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The purpose of this paper is to present new algorithms to approximate Lyapunov
exponents of nonlinear differential equations, without using Jacobian matrices.
We first derive first order methods for both continuous and discrete QR
approaches, and then second order methods. Numerical testing is given,
showing considerable savings with respect to existing implementations.
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1. INTRODUCTION

Lyapunov exponents—LEs, for short—are a common tool to explore
stability properties of nonlinear differential equations, and provide valu-
able information on the statistical properties of the system under study.
However, existing techniques to approximate LES are expensive, and this
fact may have precluded extensive use of the LES in large dimensional
problems of practical interest, such as those arising in biology, molecular
dynamics, or spatially discretized time dependent partial differential equations.

An excerpt from the recent review article [5]: For small scale problems,
numerical methods are well developed for ‘‘long time’’ dynamical processes,
for example Lyapunov exponents. A major area for future work is to extend
these techniques to large scale problems. The present work is a step in that
direction.

Unarguably, the computational bottleneck of existing techniques to
approximate LEs of nonlinear differential equations is the need to evaluate
(and store) the linearized vector field, the Jacobian, and to perform matrix
vector multiplications with the Jacobian. For large problems, this may be
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impossible, or impractical, or just too inefficient. It is our purpose in this
paper to provide new algorithms to approximate LEs which bypass the
need for the Jacobian, and which are shown to be far less expensive than
existing techniques.

In the rest of this Introduction we review basic concepts and algo-
rithms. In Section 2 we propose Jacobian free discrete and continuous QR
first order methods to approximate the LEs. In Section 3 we give second
order methods for both discrete and continuous QR approaches, and point
out how generalizations to higher order techniques may be made. In Sec-
tion 4 we discuss implementation issues and show numerical performance
of the new methods on a couple of examples.

Given the differential equation

ẋ=f(x), x(0)=x0, (1.1)

the LEs are a characterization of the asymptotic properties of the solution
x(t, x0) via analysis of the linearized problem (for ease of notation, the
dependence of the solution on x0 is suppressed)

ẏ=fx(x(t)) y. (1.2)

Formally, the LEs associated to (1.2) are defined as follows. Let {pi} be the
columns of an initial conditions (full rank) matrix Y0, and define the
numbers li, i=1,..., n,

li(pi)=lim sup
tQ.

1
t

log ||Y(t) pi ||, (1.3)

where Y(t) is the solution of

Ẏ=fx(x(t)) Y, Y(0)=Y0. (1.4)

When the sum of these numbers is minimized as we vary over all possible
ICs (initial conditions) Y0, the numbers are called Lyapunov exponents of
the system.

Naturally, there are n LEs, {li}, counted with their multiplicity, for a
given n-dimensional system. However, in many circumstances, one does not
need to approximate all n LEs of a system. Often, only the p most domi-
nant ones are needed (and p can be much smaller than n). For example, see
[12], in order to approximate the entropy of a system only all the positive
LEs are needed, and to estimate the dimension of an attractor only the
most dominant (positive and negative) having positive sum are needed.
Also, a commonly adopted criterion to assess chaotic dynamics on an
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attractor rests upon detection of a positive Lyapunov exponents, and thus
only the largest LE needs to be tracked. Finally, there are situations where
one knows before hand that the LEs enjoy special symmetries (see [15, 11],
and also [7]), which reduce the number of LEs one needs to approximate.
From the practical point of view, in case one needs only the p most domi-
nant LEs of the system, then the matrix Y0 in (1.4) is made up by just p
columns, which are typically chosen to be [Ip0 ]. With this in mind, in (1.4),
Y: tQ Rn×p.

To approximate the LEs, the most widely adopted techniques rest on
the QR factorization of the solution Y(t) of (1.4)

Y(t)=Q(t) R(t),

where Q and R are as smooth as Y, Q: tQ Rn×p is orthogonal, QTQ=I
for all t, and R: tQ Rp×p is upper triangular with positive diagonal entries.
Then, one extract approximation to the LEs as time averages of the
logarithms of the diagonal of R:

li=lim
tQ.

1
t

log(Rii(t)), i=1,..., p. (1.5)

The existence of smooth factors in the QR factorization of a fundamental
matrix solution has been known at least since Perron, [21], and the role of
the QR factorization in the study of Lyapunov exponents has also been
known for a long time; see [17]. From the numerical point of view, there
are two ways in which the QR factorization of Y is traditionally found, and
these lead to so-called discrete and continuous QR approaches, respec-
tively. We recall them next.

Discrete QR approach: [2, 11, 13, 22]. Say we want the QR fac-
torization of Y(tk+1) ¥ Rn×p. With t0=0, the idea is to write Y(tk+1) as
composition of transition matrices:

Y(tk+1)=Y(tk+1, tk) Y(tk, tk−1) · · ·Y(t2, t1) Y(t1, 0) Y0,

where Y(t, tj), j=0,..., k, is the solution of

˛ Ẏ(t, tj)=fx(x(t)) Y(t, tj), tj [ t [ tj+1
Y(tj, tj)=In.

Now, let Y0=Q0R0, and progressively update the QR factorizations as

Y(tj+1, tj) Qj=Qj+1Rj+1, j=0,..., k,
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so that

Y(tk+1)=Qk+1[Rk+1Rk · · ·R1R0] (1.6)

gives the sought QR factorization of Y(tk+1). In (1.6), Qk+1 ¥ Rn×p and
<0
j=k+1 Rj ¥ Rp×p.

Of course, there is no need to compute the full transition matrices
Y(tj+1, tj), and the following compact reformulation must be preferred.
With above notation, we let Yj+1(t)=Y(t, tj) Qj, t ¥ [tj, tj+1]Q Rn×p. For
j=0,..., k, we solve

˛ Ẏj+1=fx(x(t)) Yj+1, tj [ t [ tj+1
Yj+1(tj)=Qj,

(1.7)

and then let

Yj+1(tj+1)=Qj+1Rj+1, (1.8)

leading to (1.6) as before.

Continuous QR approach: [3, 8, 10, 13]. Here one derives—and
integrates—the differential equations governing the evolution of the Q and
R factors in the QR factorization of Y. Differentiating the relation Y=QR
and using (1.4) one gets Q̇R+QṘ=fx(x(t)) QR, and multiplying by QT on
the left one gets the equation for R:

Ṙ=(QTfx(x(t)) Q−S) R, R(0)=R0, (1.9)

where we have set S :=QTQ̇. Observe that since QTQ=I, then S is skew-
symmetric. Further, sinceR is triangular, then the coefficientQTfx(x(t)) Q−S
in (1.9) must be upper triangular. This fact, and skew-symmetry, then give
the following form for S:

Sij=˛
(QT(t) fx(x(t)) Q(t))ij, i > j,

0, i=j,

−Sji, i < j.

(1.10)

Next, multiplying Q̇R+QṘ=fx(x(t)) QR by R−1 on the right, and using
(1.9), we get the differential equation for Q:

Q̇=(I−QQT) fx(x(t)) Q+QS, Q(0)=Q0. (1.11)
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Finally, observe that no explicit integration for R needs to be done in order
to approximate the LEs. In fact, from (1.9) and (1.5), one has

li=lim
tQ.

1
t
F
t

0
(QT(s) fx(x(s)) Q(s))ii ds, i=1,..., p. (1.12)

From (1.12), we further define the new functions (as in [10]) for i=1,..., p,

ni(t)=F
t

0
(QT(s) fx(x(s)) Q(s))ii ds so that ṅi=(QT(t) fx(x(t)) Q(t))ii,

(1.13)

and these can be ‘‘integrated’’ directly along with (1.11). [Of course, the
result is a quadrature rule on (1.12)].

Remark 1.1. Of course, the original differential equation (1.1) must
be integrated along with (1.7) or (1.11) and the needed values for fx( · )
must be supplied at the appropriate order of accuracy. The simplest way to
do this in practice is to use the same integration rule for all differential
equations involved, say the same Runge–Kutta scheme.

Remark 1.2. In general, the LEs of (1.1) will depend on the initial
conditions x0. Further, it is generally not clear why the limits in (1.5) exist
(and equal the LEs) and to what extent they depend on the initial condi-
tions Y0 for (1.4). Extensive theoretical studies address these concerns. For
example, use of limits in (1.5) is justified for so-called regular systems (see
[1]), which further are prevalent in a measure theoretic sense; see [19] and
[20]. The dependence of the LEs upon the initial conditions is the domain
of ergodic theory, and we again refer to the work of Oseledec, [20], for
statements in this case.

Remark 1.3. There is numerical and theoretical evidence (e.g., see
[8]) that the continuous QR approach is preferable to the discrete QR
approach. While this is generally true, a couple of considerations are in
order. First, the analysis showing the shortcoming of the discrete QR
approach in [8] highlights that difficulties are chiefly caused by the QR
factorization at the end of each step, and affect the (large) negative LEs;
thus, if only a few dominant LEs are needed, this should not be a concern.
Second, the numerical evidence highlights that controlling the local error
(for either the Q-factor or the transition matrix itself ) while integrating
(1.7) tends to require (much) smaller stepsizes than for the continuous QR
approach. This is certainly a concern—and a true drawback—in case the
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original problem is linear (i.e., (1.1) is really ẋ=A(t) x, and thus fx(x(t))
in (1.7) is just A(t)), because no other simple mechanism of error control
is in place if one wants to approximate the LEs. However, for nonlinear
problems, controlling the error on the trajectory should enforce error
control on the linearized problem as well, and no further need to control
local errors while integrating (1.7) ought to be required.

2. JACOBIAN FREE EXPONENTS: 1ST ORDER METHODS

Here we present our approach in the simplest setting possible. This
will facilitate understanding of the simple idea we exploited, and will lead
to appropriate ways to generalize to higher order methods. We again find it
convenient to separate between discrete and continuous QR approaches.

Remark 2.1. We call our methods ‘‘Jacobian free’’ in analogy with
so-called matrix free methods which are used in implicit schemes for stiff
systems of differential equations to bypass the need for a formal Newton
iteration (e.g., see [4, 6]). In that context, however, the ‘‘matrix free’’ for-
mulation is conceptually only a means to solve the nonlinear system, and
has no impact on the order of the scheme used, nor on the formulation
itself (i.e., the scheme itself is not changed). Instead, as we will clarify
below, our ‘‘Jacobian free’’ reformulation effectively modifies the scheme
one is using and may alter its order if one is not careful.

2.1. Discrete QR: Forward Euler

Suppose we use the forward Euler method with step h to approximate
(1.7). Thus, the basic step is

Yj+1=Qj+hfx(xj) Qj, then Yj+1=Qj+1Rj+1. (2.1)

Here, xj is the approximation to x(tj) which may have been obtained with
forward Euler method or any other method of order at least one. Clearly,
the resulting method is of first order of accuracy (second order locally).
The expensive part of this scheme is given by the need for fx(xj) and the
matrix multiplication fx(xj) Qj. To avoid these, we reason as follows.

Let Qj=[q
j
1,..., q

j
p]. Then, for k=1,..., p, we approximate the action

hfx(xj) q
j
k as

hfx(xj) q
j
k % f(xj+hq

j
k)−f(xj), k=1,..., p.
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The resulting scheme becomes

Zj+1=Qj+Bj, Bj :=[f(xj+hq
j
1)−f(xj),..., f(xj+hq

j
p)−f(xj)],

then Zj+1=Qj+1Rj+1. (2.2)

Expense Comparison. We delay until Section 4 a careful comparison
of the cost of each scheme. Momentarily, we observe that computing Zj+1
from (2.2) rather than Yj+1 from (2.1) avoids the Jacobian evaluation and
the multiplication fx(xj) Qj.

Upon obtaining Rj+1, we can update the approximation of the LEs.
If l ji , i=1,..., p, are the approximation of the LEs at tj, then from (1.5)
and (1.6) the approximate values l j+1i at tj+1 are easily obtained as

l j+1i =
tj
tj+h

l ji+
1
tj+h

log(Rj+1)ii, i=1,..., p. (2.3)

It is trivial to assess the error caused by the Jacobian free replacement,
and to appreciate that (2.2) is a first order scheme. However, since we will
need the explicit error expression in the next section, we now derive it.
Because of linearity of the problem (1.7), it suffices to look at the error on
a single column. Further, we look at the local error on a single step, and
thus can consider the first step. So, let y0 be the initial condition (that is,
y0 is any of the q0k, k=1,..., p). For later use, recall that the local error for
(2.1) is given by

y(t1)−y1=
1
2 h
2ÿ0+O(h3). (2.4)

For (2.2), instead, we have

f(x0+hy0)−f(x0)=hfx(x0)+
1
2 h
2fxx(x0)(y0, y0)+O(h3),

so that

z1=y1+
1
2 h
2fxx(x0)(y0, y0)+O(h3)

and thus

y(t1)−z1=
1
2 h
2ÿ0−

1
2 h
2fxx(x0)(y0, y0)+O(h3). (2.5)

Therefore, (2.2) and (2.3) is a first order scheme.
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2.2. Continuous QR: Forward Euler

The issue here is to integrate (1.11) and approximate the integral in
(1.12). Integration of (1.11) has received a lot of attention in recent times
(e.g., see [3] and [9]), and sophisticated choices exist for this task. All of
these choices can be applied in the present context, but for the sake of
simplicity here we consider the simplest possibility: integrate (1.11) with
a forward Euler step h and then orthogonalize the solution (in the
current terminology, a first order projected integrator). Orthogonalization
is handily carried out by the QR factorization (though the polar factoriza-
tion may also be used). In other words, the basic step is

P1=Q0+h[fx(x0) Q0−Q0(Q
T
0fx(x0) Q0−S0)], then Q1: P1=Q1R1.

(2.6)

Clearly, the resulting method is of first order of accuracy (second order
locally), and the expensive part is again given by the need for fx(x0) and
the matrix multiplication fx(x0) Q0. The same reasoning as in the discrete
QR case can however be applied.

So, if Q0=[q
0
1,..., q

0
p], we approximate the action hfx(x0) Q0 as

hfx(x0) Q0 % B0 :=[f(x0+hq
0
1)−f(x0),..., f(x0+hq

0
p)−f(x0)],

and further use this approximation in (2.6) also to approximate S0 (recall
(1.10)); in other words, we form QT0B0 and use it to approximate hS0, call
it H0, which is thus defined as (H0)ij=(Q

T
0B0)ij, i > j, and by skew-sym-

metry. The resulting scheme becomes

V1=Q0+B0−Q0(Q
T
0B0−H0), then Q1: V1=Q1R1. (2.7)

It is again immediate to appreciate that (2.7) is a first order scheme. To
approximate the LEs, one can replace the integral in (1.12) by a simple
quadrature rule. Since we are using the scheme (2.7) to approximate Q,
a rectangle rule is adequate (i.e., a forward Euler step for (1.13)). That is,
if l ji , i=1,..., p, are the approximation of the LEs at tj, then from (1.12)
we update the approximations at tj+1 as

l j+1i =
tj
tj+h

l ji+
1
tj+h

(QTj Bj)ii, i=1,..., p, (2.8)

and obtain a first order approximation for the LEs.
Computing V1 from (2.7), rather than P1 from (2.6), avoids the Jacobian

evaluation and the multiplication fx(x0) Q0.
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3. SECOND ORDER METHODS

Often, the LEs are used to infer qualitative properties of the differen-
tial system (1.1) and high accuracy approximation of the LEs may not be
really needed. However, there are situations where one needs more accurate
approximations than those delivered by the first order schemes of the pre-
vious section.2 Here we extend the simple methods of the previous section

2 Still, we stress that the trajectory itself can be approximated at any—higher—order of
accuracy.

to second order techniques, and point out how to generalize to higher
order.

In the literature of numerical differential equations there are many
ways to produce high order schemes (see [16]). We consider two of them
here: second order Runge–Kutta (RK) schemes, and extrapolation. As
before, we differentiate between discrete and continuous QR approaches.

3.1. Discrete QR: 2nd Order

We look at two ways to obtain second order schemes: (a) using the
explicit midpoint rule, or (b) extrapolating forward Euler approximations.
Neither of these choices can be implemented naively in a Jacobian free
way, and some care must be paid in order to obtain order 2.

(a) Explicit Midpoint Rule. The basic scheme on one step h from Q0
to Q1 is

Y1/2=Q0+
h
2
fx(x0) Q0,

Y1=Q0+hfx(x1/2) Y1/2, then Q1: Y1=Q1R1.

(3.1)

Above, x0 and x1/2 are approximations to the solution of (1.1) which may
have been obtained by the midpoint rule, so that x1/2=x0+

h
2 f(x0), or also

by some other scheme, as long as they have the appropriate order (e.g., we
can use x1/2=1/2(x0+x1) if we are using a high order scheme to integrate
(1.1)). Naturally, (3.1) is a 2nd order scheme ([16]).

To make (3.1) a Jacobian free method, we must approximate the
actions fx(x0) Q0 and fx(x1/2) Y1/2 by appropriate directional derivatives.
For fx(x0) Q0, this is as before, since an O(h2) approximation to Y1/2 is all
that is needed. Thus, if Q0=[q

0
1,..., q

0
p], we let

hfx(x0) Q0 % B0 :=5f 1x0+
h
2
q01 2−f(x0),..., f 1x0+

h
2
q0p 2−f(x0)6 ,
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and notice that fx(x0) Q0−B0=O(h2). We thus obtain

Z1/2=Q0+B0

instead of Y1/2. Next, we need to approximate Jacobian free the term
hfx(x1/2) Z1/2. We cannot use the simple difference quotient above to
approximate this term, since we would get stuck with terms of O(h2). For
this reason, we use a higher order centered difference approximation. So, if
we let Z1/2=[z

1/2
1 ,..., z

1/2
p ], we then use

hfx(x1/2) Z1/2 %M0 where

M0 :=
1
2 [f(x1/2+hz

1/2
1 )−f(x1/2−hz

1/2
1 ),..., f(x1/2+hz

1/2
p )−f(x1/2−hz

1/2
p )].

With the above notation, the Jacobian free midpoint scheme is

Z1/2=Q0+B0, Z1=Q0+M0, then Q1: Z1=Q1R1. (3.2)

It is simple to appreciate that the scheme (3.2) is a second order
scheme, since the local error is O(h3). This is because Z1/2 is an O(h2)
approximation to Y1/2 and M0−hfx(x1/2) Z1/2=O(h3). The latter follows
by straightforward Taylor expansion; for j=1,..., p, one has

f(x1/2+hz
1/2
j )−f(x1/2−hz

1/2
j )

=2hfx(x1/2) z
1/2
j +

h3

6
fxxx(x1/2) z

1/2
j z

1/2
j z

1/2
j +O(h

5).

Clearly, computing Z1 from (3.2), rather than Y1 from (3.1), avoids
two Jacobian evaluations and the matrix multiplications with the Jacobians.

Remark 3.1. The above second order scheme (3.2) requires three
evaluations per step of the vector field f for each LE. We grew accustomed
to second order RK-like schemes requiring just two f evaluations. Whether
or not this is actually possible in the present context is not clear to us, but
in our—admittedly, limited—efforts we have not succeeded.

Remark 3.2. It is in principle possible to extend the above reasoning
to obtain Jacobian free methods of even higher order. For example, for
explicit RK schemes, one needs to replace all actions hfx( · ) Zj by suitable
difference quotients so that the order of the RK scheme is retained.
However, for our scopes, second order schemes are sufficient, and we did
not spend any time in trying to obtain high order analogs of (3.2), leaving
this task to future work.
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(b) Extrapolating Forward Euler. The basic extrapolation scheme on
one step h from Q0 to Q1 is

Y1=Q0+hfx(x0) Q0 forward Euler step

Y1/2=Q0+
h
2
fx(x0) Q0, Ŷ1=Q0+

h
2
fx(x1/2) Y1/2, two half steps

then Yg
1 P Y1+2(Ŷ1−Y1), and Q1: Y

g
1=Q1R1.

(3.3)

It is well known that (3.3) is a second order scheme, see [16]. Our scope
here is to derive a Jacobian free second order scheme from (3.3).

In what follows, we let Q0=[q
0
1,..., q

0
p] and Z1/2=[z

1/2
1 ,..., z

1/2
p ]. We

propose the following scheme

Z1=Q0+[f(x0+hq
0
1)−f(x0),..., f(x0+hq

0
p)−f(x0)]

Z1/2=Q0+5f 1x0+
h
2
q01 2−f(x0),..., f 1x0+

h
2
q0p 2−f(x0)6

Ẑ1=Q0+5f 1x1/2+
h
2
z1/21 2−f(x1/2),..., f 1x1/2+

h
2
z1/2p 2−f(x1/2)6

then Zg
1 P Z1+2(Ẑ1−Z1), and Q1: Z

g
1=Q1R1.

(3.4)

It is not obvious that this is a second order scheme, so we prove it.

Theorem 3.3. The scheme (3.4) is a second order scheme. That is,
if Y(h) is the exact solution at h of Ẏ=fx(x(t)) Y, Y(0)=Q0, and x1/2=
x0+

h
2 f(x0)+O(h

2),3 then Y(h)−Zg
1=O(h

3).

3 I.e., x1/2 is a second order approximation to x(h/2).

Proof. Since it suffices to consider one single column, we just use
lower case letters q0, y1/2, z1/2, etc., where the notation is inherited from
(3.3) and (3.4). Recall that (see (2.5))

y(h)−z1=
h2

2
ÿ0−
h2

2
fxx(x0)(q0, q0)+O(h3), y(h)−y1=

h2

2
ÿ0+O(h3).

We have

z1/2=y1/2+
h2

8
fxx(x0)(q0, q0)+O(h3),
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and thus

ẑ1=y1/2+
h2

8
fxx(x0)(q0, q0)+

h
2
fx(x1/2) z1/2+

h2

8
fxx(x1/2)(z1/2, z1/2)+O(h3)

=y1/2+
h
2
fx(x1/2) y1/2+

h2

8
fxx(x0)(q0, q0)+

h2

8
fxx(x1/2)(y1/2, y1/2)+O(h3).

But

h2

8
fxx(x1/2)(y1/2, y1/2)=

h2

8
fxx(x0)(q0, q0)+O(h3),

and so

ẑ1=ŷ1+
h2

4
fxx(x0)(q0, q0)+O(h3).

But also

z1=y1+
h2

2
fxx(x0)(q0, q0)+O(h3),

and therefore

ẑ1−z1=ŷ1−y1−
h2

4
fxx(x0)(q0, q0)+O(h3).

Now, since ŷ1−y1=
h2

4 ÿ0+O(h
3), we have that

2(ẑ1−z1)=
h2

2
ÿ0−
h2

2
fxx(x0)(q0, q0)+O(h3),

and so

zg1=z1+2(ẑ1−z1)=y(h)+O(h
3). i

Remark 3.4. In (3.4), it is tempting to replace the terms f(x0+
h
2q
0
j )

−f(x0), j=1,..., p, in the definition of Z1/2 by 1
2 [f(x0+hq

0
j )−f(x0)],

j=1,..., p, which are of the same order of accuracy, and would save us p
function evaluations (the term in brackets was already computed to obtainZ1).
However, if we do so, the extrapolation procedure does not increase the
order.
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Exactly as for (3.2) and (3.1), to compute Z1 from (3.4) rather than Y1
from (3.3) avoids the Jacobian evaluations and the matrix multiplications
with the Jacobians.

Remark 3.5. Regardless of whether one uses (3.2) or (3.4), of course
the LEs are still updated as in (2.3), which now gives a 2nd order approx-
imation for the LEs.

3.2. Continuous QR: 2nd Order

We adapt to this case the projected integrator based on the second
order midpoint rule.

(a) Explicit Midpoint Rule. The procedure is the same as what we
did for the explicit midpoint in the case of the discrete QR method. The
true midpoint rule projected integrator would be

P1/2=Q0+
h
2
[fx(x0) Q0−Q0(Q

T
0fx(x0) Q0−S0)],

P1=Q0+h[fx(x1/2) P1/2−P1/2(P
T
1/2fx(x1/2P1/2−S1/2)],

then orthogonalize P1 to get Q1: P1=Q1R1.

(3.5)

To make this scheme Jacobian free, and to retain second order, we
proceed as follows. The terms hfx(x0) Q0 and hS0 in the definition of P1/2
can be approximated as we did to get to (2.7); that is, we let B0 to be our
approximation to hfx(x0) Q0 and H0 the approximation to hS0: B0 :=
[f(x0+hq

0
1)−f(x0),..., f(x0+hq

0
p)−f(x0)], and (H0)ij=(Q

T
0B0)ij, i > j,

plus skew-symmetry. So doing, we obtain a value V1/2 which is an O(h2)
approximation to P1/2:

V1/2=Q0+
1
2 [B0−Q0(Q

T
0B0)+Q0H0].

Next, we need to approximate at 3rd order the action hfx(x1/2) V1/2 and
further use this in forming hS1/2 (here, S1/2 is defined by using V1/2). This is
accomplished by centered differences. We let V1/2=[v

1/2
1 ,..., v

1/2
p ], and let

hfx(x1/2) V1/2 % B1/2,

B1/2 :=
1
2 [f(x1/2+hv

1/2
1 )−f(x1/2−hv

1/2
1 ),...,

f(x1/2+hv
1/2
p )−f(x1/2−hv

1/2
p )],
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and also use this to approximate hS1/2 by H1/2, which is thus given by
(H1/2)ij=(V

T
1/2B1/2)ij, i > j, and then using skew-symmetry. In the end, the

resulting scheme is

V1/2=Q0+
1
2 [B0−Q0(Q

T
0B0)+Q0H0],

V1=Q0+B1/2+V1/2(H1/2−V
T
1/2B1/2),

then orthogonalize V1 to get Q1: V1=Q1R1.

(3.6)

By construction, this is a second order Jacobian free discretization of
(1.11). To take advantage of the increased accuracy, we now update the
LEs using the midpoint rule rather than the forward Euler as in (2.8).
Thus, if l ji , i=1,..., p, are the approximations of the LEs at tj, we update
these approximations at tj+1 as

l j+1i =
tj
tj+h

l ji+
1
tj+h

(QTj+1/2Bj+1/2Qj+1/2)ii, i=1,..., p, (3.7)

which—given the way we approximate Bj+1/2—gives a 2nd order approxi-
mation to the LEs.

Again, computing V1 from (3.6) rather than P1 from (3.5) avoids the
Jacobian evaluations and multiplications with the Jacobians.

4. IMPLEMENTATION AND EXAMPLES

We implemented all first and second order schemes given in the pre-
vious sections. For simplicity, we report on results where integration for
the trajectory was done with the same scheme used to approximate the
LEs. However, we also made experiments in which integration for the
trajectory was carried out by a fourth order RK scheme; this had no impact
on the quality of the answers obtained for the LEs, which continued to be
approximated at first or second order, according to the schemes adopted
for their approximation.

4.1. Expense

Before reporting on our experiments, we give a breakdown of the
computational costs of the different methods. We monitor the cost per
integration step in terms of the number of required flops,4 and the number

4 A flop is the cost of an arithmetic operation.
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of required function evaluations (i.e., evaluations of the vector field f in
(1.1)). As it is customary, we will consider the cost of evaluating the
Jacobian fx(x̄) to be n function evaluations. This is appropriate in general,
as evidenced by the common case in which the Jacobian is approximated
by divided differences, whereby for each of its columns one uses

fx(x̄) ej %
f(x̄+Eej)−f(x̄)

E
, j=1,..., n,

with E ] 0 sufficiently small (typically, E is the square root of the machine
precision).

We will use the following naming conventions for the schemes we
implemented

– FE is ‘‘Euler’’ method matrix Free, JE is Euler method using the
Jacobian. We further differentiate between FED and FEC for the
Discrete or Continuous QR approaches.

– Similarly, FEXD is the ‘‘EXtrapolation’’ method used matrix free
for the discrete QR approach, JMPC is the ‘‘MidPoint’’ method
using the Jacobian for the continuous QR approach, etc..

To arrive at the results summarized in Table I, we have adopted the
following choices: (i) the schemes have been implemented in the form in
which they have been written in the previous sections; (ii) to perform the
QR factorization of a (n, p)-matrix (required by all schemes), we imple-
mented the modified Gram–Schmidt algorithm, whose cost is reported as
2np2 flops in [14]; (iii) the cost of adding two (n, p)-matrices is np flops,
and of multiplying a (m, q)-matrix by a (q, s)-matrix is 2mqs flops (again,

Table I. Computational Costs

Method Flops f-evaluations

JED, (2.1) 2n2p+2np2+np n
FED, (2.2) 2np2+2np p
JEC, (2.6) 2n2p+5np2+3np n
FEC, (2.7) 5np2+4np p

JMPD, (3.1) 4n2p+2np2+2np 2n
FMPD, (3.2) 2np2+4np 3p
JEXD, (3.3) 4n2p+2np2+7np 2n
FEXD, (3.4) 2np2+7np 3p
JMPC, (3.5) 4n2p+8np2+6np 2n
FMPC, (3.6) 6np2+9np 3p
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see [14]); (iv) for the continuous methods, we have made use of the form
of S in (1.10) (and similarly for the Jacobian free versions), to save on
arithmetic operations; (v) we have not counted the costs of updating the
LEs, which is the same for all methods of same order, and is negligible for
p small.

Quite clearly, in the important case of p° n, the Jacobian-free methods
have a cost per step proportional to O(np2) flops, and O(p) function
evaluations, while the methods requiring the Jacobian have a cost of
O(n2p) flops and O(n) function evaluations.

4.2. Examples

All experiments were made with FORTRAN codes, without any opti-
mization option, on a Workstation with clock speed of 300 Mhz/s. Nota-
tion used in the tables later is as follows.

– Method is the method used.

– h is the stepsize used.

– CPU are the computing times.

– li, i=1,..., are the approximated exponents.

Example 4.1. This is a problem adapted from one in [11], for which
in [10] we computed accurate approximations of the LEs, and thus we will
use it to test order of convergence of the schemes, and perform a moderate
comparison.

We have a ring of oscillators with an external force proportional to the
position component of the limit cycle of the van der Pol oscillator:

ÿ+a(y2−1) ẏ+w2y=0

ẍi+diẋi+c[FŒ(xi−xi−1)−FŒ(xi+1−xi)]=sydi1, i=1,..., m.
(4.1)

Above, we set a=1, w=1.82, c=1 and s=4. Also, F(x)=(x2/2)+
(x4/4) is the single well Duffing potential, xi is the displacement of the ith
particle, di is the damping coefficient, and we have periodic boundary
conditions to be used in the expressions for FŒ (x0=xm and xm+1=x1). For
the present set of experiments, we take 5 oscillators, and di=0.25 for i odd
and di=0.15 for i even. Initial conditions are taken y(0)=0, ẏ(0)=−2,
xi(0)=ẋi(0)=1, i=1,..., m. We integrate to t=1000, approximating 4
Lyapunov exponents (i.e., in the previous notation, n=12 and p=4). The
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Table II. Example 1. Discrete QR Method

Method h CPU l1 l2 l3 l4

FED 1.0E−2 6’’ 2.9E−2 1.45E−2 3.5E−3 1.3E−4
JED 1.0E−2 12’’ 2.8E−2 1.6E−2 3.3E−3 1.2E−3
FED 1.0E−4 10’ 8’’ 1.85E−3 8.8E−4 −9.9E−2 −9.7E−2
JED 1.0E−4 20’ 1.85E−3 8.8E−4 −9.9E−2 −9.7E−2

FEXD 1.0E−2 8’’ 1.6E−3 8.6E−4 −9.7E−2 −1.0E−1
JEXD 1.0E−2 19.5’’ 1.6E−3 8.6E−4 −9.7E−2 −1.0E−1
FMPD 1.0E−2 7.4’’ 1.6E−3 8.6E−4 −9.7E−2 −1.0E−1
JMPD 1.0E−2 20’’ 1.6E−3 8.6E−4 −9.7E−2 −1.0E−1

following values of these first 4 approximate exponents are believed to be
accurate to the two digits shown (cf. [10]):

1.7E−3, 8.7E−4, −9.7E−2, −1.0E−1.

As it can be observed from Table II, the results of the Jacobian free
versions agree very closely with those using the Jacobian. The first order
scheme requires h to be too small to deliver decent accuracy, while the
second order schemes are all fairly accurate. On such small problem, the
savings achieved with the Jacobian free versions are a bit more than 50%.

From Table III, we again observe that the results of the Jacobian free
versions agree very closely with those using the Jacobian, the first order
scheme requires h to be too small to become accurate, and the savings
in the Jacobian free version are a bit less than 50%. The continuous QR
approach is slightly less accurate than the discrete QR counterpart, and 2
to 3 times as expensive.

Table III. Example 1. Continuous QR Method

Method h CPU l1 l2 l3 l4

FEC 1.0E−2 10.2’’ −1.5E−1 −5.6E−2 −1.9E−1 −7.2E−2
FEC 1.0E−2 20’’ −1.6E−1 −4.4E−2 −1.9E−1 −7.3E−3
FEC 1.0E−4 17’ 13’’ 1.4E−3 7.0E−4 −1.0E−1 −9.8E−2
JEC 1.0E−4 33’ 1.4E−3 7.0E−3 −1.0E−1 −9.8E−2

FMPC 1.0E−2 21.7’’ 1.4E−3 6.9E−4 −9.9E−2 −9.8E−2
JMPC 1.0E−2 38.4’’ 1.4E−3 7.0E−4 −9.8E−2 −9.9E−2
FMPC 1.0E−3 3’ 39’’ ’’ 1.7E−3 8.7E−4 −9.7E−2 −1.0E−1
JMPC 1.0E−3 6’ 22’’ 1.7E−3 8.7E−4 −9.7E−2 −1.0E−1
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Table IV. Example 1. All 12 Exponents: CPU

FMPD JMPD FMPC JMPC

36.3’’ 1’ 10’’ 2’ 38’’ 3’ 25’’

In Table IV, we report the CPU times when we approximate all 12
exponents at t=1000 by the midpoint rule methods. Notice that the
Jacobian free continuous QR method scales poorly with increasing p (here,
p=n), because of the need for the matrix multiplications QTB (recall (3.6)).

Example 4.2. This is the same as Example 4.1 except that we now
increase the number of oscillators, taking m=15 and m=150, respectively.
Comparison values in this case are not known. However, we perform this
experiment by taking the following parameter values (as in [11]): a=1,
w=1.6, c=1, s=2, and di=0.4 for all i=1,..., m. With these values, we
expect one LE equal to 0, and all other LEs negative. Initial conditions are
as in Example 4.1. In all runs below integration is done up to t=1000, and
p=4 LEs are approximated.

From Table V, observe that the first order method for the discrete QR
approach delivers qualitatively correct answers, while for the continuous
QR approach doesnot. The Jacobian free and Jacobian based methods give
nearly identical results.with the Jacobian free methods costing about 20
to 25% of the methods requiring the Jacobian. The Jacobian free second
order methods for the discrete and continuous QR approaches give nearly
identical results in terms of accuracy, with the continuous approach being 3
times as expensive.

Finally, in Table VI we report on the CPU times for the method when
m=150. The approximate LEs show the same quality as in Table V: those

Table V. Example 2, m=15 (n=32), h=1.0E−2

Method CPU l1 l2 l3 l4

FED 15.3’’ 9.3E − 4 − 7.6E − 4 − 9.1E − 2 − 9.4E − 2
JED 1’ 2’’ 1.4E − 3 − 7.6E − 4 − 9.3E − 2 − 9.4E − 2

FMPD 18.2’’ 1.6E − 3 − 7.3E − 4 − 8.6E − 2 − 8.75E − 2
JMPD 1’ 47’’ ’’ 1.6E − 3 − 7.3E − 4 − 8.6E − 2 − 8.75E − 2
FEC 15.6’’ ’’ − 2.7E − 2 − 1.8E − 3 − 1.3E − 1 − 1.4E − 1
JEC 1’ 26’’ − 2.7E − 2 − 1.8E − 3 − 1.3E − 1 − 1.4E − 1

FMPC 55’’ 1.4E − 3 − 7.3E − 4 − 8.6E − 2 − 8.75E − 2
JMPC 3’ 11’’ 1.5E − 3 − 7.3E − 4 − 8.6E − 2 − 8.75E − 2
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Table VI. Example 2, m=150 (n=302), h=1.0E−2. CPU times

FED JED FMPD JMPD FEC JEC FMPC JMPC

2’ 15’’ 1h 48’ 3’ 3h 35’ 25’’ 4’ 6’’ 2h 14’ 18’’ 9’ 4h 38’

of FED and JED are qualitatively correct (7.3E−4, −1.9E−3, −1.1E−2,
−2.8E−2), those of FEC and JEC are all negative (and seemingly inac-
curate), and those for FMPD, JMPD, FMPC, JMPC are all nearly identical
to one another (1.5E−3, −1.9E−3, −1.2E−2, −2.8E−2).

5. CONCLUSIONS

We have proposed schemes to approximate LEs of nonlinear differen-
tial equations which do not need the Jacobian matrix. The basic idea is
really very simple, and consists in replacing the product of the Jacobian
matrix fx times a matrix Z by approximate directional derivatives. We
gave first order and second order schemes for both discrete and continuous
QR methods, and showed the reliability and effectiveness of our choices on
two examples. It is our hope that these choices will prove valuable to those
interested in approximation of LEs of large dimensional systems, and who
have been reluctant to do so because of computational expense.

Based on the results of our experiments, we can draw the following
conclusions and recommendations for future work.

(1) The Jacobian free version of both discrete and continuous QR
approaches is considerably less expensive than the counterpart
requiring the Jacobian, and it is at least equally accurate. Savings
depend on whether one uses the discrete or continuous QR
approach, on the dimension of the problem, and on the number
of LEs one needs to monitor. In general, savings will also depend
on how expensive it is to compute the Jacobian, and on its structure
(which we have not taken into account in Examples 4.1 and 4.2).
From our experiments, we observed that for small problems, and
in case we need all LEs, savings areon the order of 50%, but
already for moderate size problems (i.e., dimension 300), to
compute a few LEs, the Jacobian free version may take up to
only 1.5% of the time taken by the methods requiring the Jaco-
bian. Needless to say, the Jacobian free versions have the major
advantage of not requiring the derivative of the vector field in the
first place.
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(2) For the fixed stepsize low order schemes we have considered, the
Jacobian free implementation of the discrete QR approach
appears superior to the continuous QR analog. Clearly, the
discrete QR approach is consistently less expensive, and this could
have been easily anticipated just by looking at the differential
equations one needs to solve with the two different approaches;
but, perhaps more importantly, it is also at least equally accurate.
For example, the Jacobian free ‘‘Euler’’ method works poorly for
the continuous QR approach, while it is rather reliable for the
discrete QR approach (see especially Example 4.2). Furthermore,
the expense needed for the Jacobian free discrete QR method
scales favorably with respect to the number p of desired LEs,
while—as p increases—the continuous QR approach becomes
progressively penalized by (dense) matrix multiplications of
(n, p)×(p, n) matrices. Recalling also Remark 1.3, we lean
towards recommending the Jacobian free discrete QR approach
for large nonlinear systems, at least when a modest number of
LEs are desired. In fact, either of the two second order Jacobian
free schemes we introduced for the discrete QR approach would
be our recommended choice.

(3) Our basic schemes to approximate the LEs have been simple low
order explicit RK methods, but extensions to other schemes are
certainly possible and perhaps warranted. In future work, we may
investigate higher order schemes as well as adapt our choices to
different basic discretizations. We stress once more that our
choices pertain exclusively to the approximation of the LEs, and
integration for the trajectory can be performed with any other
appropriate scheme.

(4) Finally, we observe that all Jacobian free second order schemes we
derived can be implemented with variable stepsizes, by monitoring
local errors with respect to the Jacobian free Euler method (and
no extra evaluations of f are required). We also leave to future
development the implementation of error control and variable
time stepping strategies.
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