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POSITIVE DEFINITENESS IN THE NUMERICAL SOLUTION OF

RICCATI DIFFERENTIAL EQUATIONS

LUCA DIECI AND TIMO EIROLA

Abstract. In this work we address the issue of integrating symmetric Riccati
and Lyapunov matrix differential equations. In many cases – typical in appli-
cations – the solutions are positive definite matrices. Our goal is to study when
and how this property is maintained for a numerically computed solution.

There are two classes of solution methods: direct and indirect algorithms.
The first class consists of the schemes resulting from direct discretization of the
equations. The second class consists of algorithms which recover the solution
by exploiting some special formulae that these solutions are known to satisfy.

We show first that using a direct algorithm – a one-step scheme or a strictly
stable multistep scheme (explicit or implicit) – limits the order of the numer-
ical method to one if we want to guarantee that the computed solution stays
positive definite. Then we show two ways to obtain positive definite higher
order approximations by using indirect algorithms. The first is to apply a
symplectic integrator to an associated Hamiltonian system. The other uses
stepwise linearization.

1. Introduction

Consider the task to solve numerically the symmetric matrix Riccati equation

Ẋ(t) = A(t)X(t) + X(t)A(t)T − X(t)B(t)X(t) + C(t) ,(1.1)

in Rd×d with symmetric positive semidefinite initial condition X(0) = X0. We
assume that the coefficients are bounded, real, piecewise continuous, and that the
matrices B and C are symmetric and positive semidefinite.

Here we say that a matrix is positive if it is positive definite and nonnegative if
it is positive semidefinite.

Together with (1.1) we will also consider a special case of it, namely the Lyapunov
equation

Ẋ(t) = A(t)X(t) + X(t)A(t)T + C(t) ,(1.2)

i.e., (1.1) with B = 0 . The following proposition states a central property of
equations (1.1) and (1.2). Often it is proved via an optimization problem (e.g. [1]).
As an introduction we prove it here using ideas that are applied also in section 3.

Proposition 1.1. The solution of (1.1) exists and is symmetric and nonnegative
for all t ≥ 0. Furher, if X(s) or C(s) is positive for some s ≥ 0 , then X(t) is
positive for all t > s .
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Proof. Since the right-hand side of (1.1) is symmetric for symmetric X(t) the so-
lution will stay in the set of symmetric matrices.

Direct substitution shows that the solution of the Lyapunov equation (1.2) sat-
isfies for t ≥ s ≥ 0

X(t) = Φ(t, s)X(s)Φ(t, s)T +

∫ t

s

Φ(t, τ)C(τ)Φ(t, τ)T dτ ,(1.3)

where Φ is the solution of

∂tΦ(t, τ) = A(t)Φ(t, τ) , Φ(τ, τ) = I .(1.4)

The claims for the Lyapunov equation follow now from the fact that Φ(t, τ) is
nonsingular for all t, τ .

Consider, then, the Riccati equation (1.1). Set Y (t) := 1
2X(t) . Since Y (t) is

symmetric we get

Ẋ(t) = [A(t) − Y (t)B(t)]X(t) + X(t)[A(t) − Y (t)B(t)]T + C(t) ,(1.5)

i.e. X is the solution of a Lyapunov equation. So, the solution is nonnegative as long
as it exists. Since for symmetric nonnegative matrices holds ||X || = max||ξ||=1 ξT Xξ
we get from

X(t) = X(0) +

∫ t

0

[A(τ)X(τ) + X(τ)A(τ)T − X(τ)B(τ)X(τ) + C(τ)]dτ ,

the inequality

||X(t)|| ≤ ||X(0)|| +

∫ t

0

[2||A(τ)||||X(τ)|| + ||C(τ)||]dτ ,

from which it follows by the Gronwall’s inequality that ||X(t)|| is finite and hence
X(t) exists for all t > 0.

The question addressed in this paper is whether also a discrete version of Propo-
sition 1.1 is true. More precisely: does the numerical solution method preserve
positivity of the solution?

The plan of this paper is as follows. In Section 2 we consider direct solution
algorithms for solving (1.1) and (1.2). These are the methods which result from dis-
cretizing the differential equations directly, with a one-step or a multistep method.
We show that any one of these discretizations, if it must preserve positivity, has or-
der at most one. This is clearly a severe restriction, which prompted us to consider
indirect solution algorithms. These are considered in Section 3. In particular, we
look at two approaches. The fundamental solution method relates the solution of
the Riccati equation to the solution of a linear Hamiltonian system. We show that
if one uses a symplectic Runge-Kutta integrator for the latter, then positivity of the
solution of the Riccati equation will be preserved. The linearization method results
from using Proposition 1.1 and formula (1.3) for solutions of Lyapunov equations,
along with a linearization procedure for Riccati equations. Some other approaches
are also shortly discussed.
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2. Direct methods

In this Section, we consider those methods resulting from a direct discretization
of the matrix equations using one-step or multistep formulas. We call integration

formulas the formulas obtained in these cases.
It is straightforward to use direct algorithms for solving these equations. Preserv-

ing symmetry is equally straightforward. However, even a possibly very accurate
solution does not necessarily stay positive, since positivity is not a quantitative
measure embedded into errors’ control. To check whether a computed solution
stays positive, we make use of the following definition.

Definition 2.1. We say that an integration formula preserves positivity for the
Riccati (resp. Lyapunov) equation if for any equation of type (1.1) (resp. (1.2))
and positive definite X0 there exists h0 > 0 such that the method applied with
any h ∈ (0, h0) produces a trajectory of positive matrices. For multistep (k-step)
methods the extra starting values X(h), . . . , X((k−1)h) may be selected arbitrarily
to the order of the method.

The following fact, first proved in [4], tells us that there are formulas which do
preserve positivity for Riccati equations.

Proposition 2.1. Assume that B(t) in (1.1) and that X0 are positive. Then, the
backward Euler method preserves positive definiteness for Riccati equations.

Proof. The integration formula in this case is

1

h
(Xn+1 − Xn) = AXn+1 + Xn+1A

T − Xn+1BXn+1 + C, n = 0, 1, . . . .(2.1)

We can interpret (2.1) as an algebraic Riccati equation (ARE) associated with the
following constant coefficients Hamiltonian matrix (where all matrix blocks of (1.1)
are evaluated at tn+1)

Ĥn+1 :=

[

−(hA − 1
2I)T hB

hC + Xn hA − 1
2I

]

.

That is, (2.1) can be interpreted as resulting from the requirement that the trans-
formation

[

I 0
−Xn+1 I

]

Ĥn+1

[

I 0
Xn+1 I

]

produce a block upper triangular matrix. But then, it is known that we can uniquely
obtain Xn+1 > 0 (e.g., see [9]).

It is interesting that Proposition 2.1 poses no restriction on the stepsize h. The
main drawback, of course, is that the order of the integration formula is only one.
Unfortunately, this is just the best one can have. In fact, next we show that
no integration formula can be expected to preserve positivity and also have order
greater than one. This result is reminiscent of that in [2], where componentwise
positivity of solutions of linear systems is considered. There is a big difference,
however, between positivity of matrices and positivity of vector components. In
fact, we could not use the tools of [2] to obtain our result.
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Since we will use Hadamard (elementwise) products of matrices the following
notation for elementwise functions will become practical

Notation. For a scalar function f and a matrix A denote by Hf (A) the matrix of
the size of A consisting of elements f(Aij) .

We will denote by J the d × d–matrix consisting of ones, i.e., the “corner” of
positive definite matrices, and by Jk the corresponding dk × d–matrix.

The following lemma is the crucial point of Theorem 2.3 below and may also be
of independent interest.

Lemma 2.2. Suppose φ is real analytic in a neighbourhood of 0 such that for any
a1, a2, a3 ∈ R we have

(i) φ(z) = 1 + O(z3)

(ii) Det

(

{

φ(ν(ai + aj))
}3

i,j=1

)

≥ 0 for small enough ν ≥ 0.

Then φ(z) ≡ 1.

Proof. Assume the contrary: φ(z) = 1 + zmf(z), where m ≥ 3 and f(0) 6= 0. Take
ai = εi−1 . Then collecting terms of order ≤ ν2mε2 for ν ≪ ε ≪ 1 :

0 ≤ Det
(

{

φ(ν(ai + aj))
}3

i,j=1

)

=

=

∣

∣

∣

∣

∣

∣

1+2mνmf(2ν) 1+(1+ε)mνmf((1+ε)ν) 1+(1+ε2)mνmf((1+ε2)ν)

1+(1+ε)mνmf((1+ε)ν) 1+2mεmνmf(2εν) 1+(ε+ε2)mνmf((ε+ε2)ν)

1+(1+ε2)mνmf((1+ε2)ν) 1+(ε+ε2)mνmf((ε+ε2)ν) 1+2mε2mνmf(2ε2ν)

∣

∣

∣

∣

∣

∣

=

= −ν2m
[

[

(1 + ε)2m − 2(1 + ε)m(1 + ε2)m + (1 + ε2)2m
]

f(0)2 + O(ε3)
]

=

= −ν2m[m2ε2f(0)2 + O(ε3)].

Thus f(0) = 0, a contradiction.

We consider only such methods, which when applied to a system of independent
equations, give the same result as the application to each of the independent equa-
tions separately. Also we assume that the application to the test equation ẋ = λx
with stepsize h gives xn+1 as a function which is rational in hλ and linear in the
previous x-values. All the standard methods (e.g. Runge-Kutta methods or linear
multistep methods, explicit or implicit) satisfy this.

Here is the anticipated negative result:

Theorem 2.3. Any one-step method or strictly stable multistep method that pre-
serves positive definiteness in the numerical solution of the Lyapunov equation has
order at most one.

In more detail: for any given k–step method of order p ≥ 2 there exists a diagonal
constant 3 × 3 matrix A and an open set X of 3 × 3 positive matrices such that
if we apply the method to (1.2) (with C = 0) with any small enough h and any
initial values X̃(0), . . . , X̃((k − 1)h) ∈ X , then there exists a tn = O(h−p) such
that det(X̃(tn)) < 0 .
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Proof. Consider first a one-step method of order p ≥ 2. Take a homogeneous
Lyapunov equation, i.e., C = 0, with A = diag[a1, a2, a3] . Then Ẋij = (ai +
aj)Xij , i, j ∈ {1, 2, 3}, i.e.,

Ẋ(t) = Ã • X(t) ,(2.2)

where Ãij := ai + aj and • denotes the Hadamard (elementwise) product. The
numerical method applied to (2.2) produces

x̃ij((n + 1)h) = r(h(ai + aj))x̃ij(nh) ,

where r is the rational function corresponding to the method: for ẏ = λy we have
y(h) ≈ ỹ(h) = r(hλ)y(0) . Thus

X̃(nh) = Hr(hÃ)•n • X0 .

We will show that for suitable A there exists an open set X of positive initial
values X0 such that for any h small enough and for any X0 ∈ X the determinant
of X̃(nh) will be negative for some n = O(hp+1) .

Let f be such that f(0) 6= 0 and

e−zr(z) = 1 + zp+1f(z) .

Since

Det(X̃(nh)) = Det(Hr(hÃ)•n • X0) = e2hn(a1+a2+a3)Det
(

Hr/ exp(hÃ)•n • X0

)

,

it suffices to study the sign of the last determinant. For ν > 0 set

φ(νz) := lim
h→0

(1 + (hz)p+1f(hz))(ν/h)p+1

= e(νz)p+1f(0) .(2.3)

Then

lim
h→0

Hr/ exp(hÃ)•⌊(ν/h)p+1⌋ = Hφ(νÃ) .

Using Lemma 2.2 take a1, a2, a3 ∈ R and ν > 0 such that

Det(Hφ(νÃ) • J) = Det({φ(ν(ai + aj))}
3
i,j=1) < 0 .(2.4)

By continuity of the determinant and the Hadamard product there exists an h0 > 0
and a neighbourhood V of J such that

Det(X̃(h⌊(ν/h)p+1⌋)) < 0

for all h ∈ (0, h0) and X0 in V.

Turn now to the multistep case. The strictly stable k–step method of order p ≥ 2
applied to ẏ = λy with stepsize h runs like













ỹ((j + 1)h)
.
.
.

ỹ((j + k)h)













=















0 1 0 0
0 0 1 0

. . .

0 0 0 1
d1(hλ) d2(hλ) d3(hλ) . . . dk(hλ)



























ỹ((j)h)
.
.
.

ỹ((j + k − 1)h)













,
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where di’s are rational functions. Denote the matrix above by D(hλ) . By strict
stability there exists an f analytic and nonzero in a neighbourhood of 0 such that
the principal eigenvalue r(z) of D(z) satisfies

r(z) = ez(1 + zp+1f(z))

and has maximum modulus (see [6]). For this f define φ as in (2.3).
Let ξ(z) = [1, . . . , 1]T + O(z) and η(z) be the right and left eigenvectors of D(z)

– corresponding to r(z) – such that η(z)T ξ(z) = 1 . Then uniformly for small z

lim
n→∞

[

r(z)−1D(z)
]n

= ξ(z)η(z)T(2.5)

(see [8] Lemma 8.2.7, the uniformity follows easily from (j) there).
Consider as before a homogeneous Lyapunov equation with A = diag[a1, a2, a3] .

Applying the method with stepsize h to (2.2) produces













X̃(nh)
.
.
.

X̃((n + k − 1)h)













=















0 J 0
0 0 0

. . .

0 0 J

d̃1(hÃ) d̃2(hÃ) . . . d̃k(hÃ)















◦n

◦













X̃(0)
.
.
.

X̃((k − 1)h)













(2.6)

using (2.5) to each of the mutually independent equations for Xij gives

lim
n→∞

[

r̃(hÃ)•−1 ◦ D̃(hÃ)
]◦n

= ξ̃(hÃ) ◦ η̃(hÃ)T ,(2.7)

uniformly for small h . Here r̃ and the entries of D̃, ξ̃ , and η̃ are 3 × 3 matrices in
the natural way, e.g. d̃i(hÃ) = Hdi

(hÃ) . Notation ◦ means that the products are
the usual matrix products, but elements, which are 3 × 3 matrices are multiplied
Hadamard-wise.

For studying the signs of the determinants of X̃(nh) note that

e−2hn
∑

i
ai det(X̃(nh)) = det(Hexp(−hÃ) • X̃(nh)) .

So, Hadamard-multiply (2.6) by Hexp(−hÃ) . Then (2.7) gives

lim
h→0

[

Hexp(−hÃ) ◦ D̃(hÃ)
]◦⌊(ν/h)p+1⌋

◦ Jk =

= lim
h→0

[

Hr/ exp(hÃ)•⌊(ν/h)p+1⌋
]

◦ lim
h→0

[

r̃(hÃ)•−1 ◦ D̃(hÃ)
]◦⌊(ν/h)p+1⌋

◦ Jk =

= Hφ(νÃ) ◦ Jk .

As before take a1, a2, a3 ∈ R and ν > 0 such that (2.4) holds. Then there ex-
ists a neighbourhood V of J and h0 > 0 such that for any h ∈ (0, h0) and
[X̃(0), X̃(h), . . . , X̃((k − 1)h)] in V × V × · · · × V we have

Det(X̃(h⌊(ν/h)p+1⌋)) < 0 .

Finally, let X be the intersection of V with the set of positive matrices.
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Remark 2.1. Since it is a negative result, Theorem 2.3 applies to Riccati equations
as well.

Remark 2.2. It is seen from the proof that the time it takes to loose positivity is
O(h−p) . This is the worst we can expect in general.

Remark 2.3. The approach here for the multistep methods does not assume any-
thing about the initialization method. Any consistent starting routine can be taken.
This is in the spirit of the approach in [5].

3. Indirect methods

The negative result of Theorem 2.3 motivates the attempt to recover solutions of
Riccati equations through indirect procedures. Here below we look at two of them.

3.1. The fundamental solution method. This is probably the best known al-
ternative to a direct integration and is based on the fact that the solution of the
Riccati equation can be obtained from the solution of the Hamiltonian system

˙[

Y (t)

Z(t)

]

=

[

A(t) C(t)
B(t) −A(t)T

] [

Y (t)

Z(t)

]

,

[

Y (0)

Z(0)

]

=

[

X0

I

]

(3.1)

by X(t) = Y (t)Z(t)−1 .

One possible approach to solve the Riccati equation numerically is to apply a
discretization to (3.1) and then form Xn = YnZ−1

n . Then the question of interest
here is what discretization methods will finally produce nonnegative sequence of
Xn’s. The following is the first positive result in this direction. It says that the
Gauss (Gauss-Legendre) methods really might be a choice.

The Gauss methods (diagonal Padé approximants) belong to the class of symplectic

Runge-Kutta methods, since their coefficients satisfy (see: [11]):

Mij := biaij + bjaji − bibj = 0 ∀ i, j = 1, . . . , k .(3.2)

Further, the bj ’s of Gauss methods are nonnegative. Note that the matrix M above
is the one that is required to be nonnegative (together with bj’s) in the definition
of algebraic stability by Burrage&Butcher and Crouzeix (see: e.g. [7]).

Theorem 3.1. Application of a Runge-Kutta method which satisfies (3.2) with
nonnegative bi’s to equation (3.1) produces (when defined) symmetric nonnegative
matrices Xn.

Proof. Let

H =

[

A C
B −AT

]

, E =

[

0 I
0 0

]

, S =

[

0 I
−I 0

]

, V =

[

Y

Z

]

.
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We prove that V T
n+1SVn+1 is zero and V T

n+1EVn+1 is nonnegative, assuming that
V T

n SVn and V T
n EVn are so. Now, the RK step can be written as follows

Vn+1 = Vn + h
k

∑

i=1

biHiPi ,(3.3)

Pi = Vn + h
k

∑

j=1

aijHjPj ,(3.4)

where Hi = H(tn + cih) and Pi’s are the Runge-Kutta stages. Let Q stand for
either E or S. Equation (3.3) gives

(3.5) V T
n+1QVn+1 = (V T

n + h
k

∑

i=1

biP
T
i HT

i )Q(Vn + h
k

∑

j=1

bjHjPj) =

= V T
n QVn+h

(

k
∑

i=1

biP
T
i HT

i QVn+

k
∑

j=1

bjV
T
n QHjPj

)

+h2
k

∑

i,j=1

bibjP
T
i HT

i QHjPj .

From equation (3.4) we get

PT
i HT

i QVn = PT
i HT

i QPi − h

k
∑

j=1

aijP
T
i HT

i QHjPj ,

V T
n QHjPj = PT

j QHjPj − h

k
∑

i=1

ajiP
T
i HT

i QHjPj .

Putting these in (3.5) gives

(3.6) V T
n+1QVn+1 = V T

n QVn + h

k
∑

i=1

biP
T
i (HT

i Q + QHi)Pi

− h2
k

∑

i,j=1

(biaij + bjaji − bibj)P
T
i HT

i QHjPj .

Now, by (3.2) the h2 –terms vanish.

When Q = S, we have V T
n SVn = 0 and HT

i S + SHi = 0. Then (3.6) gives
Y T

n+1Zn+1 = ZT
n+1Yn+1. This means that ZT

n+1Yn+1 and hence also Xn+1 =

Z−T
n+1(Z

T
n+1Yn+1)Z

−1
n+1 is symmetric.

When Q = E, we have V T
n EVn ≥ 0 and

HT E + EH =

[

B 0
0 C

]

,

where B, C ≥ 0 . Since bi ≥ 0 the result follows from (3.6).
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3.2. Linearization. Here we use the formulae (1.3) to obtain positive higher de-
gree ( p ≥ 2 ) approximations to Riccati and Lyapunov equations.

Consider first the Lyapunov equation (1.2)

Ẋ(t) = A(t)X(t) + X(t)A(t)T + C(t)(3.7)

and its solution formula (1.3):

X(t) = Φ(t, s)X(s)Φ(t, s)T +

∫ t

s

Φ(t, τ)C(τ)Φ(t, τ)T dτ ,(3.8)

∂tΦ(t, τ) = A(t)Φ(t, τ) , Φ(τ, τ) = I .(3.9)

There are many ways to use these so that positivity will be preserved.

To proceed from a positive Xn to positive Xn+1 one can take:
- any method to solve (3.9) on [tn, tn+1]
- any formula with positive weights for the integral in (3.8).

Consider, for example, solving (3.9) using the implicit midpoint rule and inte-
grating (3.8) with the trapezoidal rule. This leads to

Φn : = [I − h
2 A(tn +

h

2
)]−1[I + h

2 A(tn +
h

2
)]

Xn+1 : = Φn

[

Xn + h
2 C(tn)

]

ΦT
n + h

2C(tn + h)
(3.10)

for n = 0, 1, 2, . . . Clearly this produces second degree approximations for X(nh) .
Denote this map Xn → Xn+1 by Xn+1 = G(Xn, h, A, C) .

Consider, then, the Riccati equation and write it as:

Ẋ(t) = [A(t) − 1
2X(t)B(t)]X(t) + X(t)[A(t) − 1

2X(t)B(t)]T + C(t)

Now we have again:

X(t) = Φ(t, s)X(s)Φ(t, s)T +

∫ t

s

Φ(t, τ)C(τ)Φ(t, τ)T dτ , where

(3.11)

∂tΦ(t, τ) = [A(t) − 1
2X(t)B(t)]Φ(t, τ) , Φ(τ, τ) = I .

(3.12)

To proceed from a positive Xn to positive Xn+1 in this case one can take:

- any method to solve (3.12) on [tn, tn+1]

- obtain the necessary X–values for it using any other method

- any formula with positive weights for the integral in (3.11).

Consider, again, solving (3.12) by the implicit midpoint rule and integrating
(3.11) with the trapezoidal rule to get a second degree method. The midpoint rule
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for (3.12) requires an O(h2) –approximation for X(tn + h
2 ) . This can be obtained

e.g. using an explicit–in–X step first. The resulting scheme is

Φn+ 1
2

= [I − h
4 (An − 1

2BnXn)]−1[I + h
4 (An − 1

2BnXn)]

Xn+ 1
2

= Φn+ 1
2
[Xn + h

4Cn]ΦT
n+ 1

2

+ h
4 Cn+ 1

2

Φn = [I − h
2 (An+ 1

2
− 1

2Bn+ 1
2
Xn+ 1

2
)]−1[I + h

2 (An+ 1
2
− 1

2Bn+ 1
2
Xn+ 1

2
)]

Xn+1 = Φn[Xn + h
2 Cn]ΦT

n + h
2 Cn+1

(3.13)

Remark 3.1. Using the map G : Xn → Xn+1 of the Lyapunov solver (3.10),
we can write the Riccati solver as

Xn+ 1
2

= G (Xn , h
2 , A − 1

2BXn , C) , Xn+1 = G (Xn , h , A − 1
2BXn+ 1

2
, C) .

(3.14)

Remark 3.2. It is straightforward to build lots of methods and with arbitrarily
high degree along these lines. These examples can be thought of as linearly implicit
RK’s. A fully implicit version can be obtained e.g. by taking only the last two lines
of (3.13) and replacing there Xn+ 1

2
by 1

2 (Xn + Xn+1) .

Remark 3.3. Since these methods are not direct discretizations, the equilibria of
the systems are usually not preserved exactly. However, the maps Xn → Xn+1 are
O(hp+1) C1– close to the time–h map of the flow. It follows that nondegenerate
equilibria are preserved to the order O(hp) of the method.

Remark 3.4. A similar technique to that above is involved in the fractional step

method (see e.g. [10]) for nonlinear PDE’s. There it is used mainly to avoid nonlin-
ear systems of equations. Our reasons are in positivity, but of course it is nice to
solve only linear systems. Compare (3.13) to the trapetzoidal rule applied directly
to the Riccati equation:

Xn+1 −
h
2 [An+1Xn+1 + Xn+1A

T
n+1 − Xn+1Bn+1Xn+1] =

= Xn + h
2 [AnXn + XnAT

n − XnBnXn + Cn + Cn+1]

This one needs a solver for the algebraic Riccati equation.

3.3. Other possibilities. Some other approaches to preserve positivity can be
obtained from e.g. the continuous eigendecomposition, i.e., integrating for the or-
thogonal matrix U(t) and the diagonal matrix Λ(t) resulting from the continuous
Schur decomposition of X(t). That is, one writes

X(t) = UT (t)Λ(t)U(t) ,

where U is orthogonal: UT (t)U(t) = I , ∀t, and Λ(t) = diag(λ1(t), . . . , λd(t)) .
Then one sets up equations for U(t) and Λ(t). Clearly, X(t) is nonnegative exactly
when λi(t) ≥ 0 .

If one takes a symplectic integrator for U , then the orthogonality is automati-
cally satisfied by the numerical solution, since UT U = I is a system of quadratic
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first integrals, hence preserved (see: [3] and [11]). Preserving positivity here is then
easy by monitoring the behaviour of λi’s.

It is difficult for us, however, to see why this approach or other projection type
methods could be more beneficial – in computational cost or otherwise – compared
to the approaches above.

4. Conclusions

In this paper we addressed the issue of preserving positivity in the numerical
solution of Riccati and Lyapunov equations. It was shown that a direct discretiza-
tion of these equations then limits the order to one. To obtain higher order of
accuracy indirect solution methods are needed. Two approaches leading to arbi-
trarily accurate and positive approximations have been given. The question of how
to implement these in an efficient way will be the subject of future study. There
are a number of interesting design problems in the choice of schemes and the linear
algebra routines involved: e.g. how to “recycle” the factorization of a matrix most
economically and how to choose the discretization for the linearization schemes so
to minimize the overall expense.
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