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Abstract. In this work we give a constructive argument to establish existence of a
smooth singular value decomposition (SVD) for a C

k function X in the Lorentz group.
We rely on the explicit structure of the polar factorization of X in order to justify the
form of the SVD. Our construction gives a simple algorithm to find the SVD of X,
which we have used to approximate the Lyapunov exponents of a differential system
whose fundamental matrix solution evolves on the Lorentz group. Algorithmic details
and examples are given.

1. Introduction

We consider a matrix valued function X ∈ Ck(R, R(n+m)×(n+m)), k ≥ 1, belonging to
the Lorentz group (the relativity group). That is, for all t ∈ R, we have

(1) XT (t)DX(t) = D , with D =

(

In 0
0 −Im

)

,

where (without loss of generality) we will henceforth assume that n 6= 0 6= m, and n ≥ m.
We will write X ∈ L(n,m) whenever X is in the Lorentz group. By differentiating

XT DX = D and setting A = ẊX−1, it is simple to realize that X ∈ L(n,m) is a
fundamental matrix solution for a linear system of differential equations of the form

(2) Ẋ = A(t)X , where AT (t)D + DA(t) = 0 .

Finally, we will often write a matrix (be it a function or not) in block form, say A =
(

A11 A12

A21 A22

)

, where the partitioning is that inherited from D; i.e., A11 ∈ R
n×n, A21 ∈

R
m×n, A12 ∈ R

n×m, A22 ∈ R
m×m.

Example 1. The following two facts are easy to verify directly and will be handy shortly.

(i) An orthogonal function Q ∈ L(n,m) must have the following structure: Q =
(

Q11 0
0 Q22

)

, where Q11 and Q22 are orthogonal (in R
n×n and R

m×m, respec-

tively).
(ii) A block triangular function R ∈ L(n,m) must be orthogonal.

Our purpose in this work is to provide an explicit characterization of a singular value
decomposition in L(n,m) of a generic function X ∈ L(n,m). In Section 2, we will rely
on the polar factorization of X to characterize generic functions X ∈ L(n,m) and further
arrive to an SVD-like in L(n,m) of X. In Section 3 we will then derive a set of differential
equations satisfied by the SVD factors of X. Finally, in Section 4, we give an application:
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by using the explicit form of the SVD of X we will approximate the Lyapunov exponents
of a dynamical system with fundamental matrix solution X satisfying (2).

2. Polar and Singular Value decompositions in the Lorentz group

Two of the most useful and commonly employed decompositions of a full rank function
are its QR and SVD. It is well known (e.g., see [1]) that a C k full rank function, for
us X ∈ L(n,m) in (1), has Ck factors Q and R. However, see Example 1, in general
Q and R will not be in L(n,m). Instead, here below we will show that –for a generic
class of functions X ∈ L(n,m)– X admits a Ck SVD with the factors in L(n,m). The
stepping stone is given by the polar factorization of X, X = QP , with Q orthogonal and
P symmetric positive definite. It is known that Q and P are C k functions (see [1]), and
that furthermore they can be taken in L(n,m), see [9]. The following result gives the
structure of the polar factor P .

Lemma 2. Let P ∈ L(n,m) be symmetric positive definite. Then P has the following
block structure:

(3) P =

(

(In + P T
21P21)

1/2 P T
21

P21 (Im + P21P
T
21)

1/2

)

, P21 ∈ R
m×n .

If P ∈ Ck(R, R(n+m)×(n+m)), then P21 ∈ Ck(R, Rm×n).

Proof. We write P in block form: P =

(

P11 P T
21

P21 P22

)

, and use the relation P T DP = D to

obtain the following conditions:

(a) P 2
11 − P T

21P21 = In , (b) P21P11 − P22P21 = 0 , (c) P21P
T
21 − P 2

22 = −Im .

From (a) and (c) it follows that P11 = (In +P T
21P21)

1/2 and P22 = (Im +P21P
T
21)

1/2. Given
these forms for P11 and P22, condition (b) is automatically satisfied. To see this, consider
(at any given t) the singular value decomposition of the block P21: P21 = UΣV T . Then

P 2
11 = V (In + ΣT Σ)V T and P11 = V (In + ΣT Σ)1/2V T . Similarly, we have P22 = U(Im +

ΣΣT )1/2UT . Using these, we see that (b) is identically satisfied. Thus (3) follows. �

Consider now the function P21 ∈ Ck(R, Rm×n) of Lemma 2. Endow the space Ck(R, Rm×n)
with the Witney (or fine) topology; see [5] for definition of this topology. From [1, Theorem
4.3], we know that a generic function A ∈ Ck(R, Rm×n) has distinct singular values for all
t. [Recall that a property is generic if the set of elements that do not have this property is
a countable union of nowhere dense sets]. With these preparations, the following definition
is justified.

Definition 3. A generic function X ∈ L(n,m) is one for which the singular values of the
function P21 in (3) are distinct for all t.

As it is well understood, it is a trivial matter to recover an SVD of X from a Schur
decomposition of the symmetric positive definite function P . Indeed, if we have P =
ZEZT , with ZTZ = I and E diagonal, then we immediately have the SVD of X: X =
(QZ)EZT . We will now see that a simple expression exists for the eigendecomposition of
a generic P ∈ L(n,m), and hence for the SVD of X ∈ L(n,m).

Lemma 4. For a generic symmetric positive definite Ck function P ∈ L(n,m), we have

(4) W TPW =

(

(In + ΣT Σ)1/2 ΣT

Σ (Im + ΣΣT )1/2

)

,
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where W =

(

V 0
0 U

)

and P21 = UΣV T is a Ck SVD of the function P21. If we further

let Σ = (Σ1 0), Σ1 = diag(α1, . . . , αm), and S =







1√
2
Im 0 − 1√

2
Im

0 In−m 0
1√
2
Im 0 1√

2
Im






, then from

(4) we have the following eigendecomposition of P :

(5) (WS)T P (WS) =





Λ 0 0
0 In−m 0
0 0 Λ−1



 , Λ = (Im + Σ2
1)

1/2 + Σ1 .

Finally, letting C =





Λ 0 0
0 In−m 0
0 0 Λ−1



 and Y = QW , we obtain the following form for a

Ck SVD of X:

(6) X = Y SCSTW T .

Proof. We only need to recall (see again [1, Theorem 4.3]) that if P21 has distinct singular
values for all t, then we have P21(t) = U(t)Σ(t)V (t)T , for all t, where U ∈ Ck(R, Rm×m),
Σ ∈ Ck(R, Rm×n), V ∈ Ck(R, Rn×n) , and Σ = (Σ1 0), Σ1 = diag(α1, . . . , αm), with
αi 6= αj , i 6= j, for all t. The rest follows by straightforward manipulation. �

Remark 5. Obviously, the function P (respectively, X) has eigenvalues (respectively,

singular values)
√

1 + α2
i + αi,

√

1 + α2
i − αi, i = 1, . . . ,m, and (n − m) eigenvalues

(singular values) identically equal to 1 for all t. Without loss of generality, we can also
assume that the eigenvalues (singular values) are ordered from largest to smallest.

Remark 6. Clearly, the factors W and Y in (5) and (6) are in L(n,m). The role of the
constant matrix S (not in L(n,m)) is simply to explicitly diagonalize W T PW . The form
X = Y (SCST )W is the SVD-like in L(n,m) of X ∈ L(n,m).

3. Smooth SVD of X

The standard general construction of differential equations for a smooth SVD of the
function X ∈ L(n,m) (e.g., see [8] or [1]) in general will fail, because the multiple singular
values which are identically 1 lead to singularities in the differential equations derived in
these cited works. However, relying on Lemma 4, we now derive differential equations for
the factors Y,C, and W , in the SVD (6) of X, without encountering singularities.

Differentiating (6), we have

Ẋ = A(Y S)C(WS)T = Ẏ SCST W T + Y SĊST W T + Y SCST Ẇ T .

Let H = Y T Ẏ and K = W T Ẇ , and note that H and K must be skew-symmetric, so that
we must have

(ST HS)C + Ċ − C(ST KS) = (ST GS)C,(7)

Ẏ = Y H,(8)

Ẇ = WK,(9)
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where we have set G = Y T AY . Next, notice that Y =

(

Q11V 0
0 Q22U

)

, and that H and

K have this same block structure as well. Write

H =





H11 H12 0
−HT

12 H22 0
0 0 H33



 , K =





K11 K12 0
−KT

12 K22 0
0 0 K33



 ,

where H11, H33, K11, K33 are Ck−1(R, Rm×m) and skew-symmetric, H22, K22 are Ck−1(R, R(n−m)×(n−m))

skew-symmetric, and H12, K12 are Ck−1(R, Rm×(n−m)). Then (7) can be rewritten as








H11+H33

2
H12√

2
−H11+H33

2
−HT

12√
2

H22
HT

12√
2

−H11+H33

2
−H12√

2
H11+H33

2













Λ 0 0
0 In−m 0
0 0 Λ−1



 +





Λ̇ 0 0
0 0 0

0 0 d
dtΛ

−1



−





Λ 0 0
0 In−m 0
0 0 Λ−1













K11+K33

2
K12√

2
−K11+K33

2
−KT

12√
2

K22
KT

12√
2

−K11+K33

2
−K12√

2
K11+K33

2









=









G11+G13+GT

13
+G33

2
G12+GT

23√
2

−G11+G13−GT

13
+G33

2
−GT

12
+G23√
2

G22
GT

12
+G23√
2

−G11−G13+GT

13
+G33

2
−G12+GT

23√
2

G11−G13−GT

13
+G33

2













Λ 0 0
0 In−m 0
0 0 Λ−1



 .

(10)

Let σi, i = 1, . . . ,m, be the diagonal elements of Λ−1. From the differential part
in (10), using the fact that the relations from the (1, 1) and (3, 3) blocks imply that
diag(G11 + G33) = 0, we have

(11) σ̇i = −(G13)iiσi, i = 1, . . . ,m.

From the algebraic part in (10) we obtain

(12) H22 − K22 = G22

(13)

(

Λ−1 −Im

−Im Λ−1

)(

H12

K12

)

=

(

Λ−1(GT
23 + G12)

−G12 + GT
23

)

.

From (13) we can uniquely determine H12, K12. We further set K22 to zero and thus H22

is uniquely determined from (12). [This choice for K22 is for convenience only. Any other
choice by which we recover smooth H22 and K22 in (12) is possible].

To find the blocks H11, K11, H33 and K33, we reason as follows. We look at the (1, 3),
(3, 1) and (3, 3) blocks of (10) (note that the (1, 1) block is the same as the (3, 3) block).
From the (1, 3) and (3, 1) blocks we get
(

0 −Λ
−Λ 0

)(

−H11 + H33

−K11 + K33

)

+

(

−H11 + H33

−K11 + K33

)

Λ−1 =

(

(−G11 + G13 − GT
13 + G33)Λ

−1

Λ(G11 + G13 − GT
13 − G33)

)

,

so that, for i, j = 1, . . . ,m, i 6= j, we get

(−H11 + H33)ij = (−G11 + G33)ij + (G13 − GT
13)ij

σ2
i σ

2
j + 1

σ2
i σ

2
j − 1

, and

(−K11 + K33)ij = 2(G13 − GT
13)ij

σjσi

σ2
i σ

2
j − 1

.

(14)
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Moreover, from the (3, 3) block of (10) we also get, for i, j = 1, . . . ,m, i 6= j,

(H11 + H33)ij = (G11 + G33)ij − (G13 + GT
13)ij

σ2
j + σ2

i

σ2
j − σ2

i

, and

(K11 + K33)ij = −2(G13 + GT
13)ij

σjσi

σ2
j − σ2

i

.

(15)

Using (14) and (15), we can determine H11,H33, K11,K33 and hence H and K.

To summarize, to find the SVD of X ∈ L(n,m), we will proceed as follows:

1. Given initial conditions in L(n,m) (i.e., X(0) or its polar factors in L(n,m)).
2. Integrate (8), (9) and (11) making use of the algebraic relations (12) with K22 = 0,

(13), (14), (15) to obtain K and H.
3. Form the SVD (6) if desired.

Remark 7. It must be stressed that it is because of the assumption of genericity on the
class of functions considered (see Definition (3)), that we are able to write down the
differential equations for the evolutions of the factors in the SVD. In particular, we have
been able to restrict to singular values which are distinct (hence (15) is legitimate) and
less than 1 in magnitude (hence (14) is legitimate).

4. Approximation of the Lyapunov exponents

An application of the SVD of a fundamental matrix solution X of a linear system is
in the approximation of its Lyapunov exponents. This requires some technical conditions
on the linear system, and for the sake of brevity we refer to [6, 7] for formal definitions
and justifications. Presently, we recall (e.g., see [4]) that if σi, i = 1, . . . , (n + m), are the
continuous singular values of X, then the Lyapunov exponents can be obtained as

(16) λi = lim
t→∞

1

t
ln(σi(t)) , i = 1 . . . , n + m .

Of course, in practice we will approximate the Lyapunov exponents on a finite interval
[0, T ] as λi ≈

1
T lnσi(T ), i = 1, . . . , n + m.

In our case of X ∈ L(n,m), we will make use of the structure of a generic function
X ∈ L(n,m) to compute only singular values which are distinct for all t. The argument
is as follows. In [2], it was already observed that the Lyapunov exponents of X ∈ L(n,m)
are symmetric with respect to the origin and that (n − m) of them are equal to 0 (a
consequence of having (n − m) singular values identically 1). Thus, we can compute just
the m Lyapunov exponents that are less than 0. [Exploiting this fact, we avoid working
with quantities that blow up as time increases.] These are associated to singular values
which are less than 1 for all t. By virtue of Definition (3), these singular values are also
distinct for all t. Now, in order to compute these m singular values, at every step we will
solve the differential equations (11) for the σi and (8) for Y ; there is no need to find W in
(9). Also, instead of solving (11), we rather solve

(17)
d

dt
(ln(σi)) = −(G13)ii, i = 1, . . . ,m.
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Then, to avoid reforming explicitly the σi’s, we modified (14)-(15) to obtain the entries of
H11, H33 (and K11, K33) as follows. For i = 2, . . . ,m, j = 1, . . . , i − 1,

(H11)ij = (G11)ij−
1

2
(G13)ij(coth(ln(σj/σi)) + coth(ln(σjσi)))−

1

2
(G13)ji(coth(ln(σj/σi)) − coth(ln(σjσi))) ,

(H33)ij = (G33)ij−
1

2
(G13)ij(coth(ln(σj/σi)) − coth(ln(σjσi)))−

1

2
(G13)ji(coth(ln(σj/σi)) + coth(ln(σjσi))) ,

and similarly

(H12)ij = (G12)ij + (G23)ji coth(lnσi), i = 1, . . . ,m, j = 1, . . . , n − m.

Finally, when we integrate (8), we must maintain the approximation orthogonal at grid
points, which we have enforced by using a simple projected integrator, whereby at each
step we orthogonalize the solution obtained with an explicit Runge-Kutta integrator.

5. Numerical examples

In this section we apply the algorithm to approximate numerically the Lyapunov ex-
ponents, and we compare the results obtained using this technique with those obtained
with the tried-and-true continuous QR-method (see [3]). We take two systems for which
we are able to compute exactly the Lyapunov exponents by other means, so that we can
test the accuracy of the methods. Integration of the relevant differential equations is done
with explicit Runge Kutta schemes of order 2 and 4 and constant stepsize h = 0.1, imple-
mented in Matlab5. Initial conditions are chosen at random (using the rand command in
Matlab5). Finally, we notice that with the SVD approach we approximate the negative
Lyapunov exponents, while with the QR method we approximate the positive ones.

Example 1. Consider the linear system (2) with n = m = 2 given by

A(t) =









0 cos(t) −1 1
1+t

− cos(t) 0 3
1+t2

5

1 − 3
1+t2 0 − sin(t)

1
1+t 5 − sin(t) 0









.

The Lyapunov exponents are {−5, 0, 0, 5}. Numerical results are summarized in Table (1),
where we show:

• The endpoint of integration T .
• The Method used. Namely, SVD2 and SVD4 are the SVD methods, QR2 and QR4

are the QR methods, with integrators of order 2 or 4, respectively.
• λ are the approximations of the Lyapunov exponents at T .

Example 2. Here we have (2) with n = 4, m = 2, given by

A(t) =



















0 sin(t) 1
1+t −1 2

1+t2
cos(t)

− sin(t) 0 1
2+t 0 4 1

1+t2

− 1
1+t − 1

t+2 0 0 cos(t) 2 + sin(t)

1 0 0 0 1
1+t 0

2
1+t2

4 cos(t) 1
1+t 0 − sin(t)

cos(t) 1
1+t2

2 + sin(t) 0 sin(t) 0



















.
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Table 1. Example 1: QR and SVD methods

Method λ
SVD2 -5.0114

T = 102 SVD4 -5.0101
QR2 4.9940
QR4 4.9928
SVD2 -5.0018

T = 103 SVD4 -5.0009
QR2 4.9997
QR4 4.9992
SVD2 -5.0009

T = 104 SVD4 -5.00009
QR2 4.9999
QR4 4.9999

The two positive LEs for this system are λ1 = 3.85140, λ2 = 2.20210. Numerical results
are summarized in Table (2).

Table 2. Example 2: QR and SVD methods

Method λ1 λ2

SVD2 -3.8799 -2.2065
T = 102 SVD4 -3.8718 -2.1988

QR2 3.8691 2.1851
QR4 3.8669 2.1832
SVD2 -3.8566 -2.2042

T = 103 SVD4 -3.8542 -2.2017
QR2 3.8557 2.2020
QR4 3.8538 2.2001
SVD2 -3.8535 -2.2043

T = 104 SVD4 -3.8517 -2.2022
QR2 3.8534 2.2039
QR4 3.8517 2.2021

From Tables (1) and (2), we observe that the QR and SVD methods give numerical
approximations of the Lyapunov exponents with the same degree of accuracy. Also, upon
using the flops count provided by Matlab5, we found that the SVD methods are about
32% more expensive than the QR methods. Furthermore, in Figure 1 we show that the
rate of approach to the Lyapunov exponents of the two methods is essentially identical.
Therefore, and in spite of the fact that in the QR method the factors Q and R do not
belong to L(n,m), we conclude that, if only the Lyapunov exponents are desired, the QR
method is preferable. However, by also integrating for W in (9), the SVD method allows
us to rebuild the entire function X without explicitly resolving growth behaviors, while
this does not appear possible with the QR method.

6. Conclusions

Using the particular structure of the polar factor in the polar factorization of a smooth
matrix function X evolving on the Lorentz group L(n,m), we gave a simple formula for a
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Figure 1. Example 2: QR and SVD methods approaching λ2

smooth singular value decomposition of X with all factors in L(n,m). We were also able
to derive differential equations for the factors in the SVD of X, in spite of the fact that
X in general has multiple singular values (identically 1). As an application, we have used
the SVD of X to approximate its Lyapunov exponents.
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