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Abstract. We provide an analysis of the error in approximating Lyapunov
exponents of dissipative PDEs on inertial manifolds using QR techniques. The
reduction in the number of modes needed for an inertial form facilitates the
error analysis. Numerical computations on the Kuramoto-Sivashinsky equation
illustrate the results.

1. Introduction. In this work we provide bounds on the approximation error in
Lyapunov exponents and Sacker-Sell spectrum for some dissipative nonlinear par-
tial differential equations. Our key assumptions are that we have a good finite
dimensional approximation in terms of an inertial manifold reduction together with
shadowing type error bounds for the approximation of the nonlinear problem. The
techniques we employ are C1 convergence results for inertial manifolds of semilinear
and quasilinear PDEs and an error analysis for Lyapunov exponents computed by
the so-called discrete QR technique.

Although our approach and analysis applies to a larger class of dissipative non-
linear PDEs, we apply it here to the Kuramoto-Sivashinsky equation. This equation
exhibits rich and complex dynamics, while still allowing for a low dimensional system
to capture the complexity of the full PDE. This is due to the presence of symmetry
[3, 2] and to the existence of a low-dimensional inertial manifold [16]. For this rea-
son, the Kuramoto-Sivashinsky equation (KSE) continues to receive attention, both
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mathematically and computationally, see [7, 17, 22, 23, 41]. Moreover, the KSE has
proven to be amenable also to computer verified proofs ([43, 44, 9]). These computer
assisted verifications have so far been restricted to dynamically simple, though very
important, sets: equilibria and (attracting) periodic orbits. Yet, one of the most
interesting features of the KSE is given by the chaotic dynamics which take place
on the low dimensional attractor, and this is the regime we consider in this work.

Lyapunov exponents are routinely used as a computational means for detecting
chaotic dynamics. For example, for the KSE, they have been used to this end in
[29, 6, 39], and see also [40]. Lyapunov exponents are also used in many other
contexts; e.g., see [34] for the use of Lyapunov exponents in estimating the entropy
of a system, see [8] for their use in estimating dimension of attractors, or see [4] for
use of the Lyapunov exponents as a tool for studying the bifurcations of random
dynamical systems.

Example 1.1. Here we exemplify how the Kaplan-Yorke dimension, dimKY, of the
KSE attractor, can be used to determine bifurcations of an attractor. We take the
KSE in the form (6.1)– for values of ξ in [0.299 , 0.3], see (6.3). See Sections 5,6 for
justification on the form of the equation and meaning of ξ.

Recall that, if λ1 ≥ λ2 ≥ . . . are the Lyapunov exponents of the system, and
the system is dissipative (the sum of all Lyapunov exponents is negative), dimKY

is defined as follows:

Let k :

k∑

i=1

λi ≥ 0 , but

k+1∑

i=1

λi < 0 . Then dimKY = k +

∑k
i=1 λi

|λk+1|
.

For example, if the trajectory is following an attracting periodic orbit, then λ1 = 0,
λ2 < 0, and dimKY = 1.

In Figure 1, we show a plot of dimKY against ξ, while in Figure 2 we show a
plot of λ2 against ξ. For plotting purposes, the values of ξ have been rescaled as
106ξ−299, 000. For later reference, we notice that the value ξ = 0.02991 corresponds
to an abscissa of 100 in the plots below.

These figures were obtained performing a 16 modes truncation of the Fourier ex-
pansion of the KSE, integrating the nonlinear system and computing the Lyapunov
exponents up to time 100, after having passed the initial transient for the trajectory
and having settled on the attractor.

Based on these Figures, we see that the trajectories either move on a chaotic at-
tractor with dimKY slightly larger than 2, or on an attracting periodic orbit. Notice
that we have λ2 ≈ 0 on the chaotic attractor, while λ2 < 0 on the periodic orbit.
These are nontrivial computations, since there are several periodic windows within
the given range of ξ-values and an exhaustive search has not been attempted. Fur-
thermore, there are values of ξ for which we are not confident that our computations
are sufficiently accurate; e.g., for abscissas between 850 and 900 in the plots. How-
ever, the performed computations betray well the bifurcation scenario. Moreover,
our results confirm (see [6]) that at the value ξ = 0.02991 there is chaotic behavior.
This is the value on which we will focus in Section 6.

It is important to remark that, in spite of the chaotic dynamics, the Lyapunov
exponents are often robust quantities and can be reliably computed. For this to be
true, one basically needs that the underlying linearized system enjoys the property
of integral separation; we review this in Section 4. For example, in [10], for the
well known Lorenz system, this property was verified to hold. In the present work,
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Figure 1. Kaplan-Yorke dimension of attractor, versus ξ.
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Figure 2. Second Lyapunov exponent λ2, versus ξ.

we will infer that the property of integral separation also holds for the KSE at a
particular value of the parameter; the “abscissa 100” in the Figures above.

This paper is organized as follows. We begin with background on inertial mani-
fold, followed by C1 convergence results. Then, after background on the computa-
tion of Lyapunov exponents and the error analysis developed in [11, 12, 14], we give
our main theorem quantifying the error in the Lyapunov exponents (or Sacker-Sell
spectrum). The error in the Lyapunov exponents is based upon the error in the
QR techniques, the magnitude of the upper triangular R-factors, the error in the
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perturbed linear variational problem, and the degree to which the given linearized
system is integrally separated. To illustrate our analysis, we give numerical results
with Galerkin and nonlinear Galerkin truncations for the Kuramoto-Sivashinsky
equation with periodic boundary conditions.

We verify that Lyapunov exponents of this dissipative PDE can be accurately
computed by using a good approximation to the inertial manifold. This is not to
imply that this is the most efficient means to do so. Indeed, to compute the manifold
accurately requires much more work than using an accurate Galerkin truncation
with more modes. It is the error analysis that benefits from the reduction of system
size brought by the inertial manifold.

2. Background on Inertial Manifolds. We consider an evolutionary equation
in a Hilbert space H

du

dt
+Au = f(u) , u ∈ H . (2.1)

The linear operator A has a complete set of eigenvectors w1, w2, w3, . . . associated
with a sequence of positive eigenvalues µ1, µ2, µ3, . . ., defining projectors Pn onto
the span of {w1, . . . , wn}, and the function f : G → H is globally Lipschitz

|f(u) − f(v)|H ≤ `f |u− v|G, ∀ u, v ∈ H , (2.2)

where G is a subspace of H (with perhaps a different norm). Under certain further
assumptions, for large enough n, an inertial manifold M for (2.1) can be realized
as the graph of a function Φ : PnH → (I − Pn)H . The inertial form

dp

dt
+Ap = Pnf(p+ Φ(p)) , p ∈ PnH , (2.3)

captures all the long-time behavior of (2.1).
For the sake of clarity, we emphasize that (2.3) is a finite dimensional system, of

dimension n.
As in [38] we assume there holds an exponential dichotomy

‖e−tAPn‖L(H,H) ≤ K1e
−µnt, ∀ t ≤ 0,

‖e−tAPn‖L(G,H) ≤ K1µ
α
ne

−µnt, ∀ t ≤ 0,
(2.4)

‖e−tA(I − Pn)‖L(H,H) ≤ K2e
−µn+1t, ∀ t ≥ 0,

‖e−tA(I − Pn)‖L(G,H) ≤ K2(t
−α + µα

n+1)e
−µn+1t, ∀ t > 0,

(2.5)

where K1,K2 ≥ 1, 0 ≤ α < 1, and ‖ · ‖L(G,H) is the operator norm from G to H .
The critical assumption is that the spectral gap condition

µn+1 − µn > 3`fK1K2[µ
α
n + (1 + γα)µα

n+1], , (2.6)

where

γα =

{∫ +∞

0 e−rr−αdr, if 0 < α < 1,

0, if α = 0,

holds for some n ∈ N.
If (2.6) holds, one can choose σ such that

µn + 2`fK1µ
α
n+1 < σ < µn+1 − 2`fK1K2(1 + γα)µα

n+1. (2.7)

This σ is used to define the Banach space

Fσ = {ϕ ∈ C ((−∞, 0], E) ; |ϕ|Fσ
= sup

t≤0
eσt|ϕ(t)|H <∞}.
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A trajectory on the inertial manifold can be found as the fixed point ϕ = ϕ(p) of a
mapping T (·,p) : Fσ → Fσ given by

T (ϕ,p)(t) = e−tAp−
∫ 0

t

e−(t−s)APnf(ϕ(s))ds

+

∫ t

−∞

e−(t−s)A(I − Pn)f(ϕ(s))ds .

(2.8)

The inertial manifold M = graphΦ is the collection of all such trajectories, where
Φ : PnH → (I − Pn)H is defined by the fixed point ϕ of (2.8),

Φ(p) = (I − Pn)ϕ(p)(0), ∀ p ∈ PnH.

The spectral gap condition (2.6) ensures not only that T has a contraction rate

θn,σ =
`fK1µ

α
n

σ − µn
+
`fK2(1 + γα)µα

n+1

µn − σ
< 1 , (2.9)

but also that the resulting manifold is exponentially tracking, i.e. corresponding to
any initial condition u0 ∈ H there exists a particular solution on the manifold, to
which the trajectory through u0 is attracted at an exponential rate.

The mapping T was discretized in [37] by replacing the function space Fσ with

F̃0 = {ψ : (−∞, 0] → H ;ψ piecewise constant w/ finite number of discontinuities} .
Given a time step τ > 0, number of steps N ∈ N, and base point p0 ∈ PnH, a
mapping T N

τ : F̃0 × PE → F̃0 is defined for k = 0, 1, . . . , N by

T N
τ,0(ψ, p)(t) = ekτAPnp−

∫ 0

−kτ

e−(−kτ−s)APnf(ψ(s))ds

+

∫ −kτ

−∞

e−(−kτ−s)A(I − Pn)f(ψ(s))ds,

(2.10)

for t ∈ (−(k + 1)τ,−kτ ] , if k < N , or t ∈ (−∞,−Nτ ] , if k = N . Since ψ is
piecewise constant on intervals, the integrals can be calculated exactly, and are thus
reduced to summations over the intervals. It was shown in [21] that an adaptation
of (2.10) to handle the general center manifold case can be evaluated in a recursive
manner. These recursion formulas are explicitly stated for the special case of an
inertial manifold in the appendix of this paper.

The mapping in (2.10) is shown to be a contraction in [37] under the same spectral
gap condition as in (2.6). Starting with

ϕ0(p)(t) = p , ∀ t ≤ 0 , (2.11)

and simultaneously increasing N and decreasing τ , an explicit sequence of approxi-
mating piecewise constant trajectories ϕj(p) is generated which converges to ϕ(p),
the fixed point of (2.8). Specifically, for sequences N0 < N1 < N2 < · · · and
τ0 > τ1 > τ2 > · · · Picard iteration is carried out to produce

ϕj(p) = T Nj

τj ,0(ϕ
j−1(p), p) .

This, in turn defines functions

Φj(p) = (I − Pn)ϕj(p)(0), ∀ p ∈ PnH ,

whose graphs are manifolds converging to the inertial manifold.
It was shown in [38] that if f is C1,ν , i.e. there exists a constant hDf such that

‖Df(u1) −Df(u2)‖L(G,H) ≤ hDf |u1 − u2|νH ,
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then Φ is also C1,ν so there exists a constant hDΦ such that

‖DΦ(p1) −DΦ(p2)‖L(PH,H) ≤ hDΦ|p1 − p2|νH .

In fact the differential DΦ can be found as the fixed point of another contraction
mapping

T1(∆)(t) = e−tAP −
∫ 0

t

e−(t−s)PnDf(ϕ(s))∆(s)ds

+

∫ t

−∞

e−(t−s)A(I − Pn)Df(ϕ(s))∆(s)ds

(2.12)

on the Banach space

F1,σ = {∆ ∈ C ((−∞, 0],L(PH,H)) : ‖∆‖F1,σ
= sup

t≤0
eσt‖∆(t)‖L(PnH,H) <∞}.

3. Error in the Linear Variational Equation. As mentioned in [37], if f ∈ C1,ν

the convergence Φj → Φ can be shown to be C1, and the rate estimated.

Proposition 3.1. In addition to (2.2), (2.4), and (2.5), suppose that

f ∈ C1,ν and ‖APn‖L(H,PnH) ≤ K3µn , (3.1)

that
µn+1 − 3`fK2(1 + γα)µα

n+1 > (1 + ν)(µn + 3`fK1µ
α
n) , (3.2)

and that {τj} and {Nj} are chosen so that

0 < τj ≤ c1 (γθn,σ)
νj ∀j ∈ N , (3.3)

where θn,σ is as in (2.9), and
Njτj ≥ c2j (3.4)

for some c1, c2 > 0, some 0 < γ < 1, and some σ satisfying (2.7). Then

d(Φj ,Φ) = sup
p∈PnH

|Φj(p) − Φ(p)|H
1 + |p|H

≤ c3e
−c4j , (3.5)

d(DΦj , DΦ) = sup
p∈PnH

‖DΦj(p) −DΦ(p)‖L(PH,H)

1 + |p|H
≤ c5e

−c4j , (3.6)

for suitable constants c3, c4, and c5.

Proof. For ψ ∈ F̃0, ∆ ∈ F̃1 where

F̃1 = {∆ : (−∞, 0] → L(PH,H) : ∆ piecewise const. w/ finite no. of discontinuities} .
define for k = 0, 1, . . . , N

T N
τ,1(ψ,∆)(t) = ekτAPn −

∫ 0

−kτ

e−(−kτ−s)APnDf(ψ(s))∆(s)ds

+

∫ −kτ

−∞

e−(−kτ−s)A(I − Pn)Df(ψ(s))∆(s)ds,

(3.7)

for t ∈ (−(k + 1)τ,−kτ ] , if k < N , or t ∈ (−∞,−Nτ ] , if k = N . As in [38], it is
easy to verify that

T N
τ = (T N

τ,0, T N
τ,1)

maps F̃0 × F̃1 to itself. The convergence in (3.5) was proved in [37] using the
mapping T N

τ,0. To prove the convergence of the second component, i.e. (3.6), follow
a similar argument, except that in the analog of Lemma 5.2 in [37], use the Hölder
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continuity of DΦ instead of the Lipschitz continuity of Φ. The effect is that while
for fixed n, Lemma 5.3 in [37] amounts to

|ϕ(p) − T N
τ,0(ψ, p)|F0,σ

≤ θn,σ |ϕ(p) − ψ|F0,σ
+O(τ + e−c4Nτ ) ,

we have for the differential

‖∂pϕ(p) − T N
τ,1(ψ,∆)‖F1,σ

≤ θn,σ‖∂pϕ(p) − ∆‖F1,σ
+O(τν + e−c4Nτ ) .

Consider the linear variational equation for (2.3) along a solution trajectory
p(t, p0). That is, we take p = p(t, p0)+ v, v ∈ PnH , and linearize along p(t, p0). We
express the variational problem as

dv

dt
= C(t)v = [−A+D(Pnf)(p+ Φ(p))] v , p = p(t, p0) . (3.8)

Again, we stress that (3.8) is a finite dimensional system, and –in the context of
(3.8)– the operator C can be unambiguously identified with the matrix associated
to this finite dimensional system.

Now consider the approximate inertial forms

dp̃

dt
+Ap̃ = Pnf(p̃+ Φj(p̃)) , p̃ ∈ PnH , (3.9)

along with its linear variational equation (w ∈ PnH)

dw

dt
= C̃(t)w =

[
−A+D(Pnf)(p̃+ Φj(p̃))

]
w , p̃ = p̃(t, p̃0) . (3.10)

Theorem 3.2. The matrices in the associated linear variational equations (3.8),
(3.10) satisfy

C̃(t) = C(t) +E(t) (3.11)

with

‖E(t)‖ ≤b1
[
(1 + `Φ)|p− p̃|H + c3e

−c4j(1 + |p̃|H)
]ν

+b2
[
c5e

−c4j(1 + |p̃|H) + hDΦ|p̃− p|νH
]

=: η ,
(3.12)

where

b1 =hDf (1 + hDΦ|p|νH + ‖DΦ(0)‖L(PnH,H))

b2 =hDf [|p̃|H + c3e
−c4j + `Φ|p̃|H ]ν + ‖D(Pnf)(Φ(0))‖L(G,H)

Proof. Write the difference of C and C̃ as

E =D(Pnf)(p̃+ Φj(p̃))(I +DΦj(p̃)) −D(Pnf)(p+ Φ(p))(I +DΦ(p))

=E1 +E2

where

E1 =
[
D(Pnf)(p̃+ Φj(p̃)) −D(Pnf)(p+ Φ(p))

]
(I +DΦ(p))

E2 =D(Pnf)(p̃+ Φj(p̃))
[
DΦj(p̃) −DΦ(p)

]
.

Estimate E1 as

‖E1‖ ≤ hDf

[
|p− p̃|H + |Φ(p) − Φ(p̃)|H + |Φ(p̃) − Φj(p̃)|H

]ν

×(1 + ‖DΦ(p) −DΦ(0)‖L(PnH,H) + ‖DΦ(0)‖L(PnH,H))

≤ hDf

[
(1 + `Φ)|p− p̃|H + c3e

−c4j(1 + |p̃|H)
]ν

×(1 + hDΦ|p|νH + ‖DΦ(0)‖L(PnH,H)) ,
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and E2 as

‖E2‖ ≤
(
‖D(Pnf)(p̃+ Φj(p̃)) −D(Pnf)(Φj(0))‖L(G,H) + ‖D(Pnf)(Φj(0))‖L(G,H)

)

×
[
‖DΦj(p̃) −DΦ(p̃)‖L(PnH,H) + ‖DΦ(p̃) −DΦ(p)‖L(PnH,H)

]

≤
(
hDf |p̃+ Φj(p̃) − Φ(p̃) + Φ(p̃) − Φ(0)|νH + ‖D(Pnf)(Φj(0))‖L(G,H)

)

×
[
c5e

−c4j(1 + |p|H) + hDΦ|p̃− p|νH
]
.

The smoother f is, the larger ν can be taken, and the smaller is the bound on
E. On the other hand, the larger ν is taken, the harder it is to satisfy the stronger
gap condition in (3.2), perhaps forcing one to use a manifold of higher dimension.
In our application to the Kuramoto-Sivashinsky equation f is actually analytic, so
any ν ∈ (0, 1] may be considered. Moreover, in the case of the KSE, f(0) = 0 and
Df(0) = 0, so that Φ(0) = 0 and DΦ(0) = 0 which simplifies the expressions for b1,
b2.

4. Error in Lyapunov Exponents by Discrete QR Technique. In this sec-
tion we give a result on the error in the Lyapunov exponents associated to the linear
variational problem (3.8), when the Lyapunov exponents are approximated by the
so-called discrete QR technique, a popular approach to approximate Lyapunov ex-
ponents of linear time dependent systems. In our analysis, we will account for the
following sources of errors: (i) The error due to having the perturbed variational
problem (3.10), rather than the exact variational problem (3.8), and (ii) The er-
ror due to the impossibility of solving exactly a linear variational problem itself,
regardless of whether it is the true or the perturbed one.

The source of error in (ii) is already present when trying to compute Lyapunov
exponents of linear, finite dimensional systems. Instead, the source of error in (i) has
several contributions which are specific to the problem at hand. Namely: the error
due to the infinite dimensional reduction and the finite value of j in the approximate
inertial manifold procedure as well as the error in the numerical approximation of
the trajectory p(t, p0). In previous works, we already examined the error of which
in (ii) (see [11, 12, 14]), here we will incorporate in the analysis also the source of
error from (i).

Before presenting our main result, Theorem 4.1, we give some background on
Lyapunov exponents and the discrete QR method. We remark that our result will
be a result on the error in the Lyapunov exponents associated to linearization about
a specific trajectory; whether or not these exponents are independent (in a mea-
sure theoretical sense) of the specific trajectory is the domain of the Multiplicative
Ergodic theorem, see [4], and this issue will not be considered here.

4.1. Lyapunov exponents and discrete QR technique. Consider the time
dependent, homogeneous linear ODE with piecewise continuous coefficient matrix
function (see (3.8))

v̇ = C(t)v . (4.1)

The idea behind QR techniques is to determine an orthogonal change of variables,
Q, such that the coefficient matrix function C(·) in (4.1) is brought into upper

triangular form B(·): B(t) := QT (t)C(t)Q(t) − QT (t)Q̇(t), for all t. Suppose we
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have this Q, and the new triangular system, and let R denote an upper triangular
fundamental matrix solution for it, with positive diagonal entries:

Ṙ = B(t)R. (4.2)

[It is well understood that Q and R are the factors in the QR-factorization of a
fundamental matrix solution V of (4.1).]

Then, stable Lyapunov exponents are recovered (see Theorem 6.2 of [13]) from

λi = lim sup
t→∞

1

t
log

(
Rii(t)

)
≡ lim sup

t→∞

1

t

∫ t

0

Bii(s)ds , i = 1, . . . , n . (4.3)

In [13], it was shown that (4.3) does indeed give the Lyapunov exponents if the
Lyapunov exponents are continuous with respect to perturbations in the coefficient
matrix function of (4.1), that is if they are stable. Formally, the Lyapunov expo-
nents λ1 ≥ · · · ≥ λn of (4.1) are called stable if “for any ε > 0, there exists δ(ε) > 0
such that supt∈R+ ||F (t)|| < δ(ε) implies

|λi − λ̂i| < ε, i = 1, . . . , n, (4.4)

where the λ̂i’s are the (ordered) Lyapunov exponents of the perturbed system v̇ =
[C(t) + F (t)]v”.

If the Lyapunov exponents are distinct, then the exponents are stable (see [1]) if
and only if a fundamental matrix solution V is integrally separated. V is integrally
separated if for i = 1, . . . , n− 1, there exist ã > 0 and 1 ≥ d̃ > 0 such that

|V (t)ei|
|V (s)ei|

· |V (s)ei+1|
|V (t)ei+1|

≥ d̃eã(t−s) , (4.5)

for all t, s : t ≥ s ≥ 0, where | · | = | · |Rn , ‖ · ‖ = ‖ · ‖L(Rn,Rn), and ei is the standard
unit basis vector. Note that integral separation (4.5) can be rephrased in terms of
integral separation of the diagonal coefficients of the upper triangular B:

∫ t

s

[
Bii(τ) −Bi+1,i+1(τ)

]
dτ ≥ a(t− s) + ln(d), (4.6)

where a > 0 and 0 < d ≤ 1, for all t, s : t ≥ s ≥ 0. This is a consequence of the
fact (see Property 5.3.2 of [1]) that integral separation is preserved under Lyapunov
transformations and results (see [35, 36, 10, 13]) that the upper triangular system

(4.2) is integrally separated if and only if the diagonal subsystem Ṙ = diag(B(t))R

is integrally separated. We emphasize that the constants ã and d̃ in (4.5) and the
constants a and d in (4.6) need not agree.

The discrete QR technique attempts finding Q and R through the QR factor-
ization of the fundamental matrix solution by progressively factoring transition
matrices, as explained below.

Say, we want the QR factorization of V (tk) at tk, k = 0, 1, 2, . . ., with t0 = 0. At
any such point tk, we can write

V (tk) = V (tk, tk−1) . . . V (t2, t1)V (t1, 0)V0 , (4.7)

where for j = 1, 2, . . . , k,

V̇ (t, tj−1) = C(t)V (t, tj−1) , V (tj−1, tj−1) = I , tj−1 ≤ t ≤ tj . (4.8)

Now, let V0 = Q(t0)R(t0), where Q(t0) ∈ R
n×n is orthogonal and R(t0) ∈ R

n×n is
upper triangular with positive diagonal entries. Then, for j = 1, 2, . . . , k, recursively
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consider

Ψ̇(t, tj−1) = C(t)Ψ(t, tj−1) , Ψ(tj−1, tj−1) = Q(tj−1)
and factor Ψ(tj , tj−1) = Q(tj)R(tj , tj−1) ,

(4.9)

where Q(tj) are orthogonal and R(tj , tj−1) are upper triangular with positive diag-
onal. Then, we have the QR factorization of V (tk)

V (tk) = Q(tk)R(tk, tk−1) . . . R(t2, t1)R(t1, t0)R(t0) . (4.10)

Thus,

R(tk) =
( 1∏

j=k

R(tj , tj−1)
)
R(t0) . (4.11)

To access the diagonal of R(tk), one can simply monitor the diagonal entries of the
factors R(tj , tj−1) so that (see (4.3))

1

tk
log

(
Rii(tk)

)
=

1

tk

( 1∑

j=k

logRii(tj , tj−1) + logRii(t0)
)
. (4.12)

4.2. Error Analysis. In the above description of the discrete QR method, we
contemplated having the linear variational equation for the exact solution on the
inertial manifold, cf. (3.8) and (4.8), as well as being able to obtain the exact
transition matrices V (tj , tj−1). In reality, one cannot expect either to hold true.
As a consequence, in a numerical realization of the QR-method, rather than the
QR-factorization of V (tk) we will actually compute the QR-factorization of another
matrix, call it Vk. To see more precisely what Vk is, let us reason as follows.

First, we cannot possibly have the true variational problem (4.8), due to trunca-
tion in the inertial manifold approximation and error in the numerical integration
of the nonlinear differential equation. Thus, we will attempt finding transition
matrices for a perturbed variational problem. That is, we will have a perturbed
variational equation (see (3.10)) corresponding to an approximation of a nearby
locally exact solution to the nonlinear equation (this may be obtained, for instance,
by a shadowing result; see [11] Theorem 3.18)

ẇ = [C(t) +E(t)]w, Ẇ (t, tj) = [C(t) +E(t)]W (t, tj), W (tj , tj) = I. (4.13)

[Above, the approximation could be a continuous extension of the time discretization
scheme employed.]

Second, since we cannot solve for the transition matrices W (t, tj)’s exactly, we
will actually compute

Vk = X(tk, tk−1) . . . X(t2, t1)X(t1, t0)X0 , (4.14)

where the matrices X(tj , tj−1) are approximations to W (tj , tj−1), j = 1, . . . , k.
Letting Q(t0) = Q0, and progressively setting

X(tj , tj−1)Qj−1 = QjRj , j = 1, . . . , k , (4.15)

the numerical realization of the discrete QR method will yield the QR decomposition
of an approximate fundamental matrix solution:

Vk = QkRkRk−1 . . . R2R1R(t0) , (4.16)

as compared with the QR decomposition of the exact fundamental matrix solution
(4.10).
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The following theorem characterizes the error in the Lyapunov exponents due to
the perturbation in the linear variational equation and the error in approximating
transition fundamental matrix solutions.

Theorem 4.1. Consider the exact linear variational equation (4.8) with corre-
sponding QR factorization of its fundamental matrix solution (4.10) and the numer-
ically computed QR factorization (by the discrete QR method) of the perturbed linear
variational equation (4.13) given by (4.16). If supt ||E(t)|| ≤ η (see (3.12)), local
fundamental matrix solutions are approximated so that ||X(tj , tj−1)−W (tj , tj−1)|| ≤
TOL, and for ∆tj = tj+1 − tj ,

[TOL+∆tj ·η+e||C||∆tj ( sup
0≤t≤∆tj

||X(tj +t, tj)||+TOL)]·[ min
1≤i≤n

(1, Rii(tj+1, tj))]
−1 < 1,

(4.17)
then by the numerical realization of the discrete QR method one computes the fac-
torization

Vk = Q(tk)R̃(tk) ,

where Q(tk) is the exact orthogonal factor of (4.10), and the factor R̃ satisfies a
perturbed triangular problem

˙̃R = [B(t) + F (t)]R̃, sup
t

||F (t)|| ≤ δ, (4.18)

where F here is not necessarily triangular, and δ := supj ωj where

ωj ≤ Nj [TOL+∆tj ·η+e||C||∆tj( sup
0≤t≤∆tj

||X(tj+t, tj)||+TOL)] =: Nj ·||Ej+1|| (4.19)

and Nj is a function of the non-normality in the computed upper triangular factor
Rj and may be bounded as in Theorem 3.12 of [11].

Next, suppose there exists Kij such that

Kij ≥
∫ t

0

e−
R

t

τ
(Bii(r)−Bjj(r))drdτ, i < j and Kij = Kji, i > j . (4.20)

Let
κij = sup

t
|Bij(t)|, i ≤ j, (4.21)

and define αij recursively for |i − j| = n − 1, |i − j| = n − 2, . . . , |i − j| = 1, such
that

αij > 1 +

n∑

k=j+1

κjkKikαik +

i−1∑

k=1

Kjkαjkκki, for i < j, and αij = αji, for i > j .

(4.22)
Set

ω
(ij)
+ := (

√
(a

(ij)
1 )2 − 4a

(ij)
0 a

(ij)
2 − a

(ij)
1 )/(2a

(ij)
2 ), ω+ := min

i,j
ω

(ij)
+ , (4.23)

where a
(ij)
0 , a

(ij)
1 , a

(ij)
2 are defined as follows:

a
(ij)
0 = 1 − αij +

i−1∑

l=1

κliαjlKjl +

n∑

m=j+1

κjmαimKim . (4.24)
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For βij := αijKij ,

a
(ij)
1 =

[
2κjj

n∑

k=j+1

βikβjk +
∑

l6=i,j

κllβlj(βli + βil)
]

+
[ n∑

l=1,l6=j

n∑

m=l+1,m6=i

βjlβimκlm +

j−1∑

k=1,k 6=i

βik(

n∑

m=j+1

κjmβkm +

k−1∑

l=1

βjlκlk)

+

n∑

k=j+1

βik(

n∑

m=k+1

κkmβjm +

j−1∑

l=1

βklκlj)
]
+

n∑

k=1,k 6=i,j

βik

(4.25)
and

a
(ij)
2 =

[
βij{κii(β

2
ij + 2

n∑

k=j+1

β2
ik) + κjj

n∑

k=1,k 6=j

β2
jk} +

∑

l6=i,j

κllβlj

n∑

k=1,k 6=i,j,l

βikβlk

]

+
[ j−1∑

k=1,k 6=i

βik

n∑

l=1,l6=j

n∑

m=l+1,m6=k

βjlβkmκlm

+

n∑

k=j+1

βik

n∑

l=1,l6=k

n∑

m=l+1,m6=j

βklβjmκlm

]

+
[ n∑

k 6=j,k=1

β2
jk +

n∑

k 6=i,k=1

β2
ik +

n∑

(l,m)6=(j,i),l,m=1

βljβmi

]
. (4.26)

If δ < ω+, there exists an orthogonal change of variables Q̃ that brings B+F to upper

triangular such that |Q̃ij(t)| ≤ ρij := αijKijδ for all t ≥ 0 and all i, j = 1, . . . , n,
i 6= j. Furthermore, the difference in the exact and computed Lyapunov exponent is

|λc
i − λi| ≤ δ +

∑

k 6=i

ρ2
ikγki +

i−1∑

k=1

ρkiκki +
n∑

k=i+1

ρkiκik +
n∑

j=1,j 6=i

n∑

k=j+1,k 6=i

ρjiκjkρki

(4.27)
where γij = supt |Bii(t) −Bjj(t)| and κij is defined in (4.21).

Proof. For the first part of the proof, first use the Gronwall argument on page 83
of [20], so that

||V (tj+1, tj) −X(tj+1, tj)|| ≤ TOL+ ||V (tj+1, tj) −W (tj+1, tj)||
≤ TOL+ ∆tj · η
+e||C||∆tj(sup0≤t≤∆tj

||X(tj + t, tj)|| + TOL).

(4.28)
Then apply Theorem 3.1 of [11]. If (4.17) is satisfied, see also “Assumption 3.5 of
[11],” then we apply Theorem 3.12 of [11] to obtain the bound on the perturbation
of the triangular factor.

For the second part of the proof, apply Lemma 4.1 of [14], under the assumption
of integral separation. If δ < ω+, then by [14, Lemma 4.1] there exists an orthogonal

change of variables Q̃(t) with Q̃(0) = I that brings B(t) +F (t) to upper triangular

with |Q̃ij(t)| ≤ ρij for i 6= j and t ≥ 0. To establish (4.27) follow the proof of
Theorem 3.2 in [12] and use the fact that

(Q̃TBQ̃)ii =

n∑

j=1

n∑

k=j+1

Q̃jiBjkQ̃ki. (4.29)
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Remark 4.2. We emphasize that Theorem 4.1 is an error analysis result for the
Lyapunov exponents of an infinite dimensional system, and this is a novelty as far
as we could determine. The inertial manifold reduction is absolutely essential in
making sure that the bound (4.17) can be achieved. In particular, the smaller is
the dimension n of the system (3.8)-(4.8), the less demanding is the requirement
posed by the term [min1≤i≤n(1, Rii(tj+1, tj))]

−1 in (4.17), since –for n large– the
negative eigenvalues of the linear part of the problem make the diagonal terms Rnn

approach 0.

Remark 4.3. An important point is that the argument in [11] may be phrased so
that the exact solution is a perturbation of the computed solution as opposed to
the computed solution is a perturbation of the exact solution. By considering the
exact solution as a perturbation of the computed solution, the quantities that are
necessary to bound the error in Lyapunov exponents, e.g. Kij , κij , and γij may be
obtained from the computed solution. In addition, using Theorems 3.11 and 3.12
of [11] we have the following bounds for the terms in (4.19),

Nj · ||Ej+1|| ≤ ||Lj || +O(||Ej+1||2)
where entry-wise

|Lj | ≤
[
1 − (δjνj)

n

1 − δjνj

]2

|Fj+1|,

the (p, q)-entry of |Fj+1| is bounded by

(|Fj+1|)p,q ≤ ||Ej+1||/ min
i=p,q

(Rj)ii,

δj = min
1≤p≤n

1

min(1, (Rj)pp)
, and νj = ||Rj − diag(Rj)||.

If (see (4.6)) for i < j, there exists aij > 0 and dij ≥ 0 such that
∫ t

s

[
Bii(τ) −Bjj(τ)

]
dτ ≥ aij(t− s) − dij , t ≥ s ≥ 0, (4.30)

then we have for Kij in (4.20), Kij ≤ edij/aij .
We note that one is able to obtain error bounds on approximated Lyapunov ex-

ponents if the size of elements in the coefficient matrix B as characterized by the κij

are not too large as compared to the degree to which the problem is integrally sep-
arated as characterized by the Kij and as compared to the size of the perturbation,
δ.

Remark 4.4. Similar results may be obtained in the case of stable but not distinct
Lyapunov exponents by employing Theorems 4.3, 4.4, and 4.5 in [12] in place of
Lemma 4.1 of [14] in the proof.

Remark 4.5. Since the bounds used to establish (4.27) are uniform in t, the same
bound holds for the approximation of the endpoints of the Sacker-Sell spectrum

ΣED =
m⋃

i=1

[αi, βi],

αi = lim inf
t→∞

{
inf
t0

1

t

∫ t0+t

t0

Bii(s)ds

}
, (4.31)
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βi = lim sup
t→∞

{
sup
t0

1

t

∫ t0+t

t0

Bii(s)ds

}
. (4.32)

Remark 4.6. Theorem 4.1 establishes an error bound when the Lyapunov expo-
nents are approximated using the discrete QR method as defined by (4.15). An
alternative technique is to employ the so called continuous QR technique in which
instead of approximating the transition fundamental matrix solutions, we approxi-
mate

Q̇ = Q(t)H(Q,C) , Q(0) = Q0 , (4.33)

where we have set H := QT (t)Q̇(t), with entries

Hij(t) =





(QT (t)C(t)Q(t))ij , i > j,

0, i = j,

−(QT (t)C(t)Q(t))ji , i < j .

(4.34)

So, if Q is known, then R satisfies the transformed system

Ṙ = B(t)R , R(0) = R0 , (4.35)

where
B(t) := QT (t)C(t)Q(t) −QT (t)Q̇(t) , (4.36)

and B is upper triangular by the way that H has been defined.
For the approximation of (4.33) a theorem analogous to Theorem 4.1 holds by

replacing in the proof the use of Theorem 3.12 of [11] with Theorem 3.16 of [11].

5. The Kuramoto-Sivashinsky Equation. Next, we prepare to apply Theorem
4.1 to the Kuramoto-Sivashinsky equation. A standard form for the KSE is

∂u

∂t
+
∂4u

∂x4
+
∂2u

∂x2
+ u

∂u

∂x
= 0, (x, t) ∈ R × R

+, u(x, 0) = u0(x), x ∈ R, (5.1)

subject to periodic boundary conditions u(x, t) = u(x + L, t), L > 0. Though
linearly unstable for L > 2π the KSE is known to be dissipative. This was first
shown in [32] in the invariant subspace of odd functions, and later in the general
periodic case in [7, 17]. In this paper we restrict to the odd subspace, both to cut
the dimension of the inertial manifold in half, and compare to computations in [6].

The KSE can be written in the form of (2.1) by setting

Au = D4u+D2u, f(u) = −uDu . (5.2)

The eigenvalues of the linear part are

µk =

(
2π

L
k

)4

−
(

2π

L
k

)2

, k = 1, 2, . . .

corresponding to a complete set of orthonormal eigenfunctions in L2
odd

wk(x) =

√
2

L
sin(

2π

L
kx).

We use H1
odd (respectively, L2

odd) to denote the subspace of the Sobolev space
H1((−L/2, L/2)) (the space L2((−L/2, L/2))) consisting of functions which are
odd, and periodic with period L, and with the following norm and seminorm

| · | = | · |L2 | · |1 = |∇ · |L2 ,
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in L2 and H1 respectively. It is shown in [42] that the conditions (2.4) and (2.5)
hold for

G = H1
odd, H = L2

odd, (5.3)

K1 = K2 = ( 4
3 )1/4, and α = 1/4.

Since the nonlinear term in the KSE is not Lipschitz on all of H , it must be
modified outside a ball. One way to do this is to replace f with fρ where

fρ(u) = χ(|u|2H/ρ2)f(u) , χ(s) =






1, s ∈ [0, 1],
2(s− 1)3 − 3(s− 1)2 + 1, s ∈ [0, 2],

0, s > 2.
(5.4)

If ρ is taken to be the radius of the absorbing ball from rigorous estimates following
the analysis of Collet et al. [7], then the inertial form for the modified equation will
have the same global attractor. If, alternatively, ρ is chosen just large enough to
contain a particular solution trajectory, then the corresponding inertial form will
share that trajectory, as well as the linearization within the ball, but may have
nontrivial, spurious, dynamics outside the ball. Since our goal is to compute the
Lyapunov exponents for a particular chaotic trajectory, we take the latter, semi-
empirical approach in order to reduce the dimension of the manifold as much as
possible.

The modification of f in (5.4), while implementable in computations, does not
provide an inertial manifold of smallest dimension for a given given cut-off radius
ρ. A comparison of choices of modification, spaces, and method of construction was
carried out for the KSE in [22]. Of the combinations tested, one using the method
of Miklavcic [30] and the nonconstructive (Lipschitz constant preserving) extension
of Valentine (see [18]) gave the smallest dimension. This leads to the mixed-space
Lipschitz estimate

|f(u) − f(v)|−1 ≤ 1√
2
ρ
1/2
0 ρ

1/2
1 |u− v|0 ∀ u, v ∈ H1

odd with |u|1, |v|1 ≤ ρ1 , (5.5)

where ρ0 and ρ1 are the radii of balls in L2, resp. H1, containing the desired
“global” dynamics and

|u|−1 =

{
∞∑

k=1

|ûk|2
(

2πk

L

)−2
}1/2

.

This estimate in (5.5) is applied in the next section at a specific parameter value
(that effectively determines L).

6. Computational results. In this section, we illustrate how we can use Theorem
4.1 for the Kuramoto-Sivashinsky equation. More precisely, recalling that the error
bound on the Lyapunov exponents in (4.27) requires to have δ < ω+, where ω+

is defined in (4.23), we will actually estimate ω+, and from this we will be able to
infer whether or not it is possible to obtain accurate approximation of the Lyapunov
exponents (and of the Sacker-Sell intervals as well). Loosely speaking, if the value
of ω+ we obtain will be of an order of magnitude which can be realistically obtained
numerically, then we will consider having provided sufficient evidence of the fact that
the above mentioned spectral quantities can be approximated reliably, otherwise
not. With this goal in mind, this section is organized so to give insight into how we
have estimated the quantities entering in the bounds (4.23) and (4.27). In Table 3,
we summarize our end results.
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Remark 6.1. With our present understanding, we are not able to explicitly com-
pute the bound in (4.27), because of the difficulty to estimate δ. Ultimately, this
is because we do not know how to compute η in (3.12). On the other hand, all
quantities appearing in (4.23) are computable, and this will allow some indirect
error bound on the Lyapunov exponents as well. For example, although we are not
able to directly compute ρij = αijKijδ, which enters in (4.27), we can compute
ρij/δ and thus, in case in which δ < ω+, we can effectively estimate (within O(ω+))
a weighted version of (4.27), namely |λc

i − λi|/δ.
6.1. Kuramoto-Sivashinsky once more. Our computational experiments are
done on the equation

∂ũ

∂τ
+ 4

∂4ũ

∂y4
+ ϑ

[∂2ũ

∂y2
+ ũ

∂ũ

∂y

]
= 0 , (6.1)

with ũ(y, t) = ũ(y + 2π, t), and ũ(y, t) = −ũ(−y, t). This is equivalent to the
standard form in (5.1) under the change of variables

u(t, x) = lũ(
l4

4
t, lx) where l = 2π/L , ϑ = L2/π2 . (6.2)

To compare to the Lyapunov exponents reported in [6] we perform another change
of variables

−2w(s, y) = ũ(ξs/4, y), ξ =
4

ϑ
.

so that
ws = (w2)y − wyy − ξwyyyy . (6.3)

The effect of the time re-scaling is that the Lyapunov exponents of equation (6.3)
are those for (6.1) divided by ϑ. All computations are done at ξ = 0.02991, ϑ =
133.73454, which is one of the parameter values considered in [6, 40].

6.2. Computation of Lyapunov exponents and of inertial manifold. Here
we show the outcome of several computations. The workhorse to compute the
Lyapunov exponents is the code LESNLL, which we have written. Within this code,
all computations related to the approximation of the inertial manifold are handled
through appropriate definition of the vector field.

The code LESNLL is public domain and can be downloaded from

www.math.gatech.edu/∼dieci or www.math.ku.edu/∼evanvleck

In particular, we have used the discrete QR method (IPAR(8)=4 in LESNLL), and
integration for the trajectory as well as for the local transition matrices is done using
the variable step-size 5th order Runge-Kutta scheme with local error control on the
trajectory and on the exponents (IPAR(10)=10 in LESNLL). TOL is the value of the
local error tolerance. All computations below refer to an arbitrary, but fixed, initial
condition for the trajectory. Approximation of the Lyapunov exponents is always
done after discarding an initial transient for the trajectory; typical values we have
used for the transient is an interval of length 10 (in time units of (6.3)). Finally,
an unavoidable truncation of time is required when approximating the Lyapunov
exponents. Namely, the limits in (4.3) are replaced by the finite time approximations

λi(T ) =
1

T
log

(
Rii(T )

)
=

1

T

∫ T

0

Bii(s)ds , i = 1, . . . , n .

We call T the averaging time.
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Lacking the exact Lyapunov exponents, we use those for a relatively fine Galerkin
approximation. This takes the form

dp

dt
+Ap = Pnf(p+ 0) , p ∈ PnH , (6.4)

(compare to (2.3)).
To establish how many modes constitute such an approximation, we first compare

attractors (local, not global) in Figure 3. It appears that the trajectory settles down
with n = 16 modes.
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Figure 3. Local attractors for Galerkin system (6.4) (a) M = 8,
(b) M = 10, (c) M = 12 (d) M = 16

Notation. Henceforth, we will denote by KSE(n,m) the Galerkin approximation
of the KSE (6.4) with n modes to approximate m LEs, and by KSEIM(n,m, j) the
approximation of the approximate inertial manifold (3.9), after j iterations with n
modes and m exponents. Notice that KSEIM(n,m, 0) is KSE(n,m).

6.2.1. Convergence of Lyapunov exponents. First, we show convergence of the Lya-
punov exponents for (6.4) in function n, m, the value of TOL, and the length of the
averaging time T .

Remark 6.2. We have m ≤ n and consider cases in which m < n because of the
decreased computational cost. In fact, although the linear variational equation is in
all cases of dimension n, when m < n we only compute m columns of a fundamental
matrix solution as opposed to n columns when m = n. Although Theorem 4.1 holds
in the case m = n, it was noticed in [14] that the error when m < n is no worse
then the error when m = n; still, quantifying such a result has not been pursued
and it is beyond the scope of this work.
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n in KSE(n, 4) TOL λ1 λ2 λ3 λ4

16 1.E-5 8.32E1 -2.98E-1 -7.59E2 -1.13E3
16 1.E-8 8.34E1 -2.52E-1 -7.59E2 -1.14E3
16 1.E-11 8.43E1 -6.58E-2 -7.59E2 -1.14E3
32 1.E-5 8.42E1 -1.24E-1 -7.57E2 -1.13E3
32 1.E-8 8.63E1 -1.77E-2 -7.59E2 -1.13E3
32 1.E-11 8.33E1 -9.46E-2 -7.56E2 -1.13E3

Table 1. First four Lyapunov exponents in function of TOL for
(6.4). Averaging time T = 10.

First of all, through preliminary computations with n = 16, 32, 64, it becomes
immediately apparent that the negative exponents quickly become extremely large
in magnitude, and obey the spacing of the eigenvalues of the linear part (these
are 4(2πj)4 − θ(2πj)2 for j = 1, . . . , n). As a consequence of these preliminary
computations, we infer that there is really no reason to perform extremely expensive
computations trying to track exponentially small quantities, and we will thus restrict
consideration to the cases of n = 16, 32 and m = 4 only.

In Table 1, we show convergence for the first four LEs in function of the in-
put tolerance TOL. Computations refer to T = 10, for both cases of n = 16, 32.
Exponential notation is used throughout (e.g., 1.E-5 stands for 10−5).

By looking at the results of Table 1, it is clear that the 3rd and 4th exponents
have been well approximated already on an interval of length 10. On the other
hand, the 2nd exponent (and to a lesser extent also the 1st) is more sensitive to
TOL, but most likely it is especially affected by the truncation time T (we expect
this 2nd exponent to be 0; see Figure 2).

For this reason, in Figure 4 we show plots of convergence for the first two ex-
ponents in function of the averaging time T , for both cases of n = 16, 32. These
computations were made with TOL = 1.E − 8. In the figures, the dashed line refers
to the case n = 16, the solid line to the case of n = 32.

10 20 30 40 50 60 70 80 90 100
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10 20 30 40 50 60 70 80 90 100
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−0.15
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0
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0.1

Figure 4. Approximation to λ1 (on the left) and λ2 (on the right)
in function of T for KSE(n, 4). Dashed, respectively solid, line
refers to n = 16, respectively n = 32
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We summarize this first set of results by remarking that, relatively to (6.4),
the results clearly indicate that the approximations are converging, and are fairly
insensitive to the tolerance used as well as the length of the integration interval.

Indeed, since there is less than a .5% difference between
∑4

k=1 λk, when the number
of modes is doubled from 16 to 32, and when T is increased from 10 to 100, we take
16 modes, and T = 10, as providing our reference solution.

In [6], the computed value for the first Lyapunov exponent of (6.3), using 16
modes is 0.629, that is 84.12 for (6.1). Comparing this to our result in Table
1, and realizing that there are a variety of ways to compute the exponents (e.g.,
continuous QR, discrete QR) and they are all sensitive to the tolerance (accuracy)
of the integrator and averaging time, we consider reaching essentially two digits
of agreement with the value in [6] as validating both results. This also suggests a
reasonable criterion for agreement in using an approximate inertial manifold.

6.2.2. On the inertial manifold. As far as computation of the inertial manifold, we
reasoned as follows. Suppose we take n = 8 in (3.9). We check the convergence to
the inertial manifold at 24 test points of the trajectory computed using 16 Galerkin
modes. This amounts to checking that Φj(p) → q at each test point u = p+ q, with
p = P8u, and q = (I − P8)u. By doing this, we are able to fine-tune the choice of
parameters c1, γ in (3.3) and c2 in (3.4). Indeed, to apply the algorithm to compute
Φj one must choose these parameters. It is not clear which choice gives the most
rapid convergence, but our experimentation has lead us to taking c1 = .00005 or
c1 = .00004 and c2 = 1 in

τj = c12
−j and Njτj = c2j .

We are then effectively taking γθn,σ = 2−1/ν in (3.3), and the limiting value ν = 1
in (3.4). At ξ = 0.02991 (ϑ = 133.73454) the chaotic attractor lives in a ball of
radius ρ0 = 5.07 in L2, and ρ1 = 4.28 in H1 (measured for the standard form
(5.1)). The combination of estimates involving (5.5) provides an inertial manifold
of dimension 18 at ϑ = 133.73454. In practice we can expect the algorithm to
work at an even lower dimension and find that we can compute one of dimension
8. Strictly speaking, we have not verified that the stronger gap condition holds
in the limit ν = 1, even for a manifold of dimension 18. While the computations
are guided by the rigorous estimates that guarantee convergence, as is often the
case, the expectation is that the performance of the algorithm will exceed what is
suggested by those estimates.

Phase space plots using the approximate inertial form (3.9) with n = 8 and j
from 2 to 6 are compared to our reference solution computed using 16 Galerkin
modes in Figure 5. Those for (3.9) with n = 8 and j from 7 to 9 are quite similar
to that for j = 6.

Table 2 shows the Lyapunov exponents computed using the inertial form (3.9)
with n = 8, m = 4, that is KSEIM(8, 4, j). The two digits of agreement between
(3.9) with j = 5, 6, 7, and (6.4) with n = 16, matches that between our Galerkin
results and those in [6] as well.

6.2.3. Sacker-Sell intervals. Here we approximate the end points of the Sacker-
Sell spectral intervals, (4.31) and (4.32), for both KSE and KSEIM using Steklov
averages as in [10] for H > 0 and i = 1, . . . ,m,

αH
i = inf

t

1

H

∫ t+H

t

Bii(τ)dτ, β
H
i = sup

t

1

H

∫ t+H

t

Bii(τ)dτ . (6.5)
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û2
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û2
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Figure 5. Comparison of local attractors for approximate inertial
forms with that of the Galerkin approximation: (a) (3.9), j = 2
(b) (3.9), j = 3 (c) (3.9), j = 4 (d) (3.9), j = 5 (e) (3.9), j = 6 (f)
(6.4), n = 16

j in KSEIM(8, 4, j) λ1 λ2 λ3 λ4

4 .109E3 -.517E-1 -.774E3 -.113E4
5 .106E3 .224E0 -.781E3 -.110E4
6 .774E2 -.392E-1 -.754E3 -.111E4
7 .880E2 .163E0 -.765E3 -.114E4
8 .846E2 -.148E0 -.761E3 -.114E4
9 .818E2 -.140E0 -.759E3 -.113E4

Table 2. Convergence of Lyapunov exponents for KSEIM(8, 4, j).
Averaging time T = 10, c1 = 0.00005, TOL=1.E-5.

In Figure 6 on the left we plot the re-centered Sacker-Sell intervals [αH
i −λi, β

H
i −

λi], for i = 1, . . . , 8, for computations done with the KSE(16,8) using T = 100 as
the final time and H = 1, 2, 4, in this order. What is notable is that these intervals
scale consistently as a function of i, even though the magnitude of the computed
LEs varies greatly and becomes large as i increases.

On the right of Figure 6, instead, as a measure of comparison we plot the numer-
ical approximations of the first four re-centered Sacker-Sell intervals [αH

i −λi, β
H
i −

λi], with H = 1, found from KSEIM(8,8,7) and KSE(16,8). Averaging time here is
T = 10. Endpoints for KSEIM are indicated by a star, for KSE by a circle.

Although the intervals are somewhat larger for KSEIM than for KSE, we notice
that all Sacker–Sell intervals are disjoint, which is a clear numerical indication of
integral separation.

Remark 6.3. We summarize all of the previous results by noticing that both in
terms of Lyapunov exponents and in terms of Sacker–Sell intervals, KSE(16,8) and
KSEIM(8,8,6)=KSEIM(8,8,7) give consistent results. It is further clear that the
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Figure 6. Left: Plot of [αH
j −λj , β

H
j −λj ], for j = 1, . . . , 8 andH =

1, 2, 4, in this order, with T = 100. Right: Plot of [α1
j −λj , β

1
j −λj ],

j = 1, . . . , 4, for KSEIM(8, 8, 7) and KSE(16, 8), with T = 10

problem appears to be integrally separated. Below we will indeed verify that this
is the case.

6.3. Integral Separation, Bounds on ω+ and on the Error. Several remarks
are in order about how we go about determining bounds on the Lyapunov exponents.
Working backward from (4.27) we see that the bounds are a function of ρij :=
αijKijδ (see (4.22) and (4.20)), κij := supt |Bij(t)|, and γij := supt |Bii(t)−Bjj(t)|
and hold if the perturbation is uniformly bounded in norm by δ satisfying δ < ω+.

In our computations we will find κij ≡ supt |Bij(t)| directly from the computed
solution and employ an approach to determine bounds on the Kij that is a simpli-
fication of Lemmas 4.1 and 4.2 of [28].

As before, for all t, let p(t) = Bii(t) −Bjj(t), i < j. Consider a discretization of
the interval [0, T ]:

0 = t0 < t1 < · · · < tN = T.

The proof of the following lemma is given in [14].

Lemma 6.4 (Lemma 4.4, [14]). Let ε > 0 be given. There exists ak > 0 and dk ≥ 0
such that for tk ≤ s ≤ tk+1,

∫ tk+1

s

p(r)dr ≥ ak(tk+1 − s) − dk. (6.6)

where for hk = tk+1 − tk and for

Yk = min
tk≤s≤tk+1

1

tk+1 − s

∫ tk+1

s

p(r)dr

=: min
tk≤s≤tk+1

G(s) , G(s) =
1

tk+1 − s

∫ tk+1

s

p(r)dr , (6.7)

ak =

{
εh−1

k , hkYk < ε,
Yk, hkYk ≥ ε,

dk =

{
ε− hkYk, hkYk < ε,

0, hkYk ≥ ε,
(6.8)

and
∫ T

0

e−
R

T

s
p(r)drds ≤

N−1∑

k=0,dk=0

e
−

[
PN−1

l=k+1
Xl

]
(1 − e−Ykhk)

Yk
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+
(eε − 1)

ε
·

N−1∑

k=0,ak=εh−1

k

e
−

[
PN−1

l=k+1
Xl

]

hke
−hkYk =: K(T ) (6.9)

where

Xk =

∫ tk+1

tk

p(r)dr.

The bounds (6.9) can be used to obtain bounds on the Kij ’s by setting Kij =
supk K(tk) and we employ the notation Kk = max|i−j|=k Kij .

In Table 3 we summarize the values of K1, ρ1/δ, λ1(err)/δ, and ω+ as a function
of n,m, h for Galerkin (j = 0) and nonlinear Galerkin on an interval of length 10.
Here, n and m are as usual and h is a constant stepsize used to compute the Kij via
Lemma 6.4. [In practice, our estimate of the Yk in (6.7) is done simply by setting
Yk = min

(
G(tk), G(tk+1)

)
.] In the table, we only report on K1 since it was always

the largest of the Kj ’s values. Accordingly, we report only on ρ1/δ where we recall
that ρ1 := max|i−j|=1 |Qij(t)| and this is simply the largest value of αijKij , for
|i − j| = 1. Similarly, λ1(err) is the error in the largest Lyapunov exponent, λ1,
without taking into account the quadrature error; the value λ1(err)/δ is obtained
from (4.27) in Theorem 4.1 neglecting terms proportional to δ2 in (4.27). In general,
the error in λ1 is larger than the error in the smaller exponents. Finally, it should
be emphasized that while increasing h will generally result in smaller values of Kij

which in turn lead to larger ω+ and hence applicability to larger perturbations of

size δ, the conclusion one can reach is weaker: control on the Q̃ij(t) on a mesh with
stepsize h.

What is notable is that we are able to obtain similar bounds using either the
Galerkin or the nonlinear Galerkin. Since Theorem 4.1 applies to the nonlinear
Galerkin and the computed exponents and bounds obtained are similar in both
cases, we conclude that bounds on the exponents may be obtained for δ small
enough and one should have confidence in the computed exponents obtained with
both the Galerkin and nonlinear Galerkin approximations.

7. Appendix: A recursive algorithm for Φj. Denoting

ϕj
k(p) = ϕj(p)(−kτj) , k = 0, 1, . . . , Nj ,

we can express the mapping in (2.10) as

ϕj
k(p) = ekτjAp−

∫ −`kτj−1

−kτj

e−(−kτj−s)APf(ϕj−1
`k

(p)) ds

−
`k−1∑

`=0

∫ −`τj−1

−(`+1)τj−1

e−(−kτj−s)APf(ϕj−1
` (p)) ds

+

∫ −Nj−1τj−1

−∞

e−(−kτj−s)A(I − P )f(ϕj−1
Nj−1

(p)) ds

+

Nj−1−1∑

`=`k+1

∫ −`τj−1

−(`+1)τj−1

e−(−kτj−s)A(I − P )f(ϕj−1
` (p)) ds

+

∫ −kτj

−(`k+1)τj−1

e−(−kτj−s)A(I − P )f(ϕj−1
`k

(p)) ds,

(7.1)
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(n, m, j) h K1 ρ1/δ λ1(err)/δ ω+

(16, 8, 0) 1.E-1 4.5E-2 6.3E1 3.5E5 4.5E-8

(16, 8, 2) 1.E-1 1.1E-1 1.6E2 9.0E5 6.8E-9

(16, 8, 4) 1.E-1 6.1E-2 8.9E1 5.0E5 2.3E-8

(16, 16, 0) 1.E-1 6.0E-2 2.1E2 1.2E6 4.2E-9

(16, 16, 2) 1.E-1 3.3E-2 1.2E2 6.8E5 1.2E-8

(8, 8, 0) 1.E-1 2.5E1 3.9E2 2.2E6 6.0E-17

(8, 8, 6) 1.E-1 1.7E-2 2.2E1 1.2E5 6.8E-8

(8, 8, 7) 1.E-1 5.6E-2 7.9E1 4.4E5 2.9E-8

(16, 8, 0) 1.E-2 4.0E0 5.4E4 3.0E8 6.3E-14

(16, 8, 2) 1.E-2 1.9E1 1.9E5 1.0E9 5.1E-15

(16, 8, 4) 1.E-2 1.5E1 1.5E5 8.5E8 7.7E-15

(16, 16, 0) 1.E-2 2.9E0 5.0E4 2.8E8 7.1E-14

(16, 16, 2) 1.E-2 5.2E1 8.6E5 4.8E9 2.5E-16

(8, 8, 0) 1.E-2 4.5E1 1.5E3 8.6E6 3.3E-18

(8, 8, 6) 1.E-2 9.7E0 7.2E4 4.0E8 3.4E-14

(8, 8, 7) 1.E-2 9.1E0 1.0E5 5.7E8 1.7E-14

Table 3. Values of K1, ρ1/δ, λ1(err)/δ, and ω+ for different num-
ber of modes, n, different number of computed Lyapunov expo-
nents, m, stepsize h used in the calculation of Kij for Galerkin and
nonlinear Galerkin on an interval of length 10.

where `k is a nonnegative integer defined by
{

(`k + 1)τj−1 > kτj ≥ `kτj−1, if Nj−1τj−1 > kτj ,

`k = Nj−1, otherwise.

From (2.11) we have

ϕ0
k(p) = p , for k = 0, 1, . . . , N0

The case where kτj ≥ Nj−1τj−1 is simpler, as ϕj−1 is constant over (−∞, kτj ].
This is seen by rewriting (7.1) as

Case 1. kτj < Nj−1τj−1 (within time range of previous iterate)

ϕj
k(p) = ekτjAp−A−1(e(kτj−`kτj−1)A − I)Pf j−1

`k

− S
(1)
k

+A−1e−(Nj−1τj−1−kτj)A(I − P )f j−1
Nj−1

+ S
(2)
k

+A−1(I − e−((`k+1)τj−1−kτj)A)(I − P )f j−1
`k

;

Case 2. kτj ≥ Nj−1τj−1 (beyond time range of previous iterate)

ϕj
k(p) = ekτjAp−A−1(e(kτj−Nj−1τj−1)A − I)f j−1

Nj−1

− S
(3)
k

+A−1(I − P )f j−1
Nj−1

,
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where f j
k = f(ϕj

k(p)), and

S
(1)
k = ekτjA

`k−1∑

`=0

A−1(e−`τj−1A − e−(`+1)τj−1A)Pf j−1
`

S
(2)
k = ekτjA

Nj−1−1∑

`=`k+1

A−1(e−`τj−1A − e−(`+1)τj−1A)(I − P )f j−1
`

S
(3)
k = ekτjA

Nj−1−1∑

`=0

A−1(e−`τj−1A − e−(`+1)τj−1A)Pf j−1
` .

(7.2)

Let kj be the largest integer such that kjτj < Nj−1τj−1. The summations in
(7.2) can then be written recursively as follows
for k = 1, 2, . . . , kj

S
(1)
k = eτjA


S(1)

k−1 +

`k−1∑

`=`k−1

A−1(e−`τj−1A − e−(`+1)τj−1A)Pf j−1
`


 , S

(1)
0 = 0 ,

for k = kj , kj − 1, . . . , 1

S
(2)
k−1 = e−τjA



S(2)
k +

`k∑

`=`k−1+1

A−1(e−`τj−1A − e−(`+1)τj−1A)(I − P )f j−1
`



 , S(2)
kj

= 0,

and for k = kj + 1, kj + 2, . . . , Nj

S
(3)
k = eτjAS

(3)
k−1 , S

(3)
kj

=

Nj−1−1∑

`=0

A−1(e−`τj−1A − e−(`+1)τj−1A)Pf j−1
` .

The bulk of the computational effort is in evaluating the nonlinear term f , not
the summations. The recursive form is, however, convenient for ensuring that no
evaluation of the nonlinear term is repeated for the same argument.
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