm costs (p �= 1,∞), and the work [24] that considered the case of
p = 2, the standard Euclidean norm. As in [14], we will also restrict to p-norms as
costs (1 < p < ∞), but we will follow a very different algorithmic path from [14].
(Comparison with the approach of [24] is done in the main body of this paper; in
particular, see Section 3.2). The key ideas of the “boundary method” of [14] were to
track/refine only the boundary-zone of the Laguerre cells, and not their interiors, by
a grid-subdivision/refinement algorithm, and to improve upon the weights w through
an original adaptation of the auction algorithm. In the present work, our key insight
is that –although the shape of the Laguerre cells is not as simple as having boundary
given by intersection of hyper-planes– the Laguerre cells are star-shaped. This is the
most we can say for general cost functions of the type we consider. Moreover, we will
adopt a Newton’s method approach to refine the weights, and very accurate manifold
techniques to track the boundaries between cells. As a result, in the end our method
appears to be much more accurate than any other method we know of, but the price
we pay is that we need the density ρ associated to the measure μ(i.e., dμ = ρ(x)dx)
to be a sufficiently smooth density. That being the case, we develop a fully adaptive
algorithm with error control, and we show that it performs extremely well both in
terms of speed and accuracy on a variety of problems. Our main contributions are
the following: (i) new algorithms for Newton’s method, exploiting star-shapedness of
the Laguerre cells, (ii) unified treatment of the problem, (iii) comparison with other
techniques, (iv) a full set of replicable results, with accuracy assessment well beyond
the graphical display of results witnessed in the literature (how can one distinguish two
close figures with the naked eye?), and (v) a rigorous numerical analysis, including
the introduction of a proposal for a condition number of semi-discrete OT problems.

A plan of the paper is as follows. In Chapter 2, we first present results on Laguerre
cells, under generous conditions on the cost function, see Section 2.1. Then, in Section
2.2 we further restrict to cost functions that allow us to obtain smooth boundaries
between the cells. These first two set of results hold regardless of the measure μ
(and ν). Then, in Section 2.3, we finally recall results identifying the solution of the

123

Numerical Algorithms

semi-discrete problem as the minimum of a convex functional. Chapter 3 details the
algorithms we implemented in 2-d, Chapter 4 discusses Newton’s method in more
details, and Chapter 5 gives computational examples. Some theoretical results are
given in an Appendix, and pseudo-codes of all of our algorithms are given at the end
so that our results can be replicated by others.

2 Theoretical Results

In this Chapter, we give results about the geometrical and analytical (measure theoreti-
cal) properties of the partition in Laguerre cells we are after. Some of these results have
appeared before, often for more specialized cost functions than those we consider, and
appropriate references will be given.

Although Laguerre tessellations, and optimal transport maps, can be –and are–
defined in the entire ambient space R

n , in practice we will restrict to working on a
bounded set 	, that is henceforth chosen to satisfy the following characterization.

Assumption 2.1 (Bounded domain)	will always refer to a compact convex domain
of R

n, of nonzero n-dimensional Lebesgue measure, and with Ck piecewise smooth
boundary, k ≥ 1.

For completeness, recall that a Ck piecewise smooth boundary of 	 means that

∂	 =
N⋃

i=1

̄i ,

and each
i is a Ck (n − 1)-dimensional surface. Moreover, two of the
̄i ’s may
intersect each other along a Ck (n − 2)-dimensional surface, etc..

Remark 2.2 (a) The value of k in Assumption 2.1 should be at least the same value of
k as we have for the function F in Lemma 2.22.

(b) In practice, 	 is often given by a (hyper)-cube, which surely satisfies Assumption
2.1 with piecewise C∞ boundary. To witness, the standard unit square S will be
our prototypical choice in 2-d, and its boundary is clearly piecewise smooth, being
the union of four closed intervals, each intersecting two other intervals at a vertex.

Although the results of Section 2.1 hold regardless of the measuresμ and ν, we will
need to restrict to appropriate classes of cost functions. At first, we will consider cost
functions that satisfy the following assumption, which is sufficient to prove geometrical
properties of the Laguerre cells. Later, see Restriction 2.15, we will further restrict
the class of cost functions considered, in order to obtain analytical results on the cells
themselves.

123

Numerical Algorithms

Assumption 2.3 (Cost function) The cost function c : R
n × R

n → R
+ satisfies the

requirements of a distance function:

positivity:

{
c(x, y) ≥ 0, ∀x, y ∈ R

n,

c(x, y) = 0 ⇐⇒ x = y, ∀x, y ∈ R
n,

symmetry: c(x, y) = c(y, x), ∀x, y ∈ R
n,

triangular inequality: c(x, y) ≤ c(x, z)+ c(z, y), ∀x, y, z ∈ R
n,

and additionally we also assume that the cost function satisfies these two properties:

homogeneity: c(t x, t y) = |t |c(x, y), ∀t ∈ R, ∀x, y ∈ R
n,

shift invariance: c(x + z, y + z) = c(x, y), ∀x, y, z ∈ R
n .

Remark 2.4 (a) It is an interesting theoretical consequence of the last two properties
above that (e.g., see [6, p.21]) there exists a vector norm ‖ · ‖ such that c(x, 0) =
||x ||, ∀x ∈ R

n, and therefore our cost is a continuous function.
(b) Below, see Restriction 2.15, we will give very concrete examples of the cost func-

tions we consider in practice. Presently, we remark that commonly adopted choices,
like the Euclidean norm squared: c(x, y) = ‖x − y‖2

2, do not satisfy Assumption
2.3, and hence some of our results below (in particular, Lemma 2.10 and Theorem
2.12) do not apply to this case.

2.1 Star-Shapedness Results

In this Section, we define Laguerre cells and tessellation and show some important
geometrical properties of Laguerre cells, that are relevant for our later algorithmic
development to solve semi-discrete optimal transport problems. Our main result is
Theorem 2.12, that appears to be new, at least in the given generality. The results
in this section are derived irrespective of the measure theoretic setting of optimal
transport and only require that the cost function satisfy Assumption 2.3.

Definition 2.5 (Laguerre tessellation) Given a cost function c satisfying Assumption
2.3, given a set of N distinct points yi ∈ R

n, i = 1, 2, . . . , N, N ≥ 2, and given a
shift vector w ∈ R

N , the Laguerre tessellation of R
n associated to c(·, ·), to the yi ’s,

and to w, is given by the set of N regions (Laguerre cells)

L(yi) = {x ∈ R
n | c(x, yi)− wi ≤ c(x, y j)− w j , ∀ j = 1, . . . , N , j �= i}, i = 1, 2, . . . , N . (5)

The points yi , i = 1, 2, . . . , N, are called target points. See Fig. 1.
Moreover, let 	 be as in Assumption 2.1 and let yi ∈ 	o, i = 1, 2, . . . , N. Then, the
Laguerre tessellation of 	 is the set of Laguerre cells (see Fig. 1)

A(yi) = L(yi) ∩	 = {x ∈ 	 | c(x, yi)− wi ≤ c(x, y j)− w j , j �= i}, i = 1, 2, . . . , N . (6)

123

Numerical Algorithms

(A) (B)

Fig. 1 For the same target points,w, and cost: (A) Laguerre cells in R
2 and (B) Restricted to the unit square

Remark 2.6 The special case ofw = 0 gives the tessellation in terms of Voronoi cells.
This is the standard proximity problem.

Lemma 2.7 (Every x ∈ R
n is in some L(yi)) For any given x ∈ R

n, there exist an
index i such that x ∈ L(yi).

Proof This result follows from the fact that R
n = ⋃N

i=1 L(yi). ��
Definition 2.8 (Active boundary and interior) The active boundary, or simply bound-
ary, between two Laguerre cells L(yi) and L(y j), i �= j , such that L(yi)∩L(y j) �= ∅,
is indicated with Li j , and it is given by the set of all x ∈ R

n satisfying the relation

c(x, yi)− wi = c(x, y j)− w j
⇒ wi j = c(x, yi)− c(x, y j) , wi j = wi − w j ,

as well as the (N − 2) inequalities

c(x, yi)− wi ≤ c(x, yk)− wk , k �= i, j .

The boundary of a Laguerre cell L(yi), indicated with ∂L(yi), is given by

∂L(yi) =
N⋃

j=1, j �=i :
L(yi)∩L(y j) �=∅

Li j .

Accordingly, we define the interior of L(yi), and indicate it with L(yi)
o, to be the set

L(yi)
o = L(yi)\∂L(yi) .

123

Numerical Algorithms

Lemma 2.9 (Existence of boundary between cells: necessary condition) Let the cost
function c satisfy Assumption 2.3. The necessary condition for having an active bound-
ary Li j in R

n between L(yi) and L(y j) is that

|wi − w j | ≤ c(yi , y j) = c(y j , yi) .

Proof Let wi j = wi − w j . By Definition 2.8, the values x ∈ Li j must satisfy the
following relation:

c(x, yi)− wi = c(x, y j)− w j
⇒ wi j = c(x, yi)− c(x, y j).

From the triangular inequality:

c(x, yi) ≤ c(x, y j)+c(y j , yi)
⇒ wi j ≤ c(x, y j)+c(y j , yi)−c(x, y j) = c(y j , yi).

Similarly, with w j i = w j − wi = −wi j , one has

w j i = c(x, y j)− c(x, yi) ≤ c(x, yi)+ c(yi , y j)− c(x, yi) = c(yi , y j)

and since c(yi , y j) = c(y j , yi), we obtain

{
wi j ≤ c(y j , yi)

−wi j ≤ c(y j , yi)

}

⇒ |wi j | ≤ c(y j , yi)

and the result follows. ��
Lemma 2.10 (yi ∈ L(yi)) Let the cost function c satisfy Assumption 2.3. If L(yi) �= ∅,
each target point yi is contained in its own Laguerre cell L(yi).

Proof Assume yi /∈ L(yi). Then, because of Lemma 2.7, yi ∈ L(y j)\∂L(yi), for
some j �= i .

Case 1. Let L(yi)∩ L(y j) �= ∅. Then, by construction of Laguerre cells, it follows
that:

yi /∈ L(yi), yi ∈ L(y j)
⇒ c(yi , yi)− wi > c(yi , y j)− w j
⇒ −wi + w j > c(yi , y j).

It follows that −wi j > c(yi , y j). But this contradicts Lemma 2.9.
Case 2. Let L(yi) ∩ L(y j) = ∅. Then, since yi ∈ L(y j)\∂L(yi):

c(yi , y j)− w j < c(yi , yi)− wi = −wi
⇒ w j − wi > c(yi , y j).

Next, let x0 ∈ L(yi)\∂L(y j). Such point x0 exists since L(yi) �= ∅. Then:

c(x0, yi)− wi < c(x0, y j)− w j
⇒ w j − wi < c(x0, y j)− c(x0, yi).

123

Numerical Algorithms

Combining the above two equations:

{
w j − wi > c(yi , y j)

w j − wi < c(x0, y j)− c(x0, yi)

}

⇒ c(yi , y j) < c(x0, y j)− c(x0, yi).

Using the triangular inequality:

c(x0, y j) ≤ c(x0, yi)+ c(yi , y j)
⇒ c(yi , y j) < c(x0, yi)+ c(yi , y j)− c(x0, yi) = c(yi , y j),

which is the sought contradiction. ��
Lemma 2.11 Let the cost function c satisfy Assumption 2.3. If yi ∈ ∂L(yi), then L(yi)

is degenerate, i.e. L(yi)
o = ∅.

Proof W.l.o.g., we can assume that yi ∈ Li j , for some j �= i . Then, it follows that:

c(yi , yi)− wi = c(yi , y j)− w j
⇒ w j − wi = c(yi , y j).

Next, assume by contradiction that there exist some point x0 ∈ L(yi)
o. Then x0

needs to satisfy the following relation:

c(x0, yi)− wi < c(x0, y j)− w j
⇒ w j − wi < c(x0, y j)− c(x0, yi)

⇒ c(yi , y j) < c(x0, y j)− c(x0, yi).

But this contradicts the triangular inequality. ��
Theorem 2.12 (L(yi) is star shaped) Let the cost function c satisfy Assumption 2.3.
Let x ∈ L(yi) and S(t) = {

t(x − yi)+ yi , 0 ≤ t ≤ 1
}
. Then, for all t ∈ [0, 1],

S(t) ∈ L(yi).
As a consequence, each Laguerre cell L(yi) is star-shaped in R

n with respect to its
own target point yi .

Proof The case t = 0 follows from Lemma 2.10 and the case t = 1 holds since
x ∈ L(yi). Next, by contradiction, assume that there exists t0 ∈ (0, 1) such that the
point x0 = t0(x − yi)+ yi is not in L(yi). W.l.o.g., let x0 ∈ L(y j)\∂L(yi), for some
j �= i . Then, it follows that, since

x ∈ L(yi)
⇒ c(x, yi)− wi ≤ c(x, y j)− w j ,

x0 = S(t0)
⇒ c(x, yi) = c(x, x0)+ c(x0, yi),

where the second equality comes about from the following

c(x, x0)+ c(x0, yi) = c(x, yi + t0(x − yi))+ c(yi + t0(x − yi), yi) =
c((1 − t0)(x − yi), 0)+ c(t0(x − yi), 0) = (1 − t0)c(x − yi , 0)+ t0c(x − yi , 0)

= c(x − yi , 0) = c(x, yi) .

123

Numerical Algorithms

As a consequence, we get

c(x, x0)+c(x0, yi)−wi ≤c(x, y j)−w j
⇒ c(x0, yi)−wi ≤c(x, y j)−c(x, x0)−w j .

From the triangular inequality, it follows that:

c(x0, yi)− wi ≤ c(x, y j)− c(x, x0)− w j ≤ c(x, x0)+ c(x0, y j)− c(x, x0)− w j

= c(x0, y j)− w j ,
⇒ c(x0, yi)− wi ≤ c(x0, y j)− w j . (7)

In addition, since x0 ∈ L(y j)\∂L(yi), it holds that

x0 ∈ L(y j)
⇒ c(x0, y j)−w j <c(x0, yi)−wi
⇒ c(x0, yi)−wi >c(x0, y j)−w j .

But this inequality contradicts Eq. 7, and hence the entire segment S(t) ∈ L(yi).
The fact that L(yi) is star-shaped with respect to yi follows at once by the fact that
every point in L(yi) can be reached via a line segment from yi entirely contained in
L(yi). ��
Corollary 2.13 Let	 be as in Assumption 2.1, let yi ∈ 	o, i = 1, 2, . . . , N, and let the
cost function c satisfy Assumption 2.3. Then each Laguerre cell A(yi) is star-shaped
in 	 with respect to the point yi .

Proof This result follows from Theorem 2.12 and the fact that the intersection of a
convex set with a star-shaped set is a star-shaped set (e.g., see [7]). ��
Remark 2.14 For Voronoi diagrams, star-shapedness is simple to infer; e.g., see [20]
for results about even more general Voronoi diagrams. But, for Laguerre cells, we
have found much fewer conclusive results, except for the standard Euclidean distance.
Indeed, that L(yi) are star-shaped when the cost function is the 2-norm has been
observed before, for example see [9, Example 2.12], [15, p.21]. In this case of c(x, y) =
‖x−y‖2, Laguerre tessellation are often called Apollonius diagrams or also additively
weighted Voronoi diagrams, and in 2-d it has been observed many times that the
boundaries between cells are arcs of hyperbolas (e.g., see [9], [15], [24], or [39]),
although we are not aware of a similar result for cost functions being a p-norm, with
p �= 2.

2.2 Smoothness results: what cost function?

In this section we give analytical results on smoothness of the boundaries Li j . To get
these results, we further restrict the class of appropriate cost functions, as well as an
appropriate measure μ. As said in the introduction, μ will always be assumed to be
equivalent to Lebesgue measure and with bounded density ρ in 	: dμ = ρ(x)dx .
These requests on μ allow to infer, under mild conditions on the cost function c(x, y)
(namely continuity, or even lower semi-continuity), that in Eq. (1) the “inf” is realized
as a “min”, a fact noted several times (e.g., see [1, 10, 36]). However, we need that
there is a unique partition (map), and to obtain this result we need to place further

123

Numerical Algorithms

restrictions on the cost function. Indeed, a fundamental result of Cuesta-Albertos and
Tuero-Diaz [10, Corollary 4] states that there exists a unique optimal partition (map)
if the cost function c(x, y) gives μ-measure 0 to the cells boundaries. Because of this,
the key concern will be to determine that the boundaries have indeed 0-measure, in
particular under what conditions on the cost function this is possible.

Several authors have addressed the issue of selecting an appropriate cost, and pro-
posed restrictions on the cost function in order to obtain a desired end result. For
example, in [21] the authors restricted to what they called admissible costs (see below),
in [9] they restricted to so-called radial cost functions, whereas in [29] the authors
required the cost to satisfy conditions that they called (Twist)-(Reg)-(QC), and in [12]
the authors required the cost to satisfy their conditions (Diff-2) and (Cont-2); more on
all these cost functions is below. We should note that the restrictions placed on the cost
in the works [9], [29], and [12], appear to have been motivated by the cost given by
the 2-norm square, a case that violates our original Assumption 2.3 and that therefore
is not of specific interest in the present work, since we may fail to have star-shaped
Laguerre cells, a fact which plays a very important role in our algorithmic develop-
ment. A different approach was taken in [14] and in [24]. Namely, in [14] , Dieci and
Walsh considered cost given by p-norms (1 < p < ∞) and in [24] Hartmann and
Schuhmacher restricted to the 2-norm cost, ‖x − y‖2; these choices surely satisfies
Assumption 2.3 and thus lead to star-shaped Laguerre cells, although this fact was not
noticed/used in [14] or [24]. The choice we will make is just slightly more general than
the choice made in [14], though more general than that in [24]: we will henceforth
restrict to cost functions satisfying the following Restriction 2.15, which satisfy of
course our previous Assumption 2.3.

Restriction 2.15 Hereafter, the cost functions considered are given by positive, finite,
combinations of p-norms, with 1 < p <∞. That is,

c(x, y) =
m∑

l=1

αl‖x − y‖pl , where αl > 0, pl ∈ (1,∞) . (8)

The relation between our class of cost functions, and the choices made in previous
works is elaborated on in Remark 2.16 below.

Remark 2.16 The radial cost functions of [9] are functions of the form c(x, y) =
g(‖x − y‖2), where g is an increasing function, e.g., ‖x − y‖2

2; our cost functions do
not fit in this class. Conditions (Reg) of [29] can be generally satisfied by our cost
functions, in light of Lemma 2.21; however, conditions (Twist) and (QC) of [29] are
more difficult to verify, and it may possibly not hold for our cost functions. Finally, the
authors of [12] require sufficiently regular cost functions (which we can require, see
Lemma 2.21), satisfying (in their notation) conditions (Diff-2-a), (Diff-2-b), (Diff-2-c)
and (Cont-2); it is not difficult to verify that, with our cost functions, conditions (Diff-
2-b)-(Diff-2-c)-(Cont-2) can be enforced, but condition (Diff-2-a) is more problematic.
This condition asks for the existence of ε > 0 such that ‖∇x c(x, yi)−∇x c(x, y j)‖ > ε

for all x in Li j , and thus the authors of [12] ask for this condition to hold in R
n, and not

just in a bounded set 	. For completeness, in Lemma 6.2 we show that this condition

123

Numerical Algorithms

holds for us for even values of p, with c(x, y) = ‖x − y‖p, when we look at it on a
bounded convex set	, which is what we do in practice in our numerical computations.
Finally, our choice of cost function always gives an admissible cost according to the
definition of [21], as we prove below.

Definition 2.17 (Admissible cost; [21]) Let L be Lebesgue measure, let 	 be as in
Assumption 2.1, and let y1, y2 be two distinct target points in 	o. A cost function
satisfying Assumption 2.3 is called admissible if there exist valueswa ≤ wb such that:

• L(A(y1)) is continuously increasing from 0 to L() as w12 = w1 −w2 increases
from wa to wb, where A(y1) = {x ∈ 	 | c(x, y1)− w1 ≤ c(x, y2)− w2};

• likewise, L(A(y2)) is continuously decreasing from L() to 0 as w12 = w1 −w2
increases fromwa towb, where A(y2) = {x ∈ 	 | c(x, y2)−w2 ≤ c(x, y1)−w1}.

Lemma 2.18 All p-norms, 1 < p <∞, are admissible cost functions as in Definition
2.17, that is c(x, y) = ||x − y||p, for 1 < p < ∞, is an admissible cost function.
Moreover, a positive combination of admissible cost functions is an admissible cost
function, and in particular a cost function satisfying Restriction 2.15 is admissible
according to Definition 2.17.

Proof For 1 < p < ∞, it is enough to observe that when c(x, y) = ||x − y||p,
choosing wa = −c(y1, y2) = −||y1 − y2||p and wb = c(y1, y2) = ||y1 − y2||p will
work in Definition 2.17.
Next, take a cost function c(x, y) = ∑m

k=1 αkck(x, y) where αk > 0 and ck(·, ·) are

admissible cost functions. Let w(k)a and w(k)b be values satisfying the requirements
for admissibility of the ck(·, ·) functions in Definition 2.17. Then, in Definition 2.17,
we can take wa = ∑m

k=1 αkw
(k)
a and wb = ∑m

k=1 αkw
(k)
b to obtain that c(·, ·) is

admissible. ��
An interesting an useful result for our cost functions is the following.

Lemma 2.19 Let	 be as in Assumption 2.1 and let y1, y2 ∈ 	o be two distinct target
points. Let w12 = w1 − w2 satisfy |w12| ≤ c(y1, y2) (see Lemma 2.9). If c(·, ·) is an
admissible cost function as in Restriction 2.15, then A(y1) ∩ A(y2) �= ∅, where

A(y1) = {x ∈ 	 | c(x, y1)− w1 ≤ c(x, y2)− w2},
A(y2) = {x ∈ 	 | c(x, y2)− w2 ≤ c(x, y1)− w1}.

Proof By direct computation, it is straightforward to show that the point x0 = y1 +
k+1

2 (y2 − y1), k = w12
c(y1,y2)

∈ [−1, 1], is contained in the boundary set A(y1)∩ A(y2),
where

A(y1) ∩ A(y2) = {x ∈ 	 | c(x, y1)− w1 = c(x, y2)− w2}.
Hence the result follows. ��

Next, in order to obtain μ-measure 0 for the boundaries between Laguerre cells,
we will use some results of differential geometric flavor, and for these we need some
preliminary results.

123

Numerical Algorithms

Fact 2.20 Let a ∈ R. For s < 1 and r ≥ 1:

lim
a→0

ar

|a|s = 0 .

Proof This follows from the fact that a
|a|s = |a|1−ssign(a) → 0 since sign(a) is

bounded and s < 1. ��
Lemma 2.21 Consider the function f (x) = ||x ||p, 1 < p < ∞, for x in an open
subset B of R

n not containing the origin. Then, f is a Ck function in B, where

k =
{

∞ , if p even

m , if m < p ≤ m + 1, m ∈ Z
+.

Proof For all x , the function f (x) can be rewritten as:

f (x) = [|x1|p + |x2|p + · · · + |xd |p]1/p .

Then, it is enough to check smoothness of the single term |x j |p, j ∈ [1, d], since
x �= 0. Note that |x j |p = x p

j when p is an even integer, and so the result follows for p
even. Otherwise, using Fact 2.20 it is simple to show that the function |x j |p is t times
continuously differentiable where t < p ≤ t + 1. ��

Let F(x) be the function corresponding to the boundary set between two Laguerre
cells L(y1) and L(y2) in R

n :

F(x) = c(x, y1)− c(x, y2)
⇒ L(y1) ∩ L(y2) = {x ∈ R
n | F(x) = w12}. (9)

Lemma 2.22 Let c(·, ·) be an admissible cost function as in Restriction 2.15, y1, y2 ∈
R

n be two distinct target points, and w12 = w1 − w2 satisfy |w12| < c(y1, y2) (see
Lemma 2.9). Assume that w12 is a regular value for the function F(x), that is that
∇F(x0) �= 0, ∀x0 ∈ L(y1) ∩ L(y2). Then, the boundary set {x : F(x) = w12} is a
Ck submanifold of dimension (n − 1) in R

n.

Proof Lemma 2.19 gives the existence of at least one point x0 : F(x0) = w12, where
F is given in Eq. (9). By our Restriction 2.15, the function F(x) is a Ck function,
with k ≥ 1, in an open neighborhood of Li j . Since ∇F(x0) �= 0 is assumed, then the
smooth manifold theorem tells us that S = F−1(w12) ⊂ R

n is a (n − 1)-dimensional
Ck manifold embedded in R

n . ��
Remark 2.23 We notice that the request that w12 is a regular value for F is not a
severe restriction, since the Morse-Sard Theorem guarantees that almost all values
w12 are regular values for F. Furthermore, in the Appendix, we show in Claim 6.1 that
∇F(x0) �= 0, ∀x0 ∈ L(y1) ∩ L(y2), whenever the cost function is a p−norm with p
an even number. As a consequence, for cost functions given by positive combination of
p-norms with p even, there is no need to assume that ∇F(x0) �= 0, since it is always
satisfied.

123

Numerical Algorithms

Remark 2.24 In 2-d, Lemma 2.22 says that the set F−1(w12) is a smooth curve. Cfr.
with Remark 2.14 for c(x, y) = ‖x − y‖2.

Theorem 2.25 Let yi ∈ R
n, i = 1, 2, . . . , N, be a set of N distinct target points,

and c(·, ·) be an admissible cost function as in Restriction 2.15. In addition, assume
that yi /∈ ∂L(yi), i = 1, 2, . . . , N. Then, the boundary of each Laguerre cell L(yi)

consists of at most (N − 1) sections of Ck (n − 1)-dimensional manifolds of R
n.

Let 	 be as in Assumption 2.1, and let yi ∈ 	o, i = 1, 2, . . . , N, be a set of N
distinct target points, such that yi /∈ ∂A(yi), i = 1, 2, . . . , N. Then, the boundary of
each Laguerre cell A(yi) consists of sections of Ck (n − 1)-dimensional manifolds of
R

n.

Proof The first statement follows from Lemma 2.22 and the form of ∂L(yi):

∂L(yi) =
N⋃

j=1, j �=i :
L(yi)∩L(y j) �=∅

Li j .

The second statement follows from the fact that

∂A(yi) = ∂(L(yi) ∩), i = 1, 2, . . . , N ,

from Lemma 2.22, and from the assumed piecewise smoothness of ∂	. ��
Remark 2.26 In general, the union of several pieces of the same smooth (n − 1)-
dimensional manifold can be part of A(yi)∩ A(y j). See Fig. 2. It is guaranteed to be
a single smooth section when there are exactly two target points.

Lemma 2.27 Let L be Lebesgue measure. Let 	 ⊂ R
n be as in Assumption 2.1, and

let y1, y2 ∈ 	o be two distinct target points. Let c(·, ·) be a cost function satisfying
Restriction 2.15. Then, L(A(y1) ∩ A(y2)) = 0 holds, where

A(y1) = {x ∈ 	 | c(x, y1)− w1 ≤ c(x, y2)− w2},
A(y2) = {x ∈ 	 | c(x, y2)− w2 ≤ c(x, y1)− w1}.

Proof From Lemma 2.22, L(Li j) = 0, and thus the result follows. ��
Corollary 2.28 Let L be Lebesgue measure. Let	 ⊂ R

n be as in Assumption 2.1, and
let yi ∈ 	o, i = 1, 2, . . . , N, be N distinct target points. If c(·, ·) is an admissible
cost function, then L(∂A(yi)) = 0, i = 1, 2, . . . , N.

Proof This result follows from Lemma 2.27, and the facts that ∂L(yi) =
N⋃

j=1, j �=i :
L(yi)∩L(y j) �=∅

Li j ,

and that A(yi) = L(yi) ∩	. ��

123

Numerical Algorithms

Fig. 2 The boundary between A1 and A3 is made up by two disjoint pieces of the same smooth curve

Example 2.29 We show next why the 1-norm and the ∞-norm must be excluded from
consideration in our restriction on allowed costs. The reason is that they violate Lemma
2.27 and lead to lack of uniqueness, in general. This fact is actually well understood,
and already true for Voronoi diagrams, but we give the following counterexamples
because they are simple and can be worked out by hand.

• Counterexample for 1-norm. Let 	 = [0, 3]2, y1 =
(

1
2

)

, y2 =
(

2
1

)

, w1 = w2 =
0. The boundary between the two Laguerre cells with respect to the 1-norm will
satisfy the following equation:

x =
(

x1
x2

)

∈ A(y1) ∩ A(y2)
⇒ ||x − y1||1 = ||x − y2||1

⇒ |x1 − 1| + |x2 − 2| = |x1 − 2| + |x2 − 1|.

123

Numerical Algorithms

But, to illustrate, any point in the square 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1 will satisfy
the above relation: (1 − x1) + (2 − x2) = (2 − x1) + (1 − x2). As a result,
μ(A(y1) ∩ A(y2)) �= 0. See Fig. 3: any point in the shaded regions is both in
A(y1) and A(y2). In particular, we cannot satisfy μ(A(y1))+ μ(A(y2)) = 1.

• Counterexample for ∞−norm. Let 	 = [0, 3]2, y1 =
(

1
2

)

, y2 =
(

3
2

)

, w1 =
w2 = 0. The boundary between the two Laguerre cells with respect to ∞-norm
will satisfy the following equation:

x =
(

x1
x2

)

∈ A(y1) ∩ A(y2)
⇒ ||x − y1||∞ = ||x − y2||∞,
max{|x1 − 1|, |x2 − 2|} = max{|x1 − 3|, |x2 − 2|}.

Now, take a point x in the square 1 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ 1. Then:

max{(x1 − 1), (2 − x2)} = max{(3 − x1), (2 − x2)}
⇒ (2 − x2)

= max{(3 − x1), (2 − x2)}.

But, to illustrate, any point in the region x1 − x2 > 1 will satisfy this relation and
thus μ(A(y1)∩ A(y2)) �= 0. See Fig. 3: any point in the shaded regions is both in
A(y1) and A(y2). In particular, we cannot satisfy μ(A(y1))+ μ(A(y2)) = 1.

Finally, the following elementary result is useful to justify some steps of our algo-
rithm (see Section 3.1.1).

Corollary 2.30 Let	 ⊂ R
n be as in Assumption 2.1, let c satisfy Restriction 2.15, and

let yi ∈ 	o, i = 1, 2, . . . , N, be N distinct target points. Then, any open line segment
from a point on ∂A(yi) to the point yi is contained in the interior of A(yi).

Fig. 3 Counterexamples to uniqueness: w = 0

123

Numerical Algorithms

Proof This result follows from Corollary 2.13, piecewise smoothness of ∂A(yi) and
the fact that L(∂A(yi)) = 0. ��

2.3 Minimization Problem Results

The results in this section are needed to justify use of our numerical method for
finding the OT partition. With the exception of Theorem 2.32, and possibly point (2)
of Theorem 2.36, the results below are known in the literature on semi-discrete optimal
transport.

Theorem 2.31 Let 	 ⊂ R
n be as in Assumption 2.1, μ be a probability measure with

support on	, equivalent to Lebesgue measure, let yi ∈ 	o, i = 1, 2, . . . , N, be a set of
N distinct target points, and c(·, ·) be an admissible cost function as in Restriction 2.15.
Given a discrete measure ν supported at the yi ’s, that is ν(x) = νiδ(yi), i = 1, . . . , N,
νi > 0 and

∑N
i=1 νi = 1, then there exists a shift vector w (unique up to adding the

same constant to all its entries), and a partition of 	: {A(yi)}, such that the partition
is unique (up to sets of μ-measure 0), and such that μ(A(yi)) = νi is satisfied for all
i = 1, 2, . . . , N.

Proof Since our cost function is an admissible cost (Lemma 2.18), this result is in [21,
Theorem 1]. ��

A very important fact, relative to the solution w of Theorem 2.31, is the follow-
ing feasibility result, which strengthens Lemma 2.9 and also has crucial algorithmic
implications.

Theorem 2.32 (Feasibility ofw) With the notation of Theorem 2.31, the vectorw must
satisfy the following relation

|wi − w j | < c(yi , y j) , i �= j . (10)

Proof From Lemma 2.11, we have that if

w j − wi = c(yi , y j) ⇒ Lo(yi) = ∅ .

But then, Ao(yi) = ∅ and μ(A(yi)) = 0 and we cannot satisfy μ(A(yi)) = νi with
νi > 0. ��
Theorem 2.33 Let μ be a bounded probability measure on	 ⊂ R

n, with	 satisfying
Assumption 2.1, let yi ∈ 	o, i = 1, 2, . . . , N, be a set of N distinct target points,
let c(·, ·) be an admissible cost function satisfying Restriction 2.15, and let ν be a
discrete measure supported at the yi ’s, that is ν(x) = νiδ(yi), i = 1, . . . , N, νi > 0
and

∑N
i=1 νi = 1. Then, the function
(w)

(w) = −
N∑

i

∫

A(yi)

[c(x, yi)− wi]dμ−
N∑

i

wiνi , (11)

123

Numerical Algorithms

is convex, C1-smooth, and has gradient

∇
(w) = {μ(A(yi))− νi }i=1:N . (12)

Moreover, a minimizer of
 gives the optimal partition (piecewise constant map), up
to sets of μ-measure 0.

Proof With our Restriction 2.15, the result follows from from [12, Proposition 1]. (See
also [29, Theorem 1.1 and Corollary 1.2].) ��
Remark 2.34 (1) In agreement with the uniqueness statement of Theorem 2.31, it is

plainly apparent that in Theorem 2.33 neither
(w) nor ∇
(w) change if a
constant value is added to all entries of w (the same constant, of course). For our
problem, this is the only lack of uniqueness we have.

(2) It is worth emphasizing that the dependence on w in the gradient ∇
 is through
the regions A(yi), recall Eq. 6.

Theorem 2.33 is the basis of minimization approaches to find the OT partition; e.g.,
see [24] for the 2-norm cost. Our numerical method is based on seeking a root of the
gradient in Eq. (12), and we will use Newton’s method to this end. Of course, use
of Newton’s method requires the Jacobian of ∇
 (the Hessian of
), and we will
use the formulas for the Hessian given in [12], [29], [35]. Indeed, in spite of slightly
different notations, the expressions of the Hessian given in these works are actually
the same. One of the merits of our work will be to show that our implementation of
Newton’s method, whereby we exploit the geometrical features of Laguerre’s cells
and their star-shapedeness, is very efficient and –in principle– it leads to arbitrarily
accurate results, at least in R

2 and for sufficiently smooth density function ρ.

Theorem 2.35 The Hessian matrix of
(w) is given by:

∂2

∂wi∂w j
=

∫

Ai j=A(yi)∩A(y j)

−ρ(x)
||∇x c(x, yi)−∇x c(x, y j)||dσ, j �= i;i, j =1,2, . . . , N ,

∂2

∂w2
i

= −
∑

j �=i

∂2

∂wi∂w j
, i = 1, 2, . . . , N , (13)

where dσ is the (n − 1)-dimensional infinitesimal surface element.

Proof See [12, Theorem 1]. ��
Theorem 2.36 Let H be the Hessian matrix of
(w) from Theorem 2.35 associated
to a feasible w. Then, H has the following properties:

(1) H is symmetric positive semi-definite, and the vector of all ones is in the nullspace
of H;

(2) H has rank (N − 1). In particular, 0 is a simple eigenvalue.

123

Numerical Algorithms

Proof The fact that H is symmetric positive semi-definite follows immediately from
the structure of the Hessian matrix in Eq. (13) and the fact that the function
(w) is
convex. Likewise, the fact that

H

⎡

⎢
⎣

1
...

1

⎤

⎥
⎦ = 0 is a simple verification.

Next, let λ1(H) = 0 ≤ λ2(H) ≤ · · · ≤ λN (H) be the eigenvalues of H . To show
statement (2), we need to argue that λ2(H) > 0. Consider the undirected graph

whose vertices are the target points yi , and where there is an edge between vertices
yi and y j (because of our assumptions on μ) if A(yi) ∩ A(y j) �= ∅. Then, this graph
is strongly connected by construction (there is a path from any vertex to any other
vertex moving along the graph edges), since w is feasible. By construction of H , H
is a generalized Laplacian associated to this graph (see [22, Section 13.9] for the
concept of generalized Laplacian). Then, we can argue like in [22, Lemma 13.9.1]
to infer that λ1(H) is a simple eigenvalue. Indeed, take the matrix H − ηI for some
value of η so that the diagonal entries of H − ηI are non-positive and consider the
matrix −(H −ηI)which has nonnegative entries and it is irreducible, since the graph
associated to it is strongly connected (because
 was). Then, by the Perron-Frobenius
theorem, the largest eigenvalue of −(H − ηI) is simple, and it is its spectral radius
and therefore it is the positive value η, and we can take the vector of all 1’s as the
associated Perron eigenvector. Therefore, 0 is a simple eigenvalue of H and the rank
of the Hessian matrix is (N − 1). ��

3 Laguerre Cell Computation: 2D

Here we describe the numerical algorithms we implemented. Since all of the compu-
tations we will present are in R

2, we will delay discussion of appropriate techniques
in R

3 to a future work, and our algorithmic description below is done relative to 2-d
only.

The fundamental task is to compute ∇
 in Eq. (12) and then form the Hessian in
Eq. (13). In essence, this requires being able to compute the μ(A(yi))’s, the bound-
aries Ai j ’s, and the line integrals in Eq. (13). Below, we will describe fast and precise
algorithm for these tasks, and for ease of exposition, we are going to make two sim-
plifications in our presentation: (i) the cost function is a p−norm (for 1 < p < ∞),
c(x, y) = ||x − y||p, and (ii) the domain 	 is the square [a, b] × [a, b]. It is fairly
straightforward to adapt the description of our algorithms to the case of cost given by
a positive combination of p-norms, and for several choices of 	. Our computations
in Chapter 5 will exemplify these two points; see Sections 5.3 and 5.6.

First of all, we note a main advantage of our technique: it is fully parallelizable. To
witness, the computation ofμ(A(yi)) is independent of the computation ofμ(A(y j)),
∀ j �= i . Hence, we can formulate the task as follows. Let Y = yi , for some i , then:

Compute μ(A(Y)) =
∫

A(Y)
dμ,

where A(Y) = {x ∈ 	 | ||x − Y ||p − W ≤ ||x − y j ||p − w j , ∀ j : y j �= Y } .

123

Numerical Algorithms

The second feature of our algorithm is that it exploits star-shapedness result from
Section 2.1. Thus:

A(Y) = {x ∈ 	 | ||x − Y ||p − W ≤ ||x − y j ||p − w j , ∀ j j : y j �= Y } , or

A(Y) = {x = Y + z ∈ 	 | ||z||p − W ≤ ||z + Y − y j ||p − w j , ∀ j : y j �= Y } .

Since A(Y) is star shaped with respect to Y , we can parametrize in a unique way the
values on a ray from Y in terms of distance from Y along the direction determined by

an angle θ ; in other words, in the above we can write z = D(θ)

(
cos (θ)
sin (θ)

)

, and thus

write for A(Y):

A(Y) = {(θ, D(θ)), θ ∈ [0, 2π] | ||D(θ)
(

cos (θ)
sin (θ)

)

||p − W ≤ ||D(θ)
(

cos (θ)
sin (θ)

)

+Y − y j ||p − w j , ∀ j : y j �= Y } . (14)

Clearly, the boundary of the Laguerre cell, ∂A(Y), is also parametrizable in terms of
the angle θ . Namely, reserving the notation r(θ) for the points on the boundary, we
have

x ∈ ∂A(Y) ⇐⇒ x = Y + r(θ)

(
cos (θ)
sin (θ)

)

for some unique θ ∈ [0, 2π). (15)

When determining ∂A(Y), in addition to the value of r corresponding to each angle
θ , we will monitor also an index k, which indicates the neighboring cell or the portion
of the physical boundary for that value of the angle θ :

x =Y +r(θ)

(
cos (θ)
sin (θ)

)

∈ A(Y)∩A(y j)
⇒ k= j

x =Y +r(θ)

(
cos (θ)
sin (θ)

)

∈ A(Y)∩∂	
⇒ k=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1, when x is on the bottom side of 	

−2, when x is on the right side of 	

−3, when x is on the top side of 	

−4, when x is on the left side of 	.
(16)

Below, we give a high level description of the algorithms we used to compute ∂A(Y),
μ(A(Y)), and so forth, and then at the end we give a descriptions of the algorithms
we used in the form of easily replicable pseudo-codes. Although we implemented our
algorithms in Matlab, by providing these pseudo-codes in a language-independent
manner, it will be possible for others to implement the techniques in the environment
of their choosing.

123

Numerical Algorithms

Fig. 4 Smooth arcs and breakpoints

3.1 Boundary Tracing Technique

Here we describe how we find the boundary of A(Y). Our approach below is very
different from that used in [14]. Namely, in [14], for a given set of weights, the
boundary of A(Y)was found by a subdivision algorithm, whereby the boundary itself
was covered by (smaller and smaller) squares up to a desired resolution. As explained in
[14], this approach was inherently limited to a resolution of the boundary ofO(√eps)1

accuracy, but did not need to distinguish a-priori the different smooth arcs making up
the boundary, which we instead need to do, see below. At the same time, our present
technique is able to find the boundary to arbitrary accuracy (in principle).

Remark 3.1 We have to track the boundary of A(Y), by making sure we also identify
where changes can occur. In essence, the basic task is encoded in Fig. 4, where we
identify the smooth arcs and the breakpoints making up ∂A(Y).

3.1.1 Shooting Step

The goal of this step is to find a point on ∂A(Y), for a given value θ0. That is, we will
identify the value r0, and the index k in Eq. (16), such that

x = Y + r0

(
cos (θ0)

sin (θ0)

)

∈ ∂A(Y) .

1 eps is the machine-precision, which on a double precision environment is ≈ 2.2 ∗ 10−16

123

Numerical Algorithms

The idea is simple: we move along the ray in the direction of the angle θ0 until we hit
the boundary. Algorithm 1, Shooting, shows implementation details of this technique.
Algorithm 2, BisectR, finds the root of the boundary function F(r , θ0) given in Eq.
(17) below using the bisection method on an interval [ra, rb] until rb−ra

2 is sufficiently
small. It is assumed/enforced that F(ra, θ0) < 0 and F(rb, θ0) > 0. Finally, Algorithm
3, Bound, identifies the value on ∂	 intersected by the ray from Y in the direction of
the angle θ0.

Although with the shooting technique of Section 3.1.1 we can find, for any value θ ,
the value of r on ∂A(Y), and the index k, it is more efficient to use a curve continuation
technique when the index k is not changing (see Section 3.1.3 on this last issue).
Our technique is a classical predictor-corrector approach, with tangent predictor and
Newton corrector, described next.

3.1.2 Predictor-Corrector Method

Here, we exploit the fact that the value of r on the boundary of ∂A(Y) is a smooth
function of θ , and a solution of F(r(θ), θ) = 0 for the function F(r , θ) below:

F(r , θ) = ||r
(

cos (θ)
sin (θ)

)

||p − ||r
(

cos (θ)
sin (θ)

)

+ Y − y j ||p + w j − W . (17)

Therefore, a simple application of the implicit function theorem gives that

rθ = − Fθ
Fr
,

and this allows for an immediate computation of a tangent predictor, followed by a
Newton corrector.

Namely, given θ0, r(θ0), and an angular increment �, we compute r(θ + �) by
tangent predictor and Newton corrector using Fr and Fθ below:

Fr (r , θ) = 1

p
||r

(
cos (θ)

sin (θ)

)

||1−p
p

[
∂

∂r

∣
∣r cos(θ)

∣
∣p + ∂

∂r

∣
∣r sin(θ)

∣
∣p

]

−

− 1

p
||Y − y j + r

(
cos (θ)

sin (θ)

)

||1−p
p

[
∂

∂r

∣
∣Y1 − y j ,1 + r cos(θ)

∣
∣p + ∂

∂r

∣
∣Y2 − y j,2 + r sin(θ)

∣
∣p

]

,

Fθ (r , θ) = 1

p
||r

(
cos (θ)

sin (θ)

)

||1−p
p

[
∂

∂θ

∣
∣r cos(θ)

∣
∣p + ∂

∂θ

∣
∣r sin(θ)

∣
∣p

]

−

− 1

p
||Y − y j + r

(
cos (θ)

sin (θ)

)

||1−p
p

[
∂

∂θ

∣
∣Y1 − y j ,1 + r cos(θ)

∣
∣p + ∂

∂θ

∣
∣Y2 − y j,2 + r sin(θ)

∣
∣p

]

.

Algorithm 4, PredCorr, gives implementation details of the PC method. In addition
to the value of r1 = r(θ0 +�), this algorithm outputs also a new value for the angular
increment�, which reflects how close the approximation given by the tangent predictor
was to the final value r1.

123

Numerical Algorithms

Remark 3.2 We performed extensive experiments also with the trivial, the secant, and
the parabolic predictor. But, in our experiments, the tangent predictor outperformed
these alternatives, not only in accuracy, but also in overall computational time.

Through use of the techniques of Sections 3.1.1 and 3.1.2, we compute smooth arcs
of ∂A(Y). To guarantee that these are indeed smooth arcs, we need to locate points
where there is a change.

3.1.3 Breakpoint Location

During the curve continuation process, we always monitor the index k in Eq. (16).
When this index changes in the interval [θ0, θ0 +�], this means there is a breakpoint,
i.e. there is a value θ ∈ [θ0, θ0+�] such that boundary is changing from one branch to
another. There are three things that can happen: (i) the boundary changes from being
portion of a curve to a portion of another curve (i.e., the neighboring cell is changing
from A(y j) to another cell A(yi)); (ii) the boundary is changing from being a portion
of the curve between two/more cells to being a portion of the boundary of 	, or vice
versa; and (iii) the boundary changes from one smooth branch of ∂	 to another branch
of ∂	 (presently, this means that two sides of ∂	 are meeting at a corner). The goal
is to identify the breakpoint in these three cases.

In the first situation, we use bisection method on the interval [θ0, θ0 + �] (see
Algorithm 5, BisectTheta). In the second situation, we use a standard root finding
technique. In fact, since we can express r in terms of θ , we used the MATLAB function
fzero to find the root, in the interval [θ0, θ0 +�], of the function F(r(θ), θ) in Eq.
(17); see Algorithm 6, CurveBound. Finally, for the last situation, when the breakpoint
is at the intersection of two branches of ∂	, using the relation between indices it is
easy to identify exactly the intersection point of the two branches (in our case, the
corner of the square). See Algorithm 7, BoundBound.

3.2 2-d Integral Computation

The other main task is to compute the integral, μ(A(Y)). This step is common to
all method that want to minimize the functional
(w) in Eq. 11 (see also Eq. (12)),
whether or not by using Newton’s method. The approach taken in [29] and [12], where
Newton’s method is used for c(x, y) = ‖x − y‖2

2, is not detailed in their works, but
it is most likely based on triangulation of the cell A(Y) in order to take advantage of
the polygonal shape of the latter. In [24], instead, where a quasi-Newton approach is
used for c(x, y) = ‖x − y‖2, the authors adopt a quadrature based on subdivision of
the given domain (the square) in a uniform way and approximate all integrals on
this uniform grid. No adaptivity, error estimation, nor error control, is given in [24].
In our algorithm, instead, we will exploit the parametrization in θ expressed in Eq.
(14), in particular, points inside A(Y) along a ray from Y are parametrized by the
distance from Y and the angular direction θ of the ray. The main advantages of our
method are that it will provide error estimates, work in a fully adaptive fashion, and
be much more efficient and accurate than competing techniques. The main drawback
is the need to have a sufficiently smooth density ρ, C4 to be precise, since we use a

123

Numerical Algorithms

Fig. 5 Integration between breakpoints

composite Simpson’s rule. Conceivably, there may be situation when this is a stringent
requirement and alternatives will need to be adopted, either by using a quadrature rule
requiring less smoothness2, or by accepting answers which are accurate to just a few
digits.

Consider a smooth arc of the boundary ∂A(Y), comprised between two breakpoints,
say at the angles α and β, and let r(θ) be the smooth function expressing the boundary
curve. Then, we have that the integral giving μ(A(Y)) restricted to the values of x
falling in the sector determined by (α, r(α)) and (β, r(β)), and center Y , is given by
(see Fig. 5)

∫ β

α

∫ r(θ)

0
dμ =

∫ β

α

∫ r(θ)

0
ρ(x)dx =

∫ β

α

∫ r(θ)

0
ρ(D, θ)Dd Ddθ .

As a consequence, for μ(A(Y)), we have

μ(A(Y)) =
∫

A(Y)
dμ =

∫

A(Y)
ρ(x)dx =

Nl∑

l=1

∫ θl,1

θl,0

∫ r(θ)

0
ρ(D, θ)Dd Ddθ

=
Nl∑

l=1

∫ θl,1

θl,0

F(θ)dθ , with F(θ) =
∫ r(θ)

0
ρ(D, θ)Dd D,

(18)

2 We also implemented a version of composite trapezoidal rule, but for smooth ρ it was much less efficient
than Simpson’s.

123

Numerical Algorithms

where Nl is the number of breakpoints and θl,0 and θl,1 are the angular values cor-
responding to consecutive (in θ) breakpoints. As a result, the integration is always
performed along smooth sections of the boundary ∂A(Y) and it involves 1-d integrals
(in nested fashion). Because of this fact, to evaluate each integral we implemented an
“adaptive composite Simpson’s rule ” with error control, see Algorithm 8, AdaptSimp-
son, and Algorithm 9, CompSimpson. Recall that, on an interval θ ∈ [α, β], where
r(θ) is smooth, the basic composite Simpson’s rule with n subdivisions reads

∫ β

α

F(θ)dθ = h

3

[

F(t0)+ 4
n/2∑

i=1

F(t2i−1)+ 2
n/2−1∑

i=1

F(t2i)+ F(tn)

]

+ E(F) ,

where h = β−α
n and ti = α + ih. When n = 2k for some k ∈ N, the error term E(F)

has the form:

E(F) = − h4

180
(β − α)F (4)(ξ) ,

justifying why we are requiring ρ to be C4. In the nested form of Eq. (18), the function
F(θ) is of course approximated by adaptive composite Simpson’s rule as well.

Remark 3.3 Adaptivity with error control turned out to be essential in order to resolve
a lot of problems, since the boundary of the Laguerre cells often have large, localized,
curvature values, and local refinement turned out to be appropriate. Of course, the
caveat to use an accurate integral approximation, as we did, is that we are asking that
the density ρ is C4. See Example 5.2-(D) for a case where it is needed to smooth out
a given non-smooth density.

4 Implementation of Newton’s Method and Conditioning of the OT
problem

In the context of semi-discrete optimal transport problem, both [12] and [29] give
implementation and testing of Newton’s method when the cost function is the 2-norm
square; of course, in this case the effort to compute Laguerre cells is greatly simplified
since they happen to be polygons. We are not aware of any effort for the cost functions
we considered in this work, in particular for cost given by a p-norm, 1 < p < ∞.
Indeed, even in the important case of the 2-norm, Hartmann and Schumacher in [24]
used a quasi-Newton minimization technique (LBFGMS) and, referring to the expres-
sion of the Hessian in Eq. (13), they remarked “It remains to be seen, however, if
the advantage from using the Hessian rather than performing a quasi Newton method
outweighs the considerably higher computational cost due to computing the above
integrals numerically ... ”. The main computational goal of ours in this work is to
show that Newton’s method can be implemented very efficiently, and we will see in
Section 5 that is quite a bit more effective than quasi-Newton approaches. In fact,
computation of the Hessian itself using Eq. 13 turns out to be inexpensive (often
much less expensive than computing the gradient), ultimately because it requires 1-d
integrals to be approximated, rather than 2-d integrals; this is particularly apparent

123

Numerical Algorithms

in the increase in cost when approximating the Hessian by divided differences rather
than by using the analytic expression Eq. 13, though of course the divided difference
approximations lead to just as accurate end results. To witness, see Table 1 below,
which refers to Examples (E1)-(E4) of Section 5; in Table 1, “Forward Difference”
refers to the approximate Hessian whose columns are obtained as standard differ-
ence quotient: ∇
(w+ei h)−∇
(w)

h , h = √
eps. “Centered Difference” refers to the

approximate Hessian where each column is obtained as centered difference quotient:
∇
(w+ei h)−∇
(w−ei h)

2h , h = (eps)1/3. When using these divided difference approxi-
mation, we explicitly enforce symmetry and the row-sum condition in Eq. (13).

As usual, an implementation of Newton’s method requires three main ingredients:
forming the Hessian, solving for the updates and iterate, and of course providing a
good initial guess. We look at these issues next.

4.1 Hessian Computation

To compute the Hessian, we exploit the parametrization in terms of the angular variable
θ . Namely, looking at the expression of ∂2

∂wi ∂w j
in Eq. (13), we note that x is restricted

to the boundary Ai j between A(yi) and A(y j), and thus can be given as

x(r(θ), θ) = yi + r(θ)

(
cos (θ)
sin (θ)

)

for an appropriate range of θ -values, and where r(θ) refers to the associated part of
the boundary curve, that is the distance from yi along the boundary curve. Thus, the
term ∂2

∂wi ∂w j
can be rewritten as an arc-length integral:

∂2

∂wi ∂w j
=

∑

smooth arcs

∫ θ1

θ0

−ρ(r(θ), θ)
||∇x c(x(r(θ), θ), yi)− ∇x c(x(r(θ), θ), y j)||

√

r2(θ)+ (r ′(θ)2)dθ

j �= i; i, j = 1, 2, . . . , N ,

(19)

where [θ0, θ1] is an interval corresponding to a smooth portion of the boundary
A(yi)∩ A(y j) and the summation is done along all smooth arcs making up Ai j (recall

Table 1 Iterations refer to Newton’s steps, Difference is the ∞-norm of the difference between analytic
and divided differences Hessians

Analytic Eq. 13 Forward Difference Centered Difference
Example Iterations Time Iterations Time Difference Iterations Time Difference

(E1) 2 6.2872 2 9.5086 2.5724 ∗ 10−9 2 13.268 1.1513 ∗ 10−10

(E2) 6 38.559 6 66.805 5.3836 ∗ 10−8 6 96.908 2.5479 ∗ 10−8

(E3) 2 8.8570 2 17.115 2.6139 ∗ 10−8 2 26.294 2.4851 ∗ 10−10

(E4) 3 23.908 3 61.79 1.2420 ∗ 10−7 3 109.24 1.4503 ∗ 10−7

123

Numerical Algorithms

Fig. 2 and Fig. 4). Note that, just like in Section 3.1.2, r ′(θ) can be obtained using
the Implicit Function theorem on the boundary equation F(r(θ), θ) = 0, where F is
given in Eq. (17), that is: rθ = − Fθ

Fr
. The 1-d integrals in Eq. (19) are again computed

by the composite adaptive Simpson’s rule.
Of course, due to the symmetric structure of the Hessian matrix, and the special

form of its diagonal (see Eq. (13)), only the strictly upper-triangular part of H needs
to computed. Finally, the Hessian will generally be a very sparse matrix (which is
especially relevant for large number of target points), since if A(yi)∩ A(y j) = ∅, then
∂2

∂wi ∂w j
= 0.

4.2 Taking a Newton step: solving a systemwith H

Assume we have a (guess) w0, satisfying the feasibility condition Eq. 2.32 and also
such that its component add up to 0.

Now, a typical Newton step would read

Given w0, form H(w0) solve for s H(w0)s = −∇
(w0), update w1 = w0 + s .

However, there are at least two obvious issues that prevent implementing this step as
naively as above.

For one thing, H(w0) is singular, see Theorem 2.36. As said before, this is a
reflection of the fact that every feasible vector w can be shifted by a multiple of e
without changing the associated Laguerre cells A(yi)’s. Singularity of the Hessian
has of course been recognized by those working with Newton’s method, though dealt
with in different ways; for example, in [29] the authors use the pseudo-inverse of H ,
and in [38] an approach is adopted by holding at 0 one component ofw and eliminating
the row and column of that index from H . However, we favor an approach that exploits

that H has a 1-dimensional nullspace spanned by the vector e =
[

1

.

.

.
1

]

∈ R
N . So, we

select w0 so that its components add up to 0, and we will keep this property during
Newton iteration.

To achieve the above, our approach is to seek the update s ∈ R
N by “solving”

H(w0)s = ∇
(w0) restricting the solution for s in the (orthogonal) complement to
e. In formulas, we form once and for all the orthogonal matrix U below (which is
independent of w)

U = [
q Q

]
with q = 1√

N
e, Q = {IN − uuT }{2,3,...,N } ∈ R

N×N−1,

and where u = 1
√√

N − 1
(

1√
N

e − e1) ∈ R
N .

(20)

123

Numerical Algorithms

Then, letting H0 := H(w0), and b0 = −∇
(w0), we rewrite the problem as

H0s = b0 → (U T H0U)(U T s) = U T b0 →
[

0 0
0 QT H0 Q

]

U T s =
[

qT b
QT b

]

,

since U T H(w0) =
[

0

.

.

.
0

]

and H0 = (H0)T . Therefore, we must have qT b = 0 and

thus

[
0 0
0 QT H0 Q

] [
qT s
QT s

]

=
[

0
−QT ∇
(w0)

]

from which multiplying both sides by the invertible matrix

[
1 0
0 (QT H0 Q)−1

]

, we

obtain

[
qT

Q

]

s =
[

0
−[QT H0 Q]−1 QT ∇
(w0)

]

and eventually our update s is given

by

s = −(H0)I∇
(w0), where (H0)I = Q[QT H0 Q]−1 QT . (21)

Since qT s = 0, then eT s = 0, and so the components of w1 = w0 + s indeed will
add up to 0.

4.2.1 Conditioning of semi-discrete OT problems

The second concern is that the updated shift values needs to be feasible, in other words,
see Theorem 2.32, they must satisfy the condition

min
i, j

c(yi , y j)− |w1
i − w1

j | > 0 , ∀i, j = [1, N], i �= j . (22)

If this is satisfied, then the step is accepted, otherwise we reduce by a factor of 1/2
the update s until the criterion Eq. 22 is satisfied (similar to damped Newton method,
see below)

s ← s/2 , w1 ← w0 + s .

Lemma 4.1 With feasible w0, the above updating strategy will eventually lead to a
feasible w1.

Proof We rewrite the feasibility requirement in matrix form as the component-
wise inequality |Aw| < b, where the matrix A ∈ R

N (N−1)/2×N and the vector

123

Numerical Algorithms

b ∈ R
N (N−1)/2 are given by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 0 0 · · · 0
1 0 −1 0 · · · 0
1 0 0 −1 · · · 0
...
...

...
...

...
...

1 0 0 0 · · · −1
0 1 −1 0 · · · 0
0 1 0 −1 · · · 0
...
...

...
...

...
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c(y1, y2)

c(y1, y3)

c(y1, y4)
...

c(y1, yN)

c(y2, y3)

c(y2, y4)
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

According to the strategy above, consider w1 = w0 + 1
2k s, where s = −H(w0)I∇

(w0), and recall that w0 is feasible (hence, it satisfies Eq. 22). We claim that w1

is guaranteed to be feasible for k = max {0, �max (log2 |As| − log2 |ε|)�}, where
ε = b − |Aw0|. In fact:

|A(w0 + 1

2k
s)| = |Aw0 + 1

2k
As| ≤ |Aw0| + 1

2k
|As| = b − ε + 1

2k
|As| and so

1

2k
|As| − ε < 0 ⇐⇒ |As| < 2kε ⇐⇒ log2 |As| < k + log2 ε ⇐⇒ k > max (log2 |As| − log2 |ε|)

as claimed. ��
Remark 4.2 Of course, it is possible that w0, albeit feasible, is far from the solution
of the nonlinear system; in this case, it is possible that the neighborhood of feasibility
of w0 is small and that to obtain w1 by the above updating strategy will lead to very
tiny steps, and ultimately numerical failure. If this is the case, there are effectively two
possibilities: (i) we should give an improved initial guess w0, or (ii) the problem is
inherently ill-conditioned, in that the neighborhood of feasibility of the exact solution
w is just too small, and in finite precision one cannot obtain arbitrary accuracy. Below,
we elaborate on both of these aspects.

Motivated by 22 and Remark 4.2, we introduce the feasibility coefficient relative to
a given feasible w. Namely, we let it be the quantity:

κ(w) = min
i, j

[

1 − |wi j |
c(yi , y j)

]

, (23)

and of course κ(w) has to be positive. In our computations, we always monitor this
quantityκ(w) (during and at the end of the Newton iterations), and we have consistently
observed that smaller values of κ(w) correspond to more difficult problems; e.g., see
Example 5.4. We also note that κ(w) is a scaling-invariant quantity (i.e., it is not
changed by uniformly dilating or restricting the domain 	, since w rescales in the
same way as the cost), and it only depends on the problem itself, that is the location
of the target points, the cost function, and the value of w, which ties together the
continuous and discrete probability densities. Thus, our proposal is:

Regard 1/κ as condition number of semi-discrete optimal transport problems.

123

Numerical Algorithms

4.3 Getting an initial guess

We have implemented and experimented with several different strategies to obtain a
good and feasible initial guesses for solving ∇
(w) = 0.

(i) Trivial initial guess. This is the simplest strategy, we take w0 = 0 as an initial
guess. This corresponds to a classical Voronoi diagram (proximity problem),
and we call Vi the resulting value of μ(A(yi)) obtained when using w = 0. In
spite of its simplicity, this approach often worked remarkably well, especially in
conjunction with damped Newton’s method (see below).

(ii) Grid Based. This technique is based on the work [32], and it is quite similar to the
well known Lloyd algorithm. First, consider a grid of meshsize h = (b − a)/Nh

to discretize 	, so that there are N 2
h = (b−a)2

h2 squares on the grid. Compute

the coordinates of the N 2
h centers of these squares. For given shift values w,

approximate μ(A(yi)) as

μ(A(yi)) ≈
Mi∑

l=1

ρ(xl)h
2 ,

where xl , l = 1, 2, . . . ,Mi , are the square centers which are contained in the
Laguerre cell A(yi). Then, using this approximation we can adjust the values
μ(A(yi)) to satisfyμ(A(yi)) = νi up to some tolerance by changing shift values.
For example, if the approximated μ(A(yi)) value is greater (smaller) than the
required νi value, then we force a decrease (increase) in the value ofμ(A(yi)) by
increasing (decreasing)wk , ∀k �= i ; we do this by the same increment for all k �=
i . Note that the adjustment ofμ(A(yi)) is done one index at a time. In practice, we
choose the tolerance to be the area of a square, |μ(A(yi))−νi | < h2, and an initial
increment to be

√
h. Depending on the problem, the desired tolerance might not

be reachable for allμ(A(yi)) values. Then, one can either increase the maximum
number of allowed iterations, or decrease the mesh size h. See Algorithm 11,
GridInitialGuess, and Algorithm 12, GridMeasure, for implementation details.
The next two approaches are classical homotopy techniques, which we imple-
mented as commonly done when solving nonlinear systems (e.g., see [28]).

(iii) Trivial Homotopy. We want to solve g1(w(α)) = 0, where the components of g1
are given by

(g1(w))i = μ(A(yi))− [(1 − α)μ(Vi)+ ανi], i = 1, . . . , N , 0 ≤ α ≤ 1 .

At α = 0, w = 0 is a solution, which corresponds to the Voronoi diagram {Vi }
(see (i)), and at α = 1 we obtain the problem we are trying to solve. We observe
that the problem can be viewed, for each α, as finding w such that

μ(A(yi)) = ν̂i ≡ ανi + (1 − α)μ(Vi), i = 1, . . . , N ,

that is we have a semi-discrete problem where the target density is given by∑
i δ(yi)ν̂i , which –by virtue of Theorem 2.31– is solvable giving a solution

123

Numerical Algorithms

Table 2 Different strategies to give an initial guess for Newton’s method

Grid Based h = 0.05 Trivial Homotopy Non-Singular Homotopy
Example Iterations Time Nsteps, Iterations Time Nsteps, Iterations Time

(E1) 2 7.6242 6, 16 50.767 7, 22 66.755

(E2) 7 40.951 7, 24 126.39 8, 31 148.63

(E3) 2 9.0191 5, 11 44.867 6, 18 68.335

(E4) 3 22.317 6, 19 154.22 7, 25 186.74

w(α) (unique up to adding a constant to all entries)3. We use Newton’s method
to solve fromα = 0 to 1 choosing the steps adaptively beginning with�0 = 1/10
(or 1/100) and updating it based on the number of Newton iterations k required
for convergence at the previous step:

�i = 2
4−k

3 �i−1, αi = αi−1 +�i .

We note that the Hessian resulting from using Newton’s method is always the
one in Eq. (13), hence it is always singular along the homotopy path, with null
vector given by e.

(iv) Non-Singular Homotopy. Here, we solve g2(w(α)) = 0, where the components
of g2 are

(g2(w(α)))i = (1 − α)w + α(μ(A(yi))− νi), i = 1, . . . , N , 0 ≤ α ≤ 1 .

At α = 0, we have the solutionw = 0, and for α > 0, we can look at the problem
as finding w such that

∑
wi = 0 and

μ(A(yi)) = ν̂i ≡ νi − 1 − α

α
wi , i = 1, . . . , N , 0 < α ≤ 1 ;

however, although
∑

i ν̂i = 1, we now have no guarantee that ν̂i > 0, and in fact
we occasionally had difficulties with this homotopy choice precisely because of
this fact. Otherwise, for as long as ν̂i > 0, we can use Newton’s method to solve
forw(α) from 0 to 1, and a main advantage now is that the Hessian (Jacobian of g2
with respect tow) is non-singular for α ∈ [0, 1), since it is (1−α)I +αH(w(α))
and H(α) is positive semi-definite from Theorem 13.

On the same four problems (E1)-(E4) of Section 5, in Table 2 we show relative
performance of the above strategies to provide an initial guess w0. For the homotopy
techniques, “Nsteps” refer to the number of homotopy steps, and “Iterations” to the
total number of Newton’s iterations. Clearly, the “Grid Based” approach worked much
better, and for this reason all results we report on in Section 5 were obtained by using
the “Grid Based” approach to provide the initial guess w0.

3 This homotopy path is the counterpart to what was used in [33], where the homotopy was done to move
from an “easy” source density to the desired source density.

123

Numerical Algorithms

A standard modification of Newton’s method is the well known “Damped Newton’s
Approach”. This can be viewed as a mean by which we improve on a feasible initial
guess w0 , e.g. w0 = 0, to bring it closer to the solution of ∇
(w) = 0. As a general
technique, damped Newton’s is routinely used in solving nonlinear systems, and was
also used in [29] for solving semi-discrete optimal transport problems for the 2-norm
square cost. Below, we simply give its justification for our case of singular Hessian,
particularly given the way we find the Newton’s update.

4.3.1 Damped Newton Method

When one has to solve a nonlinear system F(w) = 0, and the Jacobian at w0 is
invertible, then it is well known that the Newton direction is a direction of descent for
the function g(w) := ‖F(w)‖2

2 = F(w)T F(w), in the sense that g(w0+αs) < g(w0)

for some 0 < α ≤ 1 and s is the solution of DF(w0)s = −F(w0). Below, we show
that also in our case the Newton direction from Eq. (21) is an appropriate direction of
descent in the subspace complementary to the null-space of H .

Lemma 4.3 If ∇
(w) �= 0, then the direction s given by Eq. (21) is a direction of
descent for the functional given by

g(w) = (QT ∇
(w))T (QT ∇
(w)) , (24)

where U = [
q Q

]
is the orthogonal matrix defined in Eq. (20). That is, there exists

0 < α ≤ 1 such that g(w0 + αs) < g(w0).

Proof Expand:

g(w + αs) = g(w)+ α(∇g(w))T s + O(α2)

= g(w)+ 2α(∇
(w))T Q QT H(w)s + O(α2) .

Then, using Eq. (21), we have

g(w + αs)− g(w) = −2α(∇
(w))T Q(QT H(w)Q)(QT H(w)Q)−1 QT ∇
(w)
+O(α2) = −2αg(w)+ O(α2).

Therefore, the claim follows if g(w) > 0. Next, we show that g(w) = 0 only if
∇
(w) = 0 and the result will follow. In fact:

g(w) = 0 ←→ QT ∇
(w) = 0 ←→ ∇
(w) = ce , c ∈ R ,

since the kernel of QT is 1-dimensional and spanned by e. Now, since ∇
(w) =
(μ(A(yi))− νi)i=1,...,N , then

∑N
i=1(∇
(w))i = 0 and therefore we must have c =

0. ��
Lemma 4.3 justifies use of a full damped Newton’s method to solve the problem
∇
(w) = 0. And, in the end, using damped Newton’s method revealed to be the

123

Numerical Algorithms

best method (among those we implemented) to perform the full iteration in order to
solve ∇
(w) = 0. Namely, we always attempt to take the full Newton step, and damp
it –if needed– to force a decrease in the functional g(w) in Eq. (24). Details of our
implementation are provided in Algorithm 13, DampedNewton. That said, most of the
time we found no need to damp the Newton step, see Section 5.

5 Computational Examples

Here we present results of our algorithms. We pay special attention to give Examples
that can be replicated by other approaches, and give quantitative results, rather than
just pictures.

All of our computations were performed with Matlab. The key quantities we
monitor are the Error, which is ‖∇
(w)‖∞ at convergence, the number of Newton
Iterations and further the number of Damped steps if required, the execution Time,
and the Feasibility Coefficient κ as needed. The key quantities by which we control
accuracy are two tolerance values, one to control accuracy of the computation of
μ(A(yi)) (and, therefore of the gradient ∇
), the other to measure convergence of
the Newton’s process, as assessed by either ‖∇
‖∞ or the ∞-norm of the Newton’s
updates. The default values are 10−12 for the approximation of μ(A(yi)) and 10−8

for Newton’s convergence.
The next four examples have been used to produce Tables 1 and 2 as well as Table 3

below. They are fairly easy problems, mostly used for testing purposes. For all of them,
the domain is 	 = [0, 1] × [0, 1], the cost is the 2-norm, c(x, y) = ||x − y||2, and ρ,
ν, and the locations yi ’s are given below. See Fig. 6 below for their solution.

ρ(x) = 1, ν = 1

2

(
1
1

)

, y =
{(

0.125
0.125

)

,

(
0.5
0.5

)}

, . (E1)

ρ(x) = 4x1x2, ν = 1

4

⎛

⎝
1
.
.
.

1

⎞

⎠, y =
{(

0.25
0.25

)

,

(
0.75
0.25

)

,

(
0.5

0.25(1 + √
3)

)

,

(
0.5

0.25(1 +
√

3
3)

)}

.

(E2)

Fig. 6 Solution for Examples (E1)-(E4)

123

Numerical Algorithms

Ta
bl
e
3

D
if

fe
re

nt
M

et
ho

ds

O
ur

m
et

ho
d

B
ou

nd
ar

y
m

et
ho

d
of

[1
4]

Q
ua

si
-N

ew
to

n
(B

FG
S)

us
in

g
f
m
i
n
u
n
c

E
xa

m
pl

e
E

rr
or

It
er

at
io

ns
T

im
e

E
rr

or
G

ri
d

si
ze

T
im

e
E

rr
or

It
er

at
io

ns
T

im
e

(E
1)

4.
19

59
∗1

0−
11

2
7.

97
86

7.
06

57
∗1

0−
6

2−
15

1.
01

1.
03

65
∗1

0−
2

1
25

7.
69

(E
2)

1.
59

87
∗1

0−
9

6
37

.8
07

7.
86

26
∗1

0−
6

2−
18

34
.5

2.
90

96
∗1

0−
2

7
43

1.
56

(E
3)

7.
20

28
∗1

0−
6

1
6.

26
08

5.
35

57
∗1

0−
6

2−
16

6.
06

1.
12

24
∗1

0−
3

3
22

7.
83

(E
4)

3.
39

80
∗1

0−
7

2
16

.1
70

8.
34

61
∗1

0−
7

2−
20

77
2

7.
66

71
∗1

0−
3

1
19

1.
07

123

Numerical Algorithms

ρ(x) = 1, ν = 1

5

⎛

⎝
1
.
.
.

1

⎞

⎠, y = 1

4096

{(
646
3491

)

,

(
3480
3686

)

,

(
1364
2737

)

,

(
609
857

)

,

(
2967
509

)}
.

(E3)

ρ(x) = 1, ν = 1

8

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠, y = 8 random uniform points using seedrng(2). (E4)

Example 5.1 In Table 3, we compare performance of our method with two other tech-
niques, the “boundary method” of [14] and the minimization approach via use of a
quasi-Newton’s method as in [24]. In the former case, the results are those obtained by
the C++-code kindly provided by J.D. Walsh and the Time in this case refers to that of
the C++-code, neglecting the final time required to measure the Error since the final
areas computation is done by our approach. In the case of the BFGS quasi-Newton
method we used the tried and true Matlab routine fminunc. First of all, with the
boundary method we could not reach the required accuracy of TOL = 10−8 and thus
had to lower that to 10−5, and even so we had to decrease considerably the minimum
allowed grid-size. Secondly, with BFGS we could never obtain answers more accurate
than a couple of digits and the code fminunc always returned a message that was
not able to achieve further reduction in the error.

Example 5.2 (Example with Different Source Densities) Here we keep 	 = [0, 1] ×
[0, 1], the cost is c(x, y) = ||x − y||2, the target points are located at{(

0.25
0.25

)

,

(
0.5

0.75

)

,

(
0.75
0.25

)

,

(
0.5
0.3

)}

, ν is uniform, and we take four different

source densities to illustrate the impact of ρ on the overall error and execution time.
The source densities are

ρ1(x) = 1, uniform, ρ2(x) = 4x1x2, non-uniform, ρ3(x) = γ e−10(x1−0.5)2−10(x2−0.5)2 , Gaussian

ρ4(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 0 ≤ x1 ≤ 0.3 , ∀x2

g(x) 0.3 < x1 < 0.7 , ∀x2

3
2 0.7 ≤ x1 ≤ 1 , ∀x2

non smooth, smoothed out

where γ is the normalization constant and

g(x1, x2)= 1

2
+ (500x1(4x1(175(x1 − 3)x1 + 594)− 1203)+ 115173)(10x1 − 3)5

131072
.

123

Numerical Algorithms

Table 4 Example with Different Source Densities

Source Density Error Iterations Damping Time Feasibility Coefficient κ

Uniform 3.7612 ∗ 10−9 2 0 12.806 0.45594

Non-Uniform 3.4750 ∗ 10−14 7 2 46.448 0.13112

Gaussian 7.3751 ∗ 10−11 4 0 53.691 0.66334

Non smooth 4.9682 ∗ 10−14 6 0 119.99 0.34405

We notice that g(x) is obtained as a C4 interpolant on a non-smooth density given
by 1/2 before x1 = 1/2 and by 3/2 past it. For all problems, the initial guess is
obtained with grid size h = 0.05.

Clearly, as it can be seen in Table 4 and Fig. 7, the non-smooth case is the most
computationally expensive due to the very large values of the derivatives of ρ.

Example 5.3 (Different p-norms). Here we want to assess the impact of different p-
norms for the cost, in particular we are interested in assessing the impact of using
odd value of p (which gives reduced smoothness with respect to the even values of p)
and of “approaching” the ∞-norm and the 1-norm. Although with costs given by the
∞-norm and the 1-norm the problem is not well posed (see Example 2.29), we will
see that as we approach these values the algorithm selects clearly defined Laguerre
tessellations, and we conjecture that this is a typical scenario and deserves further
study. (Incidentally, also for Example 2.29, the approach just outlined select a well
defined tessellation).

We fix 	 = [0, 1] × [0, 1], y =
{(

0.25
0.25

)

,

(
0.5

0.75

)

,

(
0.75
0.25

)}

, take ρ and ν

uniform, and we consider the following cost functions: Cost function:

(1) c(x, y) = ‖x − y‖3; c(x, y) = 1
2 (||x − y||2 +||x − y||4)); c(x, y) = ||x − y||3 +

||x − y||5 + ||x − y||7;
(2) toward the ∞-norm: c(x, y) = ‖x − y‖2k , k = 1, 2, 3, 4, 5;
(3) toward the 1-norm: c(x, y) = ‖x − y‖1+2−k , k = 1, 2, 3, 4, 5.

All results obtained with initial guess from the grid based approach with h = 0.05.
No appreciable difference is seen with the above three different costs, as confirmed by
Table 5 and Fig. 8.

Fig. 7 Example with Different Source Densities

123

Numerical Algorithms

Table 5 Example with Different p-Norm Cost Functions

Cost Function Error Iterations Damping Time Feasibility Coefficient κ

‖ · ‖3 1.9444 ∗ 10−10 2 0 8.6622 0.74508
1
2 (|| · ||2 + || · ||4) 1.0988 ∗ 10−12 2 0 10.756 0.74652

‖ · ‖3 + ‖ · ‖y + ‖ · ‖7 8.1481 ∗ 10−10 2 0 10.742 0.74023

In Table 6, we observe that for larger values of p, computation of the integrals becomes
expensive because of large derivative values. Fig. 9 clearly shows the decrease in
smoothness.
Also, for costs approaching 1-norm, as it can be seen in Table 7, there is a clear increase
in the computation time, again due to the decreased smoothness of the boundary.
Fig. 10 shows this clearly.

It is very interesting that the value of κ is effectively the same across all of the above
experiments, and does not betray ill-conditioning of the problem. This is reflected in
the fact that only 2 (or occasionally 3) Newton iterations are required for all of the
above costs, and that the value of the Error is small. The difficulties here are entirely
due to the decrease in smoothness of the boundary.

Example 5.4 (Impact of Feasibility) This is a difficult problem for all methods we
tested, in that it becomes arbitrarily ill-conditioned . We have

	 = [0, 1] × [0, 1], c(x, y) = ||x − y||2, y =
{(

0.25
0.5

)

,

(
0.75
0.5

)}

, ρ(x) = 1,

and a non-uniform target density ν = (1
2k , 1− 1

2k), k = [1, . . . , 10]). Results in Table 8
are all obtained with initial guess from the grid-based approach with h = 0.1. The
tessellation is shown in Fig. 11.

The increase in time is entirely due to the difficulty in computing μ(A(yi))’s. We
also note that the initial guess for k ≥ 7 is just not good, as reflected in the increase
in Newton’s iterations and the need for damped Newton for k = 10.

Fig. 8 Different p-norm costs

123

Numerical Algorithms

Table 6 Approaching the ∞-norm. Cost is ‖x − y‖2k

Error Iterations Damping Time Feasibility Coefficient κ

k = 1 1.5999 ∗ 10−10 2 0 6.539 0.74940

k = 2 7.9542 ∗ 10−10 2 0 7.6051 0.74083

k = 3 4.1729 ∗ 10−9 2 0 7.8891 0.73576

k = 4 7.0427 ∗ 10−9 2 0 8.1167 0.73452

k = 5 6.1689 ∗ 10−11 3 0 320.97 0.73414

Table 7 Approaching the 1-norm. Cost is ‖x − y‖1+2−k

Error Iterations Damping Time Feasibility Coefficient κ

k = 1 5.1627 ∗ 10−9 2 0 46.634 0.74426

k = 2 1.6436 ∗ 10−11 3 0 214.18 0.73291

k = 3 3.0620 ∗ 10−9 2 0 165.3 0.7261

k = 4 3.4457 ∗ 10−10 2 0 249.13 0.72406

k = 5 2.6122 ∗ 10−11 2 0 283.11 0.72312

Fig. 9 p-norm costs for growing p

Fig. 10 p-norm costs for p decreasing toward 1

123

Numerical Algorithms

Ta
bl
e
8

Im
pa

ct
of
κ

on
N

ew
to

n
ite

ra
tio

ns
an

d
tim

e

Ta
rg

et
D

en
si

ty
E

rr
or

It
er

at
io

ns
D

am
pi

ng
T

im
e

F
ea

si
bi

lit
y

C
oe

ffi
ci

en
t
κ

(
1 2
,

1
−

1 2
)

3.
33

07
∗1

0−
14

0
0

2.
27

65
1

(
1 22
,

1
−

1 22
)

4.
66

29
∗1

0−
14

3
0

11
.3

63
4.

02
43

∗1
0−

1

(
1 23
,

1
−

1 23
)

5.
64

83
∗1

0−
14

2
0

9.
64

61
2.

00
29

∗1
0−

1

(
1 24
,

1
−

1 24
)

2.
95

11
∗1

0−
10

2
0

10
.2

7
7.

95
27

∗1
0−

2

(
1 25
,

1
−

1 25
)

4.
10

78
∗1

0−
14

4
0

17
.7

66
2.

46
11

∗1
0−

2

(
1 26
,

1
−

1 26
)

9.
03

54
∗1

0−
10

3
0

20
.8

34
6.

60
39

∗1
0−

3

(
1 27
,

1
−

1 27
)

2.
73

67
∗1

0−
11

9
0

59
.6

25
1.

68
34

∗1
0−

3

(
1 28
,

1
−

1 28
)

2.
78

42
∗1

0−
12

10
0

12
0.

6
4.

22
94

∗1
0−

4

(
1 29
,

1
−

1 29
)

3.
97

06
∗1

0−
12

10
0

20
1.

91
1.

05
87

∗1
0−

4

(
1 21

0
,

1
−

1 21
0
)

1.
28

63
∗1

0−
10

12
4

17
59

2.
64

75
∗1

0−
5

123

Numerical Algorithms

Example 5.5 Interplay of location, μ and ν Here we highlight the role played by
consistency of the location of the target points with respect to the continuous and
discrete densities. We fix

	 = [0, 1]×[0, 1], c(x, y) = ||x − y||2, y =
{(

0.8
0.8

)

,

(
0.8
0.9

)

,

(
0.9
0.9

)

,

(
0.9
0.8

)}

,

and select three different densities

(A) Uniform source and uniform target. Here, the location of the target points is not
consistent with either ρ or ν.

(B) Uniform source (ρ(x) = 1) and non-uniform target (ν = (0.75, 0.1, 0.05, 0.1)T).
Here, the location of the target points is consistent with ν but not with μ.

(C) Non-Uniform source (ρ(x) = 16x3
1 x3

2) and uniform target (νi = 1
4 , ∀i). Here,

the location of the target points is consistent with μ but not with ν.

For all cases, the initial guess was obtained with the grid-based approach with h =
0.05.

The small value of κ in case (A) reflects the inconsistent location of the target points
with respect toμ and ν. The high execution time for case (C), instead is entirely due to
the cost of computing μ(A(yi))’s by our algorithm because of the change of variable
we do for (x1, x2), namely ρ(x1, x2) = ρ(Y1,+D cos(θ),Y2 + D sin(θ)). See Table 9
and Fig. 12.

Example 5.6 (Different Domains) Here we show that our algorithms can be easily
adapted to work with non-square domains, with no noticeable difference in perfor-
mance. For y we take 10 random points in domain	i , obtained by retaining the first 10

Fig. 11 Impact of small κ on the tessellation

123

Numerical Algorithms

Table 9 Interplay between Source and Target Densities with Location of Points

Densities Error Iterations Damping Time Feasibility Coefficient κ

Uniform to Uniform 3.2677 ∗ 10−9 2 0 89.095 0.02198

Uniform to Non-Uniform 1.2056 ∗ 10−12 3 0 45.295 0.14509

Non-Uniform to Uniform 8.3026 ∗ 10−9 3 0 144.78 0.86597

random points uniformly distributed in the square circumscribed to	i that fall inside
	i . Further, we take c(x, y) = ||x − y||2, ν is uniform, and so is μ: ρ(x) = 1

|	i | , ∀i .
As domains we considered:

(A) 	1 is the equilateral triangle centered at the origin with circumradius of 1;
(B) 	2 is the regular pentagon centered at the origin with circumradius equal to 1;
(C) 	3 is an irregular pentagon of centroid at (0.44239, 0.45993) and circumradius

equal to 0.69813;
(D) 	4 is the circle centered at the origin with radius equal to 1;

As initial guesses we take w0 = 0.
Interestingly, the most difficult problems are those with the most regular domains,

equilateral triangle and regular pentagon. However, all cases are solved fairly easily.
See Table 10 and Fig. 13.

Example 5.7 (Cost Interpolation). Here, we present an example of a problem with a
(supposedly) unknown cost that will be interpolated by a model function. Consider
	 = [0, 1]×[0, 1] and 4 randomly generated target points yi ’s. Additionally, generate
100 random points x j ’s in	, and consider the set of costs ci j given by ci j = c(x j , yi),
where

c(x, y) = ||x − y||2.5 + 2||x − y||3.5 + 0.5||x − y||15 .

Fig. 12 Interplay between Source and Target Densities with Location of Points

123

Numerical Algorithms

Table 10 Different domains and uniform source density

Domain Error Iterations Damping Time Feasibility Coefficient κ

Equilateral Triangle 4.2979 ∗ 10−11 6 0 97.79 0.07999

Regular Pentagon 2.7436 ∗ 10−10 6 0 130.1 0.11848

Irregular Pentagon 5.2235 ∗ 10−11 5 0 59.33 0.25617

Circle 2.0969 ∗ 10−11 4 0 22.251 0.51896

Next, define the following model for the cost:

k(x, y) = α1||x − y||1.5 +
10∑

l=2

αl ||x − y||l .

We seekα = (α1, . . . , α10)by solving the least squares problem minα
∑

i, j (k(x j , yi)−
ci j)

2, subject to the constraint α ≥ 0. Solving this constrained least-squares problem
(we used lsqnonneg), we get the nonnegative least-squares solution

k(x, y) = 0.02||x − y||1.5 + 0.03||x − y||2 + 2.72||x − y||3 + 0.73||x − y||10 .

Now, let the source and target densities be uniform: ρ(x) = 1 and νi = 1
4 ,

i = 1, 2, 3, 4. Then, Fig. 14A displays the partition of the domain with the exact
underlying cost c(x, y), while Fig. 14B illustrates the partition with the interpolated
cost function k(x, y). For comparison purposes, we also show the partition obtained
using the cost given by ‖x − y‖2

2, see Fig. 14C. As shown in the figures, the interpo-
lated cost produces a virtually identical partition compared to the underlying exact
(but unknown) cost function, whereas the partition formed with the 2-norm squared
cost function is completely wrong.

6 Conclusions

In this work, we presented a novel implementation of Newton’s method for solving
semi-discrete optimal transport problems for cost functions given by a (positive com-
bination of) p-norm(s), 1 < p < ∞, and several choices of continuous and discrete

Fig. 13 Examples with Different domains and uniform source density

123

Numerical Algorithms

Fig. 14 Solution of the semi-discrete problem with different cost functions

densities. To date, there appeared to have been no implementation of Newton’s method
for these problems, and we succeeded in making some progress by proving that the
Laguerre cells providing the solution of the OT problem are star shaped with respect to
the target points and by exploiting this fact in our algorithmic development. We gave
a detailed description of all algorithms we implemented and provided quantitative
testing on several examples, as well as comparison with competing approaches, well
beyond simply showing some qualitatively faithful figures. Our algorithms proved
much more robust and accurate than other methods, being based on rigorously justi-
fied adaptivity and error control, which –in principle– allows to solve the OT problem
at any desired level of accuracy. The price we pay for this is the need for the continuous
density to be sufficiently smooth. Future developments call for algorithms suited for
3-d, as well as for development of Newton-like methods better suited when we only
have limited smoothness of the continuous density.

Appendix

Claim 6.1 Let the cost function be a p−norm, where p is even: c(x, y) = ||x − y||p,
p = 2k, k = 1, 2, If |w| < ||y1 − y2||p, then ∇F(x0) �= 0, ∀x0 such that
F(x0) = w, where

F(x) = ||x − y1||p − ||x − y2||p .

Proof Assume, by contradiction, that there exists a point x0 where both F(x0) = w

and ∇F(x0) = 0. An explicit computation gives

∇F(x) = 1

||x − y1||p−1
p

⎛

⎜
⎜
⎜
⎝

(x − y1)
p−1
1

.

.

.

(x − y1)
p−1
d

⎞

⎟
⎟
⎟
⎠

− 1

||x − y2||p−1
p

⎛

⎜
⎜
⎜
⎝

(x − y2)
p−1
1

.

.

.

(x − y2)
p−1
d

⎞

⎟
⎟
⎟
⎠

and so

∇F(x0) = 0
⇒ (x0 − y1)
p−1
j

||x0 − y1||p−1
p

= (x0 − y2)
p−1
j

||x0 − y2||p−1
p

⇒ (x0 − y1) j

||x0 − y1||p
= (x0 − y2) j

||x0 − y2||p
, j = 1, . . . , d .

123

Numerical Algorithms

Since F(x0) = 0, then ||x0 − y1||p = w + ||x0 − y2||p and so

(x0 − y1) j

w + ||x0 − y2||p
= (x0 − y2) j

||x0 − y2||p

⇒ w(x0 − y2) j = ||x0 − y2||p(y2 − y1) j , j = 1, . . . , d .

Taking the p−norm of the vectors on both sides of the last relation gives

|w| · ||x0 − y2||p = ||x0 − y2||p||y2 − y1||p or |w| = ||y2 − y1||p ,

which is a contradiction and the proof follows. ��
Lemma 6.2 Let 	 ⊂ R

n satisfy Assumption 2.1, yi ∈ 	o and i = 1, 2, . . . , N,
be N distinct target points, and let the shift values be feasible: |wi j | < c(yi , y j),
∀i, j = 1, 2, · · · , N, i �= j . Consider the cost function given by a p-norm with p
even. Then, there ∃ε > 0 such that ∀i, j = 1, 2, . . . , N , i �= j

||∇x c(x, yi)−∇x c(x, y j)|| ≥ ε, ∀x ∈ Li j ∩	,

where ‖ · ‖ is the standard Euclidean distance ‖ · ‖2.

Proof Firstly, we are going to show that exists a constant, which depends on p, call it
εi j (p) > 0, such that

||∇x ||x − yi ||p −∇x ||x − y j ||p||p ≥ εi j (p), ∀x ∈ Li j ∩	.

By direct computation, as in Claim 6.1, we have

||∇x ||x − yi ||p −∇x ||x − y j ||p||p =

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

a p−1
1
...

a p−1
d

⎞

⎟
⎠ −

⎛

⎜
⎝

bp−1
1
...

bp−1
d

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

p

where

a j = (x − y1) j

||x − y1||p
, b j = (x − y2) j

||x − y2||p
, j = 1, . . . , d .

Now, abusing of notation, we will write a p−1 for the Hadamard product of the vector
a with itself (p − 1)-times, and thus a p−1 − bp−1 = (a − b) ◦ (a p−2 + a p−3 ◦ b +
· · · + bp−2), where ”◦” is the Hadamard product4. Next, using Claim 6.3 we have

∣
∣
∣
∣

∣
∣
∣
∣
(x − yi)

p−1

||x − yi ||p−1
p

− (x − y j)
p−1

||x − y j ||p−1
p

∣
∣
∣
∣

∣
∣
∣
∣

p
≥ �

∣
∣
∣
∣

∣
∣
∣
∣
(x − yi)

||x − yi ||p
− (x − y j)

||x − y j ||p

∣
∣
∣
∣

∣
∣
∣
∣

p
.

4 a ◦ b =
⎛

⎜
⎝

a1b1
.
.
.

ad bd

⎞

⎟
⎠

123

Numerical Algorithms

Using that x ∈ Li j ∩	
⇒ ||x − yi ||p = ||x − y j ||p + wi j :

||||x − y j ||p(x − yi)− ||x − yi ||p(x − y j)||p

||x − yi ||p ||x − y j ||p
= ||||x − y j ||p(x − yi)− (||x − y j ||p + wi j)(x − y j)||p

||x − yi ||p ||x − y j ||p
,

⇒ ||||x − y j ||p(y j − yi)− wi j (x − y j)||p

||x − yi ||p ||x − y j ||p
≥

∣
∣||x − y j ||p ||y j − yi ||p − |wi j |||x − y j ||p

∣
∣

||x − yi ||p ||x − y j ||p
,

⇒ ||∇x ||x − yi ||p − ∇x ||x − y j ||p ||p

≥ �

∣
∣||y j − yi ||p − |wi j |

∣
∣

||x − yi ||p

Using that x ∈ 	
⇒ ||x − yi ||p ≤ C(yi ,	, p)diam()
⇒ 1
||x−yi ||p

≥
1

C(yi ,	,p)diam() , where C(yi ,	, p) > 0 is a constant depending on yi ,	 and p, and
so:

||∇x ||x − yi ||p −∇x ||x − y j ||p||p ≥ �

∣
∣||y j − yi ||p − |wi j |

∣
∣

C(yi ,	, p)diam()
≡ εi j (p) > 0.

Next, using equivalency of p-norm and 2-norm, there is a constant which depends on
p, call it α(p), such that ‖ · ‖2 ≥ α(p)‖ · ‖p, α(p) > 0, and so we get

||∇x ||x − yi ||p − ∇x ||x − y j ||p || ≥ α(p)||∇x ||x − yi ||p − ∇x ||x − y j ||p ||p = α(p)εi j (p) ≡ εi j .

Finally, it follows that ∀ i, j = 1, 2, . . . , N , i �= j ,

||∇x ||x − yi ||p −∇x ||x − y j ||p|| ≥ ε, (E5)

where ε = mini, j εi j > 0. ��
Claim 6.3 With the notation from Lemma 6.2, there exists � > 0 such that

||a p−2 + a p−3 ◦ b + · · · + bp−2||p ≥ � > 0

where p is an even number and

a, b ∈ R
n, al = (x − yi) j

||x − yi ||p
, bl = (x − y j) j

||x − y j ||p
, l = 1, . . . , d .

Proof

||a p−2 + a p−3 ◦ b + · · · + bp−2||p ≥ |a p−2
k + a p−3

k bk + · · · + bp−2
k |,

for an index k such that |ak | = ||a||∞. Next, using Claim 6.4 we have

|ak | = (|x − yi |)k
||x − yi ||p

≥ δa

C(yi ,	, p)diam()
> 0.

Next we are going to consider cases:

123

Numerical Algorithms

• ak < 0 and bk ≤ 0:

|a p−2
k + a p−3

k bk + · · · + bp−2
k | ≥ |a p−2

k | ≥ δ
p−2
a

[C(yi ,	, p)diam()]p−2 .

• ak > 0 and bk ≥ 0:

|a p−2
k + a p−3

k bk + · · · + bp−2
k | ≥ |a p−2

k | ≥ δ
p−2
a

[C(yi ,	, p)diam()]p−2 .

• ak < 0 and bk > 0:

|a p−2
k +a

p−3
k bk + · · · + b

p−2
k | ≥ |a p−2

k + a
p−3
k bk + · · · + ak b

p−3
k | = |ak ||a p−3

k + a
p−4
k bk + · · · + b

p−3
k | ≥

≥ |ak ||a p−3
k + a

p−4
k bk + · · · + ak b

p−4
k | = |ak |2 |a p−4

k + a
p−5
k bk + · · · + b

p−4
k | ≥ · · · ≥ |ak |p−2
⇒

⇒ |a p−2
k + a

p−3
k bk + · · · + b

p−2
k | ≥ |ak |p−2 ≥ δ

p−2
a

[C(yi , 	, p)diam()]p−2
.

• ak > 0 and bk < 0: using Claim 6.4 we have

|bk | = (|x − y j |)k
||x − y j ||p

≥ δb

C(y j ,	, p)diam()
> 0.

Then it follows that

|b p−2
k + b

p−3
k ak + · · · + a

p−2
k | ≥ |b p−2

k + b
p−3
k ak + · · · + bk a

p−3
k | = |bk ||b p−3

k + b
p−4
k ak + · · · + a

p−3
k | ≥

≥ |bk ||b p−3
k + b

p−4
k ak + · · · + bk a

p−4
k | = |bk |2 |b p−4

k + b
p−5
k ak + · · · + a

p−4
k | ≥ · · · ≥ |bk |p−2
⇒

⇒ |a p−2
k + a

p−3
k bk + · · · + b

p−2
k | ≥ |bk |p−2 ≥ δ

p−2
b

[C(y j , 	, p)diam()]p−2
.

As a result, it follows that

||a p−2 + a p−3b + · · · + bp−2||p ≥ �

where

� =
⎧
⎨

⎩

δ
p−2
b

[C(y j ,	,p)diam()]p−2 , if ak > 0 and bk < 0,

δ
p−2
a

[C(yi ,	,p)diam()]p−2 , otherwise.

Thus, the result follows. ��
Claim 6.4 With the notation from Lemma 6.2 and Claim 6.3, there exists δa > 0 and
δb > 0 such that

||a||∞ ≥ δa

C(yi ,	, p)diam()
> 0, ||b||∞ ≥ δb

C(y j ,	, p)diam()
> 0

123

Numerical Algorithms

where p is an even number and

a, b ∈ R
n, al = (x − yi)l

||x − yi ||p
, bl = (x − y j)l

||x − y j ||p
, l = 1, . . . , d .

Proof Firstly, using assumption from Lemma 6.2, letwi j = ξ −||yi − y j ||p, 0 < ξ <

||yi − y j ||p. Then

x ∈ ei j ∩	
⇒ ||x − yi ||p = ||x − y j ||p + wi j = ||x − y j ||p + ξ − ||yi − y j ||p

||x − yi ||p ≥ ξ − ||x − yi ||p
⇒ ||x − yi ||p ≥ ξ

2
> 0

Next, using equivalency of p-norm and ∞-norm: ‖ · ‖∞ ≥ γ (p)‖ · ‖p, γ (p) > 0, we
get

||x − yi ||∞ ≥ γ (p)
ξ

2

⇒ ||a||∞ = ||x − yi ||∞

||x − yi ||p
≥ δa

C(yi ,	, p)diam()
> 0

where δa = γ (p) ξ2 . Similarly, it follows that

x ∈ei j ∩	
⇒ ||x − y j ||p = ||x − yi ||p − wi j = ||x − yi ||p − ξ + ||yi − y j ||p ≥ ||yi − y j ||p − ξ > 0

||x − y j ||∞ ≥ γ (p)(||yi − y j ||p − ξ)
⇒ ||b||∞ = ||x − y j ||∞
||x − y j ||p

≥ δb

C(y j , 	, p)diam()
> 0

where δb = γ (p)(||yi − y j ||p − ξ).

123

Numerical Algorithms

7 Algorithms Pseudocodes

Algorithm 1 Shooting – Shooting Technique

Input: θ0, {Y , W }, {y j , w j }, ∀ j , TOL � Default value TOL = 10−14

Output: r value up to a tolerance TOL and index k

r0 ← 0, d ← min j ||Y−y j ||p
10 , ∀ j �= i

while d ≥ TOL do
r0 ← r0 + d

x ← Y + r0

(
cos (θ0)
sin (θ0)

)

if x ∈ A(y j) then
r∗ ← Bisect R(θ0, {r0 − d, r0}, {Y ,W }, {y j , w j },TOL) and k ← j

x ← Y + (r∗ − TOL)
(

cos (θ0)
sin (θ0)

)

if x ∈ A(Y) then
return r∗ and k ← j

else
d ← d

2
end if

else if x /∈ 	 then
{r∗, k} ← Bound(θ0, Y)

x ← Y + (r∗ − TOL)
(

cos (θ0)
sin (θ0)

)

if x ∈ A(Y) then
return r∗ and k

else
d ← d

2
end if

end if
end while

Algorithm 2 BisectR – Bisection Method on r Value
Input: θ0, {ra , rb}, {Y , W }, {y j , w j }, TOL � TOL is passed by Shooting
Output: r value up to a tolerance TOL

while rb − ra ≥ TOL do
r ← 1

2 (rb + ra)

if F(r , θ0) < 0 then
ra ← r

else if Fb(r) > 0 then
rb ← r

else
return r

end if
end while

123

Numerical Algorithms

Algorithm 3 Bound – Boundary Point Computation
Input: θ , Y
Output: r value and index k

r1 ← a−Y1
cos(θ) , y1 = Y2 + r1 sin(θ)

r2 ← b−Y1
cos(θ) , y2 = Y2 + r2 sin(θ)

r3 ← a−Y2
sin(θ) , x3 = Y1 + r3 cos(θ)

r4 ← b−Y2
sin(θ) , x4 = Y1 + r4 cos(θ)

if r1 > 0 & y1 ≥ a & y1 ≤ b then
r ← r1 and k ← −4

else if r2 > 0 & y2 ≥ a & y2 ≤ b then
r ← r2 and k ← −2

else if r3 > 0 & x3 ≥ a & x3 ≤ b then
r ← r3 and k ← −1

else if r4 > 0 & x4 ≥ a & x4 ≤ b then
r ← r4 and k ← −3

end if

Algorithm 4 PredCorr – Predictor-Corrector Step

Input: r0 θ0, �, {Y , W }, {y j , w j }, TOL � Default value TOL = 10−14

Output: r1 = r(θ0 +�) value up to a tolerance TOL and increment �new

r0
1 ← r0 −�

Fθ (r0,θ0)
Fr (r0,θ0)

, r1 ← r0
1 � Tangent Predictor Step

while F(r1, θ +�) ≥ TOL do
r1 ← r1 − F(r1,θ+�)

Fr (r1,θ+�) � Newton Corrector
end while
�new ← 10−3

2
√

r1−r0
1

�

Algorithm 5 BisectTheta – Bisection Method on θ Value
Input: r0, θ0, θ1, {Y , W }, {y j , w j }, TOL � Default value TOL = 10−14

Output: r and θ values up to a tolerance TOL
while θ1 − θ0 ≥ TOL do
θ ← 1

2 (θ0 + θ1)

r ← PredCorr(r0, θ0, θ − θ0, {Y ,W }, {y j , w j },TOL)
x ← Y + r

(
cos (θ)
sin (θ)

)

if x ∈ A(Y) then
θ0 ← θ and r0 ← r

else
θ1 ← θ

end if
end while

123

Numerical Algorithms

Algorithm 6 CurveBound – Breakpoint Between Curve and Domain Boundary
Input: k, θ0, θ1, {Y , W }, {y j , w j }, TOL � k is the index of domain boundary

Output: r∗ and θ∗ values up to a tolerance TOL � Default value TOL = 10−14

if k = −4 then
r(θ)← a−Y1

cos(θ)
else if k = −2 then

r(θ)← b−Y1
cos(θ)

else if k = −1 then
r(θ)← a−Y2

sin(θ)
else if k = −3 then

r(θ)← b−Y2
sin(θ)

end if
θ∗ ← mod (fzero(F(r(θ), θ), [θ0, θ1],TOL), 2π)
r∗ ← r(θ∗)

Algorithm 7 BoundBound – Breakpoint Between Two Domain Boundary Branches
Input: k1, k2
Output: r∗ and θ∗ values

if (k1 = −4 & k2 = −1) | (k1 = −1 & k2 = −4) then

x ←
(

a
a

)

else if (k1 = −1 & k2 = −2) | (k1 = −2 & k2 = −1) then

x ←
(

b
a

)

else if (k1 = −2 & k2 = −3) | (k1 = −3 & k2 = −2) then

x ←
(

b
b

)

else if (k1 = −3 & k2 = −4) | (k1 = −4 & k2 = −3) then

x ←
(

a
b

)

end if
θ∗ ← mod (arctan(x2−Y2

x1−Y1
), 2π)

r∗ ← x1−Y1
cos(θ∗)

123

Numerical Algorithms

Algorithm 8 AdaptSimpson – Adaptive Integral Computation

Input: f (x), [a, b], TOL � Default value TOL = 10−12

Output: I = ∫ b
a f (x)dx up to a tolerance TOL

check ← 0; Nmax ← 1024; imax ← �log2(TOL/eps) � eps is machine precision
I ← 0; Err ← 0
for i ← 0 to imax do

xi ← [a : (b − a)/(2i) : b]
TOLi ← TOL/(2i)

for j ← 1 to 2i do
if check(j) = 0 then

[I j , err j] ← CompSimpson(f (x), xi (j), xi (j + 1),TOLi , Nmax)

if Err j < TOLi then
I ← I + I j ; Err ← Err + err j ; check(j)← 1

end if
end if

end for
if min(check) = 1 then

return I
else

check ← repelem(check, 2) � Repeat each of check vector’s elements two times
end if
if mod (i, 3) = 2 then

Nmax ← 8 × Nmax
end if

end for

Algorithm 9 CompSimpson – Integral Computation using Composite Simpson’s 1/3
Rule
Input: f (x), [a, b], TOL, Nmax � TOL is passed by AdaptSimpson

Output: I = ∫ b
a f (x)dx up to a tolerance TOL and relative error value err

imax ← �log2(Nmax) ; n ← 2
In ← Simpson(f (x), [a, b], n) � Computes integral using Simpson’s 1/3 Rule with n sub-intervals
for i ← 1 to imax do

I2n ← Simpson(f (x), [a, b], 2n)
err ← 16|I2n − In |/15; N ← n(err/TOL)1/4; N ← 2�N/2
if err < TOL ∨ N > Nmax then

return I2n and err
else

n ← 2n; In ← I2n
end if

end for

Algorithm 10 Simpson – Integral Computation using Simpson’s 1/3 Rule
Input: f (x), [a, b], N

Output: I = ∫ b
a f (x)dx approximation using Simpson’s 1/3 Rule with N sub-intervals

h ← b−a
N , I ← 1

3 h f (a)
for i ← 2 to N do

if mod (i, 2) = 0 then
I ← I + 4

3 h f (a + (i − 1)h)
else if mod (i, 2) = 1 then

I ← I + 2
3 h f (a + (i − 1)h)

end if
end for
I ← I + 1

3 h f (b)

123

Numerical Algorithms

Algorithm 11 GridInitialGuess – Initial Guess Computation on a Grid
Input: h, (a, b), {yi , νi }, ∀i , MAXIT � Default is MAXIT = 50
Output: w0 value
w0 ← 0, Nh ← b−a

h , � Nh is the number of squares on the grid

X1 ← [a + h
2 : h : b − h

2], X2 ← [a + h
2 : h : b − h

2], � Coordinates of centers of squares
for i ter ← 1 to MAXIT do

M ← Grid Measure(h, Nh , {X1, X2}, {yi , w0
i }, ∀i)

for k ← 1 to N do � N is the number of target points
M0 ← Grid Measure(h, Nh , {X1, X2}, {yi , w0

i }, ∀i)

incr ← √
h

while |M0(k)− νk | > h2 ∧ incr > h4 do
w0(i)← w0(i)+ sign(M0(k)− νk)

incr
N−1 , ∀i �= k

M1 ← Grid Measure(h, Nh , {X1, X2}, {yi , w0
i }, ∀i)

if |M1(k)− νk | > |M0(k)− νk | then
incr ← √

h × incr
end if
M0 ← M1

end while
end for
if maxi |M0(i)− νi | < h2 ∨ maxi |M0(i)− νi | ≥ maxi |M(i)− νi | then

return w0

end if
end for

Algorithm 12 GridMeasure – Measure Approximation on the Grid
Input: h, Nh , {X1, X2}, {yi , wi }, ∀i
Output: M values, which approximate μ(A(yi)) values on the grid

M ← 0
for l ← 1 to Nh do

for m ← 1 to Nh do

x ←
(

X1(l)
X2(m)

)

ind ← arg mini c(x, yi)− wi
M(ind)← M(ind)+ ρ(x)h2

end for
end for

123

Numerical Algorithms

Algorithm 13 DampedNewton – Damped Newton’s Method

Input: w0, μ, {yi , νi }, ∀i , MAXIT, TOL � Default MAXIT = 20, TOL = 10−8

Output: wk value such that maxi |μ(A(yi , w
k))− νi | ≤ T O L

err0 ← μ(A(yi , w
0))− νi , ∀i

for k ← 1 to MAXIT do
H0 ← ∂2

∂w0
i ∂w

0
j
, ∀i, j

s ← −(H0)I err0, w1 ← w0 + s

while mini, j

∥
∥
∥1 − |w1

i − w1
j |/c(yi , y j)

∥
∥
∥ ≤ 0 do � See Eq. (22)

s ← 1
2 s, w1 ← w0 + s

end while
err1 ← μ(A(yi , w

1))− νi , ∀i
while ||err1||22 > ||err0||22 ∧ ||s||∞ ≥ TOL

2MAXIT
do � Damped Newton

s ← 1
2 s, w1 ← w0 + s

err1 ← μ(A(yi , w
1))− νi , ∀i

end while
if ||err1||∞ ≤ TOL ∨ ||s||∞ ≤ TOL

2MAXIT
then

return w1

else
w0 ← w1, err0 ← err1

end if
end for

123

Numerical Algorithms

Acknowledgements Not applicable.

Author Contributions L.D. and D.O. contributed equally to the manuscript. D.O. is responsible for the
pseudocodes in the Appendix.

Funding Not applicable.

Availability of supporting data Not applicable.

Declarations

Competing interests The authors declare no competing interests.

Ethical approval Not applicable.

References

1. Ambrosio, L.: Lecture Notes on Optimal Transport Problems, pp. 1–52. Springer, Berlin Heidelberg,
Berlin, Heidelberg (2003)

2. Aurenhammer, F.: Power diagrams: Properties, algorithms and applications. SIAM J. Comput. 16(1),
78–96 (1987)

3. Balestro, V., Martini, H.: Minkowski geometry—some concepts and recent developments. Surv. Geom.
I, 49–95 (2022)

4. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich
mass transfer problem. Numerische Mathematik, 84(3), 375–393, (2000)

5. Benamou, J.-D., Froese, B.D., Oberman, A.M.: Numerical solution of the optimal transportation prob-
lem using the Monge-Ampère equation. J. Comput. Phys. 260, 107–126 (2014)

6. Bollobás, B.: Linear Analysis, Cambridge Mathematical Textbooks, p. 21 Cambridge University Press,
(1999)

7. Bounceur, A., Bezoui, M., Euler, R.: Boundaries and hulls of Euclidean graphs: From theory to practice,
CRC Press, p. 34 (2018)

8. Bourne, D.P., Roper, S.M.: Centroidal power diagrams, Lloyd’s algorithm, and applications to optimal
location problems. SIAM J. Numer. Anal. 53(6), 2545–2569 (2015)

9. Bourne, D.P., Schmitzer, B., Wirth, B.: Semi-discrete unbalanced optimal transport and quantization.
arXiv: Optimization and Control, 2018-08

10. Cuesta-Albertos, J.A., Tuero-Díaz, A.: A characterization for the solution of the Monge-Kantorovich
mass transference problem. Stat. Probab. Lett. 16(2), 147–152 (1993)

11. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. Advances in Neural
Information Processing Systems, Curran Associates, Inc., vol. 26, pp. 2292–2300 (2013)

12. De Gournay, F., Kahn, J., Lebrat, L.: Differentiation and regularity of semi-discrete optimal transport
with respect to the parameters of the discrete measure. Numer. Math. 141, 429–453 (2019)

13. Dieci, L., Omarov, D.: Techniques for continuous optimal transport problem. Comput. Math. Appl.
146, 176–191 (2023)

14. Dieci, L., Walsh, J.D., III.: The boundary method for semi-discrete optimal transport partitions and
Wasserstein distance computation. J. Comput. Appl. Math. 353, 318–344 (2019)

15. Dobrin, A.: A review of properties and variations of Voronoi diagrams. Whitman College. (2005)
16. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: Applications and algorithms.

SIAM Rev. 41(4), 637–676 (1999)
17. Fortune, S.: A sweepline algorithm for Voronoi diagrams. Proc. Second Ann. Symp. Comput. Geom.

SCG New York, ACM. 86, 313–322 (1986)
18. Froese, B.D.: A numerical method for the elliptic Monge-Ampère equation with transport boundary

conditions. SIAM J Sci. Comput. 34(3), A1432–A1459 (2012)
19. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161

(1996)

123

http://arxiv.org/abs/Optimization

Numerical Algorithms

20. Gao, J., Gupta, R.: Efficient proximity search for 3-D cuboids. In: Kumar, Vipin, Gavrilova, Marina L.,
Tan, Chih Jeng Kenneth., L’Ecuyer, Pierre (eds.) Comput. Sci. Its Appl. – ICCSA 2003, pp. 817–826.
Berlin Heidelberg, Berlin, Heidelberg, Springer (2003)

21. Geiß, D., Klein, R., Penninger, R., Rote, G.: Optimally solving a transportation problem using Voronoi
diagrams. Comput. Geom. 46(8), 1009–1016 (2013)

22. Godsil, C., Royle, G.F.: Algebraic Graph Theory, Springer Science & Business. Media 207, 279 (2001)
23. Groß, C. and Strempel, T.-K.: On generalizations of conics and on a generalization of the Fermat-

Torricelli problem. The American mathematical monthly, 105(8), 732–743 (1998)
24. Hartmann, V.N., Schuhmacher, D.: Semi-discrete optimal transport: a solution procedure for the

unsquared Euclidean distance case. Mathematical Methods of Operations Research, pp. 1–31, (2020)
25. Jahn, T.: An invitation to generalized Minkowski geometry. (2019)
26. Kantorovich, L.V.: On the translocation of masses. C.R. (Doklady) Acad. Sci. URSS (N.S.), 37, 199–

201 (1942)
27. Kantorovich, L.V.: On a problem of Monge. Usp. Mat. Nauk 3, 225–226 (1948)
28. Keller, H.B.: Numer. methods bifurcation probl., vol. Tata. Institute of Fundamental Research. Springer-

Verlag, Bombay (1987)
29. Kitagawa, J., Mérigot, Q., Thibert, B.: Convergence of a Newton algorithm for semi-discrete optimal

transport. J. Eur. Math. Soc. 21(9), 2603–2651 (2019)
30. Lévy, B.: A numerical algorithm for L2 semi-discrete optimal transport in 3D. ESAIM: Mathematical

Modelling and Numerical Analysis, 49(6), 1693–1715 (2015)
31. Lévy, B., Schwindt, E.L.: Notions of optimal transport theory and how to implement them on a computer.

Comput. Graph. 72, 135–148 (2018)
32. Mérigot, Q.: A comparison of two dual methods for discrete optimal transport. In Frank Nielsen and

Frédéric Barbaresco, editors, GSI 2013 — Geometric Science of Information, Aug 2013, Paris, France,
of Lecture Notes in Computer Science, Springer, vol. 8085 pp. 389–396 (1781)

33. Meyron, J.: Initialization procedures for Discrete and semi-discrete optimal transport. Comput. Aided.
Des. 115, 13–22 (2019)

34. Monge, G.: Mémoire sur la théorie des déblais et des remblais. In Histoire de l’Académie Royale des
Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, Académie
des sciences (France)., In French. pp. 666–704 (1781)

35. Peyré, G., Cuturi, M.: Computational optimal transport: With applications to data science. Foundations
and Trends® in Machine Learning, 11(5-6), 355–607 (2019)

36. Pratelli, A.: On the equality between Monge’s infimum and Kantorovich’s minimum in optimal mass
transportation. Annales de l’Institut Henri Poincare (B) Probability and Statistics, 43(1), 1–13 (2007)

37. Rüschendorf, L., Uckelmann, L.: Numerical and analytical results for the transportation problem of
Monge-Kantorovich. Metrika 51(3), 245–258 (2000)

38. Santambrogio, F.: Optimal transport for applied mathematicians. Springer 55, 94 (2015)
39. Sharir, M.: Intersection and closest-pair problems for a set of planar discs. SIAM J. Comput. 14(2),

448–468 (1985)
40. Sinkhorn, R.: Diagonal equivalence to matrices with prescribed row and column sums. Am. Math.

Mon. 74(4), 402–405 (1967)
41. Solomon, J., Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., Guibas, L.: Convolutional

Wasserstein distances: Efficient optimal transportation on geometric domains. ACM Transactions on
Graphics, 34, 07 (2015)

42. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American
Mathematical Society, Providence, R.I. (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Solving semi-discrete optimal transport problems: star shapedeness and Newton's method
	Abstract
	1 Introduction
	2 Theoretical Results
	2.1 Star-Shapedness Results
	2.2 Smoothness results: what cost function?
	2.3 Minimization Problem Results

	3 Laguerre Cell Computation: 2D
	3.1 Boundary Tracing Technique
	3.1.1 Shooting Step
	3.1.2 Predictor-Corrector Method
	3.1.3 Breakpoint Location

	3.2 2-d Integral Computation

	4 Implementation of Newton's Method and Conditioning of the OT problem
	4.1 Hessian Computation
	4.2 Taking a Newton step: solving a system with H
	4.2.1 Conditioning of semi-discrete OT problems

	4.3 Getting an initial guess
	4.3.1 Damped Newton Method

	5 Computational Examples
	6 Conclusions
	Appendix
	7 Algorithms Pseudocodes
	Acknowledgements
	References

