LYAPUNOV EXPONENTS OF SYSTEMS EVOLVING ON
QUADRATIC GROUPS

LUCA DIECI AND LUCIANO LOPEZ

ABSTRACT. In this paper we show some symmetry properties of Lyapunov expo-
nents of a dynamical system when the linearized problem evolves on a quadratic
group, XTHX = H, with H orthogonal. It is well understood that in this case the
exponents are symmetric with respect to the origin. Here, we give lower bounds
on the number of Lyapunov exponents which are 0, and show that some Lyapunov
exponents may have even multiplicity.

1. INTRODUCTION

Lyapunov exponents are a common tool to explore stability properties of dynam-
ical systems; e.g., see the collection of works in [3, 4, 15] and the many references
there. Given the n-dimensional system of differential equations defined for ¢t > 0:

(1.1) &= f(x), x(0) =,
the Lyapunov exponents are a characterization of the asymptotic properties of the

solution ¢’z via analysis of the linearized problem: dX/dt = f.(¢'zq)X. More
generally, we may consider the linear time varying system

(1.2) T=Alt)z, A:R" —R™".

With ® we will indicate the principal matrix solution of (1.2), that is ® = A(t)®,
®(0) = I, and with X any other fundamental matrix solution (that is, X(t) =
®(t) X (0), X(0) invertible). We assume that A is bounded and continuous.

Formally, the Lyapunov exponents associated to (1.2) may be defined as follows
(e.g., see [1, 5] and cfr. with [14]). Let X be a fundamental matrix solution of (1.2),
and let {e;} be the standard basis of R". Define the numbers \;(X), i =1,...,n,
as (in this paper, the norm is always the 2-norm)

(1.3) Ni(X) = limsupllogHX(t)eiH.
t—o0 t
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When the sum of the A\;(X) is minimized over all initial conditions X (0), the corre-
sponding fundamental solution X is called normal and the numbers \;(X), hereafter
simply X;, i = 1,...,n, are called (upper) Lyapunov exponents of the system. In
general, see [1], the Lyapunov exponents satisfy

n ‘ 1 t
(1.4) Z A; > limsup ;/0 trace(A(s))ds.

i=1 t—o0

The normal fundamental matrix solution X, or just the system (1.2), is said to be
reqular if the time average of the trace in (1.4) has a finite limit and equality holds
in (1.4). If X is regular, then the limsups in (1.3) can be replaced by ordinary
limits. Suppose that (1.2) is regular. Clearly there are at most n distinct Lyapunov
exponents. We will call Lyapunov spectrum the collection of all Lyapunov exponents
of the system, counted with their multiplicity, and indicate it with Sp(X).

It is well known that Sp(X) is unchanged under an orthogonal (time varying)
transformation of X. That is, if R = QT X, Q an orthogonal function, then Sp(R) =
Sp(X). This fact is often used in computational works (e.g., see [5, 6]), whereby
the orthogonal change of variable is used to triangularize X and thus one brings
the coefficient matrix A in (1.2) to upper triangular form, say B. Then, see [1],
regularity implies that the Lyapunov exponents are given by

1
(15) >\2: lim — B“(S)dS, 2:1,,n

To infer regularity of a given particular system is not easy. It is therefore impor-
tant that regularity is a prevalent condition in a certain measure theoretic sense.
Furthermore, since (1.2) typically arises from linearization of (1.1), the dependency
of Sp(X) on the initial condition zg of (1.1) must also be assessed. These issues are
at the heart of the theory of Oseledec. We refer to [5, 8, 12, 14] for details, here we
highlight only some of the points from these works which we will use.

Suppose that ¢', the flow of (1.1), is a flow on a smooth compact manifold M
and let p be an invariant probability measure on M (that is, u(¢*A) = u(A) for all
Borel sets A in M). The invariant measure p is called ergodic if every set invariant
under ¢' has measure 0 or 1. Let ®,, be the principal matrix solution associated
to the linearization of (1.1) along ¢'zy. We will write Sp(®,,) for the Lyapunov
spectrum (since it generally depends on zg).

Theorem 1.1. Under the above assumptions, there is a subset My of M, invariant
under ¢', and of measure 1, such that for any xo € My the following hold.

(i) ®,, is regular.
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(ii) The following limit ewists*
1 1/2
(1.6) Jim log(91, (1), (1)) .

(iii) Sp((I)xO) is given by the eigenvalues of the symmetric matriz defined by (1.6).
(iv) If p is ergodic, then Sp(@xo) is independent of xo € M.

From (1.6), we see that Sp(@xo) is given by the limits of the time averages of
the logarithms of the singular values of the principal matrix solution ®,,(¢). We
refer to [9, 10] for numerical approximation of Sp ((IDxO) exploiting this point of view.
But, regardless of whether one adopts (1.5) or (1.6) as basis of an algorithm to
approximate the Lyapunov exponents, it must be appreciated that either one of (1.5)
or (1.6) can be specialized to target the p most dominant Lyapunov exponents, for
example all the positive Lyapunov exponents of a system?. This is convenient, since
one may know before hand that the Lyapunov spectrum enjoys some symmetries.
Unarguably, the most important symmetry of the spectrum is the one with respect
to the origin. This property is well known in the symplectic case (see [5, 8, 13]).
In this work, we give some results on symmetries of Lyapunov exponents associated
to fundamental matrix solutions evolving on other quadratic groups, namely for
which XT(t)HX(t) = H, with H'H = I, for all . To be precise, in this case, we
will be able to give lower bounds on the number of singular values of X which are
identically 1 for all ¢, by looking at the distribution of eigenvalues of the matrix
H defining the quadratic group. We will further give some bounds on the number
of singular values of X which have even multiplicity. These facts, coupled with
Theorem 1.1, will translate into bounds on the Lyapunov exponents of Sp (q)mo). As
a result, one may end up having to approximate only a few Lyapunov exponents in
order to recover the entire Lyapunov spectrum. In particular, our results will apply
to the case of the Lorentz and Minkowski groups. Maxwell’s equations are the most
famous example of a system satisfying invariance under the Lorentz group, and in
this case only one Lyapunov exponent will need to be approximated; for this, and
other examples of systems invariant under the Lorentz and Minkowski groups, see

[2].
2. HOw MANY LYAPUNOV EXPONENTS ARE ZERO?

The following result is essentially given by Gupalo et al. in [11].
Theorem 2.1. Let X be a fundamental matrixz solution of (1.2), and suppose that,
for all t, X (t) verifies

(2.1) () XTHHX()=H, and (b)) X(H)HXT(t)=H,
Yor all t, log(®Z, (t) Py (t))l/ ? is the unique symmetric logarithm of the unique symmetric

positive definite square root
2of relevance to approximate the entropy, see [8]
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where H € R™™ is nonsingular. Then the function A in (1.2) satisfies for all t
(2.2) (a) AT(t)H + HA(t) =0, and (b)) AM)H + HAT(t)=0.

Further, the logarithms of the singular values of X (t) are symmetric with respect
to the origin, for all t. Finally, under the assumptions and with the notation of
Theorem 1.1, i.e., if @, xo € My, satisfies (2.1), then

(2.3) Sp (@xo) is symmetric with respect to the origin.

In this paper, we are interested in exploring further symmetries of Lyapunov
exponents. From (2.3) in Theorem 2.1, if the dimension n is an odd number, then
obviously there must be at least one Lyapunov exponent equal to 0. But, in general,
can we anticipate how many Lyapunov exponents are guaranteed to be 07

To make some progress, we will assume that H in Theorem 2.1 is orthogonal:

(2.4) XTHX(t) = H, forallt, H'H=HH" =1,

that is a fundamental matrix solution X evolves on the quadratic group defined
by the orthogonal matrix H. In the case of (2.4), either one of (a) or (b) in (2.1)
and (2.2) is redundant. To witness, from (2.1)-(a) we have XT(t)HX (t) = H <
HT'XT(tH)H = X7 '(t) & X(t)HT X" (t) = HT & X(t)HXT(t) = H, and similarly
for (2.2).

With this special choice of H orthogonal, we will next show some properties of
the singular values of X. These properties, coupled with (1.6), will then be used
to obtain bounds on the number of Lyapunov exponents which are zero, and will
further tell if some of them have even multiplicity.

Example 2.2. Naturally, the orthogonal group is included in (2.4) if H = I,,; in this
case, all Lyapunov exponents are 0. Further, the symplectic group is also included
if H=J with

(2.5) J= {_(}m [(ﬂ .

In this case, a priori one should not expect any of the Lyapunov exponents to be
0. Included in (2.4) is also the Minkowski group (i.e., the “relativity” group) where
H = D with

I, 0
20 o= 0]

and n; + ngy = n. The particular case n; = 3 and ny = 1 is the Lorentz group.

Before proceeding, let us simplify the problem. Let U be an orthogonal matrix
giving the real Schur form of H, grouping the eigenvalues of H on the unit circle as
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follows:
poo o] [[fo] o o
(2.7) K:=U"HU= |0 C 0| = 0 C 0 :
00 0 0[5 %]
where C' comprises the eigenvalues of H different from +1 and +1:
ST o Qj ® Im(j) 0
C = diag(Ch,...,C,) , C; = [ 0 Q@ Ly |

(2.8)
G 55

_ 2 2 _ N
Qj—[_sj cj] , Gtsi=1,¢#0,s5;#0,j=1,...,p.

In other words, we have blocked the eigen-
values of H grouping together the eigen-
values cos(¢;) £ isin(¢;) and those out of
phase by m: cos(¢; + m) £ isin(¢; + ),
and we have ordered them so that the an-

0.8

0.6

0.4f

0.2

gles are increasing from 0 to 7/2; see the of -1
figure on the right. Naturally, not for ev- 2|
ery complex conjugate pair of eigenvalues, 04
e there need to be a complex conjugate o5}
pair out of phase by 7 with it, or vicev- o8|
ersa. That is, in (2.8), n1(7) or ny(j) may A

be 0. 1 06 06 04 02 0 02 04 06 08 1
Now, if X is a fundamental matrix solution of (1.2) satisfying (2.4), then the
matrix function R = UT XU satisfies

(2.9) RTt)KR(t) = K, forallt.

with K as in (2.7). Since the singular values of X and R are the same, we can
assume to have the simplified form of orthogonal matrices as in (2.7). In this case,
we can simplify the form of R satisfying (2.9).

Lemma 2.3. Let R € R™" be any matriz satisfying RTKR = K, with K given in
(2.7). Then, R has the block structure

W 0 0
0 Z 0
0 0 S

(2.10) R=

)

where the partitioning is that inherited by the form of K.

Ri1 [Ri2 Ris]

Proof. Write R in block form: R = [ Ror1 [ Raa Ros } Now, use the relations
[R31] [Raz R33}

RTKR =K and RTKTR = K*. In particular, from the respective (2, 2) blocks, we
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have
RY, Ros Ros|' [C 0] [Re Res] [C 0
{R{J Dl fa) + [R32 Rzz| |0 J| |Rs2 Rsz| |0 J
RY, Roy Ros|" [CT 01 [Re Ry [CT 0
{R?JD Rz Fa] + {R:’)z Ry| |0 —J) R Re) = |0 —J|
from which
Ry Ras|' [(C=CT)/2 0] [Re Ras] _ [(C—CT)/2 0
Rsy  Ras 0 J| |R32 Ras 0 J|

R3y  Rss
RY, Ros Ros)" [C 0] [Ru] O
|:R,{3:| DR11+ |:R32 R33 0 J R31 B 0
RY, Roy Ros)' [CT 0] [Ru] [0
|:R{3:| DRH_I— [R32 R33 0 —J R31 o]’
from which it follows that

iz 2 [0 -1

Therefore, [R22 Rzg} must be invertible. Now, from the (2, 1) blocks, we get

(2.11)

R32 R33 0 J R31 0

and hence Ry, = 0 and R3; = 0. At this point, the relation for the (1, 1) block gives
R, DRy, = D, from which it follows that R;; must be invertible. Writing out the
relations for the (1,2) blocks, in a similar way to the above, it follows that Ris = 0
and Rj3 = 0. With this, adding the two relations satisfied by the (2,2) blocks, one
gets

[Rzg Rzgr [(C+CT)/2 0} [Rzg Rzg} _ {(C+CT)/2 0} |

From this, it follows that Ryy is invertible and Ry3 = 0, R3y = 0, and hence neces-
sarily that Rss3 is invertible. O

Because of Lemma 2.3, we can restrict attention to simpler cases of fundamental
matrix solutions W, Z, and S, where for all ¢:

(2.12) WTt)DW(t) =D, D in (2.6),
(2.13) Z't)CZ(t)=C, C in (2.8),
(2.14) ST(t)JS(t)=J, J in (2.5).

A goal of ours is to give lower bounds on the number of singular values of funda-
mental matrix solutions X satisfying (2.4) that are 1 for all £. Our arguments will
use the difference in multiplicities of the eigenvalues of H which are out of phase by
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7w with one another. If this difference is 0, the lower bound is 0. For this reason, we
will focus attention on (2.12) and (2.13) only, that is on the W-part and Z-part of
the system.

Lemma 2.4. Let W € R™" be any matriz satisfying WIDW = D, with D given
in (2.6), and n = ny 4+ na. Let vo(W) be the number of singular values of W which
are equal to 1. Then, we have

Vo(W> Z ‘Tll — ’n,g‘ .

Proof. Let W be partitioned similarly to D, that is W = Wi Wi , Where
War Was
n;xXn; ny XN na Xn 0 W12
I/Viie]Rll,z:l,Q,andnge]Rl 2,W21€]R2 1. Let Y = .
Wa 0

Then, since Y has at most 2min(nq,ny) linearly independent columns, we see that
dim (ker(Y))) > n—2min(ny,ns) = |ny — no|. Next, observe that, since W' DW = D
and D? = I, we have

ker(W'W — I) = ket(W'W — DWTDW) = ker(W" — DWTD)W)

0 2WL
= ker( {Qng 021] W) .

Thus, we have dim (ker(W'W —I)) > |ny — na|. O

Next, we show some results concerning the Z-part of the system.

Lemma 2.5. Let Z € R™" be any matriz satisfying ZTCZ, where C is given in
(2.8) withn =237"_| [n1(j) +na(4)]. Then, Z is a block diagonal matriz:

(2.15) Z = diag(Zy,....2%,) , 2]CiZ;=C;, j=1,...,p.
Moreover, for j =1,...,p, Z; satisfy
&I, 0
(2.16) ZjTDij = Dj, Dj= [ oY —12®1n2(j)} , and
(2'17) ZJT‘]J'ZJ' =Jj Jj= [ (l)m —Jn2(j)} ) Jnk(j) - [_I"k(J') 16( )} k=12

Proof. Since ZTCZ = C and ZCZT = C, one also has ZTCTZ = CT and ZCTZT =
CT. Adding these relations pairwise, we obtain

(2.18) Z'NZ =N, ZNZ" =N, where N=(C+C%)/2.
Given the form of C' in (2.8), the matrix /N has the form

. &I, 0 4
N = diag(c1Ds,...,¢,D,) , D; = [ B _12®In2(j)] ,J=1....p,

and ¢; = cos(¢;), 0 < ¢ < --- < ¢, < /2. Now, from (2.18), one has
(a) Z'=NZN' and (b) Z'=N"'ZN.
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Write Z in block form, and equate the (i, 7)-th blocks of (a) and (b):
C; C;

thus, we must have (¢ — ¢})Z;; = 0. For i # j, this implies Z;; = 0. Hence,

Z must be block diagonal and (2.15) holds. The form (2.16) is obtained at once

from Z1'(C; + C])Z; = (C;+ CT), while (2.17) is obtained from Z] (C; — CT)Z; =

(c;—cl)? O
Lemma 2.6. With the notation of Lemma 2.5, we have
p
vo(Z2) =Y wlZ)),
j=1

where vo(Z) and vy(Z;) denote the number of singular values of Z and Z; that are
1, and

vo(Zj) = 2|ni(j4) —n2(d), 7=1,...,p .
Further, the singular values of each Z; have even multiplicity.

Proof. The statement on vo(Z) = >°*_, v(Z;) is clear from (2.15). The fact that

v (Z;) > 2In1(j) — n2(j)| is now a consequence of Lemma 2.4 and of (2.16).
Now, for given j, suppose that ZJTZ]-SL’ = ix, |z|| = 1. Then, we have at once

1 ~ 1

D;Z] Zjx = 1D and J;Z] Zijw = T

Now, since Z!'D;Z; = D; and Z]Tijj = jj, one also has Z;D;Z] = D; and
ijijT = j] Thus, we get

JjLL’.

!
A

Therefore, since the eigenvalues of Z]TZJ- arise as {\, 1/A}, and the eigenvectors D,z

(2127 (D) = 3(D)  and (Z]2)7(Tpe) = 5 (Tpe).

and jjx are orthogonal unit vectors, we conclude that each eigenvalue of ZJTZJ- has
even multiplicity.

Remark 2.7. Suppose that W is a fundamental matrix solution of (1.2) satisfying
(2.12) for all ¢. Since the eigenvalues of the continuous function WTW can be
labelled so to be continuous functions of ¢, then we can label the singular values of
W in such a way that they are continuous functions of ¢ and at least |n; —ns| of them
are identically 1 for all ¢. Likewise, let Z be a fundamental matrix solution of (1.2)
satisfying (2.13) for all ¢. Since the eigenvalues of the functions Z]-TZ]-, j=1,...,p,
can be labelled so to be continuous functions of ¢, then the singular values of Z can
be labelled so that they are continuous functions of ¢, at least 2 >°"_, [n1(j) — n2(j)]
are identically 1 for all ¢, and they have even multiplicity for any t.

3(2.16) and (2.17) are equivalent to Z7'C;Z; = C;
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Remark 2.8. As far as the S—part of the differential system is concerned, that is
when S satisfies (2.14), then a priori we cannot be certain that any of its singular
values will be identically 1 nor that they will posses even multiplicity.

Finally, let v9(X) be the number of singular values of a fundamental matrix so-
lution X satisfying (2.4) which are identically 1 for all t. By putting together the
results obtained in this section, we see that a lower bound on v4(X) can be obtained
by looking at the distribution of eigenvalues of H on the unit circle. In case in
which the assumptions leading to (1.6) hold, then this will give us a lower bound
on how many Lyapunov exponents will be 0. We summarize these considerations in
the following theorem, which holds as a consequence of the previous results.

Theorem 2.9. Let X be a fundamental matriz solution of (1.2) satisfying (2.4).
Let orthogonal U give the ordered Schur form of H as in (2.7) and (2.8), with
n=mny+ny+2m+237_ [ni(j) +na(j)]. With the understanding that some of the
indices below may be 0, H has

(1) ny eigenvalues equal to 1, and nsy eigenvalues equal to —1;

(2) 2n1(j) eigenvalues equal to e*%, and 2ny(j) eigenvalues equal to @i+
forg=1,...,p, and 0 < ¢y < --- < ¢, < /2.

(3) 2m eigenvalues equal to +i.

Then, for vy(X), we have

(2.19) vo(X) > [ny — na| +2) " [na(j) — na(j)] -

J=1

Moreover, consider the subproblem associated to the eigenvalues e*®, eF®%i+m of
(2), that is consider Z in (2.15). Then, X has at least as many non-simple singular
values as Z does.

Finally, under the assumptions and with the notation of Theorem 1.1, for xy €
My, Sp(®s,) is symmetric with respect to the origin, and has at least [|ny — na| +
230 () — ns(j)|] Lyapunov exponents equal to 0. Also, Sp(®y,) contains at
least as many repeated Lyapunov exponents as the number of distinct singular values
of the Z-part of UT®, U, all of which have even multiplicity.

Proof. The only things to justify are the statements about Sp (q)mo). With previous
notation, for all ¢ we must have (see (2.10) and (2.12), (2.13), (2.14)) UT®,, (1)U =
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Wao(t) 0 0
[ 0 Zzo(t) O } , so that in particular
0 0 Saolt)

1
v Jim — log (®7 (£)®,, (1) U =

1 [los(WE W) 0 !
Jim 7 0 log(ZL (t) Zy, (lt))l/2 0
0 0 log (ST ()8, (1)) /2

Thus, the symmetry with respect to the origin and the bound on the number of
0 Lyapunov exponents are consequences of the fact that the singular values of
the function ®,, can be chosen continuous functions of ¢, and of previous results.
The statement on the multiplicity relatively to the Lyapunov exponents associ-
ated to Z,, is also consequence of continuity of the singular values and of the
fact that the limit matrix above is symmetric, hence diagonalizable. In fact, if

we let Wy, = limy_o 1 log(Z1 (t) Zy, (t))l/ ? then continuity of the eigenvalues of
ZL (t)Zy,(t) precludes from having any of the eigenvalues of ¥, with odd multi-

plicity. 0

Remark 2.10. As we remarked in point (i) of Theorem 1.1, in general Sp ((IDxO)
depends on zy € My, and on the invariant measure p (My does). The lower bounds
given in Theorem 2.9, instead, hold for all zy (and ). The situation is similar to
(2.3) in Theorem 2.1, whereby the symmetry of the Lyapunov spectrum with respect
to the origin holds regardless of xy. In order to further infer that Sp (<I>x0) does not
depend on zy € My, we would need condition (iv) in Theorem 1.1 to hold.

Remark 2.11. An extension of our results (cfr. [7, 11]) is obtained by replacing
(2.4) with

(2.20) XTHHX(t)=e"H, VvVt , H'H=1.
It is a simple verification that one arrives at (2.20) upon considering the shifted

system @ = (A(t)+a/2 I)z, instead of (1.2). In this case, one has AT (t)H+HA(t) =
aH , instead of (2.2)-(a). Now Sp(®,,) will be shifted by a/2.

3. EXAMPLES

The numerical results below have been obtained using the so-called “continuous
QR method” (see [6]). That is, we use the technique leading to (1.5) as follows:

e () is approximated by the classic Runge-Kutta scheme of order 4 to integrate
the equation for () and the solution is orthogonalized after each step;

e the Lyapunov exponents are approximated from (1.5) using the composite
trapezoidal rule.
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For the problems below, we fix the interval of integration to [0,10%], take initial
condition to the identity, and perform integration with a constant stepsize h = 1/10.
These examples are purposely built starting from a periodic coefficient matrix, to
which we add a term which goes to 0 as ¢t — oo, so that Sp(®) reduces to the set of
Floquet exponents of the periodic problem. On one hand, this allows us to compute
Sp(®) by other means and to check the accuracy of the obtained answers. On the
other hand, we remark that when we attempted a direct time integration for the full
monodromy matrix on these problems we obtained very inaccurate approximations
of the Floquet exponents (only the largest one was accurate).

Example 3.1. This is a system evolving on the Lorentz group. We have

0 cos(t) —1 1%%
—cos(t) O S 5
A(t) = wE T >,
( ) 1 —%2- 0 —sin(t) —
L 5 —sin(t) 0

g
The Lyapunov exponents are {5,0,0,—5}. Approximating all four Lyapunov expo-
nents, we obtain (at six digits):

A1 =4.99959 , Ay = 0.000353 , A3 = 0.00000277230 , Ay = —4.99994 .

Approximating only the dominant Lyapunov exponent, by integrating just for the
first column of ), we get A; = 4.99958 . This second computation takes 20% of the
time required by the first one.

Example 3.2. Here we consider a problem whose fundamental matrix solution
Z(t) satisfies ZT(t)CZ(t) = C with C = [Q%IZ _OQ}, Q =[57%], and ¢ = cos(¢),
s = sin(¢), 0 < ¢ < 7. We take the following coefficient matrix:

0 2 -1 {5 1 2
-2 0 {5 5 ocos(t) 4
1
Aty=| ' e 02 2L >0,
-3 -5 -2 0 -4 cos

(t)
1 cos(t) —2 —4 0 sin(t)
2 4 1 cos(t) —sin(t) O
We expect two zero and two possibly nonzero Lyapunov exponents, symmetric with
respect to the origin, each of multiplicity 2. In other words, only one Lyapunov
exponent really needs to be computed. In fact, the two nonzero Lyapunov exponents
for this problem are (at four digits) {+3.027}. Approximating all six Lyapunov
exponents, we get

A =3.028 , Ay = 3.028 , A3 = 0.5347 x 107* ,
A =0.4374 x 1073, A\ = —3.028 , \¢ = —3.028..

Directly approximating only the dominant Lyapunov exponent, we get \; = 3.027
and this second computation takes 12.5% of the time required to approximate all
Lyapunov exponents.
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