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4. Conclusions

In this work, we have investigated how to maintain monotonicity in the numer-
ical solution of Riccati equations. After realizing that no direct discretization
can maintain monotonicity and have order greater than one, we paid atten-
tion to indirect solution procedures. Our main result shows that monotonicity
is maintained if we integrate the underlying linear Hamiltonian system with a
symplectic RK scheme with positive weights, and then recover the solution of
the RE. To obtain our result we use the general property of these schemes: they
maintain the monotonicity of quadratic forms (see Eirola (1995)).

In our mind, a major outcome of this work, and of Dieci and Eirola (1994),
is that it once more shows that the Gauss schemes have very desirable mathe-
matical properties. However, it remains a challenging task to implement them
(or their approximation) in an efficient way.

In future work, we plan to address some of these aspects, as well as to com-
plete the analysis for the case of singular weight matrix R(t) in (3), a fact which

provided our initial motivation.
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Proof. Omitting the subscripts “k” take
I Xy —17mr=1
W = I Z Z7Z [521 522 ] .

Then we have:

= | Xo| _ | Xo 17 . = Xo| YZ-1Z7
U[I]—[I]ZZ and SW[I]_[ 7 ],

so that

s [B] <[P -vz].

which further implies

[Xo I](S—SW)LQ(5—sw) [’?0 =0,
where @ is defined as before. Thus, from (20) we get:

~17 ~ - ~11 =

Y YZ7'Z YZ71Z Y

=~ J = - = J5| >

Z Z | Z Z

~. X , ~

>(I-2""2)"[X, I]Q[ I" ](I—Z‘lZ)+
+[Xo I]7 [EO 7712 -7T7°T(X, I|J [)}0] ,

ie.,
YIZ 2Tz 272727 YT 2+ ZTY > 201 — 27 2) T X (I — 274 Z) > 0.

By symmetry of X and X we finally get

X=YZ'<yZ'=X. |

Completion of the proof of Theorem 6. Let Vj = [X[D ], and XN/}J = ["?0 ]

Let V, f’ V be defined as follows

A ~ 2

V=HHV,V(0)=V, V=HHV,V0)=V, V=HHV,V(0) =V.

Let X, X'k, and )N(k be as usual; e.g., ka = ?k/Z\,Zl, where f’k = <§Z\k) is the
k

approximation to i?(fk) Then, upon applying Propositions 1 and 2, in the order,
we have

ngX’kSX'k |



12 Luca Dieci and Timo Eirola

It remains to prove monotonicity with respect to the coefficients only, while

keeping the same initial conditions. We will use the following result.

Lemma 3. Let S and S be the symplectic fundamental solution matrices in
(18), W € R2™2" gny constant matriz, and Q and J be as before. Then, we

have

(S—SW)TQ(S—SW)+STTSW—-WTSTJS > (I-WTYQU-W)+JW-WT]J.

(20)
The same wnequalities hold also for numerical solutions obtained from a sym-
plectic RK scheme with positive weights.

Proof. Set @ = |:]T63 0 7 E)Q] The claims follow (again via Theorem 5)

from the monotonicity:

s el a D[] (3 alealT s [w]=

(21)
because
H 0 ls.plH 0]_
0 ]erald -
B 0 -B 0 0 _0 00
s 0. C Q0 -C Iy 0 ¢-cC A-4A4 0
-B 0 B 0 0 A"—A" B-B 0
0o —-C 0 C 0 0 0 0
is positive semidefinite. Hence
~ T ~ T
S A1 S I 511
> , o
[S W‘] @ [S W'] = [W ] @ [VI] ’
which is equivalent to (20). |

Remark 7. We have (20) also for any time dependent W : just consider (21)
with S(t), 5(2‘) and W(7) and then apply the result with 7 = ¢.

The following result then deals with monotonicity with respect to the coef-

ficients only.

Proposition 2. In the situation of Theorem 6, let the coefficient matrices
H(t), ﬁ(t) satisfy the inequalities there, but now Xy = Xo. Then, as long as
both are defined, we have Xj < )N(k .
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which further implies
T 7|0 0
290185, = [0 I]SQS™ | ;[ =[0 I]Q| ;| =0.

The statement for the numerical solutions follows by using first the quadratic
map ¢(S) = STQS in Theorem 5. to get ¢(Sk) > ¢(I) and then proceeding as
above (we know that also S}, is symplectic). O
Remark 6. Also the matrices ST, So1, S35S15 , and S1; S{, can similarly be shown

to be nonnegative, but below we will need only S»; 5%, > 0.
We are ready to consider monotonicity with respect to the ICs only.

Proposition 1. In the situation of Theorem 6, let the coefficient matrices sat-
18fy H= H, but Xy < jZ(], Then, as long as both are defined, we have X; < X'k.
Proof. We have
LZ"Y YT = (Y'B-ZTAY +ZT(AY +CZ)
~(Y'AY 4+ Z27CyZ - Y1 (BY - AT Z) = 0.
Hence the quadratic form ZTY —YTZ is constant on the trajectories of the
system (17). That is,

Z'Y - YTZ=A:=X, - X,. (19)

Since the RK-method applied to the pair of equations (17) is equivalent to
the application to each of them separately, we have (19) also for the numerical
solutions by Theorem 5.

On the other hand we have now S = § , so that for the true and numerical

solutions we have:
Z—2=25(Xo—X0)=512T2"TA = (S Xo58, + S SE)Z T A.
Using this, (19), and symmetry of X we get:

Z"X-X)Z = Z'z7"Z"Y -Y"Z)=2"72""A=
= A+ (Z-2)'z7"A=
= A+ ATZ7Y(S99XSE 4+ 89250)Z27 A,

which is nonnegative by Lemma 2. O
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let X;, = YkZ,,;l , X'k = ?k21;1 Then, as long as both are defined, we have
X, < X,

Idea of Proof. By Dieci and Eirola (1994) we know that X} and )N(k are
symmetric and positive semidefinite. First, we will show the result when we
have different ICs X, < X’g, but the same coefficient matrices, and then in the
case of same ICs, but coeflicient matrices satisfying the inequalities. Combining
these gives then the general case.

The main tool we will use is Theorem 5 in our context: any inequality (or
equality) that is obtained from a monotonicity of a quadratic map along trajec-
tories of (17) will automatically be satisfied also by numerical solutions obtained
from the RK scheme. O

Consider systems
S(t)= HS(t), SO)=1. 5(t)=HBS(t), 50) =1, (18)

together with their RK—discretizations, where H and H are defined in (9) (ie.,

the coefficient matrices of (17)). Then, by linearity, the true solutions and cor-
responding numerical ones of (17) satisfy

Y _ |5 Siz||Xo V] _ S S [ X,
Z S21 S22 |y |z S21 Sao I|-
Recall that S(t) and g(t) are symplectic matrices, and that also their numerical

approximations (obtained with symplectic RK schemes) are symplectic matrices

(see Sanz-Serna (1992)).

Lemma 2. The matriz S of (18) satisfies: So1(t)S35(t) > 0 for allt > 0. More-
over, if we discretize (18) with a symplectic RK scheme with positive weights,

then the approxzimate matriz, if defined, satisfies this at the grid-points.

Proof. Set @ = |:? é:| We have
Lisrgs) = sTHTQ+0m)s =257 | B Ol g>0
dt - T 0o |7 ="

and since S(0)7QS(0) = Q, we have ST QS > @ for all t > 0. Symplecticity of
S means S~1J = JST | so that from @ > S~TQS™!, we get

—Q=J"QJ > J'ST'QST ] = SJTQIS" = -5QsT
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In Dieci and Eirola (1994), we showed that if we use these RK schemes to
integrate (16), then eventually the end result is a nonnegative approximation
for X. This result, as well as many other results on integrating certain systems
with such RK schemes, can be actually obtained as consequences of a general
monotonicity preserving property of these methods (see Eirola (1995), Theorem
2.1):

Amap ¢ : R 5 E is quadratic if it is of the form q(z) = pB(z,z), v € RY,
where 3 is bilinear. Let K be a closed convex cone in E and write u > v if
u—v e K.

We say that ¢ is nondecreasing along trajectories of an ODE
Bt =f(ha(t), o) € R
if for a solution on any interval [7, 7] holds: ¢(z(7)) < g(z(7)).

Theorem 5. If a quadratic map is nondecreasing along trajectories of an ordi-
nary differential equation, then it is also nondecreasing, at grid-points, along the
numerical trajectories — if defined — obtained from a symplectic RK scheme

with positive weights.

Remark 5. To apply the above theorem, one needs to find an appropriate
quadratic form, and show that this form is nondecreasing along exact trajec-
tories. Of course, this might be hard, but the importance of the theorem is
that it allows to work with the continuous problemn, which is much easier (we
have differentiability!). Conclusions are then reached on the mesh where we have

discretized the problem.
The following is our main result.
Theorem 6. Consider the following two Hamiltonian systems
) = [l ] [20] - (6] -[7]
] - [ slBl Bel-[3]. w

and assume that the coefficients and initial conditions satisfy

—_—

H(t)J <H(t)J and 0<X)<X,.

LetYy, Zy, }7}\ , and ka be the approzimations obtained — for the same stepsize

sequence — by using a symplectic RK scheme with positive weights on (17), and
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From this, we realized that many rules also explicit in X  could be devised
in order to maintain positivity. Eventually, we focused on the following formula
(it is a misprint-free version of Dieci and Eirola (1994), (3.13)):

Pipy =1 = 5(A = 5 XaB)] L+ (A = $X0B))],

Xiyp = oo [Xi + 5CIP], + 50,

Pip1=[I - %(AH% - %Xz'Jr%BH%)]_l[[*‘ %(AH% - %XH%BH%)]:

Xip1 = @i [ X + 20 + Ly
Unfortunately, this same rule generally does not maintain monotonicity. To see
it, consider the scalar RDE with A = C' =0, Xy =1, and B a (positive) scalar;
then, use this above discretization with h = 1, and observe that the function
X (B) ceases being decreasing around B = 1.9.

In fairness, it is possible that there are schemes resulting from an appropri-

ate discretization of (15), which do maintain monotonicity. However, the basic

appeal of being able to easily construct simple ones, of arbitrarily high order, is

certainly lost.
3.2. Pundamental solution approach
The idea, here, is to use Lemma 1. That is, to integrate
} _|4 C Y Y0)| _[Xo (16)
zZ|  |B -—-A! Z|” Z0)y| | I ~
and then form X (t) via (8): X(¢) =Y (t)Z(¢)7!.

Of course, this raises the question of how to integrate (16). Consider a k-stage

RK scheme, compactly represented by the tableau

C1 any alk
Ck Ap1 .. gk
by ... by

where the c; are the abscissas, and the b; are the weights. A RK scheme is called
symplectic if
bia;j +bja;; —bb; =0, 4,53=1,...,k,

and we will consider symplectic schemes with positive weights b;. The Gauss

schemes are such.
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3. Indirect methods

In our previous work on positivity preservation, we chiefly focused on two indirect
solution techniques for RDEs. One of them is based on Lemma 1, the other is

based on a linearization approach. Let us first recall the latter one.

3.1. Linearization approach

The starting point, here, is an explicit solution formula for the Lyapunov Equa-
tion (12). In fact, it is easy to see that in this case the solution X (¢) satisfies for

t>s5>0
X(t) = d(t,s) X (5)P(t,5)T + /t ®(t,7)C()®(t, 7)Tdr | (13)

where & solves b
db(t,7) = A()D(t,7),  B(r,T)=1. (14)

It is trivial to maintain positivity, here: one can use any quadrature rule with
positive weights on (13), by supplying the values for ¢ upon integrating (14)
with any other rule.

If we consider another Lyapunov equation with C'(t) < CN'(t), and X, < X,
it 1s again a trivial matter to maintain monotonicity, and order higher than one.

Many choices, along the lines of the following example, are possible.

Ezample 1 (Second order rule). Use the implicit midpoint rule to perform the
integration in (14), and the trapezoidal rule for the quadrature on (13). If we let

@i+ to be our approximation to @ at t;4;, we get

Xiv1 = QX0 + %@iﬂ@@ﬂl + Cit1),
Xiy = @z‘+1,§i45f+1 + %(@i+],5i¢?+l + C~7i+1)7

from which monotonicity is obvious.

In Dieci and Eirola (1994), we noticed that there were several possibilities
for RDEs, of algorithms which maintained positivity. The starting point was the
following representation of solutions of (1):

X(t) = (t,5) X (s)P(t,s)" + / (t,7)C(T)®(t, T dT |

Js

b(t,7) = [A(t) — LX (1) B@)B(t,7) , B(r,7) =1 . (15)
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Proof. By assumption, Xy < X'g. Now, suppose we have computed solutions X,
and X'k at the point t; such that X; < X’k Then, the solutions at ¢4, satisfy
the following two algebraic Riccati equations (AREs), respectively:

(hfl — %I)Xk+1 + /‘Vk_;_l(hfl - %[)T - )(k—}-lh'B)(k+l + (hC + Xk) =0 .

(hA - %I)Xk+1 + X1 (hA — 1Nt — Xip1hBXpy1 4 (hC + X;) =0,
where h = tx1 — t; and the matrices A, B, C, E, C are evaluated at tk+1. These
ARESs are associated to the two following constant Hamiltonian matrices
hA—3I hC+ Xy hA-Li1  nC+ X,

hB  —(hA—3D)" hB  —(hA-iDT

Under the stated assumptions, then, it is known (e.g., see Theorem 2.2 of

A[k = ﬁk = |:

Ran and Vreughdenil (1988)) that we can uniquely obtain Xjy; > 0 and

)N(k+1 > 0, and that moreover X1 < ./\.";k+1. O

Remark 2. In general, solutions of AREs are not unique. Thus, the above theo-
rem really says that, if we always select the positive solution of the AREs arising

during backward Euler discretization, we do eventually get monotonicity.

Remark 3. We can weaken the positivity assumptions on B and X, in case the
RDE arises —as it is the case for us— from the control setting. In this case,
from (5)-(6), we have that B = GR™'G', and similarly for B. Then, the above
Theorem still holds if we require Xy > 0, and (A(t),G(t)) stabilizable (see
Ran and Vreughdenil (1988)).

Although Theorem 3 does not impose restrictions on the stepsize, it only

gives us a first order method. In general, this is optimal.

Theorem 4. Any one-step method or strictly stable multistep method that pre-

serves monotonicity wn the numerical solution of RDEs has order at most one.

Proof. This is a direct consequence of Theorem 2.3 in Dieci and Eirola (1994).
There, we proved that, under the stated assumptions, solutions of the RDE (1)
cannot be guaranteed to be positive. Thus, compared to the case C' =0, X(t) =

Xy = 0 they cannot be monotone. |

Remark 4. It should be noticed (see Dieci and Eirola (1994)) that the negative
result of Theorem 4 cannot be improved even in the case of Lyapunov equations,

that is when the quadratic term is missing:

X =ABX +XAT®)+Ct), X(0)=X,. (12)
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important. Moreover, our own interest in maintaining monotonicity arose from
the case of a (possibly) singular weight-matrix R(¢) in (3), a fact which might
preclude forming the RDE. In fact, in case we ouly have a nounegative R(t), we
might regularize the problem by replacing such R(t) with, say, R(t) 4+ AI, A > 0.
Of course, it is of interest to study the limiting case of regularization parameter
going to 0. If we let X be the solution of the RDE associated to a given A, then

we need to maintain
0< JY,\I(I‘,) < X)\2(t), 0< A < Ao,

if there is any hope of obtaining meaningful results.

In a similar spirit to our previous work, see Dieci and Eirola (1994), in the
next two Sections we look at direct and indirect discretization strategies for
(1). Like in Dieci and Eirola (1994), no direct discretization can have order
greater than one, and maintain monotonicity. Unlike in Dieci and Eirola (1994),
amongst the indirect discretizations, we have to narrow even further the list of
appropriate choices. As it turns out, to get higher order schemes, a good choice is
given by symplectic RK schemes with positive weights on the underlying Hamil-

tonian, and recovering the solution of the RDE by (8).

2. Direct methods

In this Section, we consider integration formulas for the RDE: these are the one-
step or multi-step methods resulting from a direct discretization of the matrix

equations.

Definition 1. We say that an wntegration formula preserves monotonicity
for the RDE, if for any pair of systems (10) satisfying (11) there ewxists hg >
0, such that the method applied with stepsizes in (0,hg) produces trajectories
satisfying Xy < Xk, k=0,1,....

The first result is positive, showing that there are formulas preserving mono-
tonicity, under mild assumptions on the coefficients.

Theorem 3. Suppose that E(t) > 0 and Xy > 0. Then, the backward Euler

method preserves monotonicity for RDEs.
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Solutions of (1), enjoy an important monotonicity property with respect to
the initial data. More precisely, we have the following theorem (first given in

Reid (1970)):

Theorem 2. Consider the Hamiltonian matrices

Aty C(t H Aw - C
H(t)Z[BEg —A(Tt()t)] an H(t):[ﬁ((?) —Egg’-‘)] Y

and the RDFEs associated to these Hamailtonian matrices
X AX +XAT(t)—= XBHOX +C(t) , X(0) = X, ,
X = AOX+XA"(t)-XBOX+C(t), X(0)=X, . (10)

Assume

~ : C—C A—A
HI<HJ L ie, | &~ Gr B—E]ZO (11)

together with 0 < Xy < Xo. Then, for every t > 0 we have X(t) < )Z'(t)

Proof. Let U(t) = )N((t) — X (¢). Then, it suffices to realize that U(t) satisfies the
RDE

U=(A-=XBWU+U(A-XB)' —UBU+[I X|(HJ-HJ) [ é]

with a nonnegative definite initial condidion so that the result follows at once

from Theorem 1. O

Our concern in this paper is to study conditions under which the monotonic-
ity property of Theorem 2 is maintained under discretization. More precisely:
when are two numerically computed solutions of RDEs, with coefficient matrices
verifying the assumptions of Theorem 2, ordered within the class of nonnegative
matrices?

In the next Sections we will answer the above question. But, first, we should
make clear why the properties of positivity and monotonicity expressed by The-
orem 1 and Theorem 2 are important. Positivity is important chiefly for stability
considerations: in the context of the regulator problem, x* ()X (t)x(t) is a Lya-
punov function (strict, if X(¢) > 0) for the closed loop system. Moreover, in
terms of cost criterion, failure to maintain positivity can lead to totally erro-
neous physical interpretations. Monotonicity is of utmost importance from the
designer’s point of view. It is exactly the ability to modify the costs and the

optimal control, through modifications in the input data, which makes it so



Monotonicity in numerical Riccati equations 3

express u*(t) uniquely as u*(t) = —R 1 (¢t)GT(t)p(t), where now z(t) and p(t)

solve the linear Hamiltonian two-point boundary value problem (TPBVP)

[1;] _ [_&?TGT _FC] [5] , 2(0) = @0, p(ty) — Xoa(ty)=0.  (5)

Notice that (1) is (4) after the time reversal t « t; — ¢, in which case we would

have the Hamiltonian TPBVP

(2] =nw[2]. mo=[20 S0,] 20 = Xer©), 21y = .
Q

The matrix H(t) € R*"**"(t) is a Hamiltonian matriz: JH(t) = (JH(t))", Vt.

Remark 1. In theory, to get the optimal control we might bypass solving the
RDE, and solve in some way the TPBVP (6). However, this class of TPBVPs is
known to be dichotomic (see Johnson and Nerurkar (1992), Ikeda et al. (1972)),
and a successful solution strategy needs to go through some form of decoupling of
the solution space (Ascher et al. (1988)). The Riccati equation is an expression
of this decoupling (see Lemma 1.3 below), and thus it suggests itself also as the
tool for solving the TPBVP. In other words, the RDE is not only an elegant

tool, but also a computationally convenient one.
The following result is well known (e.g., see Dieci and Eirola (1994))

Theorem 1. The unique solution of (1), with X(0) = X > 0, is nonnegative
and exists for all t > 0. Further, if X(s) > 0 or C(s) > 0 for some s > 0, then
X(t) >0 for all t > s.

We also have the following Lemma, easy to verify by direct substitution.

Lemma 1. The Riccati equation (1) is obtained from the system (6), upon re-

quiring that the change of variables

T-1(¢) [1’] T(t) = [é X}t)] , (7)

xT

nduces a block lower triangular system. Moreover, let Y and Z be the solutions

)=o) ][]

Then the solution of (1) is given by

of

Xt)y=Y(#®)Z7(¢). (8)
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on the underlying Hamiltonian matrix, we eventually maintain monotonicity in

the computed solutions of RDEs.

Notation. We say that a matrix A is positive if it is symmetric and positive
definite, and nonnegative if it is symmetric positive semidefinite, and we write
A >0, and A > 0, respectively. A matrix S is symplectic it ST JS = J, where

J = [_OI é], or equivalently if S~ =—JSTJ.

1. Introduction

In this paper we consider the problem of solving numerically the symmetric

Riccati differential equation (RDE):
X(t) = AOX(t) + X(O)AT(t) - X(t)B(t)X (1) + C(t) , X(0)=X,, (1)

where all matrices are in IR"*", bounded, piecewise continuous, and moreover,
B(t), C(t) and X, are nonnegative.

This equation arises naturally in many engineering applications, e.g. in op-
timal control. Since the specific engineering problem provides the motivation
for our study, let us briefly recall the so-called “finite time regulator problem”
(Kalman (1960), Anderson and Moore (1971), Kwakernaak and Sivan (1972)).

We have a linear time-varying system
z(t) = F()z(t) + G(t)u(t), =(0)==g, (2)

where F(t) € R"*", G(t) € R"*", and vectors z(t) € R", u(t) € R”. We want

to find the “optimal control” u*(¢), which minimizes the quadratic criterion

/0 (Ot + aT (O R(Ea(e)dt + o (t) Xoulty), (3)

where Xy > 0, C' > 0, and R > 0. It is well known that the minimum value
of the criterion is 2§ X (0)zy (see: e.g. Anderson and Moore (1971)), where X (t)
solves the RDE

—X=FI'X4+XF-X(GR'GHX +C ,t<tyand X(t;) =X, . (4)

The optimal linear feedback control law is then u*(t) = —R™1(¢t)GT (¢) X (t)x(t).

An equivalent way to get this result (see Kwakernaak and Sivan (1972)) is to
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Summary. Solutions of symmetric Riccati differential equations (RDEs for
short) are in the usual applications positive semidefinite matrices. Moreover, in
the class of semidefinite matrices, solutions of different RDEs are also monotoéne,
with respect to properly ordered data. Positivity and monotonicity are essen-
tial properties of RDEs. In Dieci and Eirola (1994), we showed that, generally,
a direct discretization of the RDE cannot maintain positivity, and be of order
greater than one. To get higher order, and to maintain positivity, we are thus
forced to look into indirect solution procedures. Here, we consider the problem of
how to maintain monotonicity in the numerical solutions of RDEs. Naturally, to
obtain order greater than one, we are again forced to look into indirect solution
procedures. Still, the restrictions imposed by monotonicity are more stringent
that those of positivity, and not all of the successful indirect solution procedures
of Dieci and Eirola (1994) maintain monotonicity. We prove that by using sym-

plectic Runge-Kutta (RK) schemes with positive weights (e.g., Gauss schemes)

* This work was supported in part under NSF Grant #DMS-9306412.



