
SLIDING MOTION ON THE INTERSECTION

OF TWO MANIFOLDS: SPIRALLY ATTRACTIVE CASE.

L. DIECI

Abstract. In this note, we consider sliding motion on the intersection Σ of two smooth mani-
folds in the case when the dynamics near the manifold Σ is spiral-like, and Σ is spirally attractive.
We clarify the meaning of spiral-like dynamics around Σ, characterize what we mean by spiral
attractivity of Σ, and finally discuss what to expect when Σ ceases to be attractive, with nearby
orbits getting farther away from Σ through spiraling motion. Our characterization of spiral-
attractivity of Σ is given by a single number, which plays a role similar to that of a Floquet

multiplier for a smooth planar system.

1. Introduction

Piecewise smooth systems (differential systems with discontinuous right hand side) play an
important role in many mechanical and engineering applications (e.g., see [1]), and present deep
and complex mathematical questions. In particular, the well established Filippov convexification
method (see [6]) gives a powerful mean to establish what to do when solution trajectories reach a
co-dimension 1 manifold of discontinuity, but it is still not fully understood what happens when
trajectories have to move on the intersection Σ of two smooth manifolds. To be of practical
interest, such intersection Σ should enjoy some attractivity properties, that is nearby solution
trajectories should reach Σ (in forward time), and solution trajectories starting on Σ ought to
remain there, giving rise to so-called sliding motion. In [4], we characterized attractivity of Σ in
the case of solution trajectories approaching it through sliding (see below). Our goal in this work
is to complete the characterization of attractive Σ by treating the case of spiral attractivity of Σ.
In short, our goal in this work is to give conditions characterizing a situation such as in Figure 1,
where Σ is the vertical axis; the top (red) portion is motion out of Σ, the bottom (blue) is motion
toward Σ, and there is sliding motion on (part of) Σ (green curve), which itself is spirally-attractive.

In this Introduction, we review the basic problem and set up the notation. In Section 2 we
propose a characterization of what we mean by spiral-like behavior around Σ, where Σ is the
intersection of two smooth co-dimension 1 manifolds. Then, in Section 3 we characterize spiral
attractivity for Σ. In Section 4 we discuss what may happen when, still subject to spiral-like
behavior of nearby dynamics, Σ loses attractivity.

1.1. The problem and Filippov solutions. We consider piecewise smooth differential systems
of the following type:

(1.1) ẋ = f(x) , f(x) = fi(x) , x ∈ Ri , i = 1, . . . , 4,

with initial condition x(0) = x0 ∈ Ri, for some i. Here, the Ri ⊆ R
n are open, disjoint and

connected sets, and (locally) Rn =
⋃

iRi. Each fi is assumed to be smooth in an open neighborhood
of the closure of each Ri, i = 1, . . . , 4.

Clearly, from (1.1), the vector field is not defined on the boundaries of the Ri’s.
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Figure 1. Spiraling around Σ (vertical axis), and sliding on (part of) it.

1.2. Codimension 1 case: attractivity, existence and uniqueness. The classical Filippov
theory (see [6]) is concerned with the case of two regions R1 and R2, separated by a manifold Σ
defined as the 0-set of a smooth (C2) scalar valued function h:

ẋ = f1(x) , x ∈ R1 , and ẋ = f2(x) , x ∈ R2 ,

Σ := {x ∈ R
n : h(x) = 0} , h : R

n → R .
(1.2)

Here, ∇h is bounded away from 0 for all x ∈ Σ, and near Σ. Without loss of generality, we can
label R1 such that h(x) < 0 for x ∈ R1, and R2 such that h(x) > 0 for x ∈ R2. Let us define

(1.3) w =

[

w1

w2

]

:=

[

∇h(x)T f1(x)
∇h(x)T f2(x)

]

, x ∈ Σ ,

for the projected vector fields. We say (see [6]) that Σ is attractive (in finite time) if, for some
positive constant c, we have

w1(x) ≥ c > 0 and w2(x) ≤ −c < 0 ,

for x ∈ Σ. In this case, trajectories starting near Σ must reach it and remain there: this gives the
so-called sliding motion. Filippov convexification method amounts to selecting as sliding vector
field on Σ a convex combination of f1 and f2, fF := (1−α)f1+αf2, with α chosen so that fF ∈ TΣ

(fF is tangent to Σ at each x ∈ Σ):

(1.4) x′ = (1− α)f1 + αf2 , α =
∇h(x)T f1(x)

∇h(x)T f1(x) −∇h(x)T f2(x)
.

Clearly, because of attractivity, α ∈ (0, 1). Whenever α = 0 (respectively α = 1), the vector field
f1 (respectively f2), is itself tangent to Σ, and one should expect the trajectory to leave Σ to enter
in R1 (respectively R2). These are tangential exits, predicted by the first order Filippov theory.

Remark 1.1. Observe that (1.4) gives a well defined sliding motion also in the case of repulsive
Σ, that is when

w1(x) ≤ −c < 0 and w2(x) ≥ c > 0 , x ∈ Σ .

The difference in this case of repulsive sliding is that, for forward time, the sliding motion is
unstable and there is no uniqueness, since one can also leave Σ at any instant of time with either
f1 or f2. These types of exits are non-tangential. �

1.3. Intersection of two codimension 1 manifolds. As we said, we are concerned with (1.1),
where now the Ri’s are (locally) separated by two intersecting smooth manifolds of co-dimension 1,
Σ1 = { x : h1(x) = 0} and Σ2 = { x : h2(x) = 0}. We have Σ = Σ1 ∩Σ2, and here h1 and h2 are
C2 functions, and ∇h1(x) and ∇h2(x) are linearly independent, for x on (and in a neighborhood
of) Σ.
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We have four different regions R1, R2, R3 and R4 with the four different vector fields fi,
i = 1, . . . , 4, in these regions:

(1.5) ẋ = fi(x) , x ∈ Ri , i = 1, . . . , 4 .

Without loss of generality, we can label the regions as follows:

R1 : f1 when h1 < 0 , h2 < 0 , R2 : f2 when h1 < 0 , h2 > 0 ,

R3 : f3 when h1 > 0 , h2 < 0 , R4 : f4 when h1 > 0 , h2 > 0 .
(1.6)

We further let (cfr. with (1.3))

w1
1 = ∇hT

1 f1 , w1
2 = ∇hT

1 f2 , w1
3 = ∇hT

1 f3 , w1
4 = ∇hT

1 f4 ,

w2
1 = ∇hT

2 f1 , w2
2 = ∇hT

2 f2 , w2
3 = ∇hT

2 f3 , w2
4 = ∇hT

2 f4 .
(1.7)

In [4], the authors considered the case of Σ being attractive through sliding. By that, it is
meant that solution trajectories starting near Σ will reach (in finite time) the intersection Σ, either
directly, or (more likely) by first sliding on one of Σ1 or Σ2, directed towards Σ. Formally, if we let
Σ±

1 = {x : h1(x) = 0 , h2(x) ≷ 0}, and similarly for Σ±

2 , attractivity through sliding of Σ means
that (near Σ) there must be sliding motion on (at least) one of Σ±

1,2, directed towards Σ, and no

motion away from Σ; note that the sliding motion on Σ±

1,2 would be taking place with a Filippov

sliding vector field, call it fΣ±

1,2
, defined as in Section 1.2, see (1.4).

Now, in the present case of Σ = Σ1 ∩ Σ2, the general Filippov construction defines a sliding
trajectory on Σ as an absolutely continuous function x such that, almost everywhere, its derivative
is in the convex hull of the neighboring vector fields and lies on the tangent plane at Σ: ẋ ∈ TΣ(x).
In other words, one must have

ẋ ∈ F(x) := {λ1f1 + λ2f2 + λ3f3 + λ4f4 , λi ≥ 0 , i = 1, . . . , 4 ,
4

∑

i=1

λi = 1 } ,

∇hT
1 ẋ = ∇hT

2 ẋ = 0 , x ∈ Σ .

(1.8)

As it is plainly obvious, the mere requirement of ẋ being on TΣ is not in general sufficient to
uniquely characterize a convex combination of the four vector fields f1, . . . , f4. Still, there are
meaningful ways to select a unique, smoothly varying, sliding vector field fF, e.g. by considering
the bilinear interpolant of Example 1.2 below (other possibilities are surely possible, e.g., the choice
recently examined in [3]).

Example 1.2 (Bilinear sliding motion). Here, one seeks fF of the form (e.g., see [4] and [7])

(1.9) fF = (1− α)[(1 − β)f1 + βf2] + α[[(1− β)f3 + βf4] ,

where 0 ≤ α, β ≤ 1 must be found so that –at each x ∈ Σ– fF ∈ TΣ. In [4], it was shown that this
choice can always be done when Σ is attractive through sliding, and α and β will depend smoothly
on x ∈ Σ. �

However, our present concern is not how to properly define a unique Filippov sliding vector
field. Our present concern is how to characterize the case of Σ being attracting when there is
spiral motion of nearby trajectories, which was left as an open problem in [4]. As it turns out,
the situation is substantially different from the case of Σ being attractive through sliding. Our
main proposal in this work is that there is a number, a multiplier, which characterizes the present
spiraling situation.

2. Spiral-like dynamics near Σ

First, we characterize what we mean for the dynamics near Σ to be spiral-like. Informally, we
mean that “a solution trajectory starting near Σ in any of the regions Ri, for some i = 1, . . . , 4,
will return to this same region Ri after having crossed transversally once (and once only) each of
the submanifolds Σ±

1,2”.
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To quantify the above statement, it is convenient to consider new variables in a neighborhood
of Σ:

(2.1) y1 = h1(x) , and y2 = h2(x) .

Now, note that, for i = 1, 2, dyi

dt
= ∇hT

i
dx
dt
. So, letting wi =

[

w1
i

w2
i

]

as in (1.7), we have

(2.2)
d

dt

[

y1
y2

]

= wi , x ∈ Ri, i = 1, . . . , 4 .

Thus, by spiral-like behavior in a neighborhood of Σ we mean that “the y-trajectories starting in
any of the four canonical quadrants will return to this quadrant after having crossed transversally
once (and only once) the coordinate axes, yj = 0 (i.e., hj = 0), j = 1, 2.” See Figure 2.

Σ
1
: h

1
(x)=0

Σ
2
: h

2
(x)=0

Σ Σ

Σ
2
: h

2
(x)=0

Σ
1
: h

1
(x)=0

Figure 2. Transversal intersections while spiraling. Left, clockwise; right, counterclockwise.

So, we have to quantify two features: the transversal crossing, and the return to each region.
Transversal crossings can be characterized (at first order) by one of the following two possible

tables (Table 1 or 2) for the signs of the wj
i ’s upon hitting Σ±

1,2.

Table 1. Signs of matrix W in clockwise spiraling around Σ.

Component i = 1 i = 2 i = 3 i = 4

w1
i w1

1(Σ
−

1 ) > 0 w1
2(Σ

+
1 ) < 0 w1

3(Σ
−

1 ) > 0 w1
4(Σ

+
1 ) < 0

w2
i w2

1(Σ
−

2 ) < 0 w2
2(Σ

−

2 ) < 0 w2
3(Σ

+
2 ) > 0 w2

4(Σ
+
2 ) > 0

Table 2. Signs of matrix W in counterclockwise spiraling around Σ.

Component i = 1 i = 2 i = 3 i = 4

w1
i w1

1(Σ
−

1 ) < 0 w1
2(Σ

+
1 ) > 0 w1

3(Σ
−

1 ) < 0 w1
4(Σ

+
1 ) > 0

w2
i w2

1(Σ
−

2 ) > 0 w2
2(Σ

−

2 ) > 0 w2
3(Σ

+
2 ) < 0 w2

4(Σ
+
2 ) < 0

Remark 2.1. To clarify, in each region Ri, the system is (1.5), and this is the system we have
to solve. The conditions of Tables 1 or 2 guaranteee that the x-trajetories have transversal inter-
sections with Σ±

1,2. The convenience of introducing the y-variables is that it allows us to use the
4 canonical quadrants in the y-plane in lieu of the regions of Rn where h1,2 ≷ 0. That said, it
must be understood that, when we write (2.2), the vector field wi is really evaluated along the
solution of ẋ = fi, i = 1, . . . , 4. With this in mind, we can talk about evolution of the y-variables
directly. �
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The second requirement, that y-trajectories starting in any of the four canonical quadrants re-
turn to this quadrant after having crossed transversally once the coordinates axes, can be expressed
as follows.

Let φt
i(z), z ∈ Ri, be the evolution in each region Ri, i = 1, 2, 3, 4. Consider an initial condition

x0 ∈ Σ−

2 , and let y(0) =

[

h1(x0)
h2(x0)

]

=

[

y
(0)
1

0

]

with y
(0)
1 < 0. Then, spiral-like behavior can be

written as the requirement that there exist first, and unique, times (which of course depend on x0)
t1, t2, t3, t4, such that we have one of the following:

(a): Clockwise

x(t1) := φt1
1 (x0) : y(1) =

[

h1(x(t1))
h2(x(t1))

]

=

[

0

y
(1)
2

]

, y
(1)
2 < 0 ;

x(t2) := φt2
3 (x(t1)) : y(2) =

[

h1(x(t2))
h2(x(t2))

]

=

[

y
(2)
1

0

]

, y
(2)
1 > 0 ;

x(t3) := φt3
4 (x(t2)) : y(3) =

[

h1(x(t3))
h2(x(t3))

]

=

[

0

y
(3)
2

]

, y
(3)
2 > 0 ;

x(t4) := φt4
2 (x(t3)) : y(4) =

[

h1(x(t4))
h2(x(t4))

]

=

[

y
(4)
1

0

]

, y
(4)
1 < 0 ;

(b): Counter-clockwise

x(t1) := φt1
2 (x0) : y(1) =

[

h1(x(t1))
h2(x(t1))

]

=

[

0

y
(1)
2

]

, y
(1)
2 > 0 ;

x(t2) := φt2
4 (x(t1)) : y(2) =

[

h1(x(t2))
h2(x(t2))

]

=

[

y
(2)
1

0

]

, y
(2)
1 > 0 ;

x(t3) := φt3
3 (x(t2)) : y(3) =

[

h1(x(t3))
h2(x(t3))

]

=

[

0

y
(3)
2

]

, y
(3)
2 < 0 ;

x(t4) := φt4
1 (x(t3)) : y(4) =

[

h1(x(t4))
h2(x(t4))

]

=

[

y
(4)
1

0

]

, y
(4)
1 < 0 .

(2.3)

We summarize our proposal to characterize (at first order) spiral-like dynamics around Σ.

Definition 2.2. We say that there is clockwise (respectively, counterclockwise) spiral-like dynamics
around Σ, if:

(a) Table 1 and (2.3)-(a) hold (clockwise case), or
(b) Table 2 and (2.3)-(b) hold (counterclockwise case). �

Remark 2.3. Observe that the conditions of Table 1 and (2.3)-(a) imply the following for the
mean values of the derivative of y in each region:

R1 :

∫ 1

0

w1
1

(

φst1
1 (x0)

)

ds > 0 , R3 :

∫ 1

0

w2
3

(

φst2
3 (x(t1))

)

ds > 0 ,

R4 :

∫ 1

0

w1
4

(

φst3
4 (x(t2))

)

ds < 0 , R2 :

∫ 1

0

w2
2

(

φst4
2 (x(t3))

)

ds < 0 .

(2.4)

Naturally, similar relations hold if we assume the conditions of Table 2 and (2.3)-(b), namely:

R2 :

∫ 1

0

w1
2

(

φst1
2 (x0)

)

ds > 0 , R4 :

∫ 1

0

w2
4

(

φst2
4 (x(t1))

)

ds < 0 ,

R3 :

∫ 1

0

w1
3

(

φst3
3 (x(t2))

)

ds < 0 , R1 :

∫ 1

0

w2
1

(

φst4
1 (x(t3))

)

ds > 0 .

(2.5)

�
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Remark 2.4. In [6, Section 20], Filippov considers the ase of spiraling toward the origin in R
2, and

gives sufficient conditions for asymptotic stability of this fixed point (in [6, Section 23] an extension
of this analysis to R

3 is also discussed). In the context of intersection of two manifolds in R
n, there

appears to have been little work on spiraling behavior around, and toward, this intersection. A
proposal was made in [5]. There, the authors gave the sufficient conditions expressed by the signs
constraints of Tables 3 and 4 below, requiring these to hold (uniformly) in a neighborhood of Σ,
in the two clockwise and counterclockwise cases:

Table 3. Signs of matrix W in clockwise spiraling around Σ from [5].

Component i = 1 i = 2 i = 3 i = 4

w1
i + − + −

w2
i − − + +

Table 4. Signs of matrix W in counterclockwise spiraling around Σ from [5].

Component i = 1 i = 2 i = 3 i = 4

w1
i − + − +

w2
i + + − −

Clearly, the conditions of Table 3 (respectively Table 4) imply those expressed by Table 1
(respectively Table 2), and void the need for (2.3). However, this characterization from [5] is too
restrictive, since it requires a monotone behavior of the variables y1 and y2 in each region Ri,
i = 1, 2, 3, 4, which is not needed for spiral-like dynamics around Σ. �

3. Spiral attractivity

The conditions of Definition 2.2 give a spiral-like behavior of orbits near Σ, but are not sufficient
to characterize whether or not Σ is attractive. Our next goal is to arrive at such characterization
in terms of the projected vector fields wj

i ’s. Moreover, if we are on Σ, can we decide when Σ loses
attractivity while there is spiraling behavior around it? In this section and the next, we address
these questions.

Let x ∈ Σ, and observe that –for x ∈ Σ– Tables 1 and 3 give the same information, and so do
Tables 2 and 4.

What follows is the plan of our argument to characterize spiral attractivity of Σ.

(i) Take a point x0 at h-distance ρ from Σ. Here, the h-distance of a point x from Σ is defined
as the 1-norm of h(x): ‖h(x)‖1 = |h1(x)| + |h2(x)|. Without loss of generality, then, we
can take x0 such that h1(x0) = −ρ and h2(x0) = 0, and therefore we will assume that
x0 ∈ Σ−

2 .
(ii) We are only interested in the evolution of the y-variables (starting at x0), that is in the

h-distance from Σ. We reiterate that one has all transversal crossings of the manifolds
hj = 0 (i.e., yj = 0), j = 1, 2.

(iii) After going around once, and returning to Σ−

2 , we will monitor the h-distance of the return
point and compare it to the initial point. Attractivity of Σ would be implied by a decrease
of this distance.

We first consider a simplified situation, where the end result will be arrived at more easily, and
we obtain a necessary and sufficient condition, then we will consider the general case.
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3.1. Attractivity of Σ under simplified spiral-like conditions off Σ. First, consider the case
when the spiraling conditions of Table 3 hold in a neighborhood of Σ, and the wj

i ’s in that Table
are constant (i = 1, . . . , 4, j = 1, 2); for example, this situation occurs if (at least locally) the
original vector fields fi, i = 1, . . . , 4, are constant, and the manifolds Σ1,2 are planes.

We consider the evolution starting with a point at distance ρ from a point x ∈ Σ. We take 4
steps of a Euler discretization of the system (which is exact, on account of the assumption that

the wj
i ’s are constant), which we will do so that on the first step we go from Σ−

2 to Σ−

1 , then from
there to Σ+

2 , then to Σ+
1 , until the last step will make us return to Σ−

2 . By comparing initial and
final point, we will see if distances have decreased (or not). This process gives the following.

(1) [From Σ−

2 to Σ−

1 ]. Let y0 be the y-value of x0, that is y0 =

[

−ρ
0

]

. We take a Euler step

until the first component of y becomes 0:

y1 = y0 + τ1w1 ,

[

y11
y12

]

=

[

y01 + τ1w
1
1

τ1w
2
1

]

,

from which we get (since y11 = 0, y01 < 0, and w1
1 > 0):

(3.1) τ1 = −
y01
w1

1

.

(2) [From Σ−

1 to Σ+
2 ]. Now we obtain

y2 = y1 + τ2w3 ,

[

y21
y22

]

=

[

τ2w
1
3

τ1w
2
1 + τ2w

2
3

]

,

and therefore (since y22 = 0, w2
1 < 0, and w2

3 > 0):

(3.2) τ2 = −τ1
w2

1

w2
3

.

(3) [From Σ+
2 to Σ+

1 ]. We have

y3 = y2 + τ3w4 ,

[

y31
y32

]

=

[

τ2w
1
3 + τ3w

1
4

τ3w
2
4

]

,

and therefore (since y31 = 0, w4
1 < 0, and w3

1 > 0):

(3.3) τ3 = −τ2
w1

3

w1
4

.

(4) [From Σ+
1 to Σ−

2 ]. We have

y4 = y3 + τ4w2 ,

[

y41
y42

]

=

[

τ4w
1
2

τ3w
2
4 + τ4w

2
2

]

,

and therefore (since y42 = 0, w2
2 < 0, and w2

4 > 0):

(3.4) τ4 = −τ3
w2

4

w2
2

.

At this point, we compare y41 with y01 (which was equal to −ρ). Using the expressions found
above for τ1, . . . , τ4, we easily obtain that

y41 = y01
w2

1w
1
3w

2
4w

1
2

w1
1w

2
3w

1
4w

2
2

.

Therefore, we have obtained the key quantity to monitor (the multiplier):

(3.5) µ =
w2

1w
1
3w

2
4w

1
2

w1
1w

2
3w

1
4w

2
2

.

Notice that, because of Table 3, we always have µ > 0.
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Next, we consider the case of Table 4, and we look at 4 steps of the Euler discretization so that
on each step we will go from Σ−

2 to Σ+
1 , from there to Σ+

2 , and then to Σ−

1 , until we return to Σ−

2 .
Computations are similar to the previous case, and we now obtain:

y41 = y01
w2

2w
1
4w

2
3w

1
1

w1
2w

2
4w

1
3w

2
1

.

Therefore, we obtain the multiplier in the present case:

(3.6) ν =
w2

2w
1
4w

2
3w

1
1

w1
2w

2
4w

1
3w

2
1

.

Remark 3.1. Because of Table 4, again we always have ν > 0. Observe that ν in (3.6) is precisely
1/µ with µ in (3.5); this is in agreement with what we expect to have when we change the direction
of motion. �

We formally summarize the above considerations in the following.

Theorem 3.2. Let the conditions of Table 3 be valid in a neighborhood of Σ, and let the wj
i ’s be

constant. Then, Σ is clockwise spiraling attractive if and only if µ < 1, with µ given by (3.5).

Similarly, if the conditions of Table 4 hold, and the wj
i ’s are constant, then Σ is counterclockwise

spiraling attractive if and only if ν < 1, with ν in (3.6).

Proof. In the clockwise case, the proof is a consequence of the expression y41 = µy01 . Similarly in
the counterclockwise case. �

3.2. Attractivity of Σ under general spiral-like conditions off Σ. Here, we consider the
case of spiral-like behavior off Σ under the general conditions of Definition 2.2.

The idea is similar to what we did in Section 3.1; however, we cannot use the Euler discretization
since we will generally fail to have constant wj

i ’s. For this reason, we proceed as follows, first in
the case of Table 1 and (2.3)-(a).

Let x0 ∈ Σ−

2 , that is y(0) ≡ y(0) =

[

y
(0)
1

0

]

=

[

−ρ
0

]

, and let us look at the solution at times

t1, t2, t3, t4, defined as in (2.3)-(a). We stress that these times depend smoothly on x0.

Recall that while the trajectory is in region Ri, then ẏ = wi(φ
t
i(·)), i = 1, 2, 3, 4. So, on account

of (2.4), we have the following.

(1) [From Σ−

2 to Σ−

1 ]. We have x(t) = φt
1(x0), 0 ≤ t ≤ t1, and ẏ = w1(x), and so

y(t1) = y(0) + t1

∫ 1

0

w1

(

φst1
1 (x0)

)

ds ,

and since y(t1) =

[

0
y2(t1)

]

, y1(0) = −ρ < 0, and
∫ 1

0
w1

1

(

φst1
1 (x0)

)

ds > 0, we write

(3.7) t1 = −
y1(0)

∫ 1

0
w1

1

(

φst1
1 (x0)

)

ds
.

(2) [From Σ−

1 to Σ+
2 ]. Now we have x(t) = φt

3(x(t1)), 0 ≤ t ≤ t2, and ẏ = w3(x), and we
obtain

y(t2) = y(t1) + t2

∫ 1

0

w3

(

φst2
3 (x(t1))

)

ds .

Since y(t2) =

[

y1(t2)
0

]

, y2(t1) < 0, and
∫ 1

0
w2

3

(

φst2
3 (x(t1))

)

ds > 0, we write

(3.8) t2 = −
y2(t1)

∫ 1

0 w2
3

(

φst2
3 (x(t1))

)

ds
.
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(3) [From Σ+
2 to Σ+

1 ]. Now we have x(t) = φt
4(x(t2)), 0 ≤ t ≤ t3, and ẏ = w4(x), and we

obtain

y(t3) = y(t2) + t3

∫ 1

0

w4

(

φst3
4 (x(t2))

)

ds .

Since y(t3) =

[

0
y2(t3)

]

, y1(t2) > 0, and
∫ 1

0
w1

4

(

φst3
4 (x(t2))

)

ds < 0, we have

(3.9) t3 = −
y1(t2)

∫ 1

0 w1
4

(

φst3
4 (x(t2))

)

ds
.

(4) [From Σ+
1 to Σ−

2 ]. Finally, here we have x(t) = φt
2(x(t3)), 0 ≤ t ≤ t4, and ẏ = w2(x), and

we obtain

y(t4) = y(t3) + t4

∫ 1

0

w2

(

φst4
2 (x(t3))

)

ds .

Since y(t4) =

[

y1(t4)
0

]

, y2(t3) > 0, and
∫ 1

0
w2

2

(

φst4
2 (x(t3))

)

ds < 0, we obtain

(3.10) t4 = −
y2(t3)

∫ 1

0 w2
2

(

φst4
2 (x(t3))

)

ds
.

Now we compare y1(t4) = t4
∫ 1

0
w1

2

(

φst4
2 (x(t3))

)

ds with y1(0). Using the above for t1, . . . , t4, and
the fact that

y2(t1) = t1

∫ 1

0

w2
1

(

φst1
1 (x0)

)

ds , y1(t2) = t2

∫ 1

0

w1
3

(

φst2
3 (x(t1))

)

ds , y2(t3) = t3

∫ 1

0

w2
4

(

φst3
4 (x(t2))

)

ds ,

we obtain
(3.11)

y1(t4) = y1(0)

∫ 1

0
w2

1

(

φst1
1 (x0)

)

ds
∫ 1

0
w1

3

(

φst2
3 (x(t1))

)

ds
∫ 1

0
w2

4

(

φst3
4 (x(t2))

)

ds
∫ 1

0
w1

2

(

φst4
2 (x(t3))

)

ds
∫ 1

0 w1
1

(

φst1
1 (x0)

)

ds
∫ 1

0 w2
3

(

φst2
3 (x(t1))

)

ds
∫ 1

0 w1
4

(

φst3
4 (x(t2))

)

ds
∫ 1

0 w2
2

(

φst4
2 (x(t3))

)

ds
.

Now, as the distance ρ → 0, the point x0 approaches a value x ∈ Σ. Since all the integrands
above converge to their values at this point x ∈ Σ (and the integrands are bounded), all integrals
reduce to evaluations made at the point x ∈ Σ, and we obtain what we call instantaneous rate of
attractivity of Σ as characterized by the multiplier µ below (cfr. with (3.5)):

(3.12) µ(x) =
w2

1(x)w
1
3(x)w

2
4(x)w

1
2(x)

w1
1(x)w

2
3(x)w

1
4(x)w

2
2(x)

, x ∈ Σ .

Similarly, when we proceed in the counterclockwise case, under the conditions of Table 2 and
(2.3)-(b), we end up with the instantaneous rate of attractivity as characterized by the multiplier
ν (cfr. with (3.6)), which is in fact 1/µ(x):

(3.13) ν(x) =
w2

2(x)w
1
4(x)w

2
3(x)w

1
1(x)

w1
2(x)w

2
4(x)w

1
3(x)w

2
1(x)

, x ∈ Σ .

We summarize in the following result.

Theorem 3.3. Assume that for x ∈ Σ the signs of Table 3 hold, and we have µ < 1, with µ given
by (3.12). Then Σ is clockwise spirally attractive for solution trajectories starting at a point x0

in a sufficiently small neighborhood of Σ. Similarly, if for x ∈ Σ the signs of Table 4 hold, and
we have ν < 1, with ν given by (3.13), then Σ is counterclockwise spiraling attractive for solution
trajectories starting at a point x0 in a sufficiently small neighborhood of Σ.

Proof. In the clockwise case, the result follows from (3.11), using continuity –with respect to x0–

of the wj
i ’s and of the times t1, . . . , t4, and permanence of the signs in (2.4). Similarly in the

counterclockwise case. �
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Remark 3.4. Finally, we observe that it is a simple computation to verify that the bilinear vector
field of Example 1.2 (and, for that matters, the moments sliding vector fields of [3]) is well defined
and varies smoothly when Σ is spiraling attractive according to the above characterization. This
consideration prompts the next definition. �

Definition 3.5. We say that the motion (i.e., the sliding regime) on Σ is “clockwise spiraling
attractive” if for x ∈ Σ the signs of Table 3 hold, and we have µ < 1, with µ given by (3.12).
Similarly, we say that the sliding regime is “counterclockwise spiraling attractive” if for x ∈ Σ the
signs of Table 4 hold, and we have ν < 1, with ν given by (3.13). �

Remarks 3.6.

(a) When µ = 1 (which is the same as ν = 1), at first order Σ loses attractivity, and thus
generically (see below) solution trajectories would leave Σ.

(b) In [5, Table 3], to have attractive clockwise spiral-like sliding on Σ, the authors required
Table 3 to hold as well as the following sufficient conditions:

(3.14) w1
1 > −w2

1 , w1
2 > w2

2 , w2
3 > w1

3 , −w1
4 > w2

4 .

Quite clearly, (3.14), and Table 3, will give µ < 1. At the same time, the conditions (3.14)
are much too stringent.

(c) For completeness, we emphasize that the choice of initial condition on Σ−

2 made in the
above derivation is not a restriction, and that the same value of µ is arrived at regardless
of where we place our initial condition at h-distance ρ from Σ. �

4. Loss of attractivity and leaving Σ

In this section, we conclude with a discussion of what to expect when Σ loses attractivity, while
there continues to be spiral-like motion around it; namely, say the spiral-like conditions of Table 3
(or Table 4) hold for x ∈ Σ, and there is clockwise (counterclockwise) spiraling motion around Σ.

So, suppose that, say under the conditions of Table 3, we have a smooth trajectory moving on
Σ, which reaches a point x̄ ∈ Σ, where µ(x̄) = 1. We may actually assume that this trajectory itself
is the solution of a differential equation ẋ = fF(x), where the vector field fF is a smooth Filippov
sliding vector field (i.e., a smooth selection in (1.8)). For example, this could be the bilinear vector
field of (1.9) (see Remark 3.4), but other choices are also possible; in any case, we are assuming
to have x̄ = x(t̄), and µ(x̄) = 1, while µ(x(t)) < 1 for t < t̄.

Now, as long as the sign-conditions of Table 3 continue to hold, none of the sliding vector fields
fΣ±

1,2
on Σ±

1,2 is also tangent to Σ (hence, it is not an admissible sliding vector field on Σ), and

therefore the first order exit conditions identified in [4] do not provide an exit mechanism. Indeed,
for example, the vector field fF in (1.9) and the associated trajectory continue to be well defined
past the point x̄.

So, µ(x(t)) is itself well defined for t > t̄, and t − t̄ sufficiently small. Since µ (viewed as
function of x(t)) is smooth, generically we will have that the function µ− 1 changes sign at t̄. As a
consequence, Σ will cease to be attractive past x̄, and sliding motion on Σ –albeit existing– would
become repulsive, hence ill-posed. So, the following question naturally arises: which motion, off
Σ, is well posed?

In the present case, the answer is that any of the vector fields f1, f2, f3, f4, gives a possible
choice. Indeed, there is no preferred direction along which we should leave Σ. One can take a
perturbed value off Σ so that the resulting motion –since the conditions of Table 1 hold– will be
of spiraling type and away from Σ; hence, purely on qualitative grounds, it does not seem to be
crucial in which region one takes the perturbed value.

The situation just described bears some similarity to the case of repulsive sliding on a co-
dimension 1 manifold, see Remark 1.1. There, one could do one of three things at any point during
repulsive sliding: (i) continue with the ill-posed repulsive sliding motion, (ii) exit with f1, or (iii)
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exit with f2. Note that these exits are not tangential, and also note that during repulsive sliding
the coefficient α in (1.4) verifies 0 < α < 1. In our present situation, we have a similar scenario,
but five different things can occur: we can (i) continue with an ill-posed repulsive sliding motion,
or (ii)-(v) exit with any of f1, f2, f3, f4. Again, none of these exits is tangential. Again, during
repulsive sliding motion one has well defined coefficients of the convex combination (e.g., α and β
in (1.9) are smoothly varying and in (0, 1)). But there are also important differences between these
two cases. For one, in the case of sliding on a co-dimension 1 manifold, it is not possible to arrive
at repulsive sliding through attractive sliding, except if both f1 and f2 become simultaneously
tangential1 to Σ; in the present case of sliding on the intersection Σ of 2 manifolds while there is
spiraling motion around Σ, instead, one can arrive at repulsive sliding through a genuine loss of
attractivity of the sliding motion on Σ, without any of the subsliding vector fields having placed
itself tangent to Σ. Moreover, in the case of repulsive sliding regime on a co-dimension 1 manifold,
the dynamics resulting from leaving with one of f1 or f2 are surely qualitatively different, whereas
in the present case of sliding on the intersection Σ while there is spiraling motion away from Σ,
exiting with any of the fi’s (i = 1, 2, 3, 4) gives qualitatively similar dynamics.
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