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Abstract. In this work we give a constructive argument to establish existence of a
smooth singular value decomposition (SVD) for a generic C

k symplectic function X. We
rely on the explicit structure of the polar factorization of X in order to justify the form
of the SVD. Our construction gives a new algorithm to find the SVD of X, which we
have used to approximate the Lyapunov exponents of a Hamiltonian differential system.
Algorithmic details and an example are given.

1. Introduction

We consider a matrix valued function X ∈ Ck(R+, Rm×m), k ≥ 1, belonging to the
symplectic group S. That is, for all t ≥ 0, we have

(1) XT (t)JX(t) = J , with J =

[

0 In

−In 0

]

.

Here, m = 2n, of course. For us1, X is a fundamental matrix solution of a Hamiltonian
system:

(2) Ẋ = C(t)X , where CT (t)J + JC(t) = 0 , ∀t .

As a consequence of (1) (respectively, (2)), there are several relations which need to be
satisfied by a symplectic (respectively, Hamiltonian) matrix valued function. Writing X

(and similarly for C) in block form as X =

(

X11 X12

X21 X22

)

, where the partitioning is that

inherited from J , i.e., all blocks are in R
n×n, the following facts are trivially verified.

Example 1.

(i) If X is symplectic, it must satisfy the following relations

XT
11X21 = XT

21X11 , XT
22X12 = XT

12X22 , XT
11X22 − XT

21X12 = In .

(ii) If C is Hamiltonian, it must satisfy

C22 = −CT
11 , C12 = CT

12 , C21 = CT
21 .

In [3], we studied the SVD of a generic function evolving on the Lorentz group. Our
purpose in this work is to provide an explicit characterization of a singular value decom-
position in S of a generic function X ∈ S. To arrive at a proper definition of genericity,
we will first consider the polar factorization of X.
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In Section 2, we discuss the polar decomposition of a function X ∈ S, and further give
an inertia diagonalization result for a generic positive definite function in S. In Section 3
we will arrive at an SVD-like in S of X, and derive a set of differential equations satisfied
by the SVD factors of X. In Section 4, we give an application: by using the explicit form
of the SVD of X we will approximate the Lyapunov exponents of a dynamical system with
fundamental matrix solution X satisfying (2).

Notation. We will write A > 0 for a matrix (or matrix valued function) which is positive
definite. For us, this will always be also symmetric.

2. Polar Decomposition and inertia diagonalization

Consider a Ck function X ∈ S and its polar factorization of X: X = QP , with Q
orthogonal and P > 0. Since X is full rank for all t, it is well known that Q and P are
unique ([8, Corollary 7.3.3]) and also Ck functions ([4]). Furthermore, they are also in S,
see [9, 16].

We now derive the structure of the symmetric factor in the polar factorization of X ∈ S.

Lemma 2. Let P ∈ S, P > 0. Then P must have the following form:

(3) P =

(

A + BA−1B BA−1

A−1B A−1

)

,

where A > 0 and B = BT . Furthermore, any P partitioned as in (3), and with B = BT ,
is positive definite if A > 0.

Proof. Write

P =

(

P11 P12

P T
12 P22

)

with P = P T and P T JP = J .

• Since P > 0, then P22 > 0, and we may define A−1 = P22.
• Implicitly define B from A−1B = P T

12. This gives P22B = P T
12, so that B = P−1

22 P T
12.

Now, P−1
22 P T

12 = P12P
−1
22 ⇔ P T

12P22 = P22P12 which is true because of symplecticity. There-
fore, B = BT .
• At this point, we can set BA−1 = P12, that is B = P12P

−1
22 .

• Finally:

A + BA−1B = P11 ⇔ P−1
22 + P12P

−1
22 P T

12 = P11 ⇔ I + P22P12P
−1
22 P T

12 = P22P11

⇔ I + P T
12P22P

−1
22 P T

12 = P22P11 ⇔ P22P11 = I + P T
12P

T
12 ⇔ P11P22 = I + P 2

12

and the last equality is true because of symplecticity. Thus P > 0, symplectic, is of the
form (3) with A > 0 and B = BT .

Next, we verify the claim about P > 0 if A > 0. Let

[

x
y

]

be a general vector in R
m,

where both x, y ∈ R
n. Then, we have

[

xT yT
]

P

[

x
y

]

= xT Ax + (Bx + y)T A−1(Bx + y) > 0 .

�

Next, we present a “diagonalization” result via an inertia symplectic transformation for
the symplectic symmetric positive definite P of Lemma 2.
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Lemma 3. Let P > 0 be a Ck(R+, Rm×m) function of the form (3) and assume that
all eigenvalues of A−1B are distinct for all t. Then there exists a nonsingular Y ∈
Ck(R+, Rn×n) such that

(4) Y T AY = I, Y T BY = E ,

where the function E is diagonal. It follows that P in (3) decomposes as

(5) P = T

(

I + E2 E
E I

)

T T ,

where T =

(

Y −T 0
0 Y

)

is symplectic.

Proof. First, let us take the Choleski factorization of A: A = LLT . It is known (see [1])
that L is a Ck function. Next, observe that since

A−1B = L−T L−1B = L−T
(

L−1BL−T
)

LT

then the eigenvalues of L−1BL−T are distinct. Let H = L−1BL−T . It follows from [4] that
the symmetric function H has a Ck Schur decomposition. That is, there exists orthogonal
Q ∈ Ck(R+, Rn×n) such that QT HQ = E, with E diagonal. At this point, we simply set
Y = L−T Q to obtain (4).

Now, from (4) it follows easily that

A−1 = Y Y T , A−1B = Y Y T Y −T EY −1 = Y EY −1

BA−1 = Y −T EY −1Y Y −1Y T = Y −T EY T

A + BA−1B = Y −T (I + E2)Y −1 ,

and (5) follows at once. �

The key assumption in Lemma 3 is that all eigenvalues of A−1B be distinct for all t.
Next, we show that this is a honest assumption, in that it is satisfied by a generic positive
definite function P ∈ S. Genericity must be understood in the topological sense. That
is, we consider the space of Ck(R+, Rn×n) functions, endowed with the Witney (or fine)
topology; see [10]. Then, a property within the space of C k functions is generic if the set
of elements that do not have this property is a countable union of nowhere dense sets.

Lemma 4. Consider the pencil (A,B), where both A and B are symmetric C k func-
tions and A is also positive definite. Then, generically, the function A−1B has distinct
eigenvalues for all t. In particular, E in (4)-(5) has distinct diagonal entries.

Proof. Let A = LLT be the Choleski decomposition of A. Then, L is a Ck function (e.g.,
see [1]). Now, consider the following similarity transformation of A−1B:

LT (A−1B)L−T = L−1BL−T .

The right-hand-side in this above expression is a symmetric, generic, C k function. There-
fore, from [4], we know that –generically– L−1BL−T has distinct eigenvalues for all t, and
thus so does A−1B. Finally, from the proof of Lemma 3, E is similar to A−1B. �
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3. Smooth SVD in the symplectic group

Clearly, it is simple to recover an SVD of X from an ordered Schur decomposition of
the symmetric positive definite function P : If we have P = ZEZT , with ZT Z = I and
E diagonal, then we have the SVD of X, X = (QZ)EZT . Our goal in this section is to
justify the existence of a Ck Schur decomposition of P ∈ S of the form (3), and we want it
to be with orthogonal factors in S. However, we cannot do it for a generic C k function in
the sense of Lemma 4. Indeed, our construction will be restricted to a subclass of generic
symplectic positive definite functions, which we call dichotomic functions. Although our
interest here has been on Ck functions, also the analytic case is important, in which case2

a symplectic SVD result is forthcoming ([13]).

Definition 5. A positive definite function P ∈ S is called dichotomic if all of its eigen-
values are different from 1 for all t.

Since all eigenvalues of P ∈ S appear as {λ, 1/λ}, the eigenvalues of a dichotomic
function P > 0 can be put in two disjoint groups of n eigenvalues each, reciprocal of one
another: n eigenvalues will be greater than 1, the other n will be between 0 and 1. This
is the reason for the name “dichotomic”.

In particular, a “generic dichotomic” function P ∈ S, P > 0, has distinct eigenvalues
for all t.

3.1. Two stage decomposition. We will now see how to obtain the eigendecomposition
of a generic dichotomic P ∈ S, P > 0, and hence the SVD of X ∈ S. We will describe
this as a two stage process, motivated by the next informal consideration.

Observation. A function P of the form (3) has n2 + n degrees of freedom (i.e., the
nonredundant entries of A and B in (3)). In a Schur decomposition of such P , we have
n positive eigenvalues to determine (the other n are reciprocal of the first n), and so
we have n2 degrees of freedom to get the orthogonal factor, call it Q. We will look
for Q as Q = Q1Q2, where Q1 will need to block-diagonalize P , and Q2 will need to
diagonalize the diagonal blocks. To be precise, we will want to have symplectic and
orthogonal Q1 ∈ Ck(R+, Rm×m) such that, for all t ≥ 0:

Q1(t)
T P (t)Q1(t) =

(

S(t) 0
0 S−1(t)

)

,

and the block S is necessarily symmetric positive definite. Afterwards, we will seek U ∈
Ck(R+, Rn×n) such that, for all t ≥ 0:

U(t)T S(t)U(t) = diag(σ1(t), . . . , σn(t)) .

We will then set Q2 =

(

U 0
0 U

)

. Now, finding U , in general, will require to fix n(n− 1)/2

degrees of freedom, like describing any general (n× n) orthogonal function. Thus, to find
Q1, we have at our disposal n(n + 1)/2 degrees of freedom. This is just enough to block
diagonalize P .

Now, if X is the solution of (2), and X = QP is its polar decomposition with factors in
S, then P will be the solution of the system

(6) Ṗ = F (t)P, where F T (t)J + JF (t) = 0 , ∀t ,

2Niloufer Mackey pointed this out to us after we had completed our work
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and in fact the coefficient F is given by F (t) = QT (t)C(t)Q(t) − QT (t)Q̇(t), for all t.

Next, we want to take the block diagonalization of P : QT
1 (t)P (t)Q1(t) =

(

S(t) 0
0 S−1(t)

)

,

for all t, with Q1 at once orthogonal and symplectic. The following result characterizes
the group and the algebra of orthogonal and symplectic functions. The proof is trivial and
hence omitted.

Lemma 6. A function Q belongs to the intersection of the orthogonal and symplectic
groups if and only if it has the following structure:

Q =

(

Q11 Q12

−Q12 Q11

)

with
QT

11Q11 + QT
12Q12 = In , QT

11Q12 = QT
12Q11 .

Moreover, a C1 function Q is orthogonal and symplectic if and only if the function H :=
QT Q̇ belongs to the algebra of Hamiltonian and skew-symmetric functions. For all t, such a

function H must have the block form H(t) =

(

H11(t) H12(t)
−H12(t) H11(t)

)

, where HT
11(t) = −H11(t)

and HT
12(t) = H12(t).

To obtain the (block) eigendecomposition of P , we restrict to P dichotomic. We will
need the following Lemma.

Lemma 7. Let P > 0 be symplectic and dichotomic. Suppose that there exist Q11 and
Q12 such that

P

[

Q11

−Q12

]

=

[

Q11

−Q12

]

S ,

where QT
11Q11 + QT

12Q12 = In and σ(S) = {λ ∈ σ(P ) : λ > 1}. Then, we also have

P

[

Q12

Q11

]

=

[

Q12

Q11

]

S−1 ,

and QT
11Q12 = QT

12Q11. Therefore, by letting Q1 :=

[

Q11 Q12

−Q12 Q11

]

, we have

QT
1 PQ1 =

[

S 0
0 S−1

]

,

with Q1 symplectic and orthogonal.

Proof. From P

[

Q11

−Q12

]

=

[

Q11

−Q12

]

S, using the fact that P−1 = J−1PJ , we immediately

obtain that P

[

Q12

Q11

]

=

[

Q12

Q11

]

S−1. Now, we let Q1 be defined as in the statement of the

Lemma, and show that it is orthogonal. Writing Q1 as groups of columns: Q1 :=
[

C1 C2

]

,

we have to show that CT
1 C2 = 0. We have

PC1 = C1S , and PC2 = C2S
−1 ,

as well as CT
1 C1 = CT

2 C2 = I, so that we have at once

CT
1 C2 = (CT

1 PC2)S , and CT
2 C1 = (CT

2 PC1)S
−1 ,

from which we get that
(CT

1 PC2)S − S−T (CT
1 PC2) = 0
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which gives CT
1 PC2 = 0 since S and S−1 have no common eigenvalues. Therefore, CT

1 C2 =
0 and Q1 is orthogonal and symplectic. �

We can now block-diagonalize P .

Theorem 8. Let P ∈ Ck, k ≥ 1, be the solution of (6): Ṗ = F (t)P , subject to initial
condition P (0) = P0, with P0 symplectic positive definite, and assume that P is dichotomic.
Then, there exist Q1 ∈ Ck, symplectic and orthogonal, such that for all t ≥ 0:

(7) QT
1 PQ1 := D =

[

S 0
0 S−1

]

,

where we require that the function S > 0 has eigenvalues greater than 1.

Proof. From [16], it is possible to obtain the decomposition for P0: P0 = Q0

[

S0 0
0 S−1

0

]

QT
0

with Q0 orthogonal and symplectic and S0 > 0 with eigenvalues greater than 1. Let
Q1(0) = Q0 and S(0) = S0.

We impose on Q1 the structure

(8) Q1 =

[

Q11 Q12

−Q12 Q11

]

,

with QT
11Q11 + QT

12Q12 = In, and obtain differential equations defining Q11 and Q12 in

such a way that for all t we have P (t)

[

Q11(t)
−Q12(t)

]

=

[

Q11(t)
−Q12(t)

]

S(t). Because of Lemma 7,

by finding such Q11 and Q12, we will have completed the proof.

The differential equation we will solve for

[

Q11

−Q12

]

is:

(9)
d

dt

[

Q11

−Q12

]

=

[

Q11 Q12

−Q12 Q11

] [

H11

H21

]

,

where H11 is an arbitrary (but sufficiently smooth) skew-symmetric function, which we
can set to 0. Instead, H21 will be the solution of the linear system

(10) S−1H21 − H21S +
(

QT
1 FQ1

)

21
S = 0 ,

and we observe that H21 exists, unique, since S and S−1 have no common eigenvalues.
Before justifying these relations, let us show that the solution H21 of (10) is symmetric, a
fact which is not immediately obvious.

We show that HT
21 = H21. First of all, recall that F is Hamiltonian, see Ex-

ample 1. This fact, and the fact that Q1 has the structure in (8), give that

F̃21 :=
(

QT
1 FQ1

)

21
is symmetric. Now, to solve (10), at each t, we take the

Schur decomposition of the matrix S(t): W T SW = Λ = diag(λ1, . . . , λn) with

λ1 > · · · > λn > 1, and rewrite (10) for the new variable Ĥ21 = W T H21W : With

F̂21 = W T F̃21W , this gives Λ−1Ĥ21 − Ĥ21Λ+ F̂21Λ = 0. Now, examining the (i, j)

and (j, i) entries of this equation, we immediately obtain that Ĥ21 = ĤT
21 and thus

also HT
21 = H21.

Next, we justify the equations (9) and (10). With the form of Q1 we imposed, (9) follows

from the reasoning below. From the relation Ṗ = F (t)P , using the implicit function
theorem on the relations QT

1 PQ1 = D, QT
1 Q1 = I, we get

(11) Q̇T
1 PQ1 + QT

1 ṖQ1 + QT
1 PQ̇1 = Ḋ .
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From (11), we let H := QT
1 Q̇1 and partition it in a similar way to how F is. Rewrite (11)

as

−HD + (QT
1 FQ1)D + DH = Ḋ ,

and using the 0-structure of Ḋ relative to its (2,1) block, we get (10). The block H11 is
not uniquely determined, and we will set it to 0. So, we will eventually have the following
system of differential equations which define Q1 and S

Q̇1 = Q1H , Q1(0) = Q0 , H =

[

0 −HT
21

H21 0

]

,

with H21 given above, and

(12) Ṡ = (QT
1 FQ1)S , S(0) = S0 ,

with an obvious analog for S−1. Of course, only one of the equations for S or S−1 is
needed. �

The final thing to do is the Schur decomposition of the block S. To derive differential
equations for this scope, we will use the assumption of genericity of the function S. In
particular, this will imply that the eigenvalues of S(t) are distinct for all t. In this case,
the following result is well known (e.g., see [4] and also [11]), and its proof is therefore
omitted.

Theorem 9. Let S ∈ Ck(R+, Rn×n), k ≥ 1, S > 0, with distinct eigenvalues for all t ≥ 0,
satisfy the differential equation

Ṡ = B(t)S , S(0) = S0 .

Then, there exists U ∈ Ck, orthogonal, such that UT (t)S(t)U(t) = Λ(t), where Λ(t) =
diag(λ1(t), . . . , λn(t)), with λ1(t) > · · · > λn(t), for all t ≥ 0. Moreover, U satisfies the

differential equation U̇ = UK, where the entries of the skew-symmetric function K are
defined as

(13) kij(t) = −(UT (t)B(t)U(t))ij

λi(t)

λi(t) − λj(t)
,

for all t ≥ 0, and i = 1, . . . , n−1, j = i+1, . . . , n, with the rest defined by skew-symmetry.

3.2. All at once. In the above, we have separated different phases of the SVD, to clarify
at which point the assumptions we made become necessary. However, in practice, when
seeking the SVD of a symplectic X, we will proceed finding at once all the factors. Here
below we summarize this process.

We seek U and V , in Ck(R+, R2n×2n), symplectic and orthogonal, and Σ ∈ Ck(R+, R2n×2n),

diagonal of the form Σ =

[

Λ 0
0 Λ−1

]

such that XV = UΣ, where X solves (2) and

Λ = diag(σ1, . . . , σn). Since we will seek for U and V of the form

U =

[

U11 U12

−U12 U11

]

, V =

[

V11 V12

−V12 V11

]

,

we only need to find the reduced decomposition

(14) X

[

V11

−V12

]

=

[

U11

−U12

]

Λ .
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Formally setting H := UT U̇ and K := V T V̇ , both skew-symmetric, and partitioning
similarly to U and V , we will eventually solve the following differential equations to find
U and V :

d

dt

[

U11

−U12

]

=

[

U11 U12

−U12 U11

] [

H11

H21

]

,

d

dt

[

V11

−V12

]

=

[

V11 V12

−V12 V11

] [

K11

K21

]

.

(15)

To find expressions defining H12, K12, we will use the 0-structure in the definining decom-
position XV = UΣ. So doing, we get that

−

[

0 Λ
Λ 0

] [

H12

K12

]

+

[

H12

K12

]

Λ−1 =

[

(UT CU)12Λ
−1

Λ(UT CU)T21

]

,

from which we uniquely find H12 and K12. [We remark that (UT CU)T21 = (UT CU)21]. In
fact, for i, j = 1, . . . , n, we have

(H12)ij =
((UT CU)12)ij + σ2

i σ
2
j ((U

T CU)T21)ij

1 − σ2
i σ

2
j

(K12)ij =
σiσj

1 − σ2
i σ

2
j

[

((UT CU)12)ij + ((UT CU)T21)ij
]

.

(16)

From the relation Λ̇ = (UT CU)11Λ + ΛK11 − H11Λ, since Λ = diag(σ1, . . . , σn), we get

(17) σ̇i = ((UT CU)11)iiσi , i = 1, . . . , n ,

and the following expressions for the entries of the sewk-symmetric H11 and K11, for
i = 1, . . . , n, j = i + 1, . . . , n:

(H11)ij =
1

σ2
j − σ2

i

[

σ2
j ((U

T CU)11)ij + σ2
i ((U

T CU)11)ji
]

(K11)ij =
σiσj

σ2
j − σ2

i

[

((UT CU)11)ij + ((UT CU)11)ji
]

.
(18)

4. Approximation of Lyapunov exponents

An application of the SVD of a fundamental matrix solution X ∈ S satisfying (2) is
in the approximation of its Lyapunov exponents. We refer to [14] for formal definitions
and justifications. Presently, we recall (e.g., see [7]) that if σi, and their reciprocals 1/σi,
i = 1, . . . , n, are the continuous singular values of X, then the Lyapunov exponents can
be obtained as

(19) λi = lim
t→∞

1

t
ln(σi(t)) , and − λi , , i = 1 . . . , n .

Of course, in practice we will approximate the Lyapunov exponents on a finite interval
[0, T ] as λi ≈ 1

T
lnσi(T ). As alternative to SVD based techniques, one can of course

consider QR method; e.g., see [12] for a QR method tailored to symplectic functions.

In our case of X ∈ S, we will only compute the (distinct) singular values less than 1 and
thus just the n negative Lyapunov exponents. [So doing, we avoid working with quantities
that blow up as time increases.] To compute these n singular values, we should solve the
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analogous differential equation to (17), which however we will solve for the logarithms.
That is, we will end up solving

(20)
d

dt
vi = (S11)ii, i = 1, . . . , n,

with vi = ln(σi), i = 1, . . . , n, which amounts to a quadrature and where S = U T CU .
Similarly, rather than using (16) and (18) we will actually use

(H12)ij =
1

2

[

− coth(vi + vj)((S12)ij + (S21)ji) + (S12)ij − (S21)ji
]

(K12)ij = −
1

2

1

sinh(vi + vj)

[

(S12)ij + (S12)ji
]

,
(21)

for i, j = 1, . . . , n, and

(H11)ij =
1

2

[

coth(vj − vi)((S11)ij + (S11)ji) + (S11)ij − (S11)ji
]

(K11)ij =
1

2

1

sinh(vj − vi)

[

(S11)ij + (S11)ji
]

,
(22)

for i = 1, . . . , n, and j = i + 1, . . . , n, with the rest defined by skew-symmetry. The
ordinary differential equation in (20) has been integrated by the Euler explicit method
while the matrix ODEs in (15) have been solved by an exponential integrator (of order
one) in order to preserve both the orthogonality and symplecticity of the matrices U and
V during the evolution.

Remark 10. We have not paid any attention to efficient computations, and our exper-
iments are only meant to be illustrative. More refined implementations may make use
of efficient techniques for computing the exponential of Hamiltonian and skew-symmetric
matrices (e.g., see [2] for the case of skew-symmetric matrices), as well as make use of
higher order integration schemes.

In the experiments below, we took initial conditions (ICs) X0 = U0Σ0V0 where U0 and
V0 are random orthogonal and symplectic matrices and Σ0 = diag(Λ0,Λ

−1
0 ) is a diagonal

matrix with Λ0 = diag(σ0
1 , . . . , σ

0
n), and where 0 < σ0

n < · · · < σ0
1 < 1 are random as well.

Example 11. We take a system in the form (2) with n = 2, by defining C(t) = Ĉ +D(t),
where

Ĉ11 =

(

2.5 1
2 −2

)

, Ĉ12 =

(

2 4
4 1

)

, Ĉ21 =

(

2 5
5 2

)

,

D11(t) =

(

1
(1+t2)

0

0 1
(1+t2)

)

, D12(t) =

(

2
(1+t3)

0

0 2
(1+t)

)

, D21(t) =

(

2
(1+t2)

1
(1+t2)

1
(1+t2)

0

)

.

The Lyapunov exponents of the system are the real parts of the eigenvalues of Ĉ, that is
λ1 = 7.432699, λ2 = 2.237180 together with −λ1, −λ2. We use the SVD method with
time step h = 0.001, and integrate (15) and (20) up to the final time of T = 104. In Table
1 we show results of the approximate Lyapunov exponents 1

T
lnσi(T ), i = 1, 2, for several

values of T . As a measure of comparison, in Table 1 we also show the approximations
obtained by using the continuous QR method (see [6]) which is based on continuously
finding the factorization X = QR. In this case, we only approximate the two dominant
exponents, and thus work directly on a system half the size (i.e., X here is in R

4×2).
Lyapunov exponents are now approximated as 1

T
lnRii(T ), i = 1, 2. Again, ICs have been

chosen at random, and integration for the orthonormal factor Q has been done with a
simple projected forward Euler scheme. From the results of this simulation, it is apparent
that the SVD and QR methods are comparable in terms of accuracy (perhaps, the SVD
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Table 1. Approximate exponents: SVD and QR

T λ1–SVD λ2–SVD λ1–QR λ2–QR
0.1 8.6371 4.1396 -0.0225 -0.8031
1 8.7579 1.6901 8.3651 1.0050
10 7.7949 2.1626 7.5039 2.0898
100 7.4720 2.2080 7.4623 2.1690
1000 7.4377 2.2332 7.4346 2.2353
10000 7.4333 2.2367 7.4333 2.2363

method is a bit more accurate for small values of T ). On the other hand, the QR method
is much less expensive, by a factor of about 8, precisely the difference caused by the linear
algebra reduction achieved by halving the size of the problem (our implementation of the
exponential integrator is forcing a cost of O(m3) per step).

Example 12. This second example is the familiar Hènon-Heiles problem, for which com-
putation of the Lyapunov exponents was also done in [12]. We have the Hamiltonian

H(q1, q2, p1, p2) =
1

2
(p2

1 + p2
2) +

1

2
(q2

1 + q2
2) + q2

1q2 −
1

3
q3
2 ,

and the associated dynamical system ẋ = J∇H(x(t)), where ∇ is the gradient and x =
(q1, q2, p1, p2). That is, we have

q1 = p1

q2 = p2

ṗ1 = −q1(1 + 2q2)

ṗ2 = −q2 − q2
1 + q2

2.

(23)

Exact solution is not known, so we must solve (23) in order to obtain the associated
linearized problem. We integrate for the trajectory x with the leapfrog scheme. For
comparison with the results in [12], we performed experiments with each of the initial
conditions (IC) in Table 2 with q1 always given by 0:

Table 2. Initial conditions.

IC q2 p2 p1

1 0.2 0.02 0.463609
2 0.33 0.14 0.381389
3 0.015 0.25 0.432755
4 0.20 0.14 0.442417
5 -0.15 0.02 0.474183
6 0.25 0.30 0.328506

In Table 3 we show the approximate Lyapunov exponents at the final time T = 104,
obtained integrating the ODEs in (15) and (20) with time step h = 0.001. Exponential
notation is used throughout. In spite of the crudeness of our numerical implementation,
the results are in good agreeement with those in [12].
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Table 3. Approximate Lyapunov exponents.

IC λ1 λ2

1 7.42E-04 6.97E-04
2 7.97E-04 3.86E-04
3 8.31E-04 6.52E-05
4 3.93E-02 4.89E-04
5 5.48E-02 7.04E-04
6 5.48E-02 6.97E-04

5. Conclusions

Using the polar decomposition of a generic Ck symplectic function X we have derived
a constructive argument to establish existence of a smooth singular value decomposition
(SVD) for X where both factors are in the symplectic group. The generic dichotomic
assumption on the polar factor of X has been essential in our discussion. Under this
assumption, our construction gives a new algorithm to find the SVD of X, which –as
illustration– we have used to approximate the Lyapunov exponents of Hamiltonian differ-
ential systems. Combining the results in this work with those derived in [3] for the Lorentz
group, and by using the analysis in [5], one can consider the SVD of a function X evolving
on a quadratic group generated by any orthogonal matrix H.

In terms of cost, our simple implementation of the SVD examined in this paper is
not competitive with the tried and true QR methods, for the computation of Lyapunov
exponents. On the other hand, unlike the case of QR methods, with our SVD technique
one is able to obtain complete information on the fundamental solution matrix, without
explicitly resolving undesired growth behaviors.
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