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Abstract. In this paper we show some symmetry properties of Lyapunov expo-
nents of a dynamical system when the linearized problem evolves on a quadratic
group, XT HX = H , with H orthogonal. It is well understood that in this case the
exponents are symmetric with respect to the origin. Here, we give lower bounds
on the number of Lyapunov exponents which are 0, and show that some Lyapunov
exponents may have even multiplicity.

1. Introduction

Lyapunov exponents are a common tool to explore stability properties of dynam-
ical systems; e.g., see the collection of works in [3, 4, 15] and the many references
there. Given the n-dimensional system of differential equations defined for t ≥ 0:

(1.1) ẋ = f(x) , x(0) = x0 ,

the Lyapunov exponents are a characterization of the asymptotic properties of the
solution φtx0 via analysis of the linearized problem: dX/dt = fx(φ

tx0)X. More
generally, we may consider the linear time varying system

(1.2) ẋ = A(t)x , A : R
+ → R

n×n .

With Φ we will indicate the principal matrix solution of (1.2), that is Φ̇ = A(t)Φ,
Φ(0) = I, and with X any other fundamental matrix solution (that is, X(t) =
Φ(t)X(0), X(0) invertible). We assume that A is bounded and continuous.

Formally, the Lyapunov exponents associated to (1.2) may be defined as follows
(e.g., see [1, 5] and cfr. with [14]). Let X be a fundamental matrix solution of (1.2),
and let {ei} be the standard basis of R

n. Define the numbers λi(X), i = 1, . . . , n,
as (in this paper, the norm is always the 2-norm)

(1.3) λi(X) = lim sup
t→∞

1

t
log ‖X(t)ei‖ .
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When the sum of the λi(X) is minimized over all initial conditions X(0), the corre-
sponding fundamental solution X is called normal and the numbers λi(X), hereafter
simply λi, i = 1, . . . , n, are called (upper) Lyapunov exponents of the system. In
general, see [1], the Lyapunov exponents satisfy

(1.4)

n∑

i=1

λi ≥ lim sup
t→∞

1

t

∫ t

0

trace
(
A(s)

)
ds .

The normal fundamental matrix solution X, or just the system (1.2), is said to be
regular if the time average of the trace in (1.4) has a finite limit and equality holds
in (1.4). If X is regular, then the lim sups in (1.3) can be replaced by ordinary
limits. Suppose that (1.2) is regular. Clearly there are at most n distinct Lyapunov
exponents. We will call Lyapunov spectrum the collection of all Lyapunov exponents
of the system, counted with their multiplicity, and indicate it with Sp(X).

It is well known that Sp(X) is unchanged under an orthogonal (time varying)
transformation of X. That is, if R = QT X, Q an orthogonal function, then Sp(R) =
Sp(X). This fact is often used in computational works (e.g., see [5, 6]), whereby
the orthogonal change of variable is used to triangularize X and thus one brings
the coefficient matrix A in (1.2) to upper triangular form, say B. Then, see [1],
regularity implies that the Lyapunov exponents are given by

(1.5) λi = lim
t→∞

1

t

∫ t

0

Bii(s)ds , i = 1, . . . , n .

To infer regularity of a given particular system is not easy. It is therefore impor-
tant that regularity is a prevalent condition in a certain measure theoretic sense.
Furthermore, since (1.2) typically arises from linearization of (1.1), the dependency
of Sp(X) on the initial condition x0 of (1.1) must also be assessed. These issues are
at the heart of the theory of Oseledec. We refer to [5, 8, 12, 14] for details, here we
highlight only some of the points from these works which we will use.

Suppose that φt, the flow of (1.1), is a flow on a smooth compact manifold M
and let µ be an invariant probability measure on M (that is, µ(φtA) = µ(A) for all
Borel sets A in M). The invariant measure µ is called ergodic if every set invariant
under φt has measure 0 or 1. Let Φx0 be the principal matrix solution associated
to the linearization of (1.1) along φtx0. We will write Sp

(
Φx0

)
for the Lyapunov

spectrum (since it generally depends on x0).

Theorem 1.1. Under the above assumptions, there is a subset M0 of M , invariant
under φt, and of measure 1, such that for any x0 ∈ M0 the following hold.

(i) Φx0 is regular.



LYAPUNOV EXPONENTS OF SYSTEMS EVOLVING ON QUADRATIC GROUPS 3

(ii) The following limit exists1

(1.6) lim
t→∞

1

t
log

(
ΦT

x0
(t)Φx0(t)

)1/2
.

(iii) Sp
(
Φx0

)
is given by the eigenvalues of the symmetric matrix defined by (1.6).

(iv) If µ is ergodic, then Sp
(
Φx0

)
is independent of x0 ∈ M0.

From (1.6), we see that Sp
(
Φx0

)
is given by the limits of the time averages of

the logarithms of the singular values of the principal matrix solution Φx0(t). We
refer to [9, 10] for numerical approximation of Sp

(
Φx0

)
exploiting this point of view.

But, regardless of whether one adopts (1.5) or (1.6) as basis of an algorithm to
approximate the Lyapunov exponents, it must be appreciated that either one of (1.5)
or (1.6) can be specialized to target the p most dominant Lyapunov exponents, for
example all the positive Lyapunov exponents of a system2. This is convenient, since
one may know before hand that the Lyapunov spectrum enjoys some symmetries.
Unarguably, the most important symmetry of the spectrum is the one with respect
to the origin. This property is well known in the symplectic case (see [5, 8, 13]).
In this work, we give some results on symmetries of Lyapunov exponents associated
to fundamental matrix solutions evolving on other quadratic groups, namely for
which XT (t)HX(t) = H, with HT H = I, for all t. To be precise, in this case, we
will be able to give lower bounds on the number of singular values of X which are
identically 1 for all t, by looking at the distribution of eigenvalues of the matrix
H defining the quadratic group. We will further give some bounds on the number
of singular values of X which have even multiplicity. These facts, coupled with
Theorem 1.1, will translate into bounds on the Lyapunov exponents of Sp

(
Φx0

)
. As

a result, one may end up having to approximate only a few Lyapunov exponents in
order to recover the entire Lyapunov spectrum. In particular, our results will apply
to the case of the Lorentz and Minkowski groups. Maxwell’s equations are the most
famous example of a system satisfying invariance under the Lorentz group, and in
this case only one Lyapunov exponent will need to be approximated; for this, and
other examples of systems invariant under the Lorentz and Minkowski groups, see
[2].

2. How many Lyapunov exponents are zero?

The following result is essentially given by Gupalo et al. in [11].

Theorem 2.1. Let X be a fundamental matrix solution of (1.2), and suppose that,
for all t, X(t) verifies

(2.1) (a) XT (t)HX(t) = H , and (b) X(t)HXT (t) = H ,

1for all t, log
(
ΦT

x0
(t)Φx0

(t)
)1/2

is the unique symmetric logarithm of the unique symmetric

positive definite square root
2of relevance to approximate the entropy, see [8]
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where H ∈ R
n×n is nonsingular. Then the function A in (1.2) satisfies for all t

(2.2) (a) AT (t)H + HA(t) = 0 , and (b) A(t)H + HAT (t) = 0 .

Further, the logarithms of the singular values of X(t) are symmetric with respect
to the origin, for all t. Finally, under the assumptions and with the notation of
Theorem 1.1, i.e., if Φx0 , x0 ∈ M0, satisfies (2.1), then

(2.3) Sp
(
Φx0

)
is symmetric with respect to the origin.

In this paper, we are interested in exploring further symmetries of Lyapunov
exponents. From (2.3) in Theorem 2.1, if the dimension n is an odd number, then
obviously there must be at least one Lyapunov exponent equal to 0. But, in general,
can we anticipate how many Lyapunov exponents are guaranteed to be 0?

To make some progress, we will assume that H in Theorem 2.1 is orthogonal:

(2.4) XT (t)HX(t) = H , for all t , HT H = HHT = I ,

that is a fundamental matrix solution X evolves on the quadratic group defined
by the orthogonal matrix H. In the case of (2.4), either one of (a) or (b) in (2.1)
and (2.2) is redundant. To witness, from (2.1)-(a) we have XT (t)HX(t) = H ⇔
HT XT (t)H = X−1(t) ⇔ X(t)HTXT (t) = HT ⇔ X(t)HXT (t) = H, and similarly
for (2.2).

With this special choice of H orthogonal, we will next show some properties of
the singular values of X. These properties, coupled with (1.6), will then be used
to obtain bounds on the number of Lyapunov exponents which are zero, and will
further tell if some of them have even multiplicity.

Example 2.2. Naturally, the orthogonal group is included in (2.4) if H = In; in this
case, all Lyapunov exponents are 0. Further, the symplectic group is also included
if H = J with

(2.5) J =

[
0 Im

−Im 0

]
.

In this case, a priori one should not expect any of the Lyapunov exponents to be
0. Included in (2.4) is also the Minkowski group (i.e., the “relativity” group) where
H = D with

(2.6) D =

[
In1 0
0 −In2

]
,

and n1 + n2 = n. The particular case n1 = 3 and n2 = 1 is the Lorentz group.

Before proceeding, let us simplify the problem. Let U be an orthogonal matrix
giving the real Schur form of H, grouping the eigenvalues of H on the unit circle as
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follows:

(2.7) K := UT HU =




D 0 0
0 C 0
0 0 J


 =




[
In1 0
0 −In2

]
0 0

0 C 0
0 0

[
0 Im

−Im 0

]


 ,

where C comprises the eigenvalues of H different from ±1 and ±i:

C = diag(C1, . . . , Cp) , Cj =

[
Qj ⊗ In1(j) 0

0 −Qj ⊗ In2(j)

]
,

Qj =

[
cj sj

−sj cj

]
, c2

j + s2
j = 1 , cj 6= 0 , sj 6= 0 , j = 1, . . . , p .

(2.8)

In other words, we have blocked the eigen-
values of H grouping together the eigen-
values cos(φj)± i sin(φj) and those out of
phase by π: cos(φj + π) ± i sin(φj + π),
and we have ordered them so that the an-
gles are increasing from 0 to π/2; see the
figure on the right. Naturally, not for ev-
ery complex conjugate pair of eigenvalues,
e±iφ, there need to be a complex conjugate
pair out of phase by π with it, or vicev-
ersa. That is, in (2.8), n1(j) or n2(j) may
be 0. −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1−1

i

−i

(c,s)(−c,s)

(c,−s)(−c,−s)

Now, if X is a fundamental matrix solution of (1.2) satisfying (2.4), then the
matrix function R = UT XU satisfies

(2.9) RT (t)KR(t) = K , for all t .

with K as in (2.7). Since the singular values of X and R are the same, we can
assume to have the simplified form of orthogonal matrices as in (2.7). In this case,
we can simplify the form of R satisfying (2.9).

Lemma 2.3. Let R ∈ R
n×n be any matrix satisfying RT KR = K, with K given in

(2.7). Then, R has the block structure

(2.10) R =



W 0 0
0 Z 0
0 0 S


 ,

where the partitioning is that inherited by the form of K.

Proof. Write R in block form: R =

[
R11 [ R12 R13 ]

[
R21
R31

] [
R22 R23
R32 R33

]
]
. Now, use the relations

RT KR = K and RT KT R = KT . In particular, from the respective (2, 2) blocks, we
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have
[
RT

12

RT
13

]
D

[
R12 R13

]
+

[
R22 R23

R32 R33

]T [
C 0
0 J

] [
R22 R23

R32 R33

]
=

[
C 0
0 J

]

[
RT

12

RT
13

]
D

[
R12 R13

]
+

[
R22 R23

R32 R33

]T [
CT 0
0 −J

] [
R22 R23

R32 R33

]
=

[
CT 0
0 −J

]
,

from which
[
R22 R23

R32 R33

]T [
(C − CT )/2 0

0 J

] [
R22 R23

R32 R33

]
=

[
(C − CT )/2 0

0 J

]
.

Therefore,

[
R22 R23

R32 R33

]
must be invertible. Now, from the (2, 1) blocks, we get

[
RT

12

RT
13

]
DR11 +

[
R22 R23

R32 R33

]T [
C 0
0 J

] [
R21

R31

]
=

[
0
0

]

[
RT

12

RT
13

]
DR11 +

[
R22 R23

R32 R33

]T [
CT 0
0 −J

] [
R21

R31

]
=

[
0
0

]
,

(2.11)

from which it follows that
[
R22 R23

R32 R33

]T [
(C − CT )/2 0

0 J

] [
R21

R31

]
=

[
0
0

]
,

and hence R21 = 0 and R31 = 0. At this point, the relation for the (1, 1) block gives
RT

11DR11 = D, from which it follows that R11 must be invertible. Writing out the
relations for the (1, 2) blocks, in a similar way to the above, it follows that R12 = 0
and R13 = 0. With this, adding the two relations satisfied by the (2, 2) blocks, one
gets [

R22 R23

R32 R33

]T [
(C + CT )/2 0

0 0

] [
R22 R23

R32 R33

]
=

[
(C + CT )/2 0

0 0

]
.

From this, it follows that R22 is invertible and R23 = 0, R32 = 0, and hence neces-
sarily that R33 is invertible. �

Because of Lemma 2.3, we can restrict attention to simpler cases of fundamental
matrix solutions W , Z, and S, where for all t:

(2.12) W T (t)DW (t) = D, D in (2.6) ,

(2.13) ZT (t)CZ(t) = C, C in (2.8) ,

(2.14) ST (t)JS(t) = J, J in (2.5) .

A goal of ours is to give lower bounds on the number of singular values of funda-
mental matrix solutions X satisfying (2.4) that are 1 for all t. Our arguments will
use the difference in multiplicities of the eigenvalues of H which are out of phase by
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π with one another. If this difference is 0, the lower bound is 0. For this reason, we
will focus attention on (2.12) and (2.13) only, that is on the W -part and Z-part of
the system.

Lemma 2.4. Let W ∈ R
n×n be any matrix satisfying W TDW = D, with D given

in (2.6), and n = n1 + n2. Let ν0(W ) be the number of singular values of W which
are equal to 1. Then, we have

ν0(W ) ≥ |n1 − n2| .

Proof. Let W be partitioned similarly to D, that is W =

[
W11 W12

W21 W22

]
, where

Wii ∈ R
ni×ni, i = 1, 2, and W12 ∈ R

n1×n2, W21 ∈ R
n2×n1. Let Y =

[
0 W12

W21 0

]
.

Then, since Y has at most 2 min(n1, n2) linearly independent columns, we see that
dim

(
ker(Y )

)
≥ n−2 min(n1, n2) = |n1 − n2|. Next, observe that, since W T DW = D

and D2 = I, we have

ker(W TW − I) = ker(W TW − DW TDW ) = ker
(
(W T − DW TD)W

)

= ker
([ 0 2W T

21

2W T
12 0

]
W

)
.

Thus, we have dim
(
ker(W T W − I)

)
≥ |n1 − n2|. �

Next, we show some results concerning the Z-part of the system.

Lemma 2.5. Let Z ∈ R
n×n be any matrix satisfying ZT CZ, where C is given in

(2.8) with n = 2
∑p

j=1 [n1(j) + n2(j)]. Then, Z is a block diagonal matrix:

(2.15) Z = diag(Z1, . . . , Zp) , ZT
j CjZj = Cj , j = 1, . . . , p .

Moreover, for j = 1, . . . , p, Zj satisfy

(2.16) ZT
j DjZj = Dj , Dj =

[
I2⊗In1(j) 0

0 −I2⊗In2(j)

]
, and

(2.17) ZT
j ĴjZj = Ĵj, Ĵj =

[
Jn1(j) 0

0 −Jn2(j)

]
, Jnk(j) =

[
0 Ink(j)

−Ink(j) 0

]
, k = 1, 2.

Proof. Since ZTCZ = C and ZCZT = C, one also has ZT CT Z = CT and ZCT ZT =
CT . Adding these relations pairwise, we obtain

(2.18) ZT NZ = N , ZNZT = N , where N = (C + CT )/2 .

Given the form of C in (2.8), the matrix N has the form

N = diag(c1D1, . . . , cpDp) , Dj =
[

I2⊗In1(j) 0

0 −I2⊗In2(j)

]
, j = 1, . . . , p ,

and cj = cos(φj), 0 < φ1 < · · · < φp < π/2. Now, from (2.18), one has

(a) Z−T = NZN−1 and (b) Z−T = N−1ZN .
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Write Z in block form, and equate the (i, j)-th blocks of (a) and (b):
ci

cj
DiZijDj =

cj

ci
DiZijDj ;

thus, we must have (c2
i − c2

j)Zij = 0. For i 6= j, this implies Zij = 0. Hence,
Z must be block diagonal and (2.15) holds. The form (2.16) is obtained at once
from ZT

j (Cj + CT
j )Zj = (Cj + CT

j ), while (2.17) is obtained from ZT
j (Cj − CT

j )Zj =

(Cj − CT
j ).3 �

Lemma 2.6. With the notation of Lemma 2.5, we have

ν0(Z) =

p∑

j=1

ν0(Zj) ,

where ν0(Z) and ν0(Zj) denote the number of singular values of Z and Zj that are
1, and

ν0(Zj) ≥ 2|n1(j) − n2(j)| , j = 1, . . . , p .

Further, the singular values of each Zj have even multiplicity.

Proof. The statement on ν0(Z) =
∑p

j=1 ν0(Zj) is clear from (2.15). The fact that

ν0(Zj) ≥ 2|n1(j) − n2(j)| is now a consequence of Lemma 2.4 and of (2.16).
Now, for given j, suppose that ZT

j Zjx = 1
λ
x, ‖x‖ = 1. Then, we have at once

DjZ
T
j Zjx =

1

λ
Djx and ĴjZ

T
j Zjx =

1

λ
Ĵjx .

Now, since ZT
j DjZj = Dj and ZT

j ĴjZj = Ĵj, one also has ZjDjZ
T
j = Dj and

ZjĴjZ
T
j = Ĵj. Thus, we get

(ZT
j Zj)

−1(Djx) =
1

λ
(Djx) and (ZT

j Zj)
−1(Ĵjx) =

1

λ
(Ĵjx) .

Therefore, since the eigenvalues of ZT
j Zj arise as {λ, 1/λ}, and the eigenvectors Djx

and Ĵjx are orthogonal unit vectors, we conclude that each eigenvalue of ZT
j Zj has

even multiplicity. �

Remark 2.7. Suppose that W is a fundamental matrix solution of (1.2) satisfying
(2.12) for all t. Since the eigenvalues of the continuous function W TW can be
labelled so to be continuous functions of t, then we can label the singular values of
W in such a way that they are continuous functions of t and at least |n1−n2| of them
are identically 1 for all t. Likewise, let Z be a fundamental matrix solution of (1.2)
satisfying (2.13) for all t. Since the eigenvalues of the functions ZT

j Zj, j = 1, . . . , p,
can be labelled so to be continuous functions of t, then the singular values of Z can
be labelled so that they are continuous functions of t, at least 2

∑p
j=1 |n1(j)−n2(j)|

are identically 1 for all t, and they have even multiplicity for any t.

3(2.16) and (2.17) are equivalent to Z
T
j CjZj = Cj
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Remark 2.8. As far as the S−part of the differential system is concerned, that is
when S satisfies (2.14), then a priori we cannot be certain that any of its singular
values will be identically 1 nor that they will posses even multiplicity.

Finally, let ν0(X) be the number of singular values of a fundamental matrix so-
lution X satisfying (2.4) which are identically 1 for all t. By putting together the
results obtained in this section, we see that a lower bound on ν0(X) can be obtained
by looking at the distribution of eigenvalues of H on the unit circle. In case in
which the assumptions leading to (1.6) hold, then this will give us a lower bound
on how many Lyapunov exponents will be 0. We summarize these considerations in
the following theorem, which holds as a consequence of the previous results.

Theorem 2.9. Let X be a fundamental matrix solution of (1.2) satisfying (2.4).
Let orthogonal U give the ordered Schur form of H as in (2.7) and (2.8), with
n = n1 + n2 + 2m + 2

∑p
j=1[n1(j) + n2(j)]. With the understanding that some of the

indices below may be 0, H has

(1) n1 eigenvalues equal to 1, and n2 eigenvalues equal to −1;
(2) 2n1(j) eigenvalues equal to e±iφj , and 2n2(j) eigenvalues equal to e±i(φj+π),

for j = 1, . . . , p, and 0 < φ1 < · · · < φp < π/2.
(3) 2m eigenvalues equal to ±i.

Then, for ν0(X), we have

(2.19) ν0(X) ≥ |n1 − n2| + 2

p∑

j=1

|n1(j) − n2(j)| .

Moreover, consider the subproblem associated to the eigenvalues e±iφj , e±i(φj+π) of
(2), that is consider Z in (2.15). Then, X has at least as many non-simple singular
values as Z does.

Finally, under the assumptions and with the notation of Theorem 1.1, for x0 ∈
M0, Sp

(
Φx0

)
is symmetric with respect to the origin, and has at least

[
|n1 − n2| +

2
∑p

j=1 |n1(j) − n2(j)|
]

Lyapunov exponents equal to 0. Also, Sp
(
Φx0

)
contains at

least as many repeated Lyapunov exponents as the number of distinct singular values
of the Z-part of UT Φx0U , all of which have even multiplicity.

Proof. The only things to justify are the statements about Sp
(
Φx0

)
. With previous

notation, for all t we must have (see (2.10) and (2.12), (2.13), (2.14)) U T Φx0(t)U =
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[
Wx0(t) 0 0

0 Zx0(t) 0

0 0 Sx0(t)

]
, so that in particular

UT lim
t→∞

1

t
log

(
ΦT

x0
(t)Φx0(t)

)1/2
U =

lim
t→∞

1

t




log
(
W T

x0
(t)Wx0(t)

)1/2
0 0

0 log
(
ZT

x0
(t)Zx0(t)

)1/2
0

0 0 log
(
ST

x0
(t)Sx0(t)

)1/2


 .

Thus, the symmetry with respect to the origin and the bound on the number of
0 Lyapunov exponents are consequences of the fact that the singular values of
the function Φx0 can be chosen continuous functions of t, and of previous results.
The statement on the multiplicity relatively to the Lyapunov exponents associ-
ated to Zx0 is also consequence of continuity of the singular values and of the
fact that the limit matrix above is symmetric, hence diagonalizable. In fact, if

we let Ψx0 = limt→∞
1
t
log

(
ZT

x0
(t)Zx0(t)

)1/2
, then continuity of the eigenvalues of

ZT
x0

(t)Zx0(t) precludes from having any of the eigenvalues of Ψx0 with odd multi-
plicity. �

Remark 2.10. As we remarked in point (i) of Theorem 1.1, in general Sp
(
Φx0

)

depends on x0 ∈ M0, and on the invariant measure µ (M0 does). The lower bounds
given in Theorem 2.9, instead, hold for all x0 (and µ). The situation is similar to
(2.3) in Theorem 2.1, whereby the symmetry of the Lyapunov spectrum with respect
to the origin holds regardless of x0. In order to further infer that Sp

(
Φx0

)
does not

depend on x0 ∈ M0, we would need condition (iv) in Theorem 1.1 to hold.

Remark 2.11. An extension of our results (cfr. [7, 11]) is obtained by replacing
(2.4) with

(2.20) XT (t)HX(t) = eatH , ∀t , HT H = I .

It is a simple verification that one arrives at (2.20) upon considering the shifted
system ẋ = (A(t)+a/2 I)x, instead of (1.2). In this case, one has AT (t)H+HA(t) =
aH , instead of (2.2)-(a). Now Sp

(
Φx0

)
will be shifted by a/2.

3. Examples

The numerical results below have been obtained using the so-called “continuous
QR method” (see [6]). That is, we use the technique leading to (1.5) as follows:

• Q is approximated by the classic Runge-Kutta scheme of order 4 to integrate
the equation for Q and the solution is orthogonalized after each step;

• the Lyapunov exponents are approximated from (1.5) using the composite
trapezoidal rule.
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For the problems below, we fix the interval of integration to [0, 104], take initial
condition to the identity, and perform integration with a constant stepsize h = 1/10.
These examples are purposely built starting from a periodic coefficient matrix, to
which we add a term which goes to 0 as t → ∞, so that Sp(Φ) reduces to the set of
Floquet exponents of the periodic problem. On one hand, this allows us to compute
Sp(Φ) by other means and to check the accuracy of the obtained answers. On the
other hand, we remark that when we attempted a direct time integration for the full
monodromy matrix on these problems we obtained very inaccurate approximations
of the Floquet exponents (only the largest one was accurate).

Example 3.1. This is a system evolving on the Lorentz group. We have

A(t) =




0 cos(t) −1 1
1+t

− cos(t) 0 3
1+t2

5

1 −
3

1+t2
0 − sin(t)

1
1+t

5 − sin(t) 0


 , t ≥ 0 .

The Lyapunov exponents are {5, 0, 0,−5}. Approximating all four Lyapunov expo-
nents, we obtain (at six digits):

λ1 = 4.99959 , λ2 = 0.000353 , λ3 = 0.00000277230 , λ4 = −4.99994 .

Approximating only the dominant Lyapunov exponent, by integrating just for the
first column of Q, we get λ1 = 4.99958 . This second computation takes 20% of the
time required by the first one.

Example 3.2. Here we consider a problem whose fundamental matrix solution
Z(t) satisfies ZT (t)CZ(t) = C with C =

[
Q⊗I2 0

0 −Q

]
, Q = [ c s

−s c ], and c = cos(φ),
s = sin(φ), 0 < φ < π

2
. We take the following coefficient matrix:

A(t) =




0 2 −1 1
1+t

1 2

−2 0 1
1+t

5 cos(t) 4

1 −
1

1+t
0 2 −2 1

−
1

1+t
−5 −2 0 −4 cos(t)

1 cos(t) −2 −4 0 sin(t)
2 4 1 cos(t) − sin(t) 0


 , t ≥ 0 .

We expect two zero and two possibly nonzero Lyapunov exponents, symmetric with
respect to the origin, each of multiplicity 2. In other words, only one Lyapunov
exponent really needs to be computed. In fact, the two nonzero Lyapunov exponents
for this problem are (at four digits) {±3.027}. Approximating all six Lyapunov
exponents, we get

λ1 = 3.028 , λ2 = 3.028 , λ3 = 0.5347 × 10−4 ,

λ4 = 0.4374 × 10−3 , λ5 = −3.028 , λ6 = −3.028 .

Directly approximating only the dominant Lyapunov exponent, we get λ1 = 3.027
and this second computation takes 12.5% of the time required to approximate all
Lyapunov exponents.
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