SLIDING MOTION ON THE INTERSECTION
OF TWO MANIFOLDS: SPIRALLY ATTRACTIVE CASE.

L. DIECI

ABSTRACT. In this note, we consider sliding motion on the intersection ¥ of two smooth mani-
folds in the case when the dynamics near the manifold X is spiral-like, and X is spirally attractive.
We clarify the meaning of spiral-like dynamics around 3, characterize what we mean by spiral
attractivity of 3, and finally discuss what to expect when ¥ ceases to be attractive, with nearby
orbits getting farther away from ¥ through spiraling motion. Our characterization of spiral-
attractivity of X is given by a single number, which plays a role similar to that of a Floquet
multiplier for a smooth planar system.

1. INTRODUCTION

Piecewise smooth systems (differential systems with discontinuous right hand side) play an
important role in many mechanical and engineering applications (e.g., see [1]), and present deep
and complex mathematical questions. In particular, the well established Filippov convexification
method (see [6]) gives a powerful mean to establish what to do when solution trajectories reach a
co-dimension 1 manifold of discontinuity, but it is still not fully understood what happens when
trajectories have to move on the intersection ¥ of two smooth manifolds. To be of practical
interest, such intersection Y should enjoy some attractivity properties, that is nearby solution
trajectories should reach ¥ (in forward time), and solution trajectories starting on ¥ ought to
remain there, giving rise to so-called sliding motion. In [4], we characterized attractivity of 3 in
the case of solution trajectories approaching it through sliding (see below). Our goal in this work
is to complete the characterization of attractive X by treating the case of spiral attractivity of 3.
In short, our goal in this work is to give conditions characterizing a situation such as in Figure 1,
where X is the vertical axis; the top (red) portion is motion out of X, the bottom (blue) is motion
toward X, and there is sliding motion on (part of) ¥ (green curve), which itself is spirally-attractive.

In this Introduction, we review the basic problem and set up the notation. In Section 2 we
propose a characterization of what we mean by spiral-like behavior around Y, where X is the
intersection of two smooth co-dimension 1 manifolds. Then, in Section 3 we characterize spiral
attractivity for 3. In Section 4 we discuss what may happen when, still subject to spiral-like
behavior of nearby dynamics, X loses attractivity.

1.1. The problem and Filippov solutions. We consider piecewise smooth differential systems
of the following type:

(1.1) z=f(z), fle)=filx), z€R;,i=1,...,4,

with initial condition x(0) = xz9 € R;, for some i. Here, the R; C R™ are open, disjoint and
connected sets, and (locally) R™ = |J, R;. Each f; is assumed to be smooth in an open neighborhood
of the closure of each R;, i =1,...,4.

Clearly, from (1.1), the vector field is not defined on the boundaries of the R;’s.
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FIGURE 1. Spiraling around ¥ (vertical axis), and sliding on (part of) it.

1.2. Codimension 1 case: attractivity, existence and uniqueness. The classical Filippov
theory (see [6]) is concerned with the case of two regions Ry and Rs, separated by a manifold ¥
defined as the 0-set of a smooth (C?) scalar valued function h:

t=fi(x), € Ry, and z= fo(x), € Ry,
Y:={zeR"” : h(z)=0}, h: R"=R.

Here, Vh is bounded away from 0 for all z € X, and near . Without loss of generality, we can
label R; such that h(xz) < 0 for 2 € Ry, and Rs such that hA(z) > 0 for © € Rs. Let us define

49 oo ] = [EA0) e

for the projected vector fields. We say (see [6]) that X is attractive (in finite time) if, for some
positive constant ¢, we have

(1.2)

wi(x) >c¢>0 and wo(z) < —c< 0,

for z € . In this case, trajectories starting near ¥ must reach it and remain there: this gives the
so-called sliding motion. Filippov convexification method amounts to selecting as sliding vector
field on ¥ a convex combination of fi and fa, fr := (1 —«)f1 + afe, with « chosen so that fr € T
(fr is tangent to X at each z € X):

Vh(z)" fi(x)
V()T fi(z) — Vh(z)T fa(z)
Clearly, because of attractivity, a € (0,1). Whenever a = 0 (respectively o = 1), the vector field

f1 (respectively f2), is itself tangent to X, and one should expect the trajectory to leave ¥ to enter
in R; (respectively Rs). These are tangential exits, predicted by the first order Filippov theory.

(1.4) ¥=0-a)fi+afs, a=

Remark 1.1. Observe that (1.4) gives a well defined sliding motion also in the case of repulsive
Y., that is when

wi(z) < —c<0 and wa(z) >c¢>0, z€X.
The difference in this case of repulsive sliding is that, for forward time, the sliding motion is
unstable and there is no uniqueness, since one can also leave X at any instant of time with either
f1 or fo. These types of exits are non-tangential. O

1.3. Intersection of two codimension 1 manifolds. As we said, we are concerned with (1.1),
where now the R;’s are (locally) separated by two intersecting smooth manifolds of co-dimension 1,
Y1={2x: hi(z) =0} and Xy = { & : ha(xz) =0}. We have ¥ = ¥; N X5, and here hy and hy are
C? functions, and Vhi(z) and Vha(z) are linearly independent, for z on (and in a neighborhood
of) X.
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We have four different regions Ry, Rz, R3 and R4 with the four different vector fields f;,
i=1,...,4, in these regions:

(1.5) i=fi(x), veR;, i=1,...,4.
Without loss of generality, we can label the regions as follows:

Ry: fi when hy <0,he<0, Ry: fo when hy <0,he>0,
(1.6) Rs: f3 when hy >0,ho<0, Ry: fr when hy >0,hy>0.

We further let (cfr. with (1.3))
wi = VAT f1, wy =Vhlfo, wy=Vhifs, wi=Vhifs,

.7 w? =Vhifi, wi=VhEfy, wi=Vhifs, wi=Vnlf, .

In [4], the authors considered the case of ¥ being attractive through sliding. By that, it is
meant that solution trajectories starting near 3 will reach (in finite time) the intersection X, either
directly, or (more likely) by first sliding on one of X1 or Xo, directed towards . Formally, if we let
»E={z: hi(z) =0, ho(x) =0}, and similarly for ¥, attractivity through sliding of ¥ means
that (near X) there must be sliding motion on (at least) one of EfQ, directed towards ¥, and no
motion away from X; note that the sliding motion on EfQ would be taking place with a Filippov
sliding vector field, call it leii, defined as in Section 1.2, see (1.4).

Now, in the present case of ¥ = ¥; N Yo, the general Filippov construction defines a sliding
trajectory on X as an absolutely continuous function x such that, almost everywhere, its derivative
is in the convex hull of the neighboring vector fields and lies on the tangent plane at ¥: 2 € Ty ).
In other words, one must have

4
18) e F(z) = {fitdefotdafs+Mafs, Ni>0,i=1,...,4, Y N=1},
. i=1

Vhii = Vhii = 0,2€%.

As it is plainly obvious, the mere requirement of & being on Ty is not in general sufficient to
uniquely characterize a convex combination of the four vector fields fi,..., fy. Still, there are
meaningful ways to select a unique, smoothly varying, sliding vector field fr, e.g. by considering
the bilinear interpolant of Example 1.2 below (other possibilities are surely possible, e.g., the choice
recently examined in [3]).

Example 1.2 (Bilinear sliding motion). Here, one seeks fr of the form (e.g., see [4] and [7])
(1.9) fr= Q=o)L =pB)fr+Bf]+all(1 —B)fs+ Bfa] ,

where 0 < a, 8 < 1 must be found so that —at each € ¥ fr € Tx. In [4], it was shown that this
choice can always be done when ¥ is attractive through sliding, and « and 8 will depend smoothly
onx € X. 0

However, our present concern is not how to properly define a unique Filippov sliding vector
field. Our present concern is how to characterize the case of ¥ being attracting when there is
spiral motion of nearby trajectories, which was left as an open problem in [4]. As it turns out,
the situation is substantially different from the case of ¥ being attractive through sliding. Our
main proposal in this work is that there is a number, a multiplier, which characterizes the present
spiraling situation.

2. SPIRAL-LIKE DYNAMICS NEAR X

First, we characterize what we mean for the dynamics near ¥ to be spiral-like. Informally, we
mean that “a solution trajectory starting near X in any of the regions R;, for some i =1,...,4,
will return to this same region R; after having crossed transversally once (and once only) each of
the submanifolds EfQ”.
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To quantify the above statement, it is convenient to consider new variables in a neighborhood

of X:
(2.1)

Now, note that, for i = 1,2

(2.2)

ylzhl(x)a
dyi _ T dx
, @ =Vhi 5.
d {y

dt

|

Y2

|

w; , T € Ry, 1

and Yo

So, letting w;

ha

.

(
1
K]
2
(2

1,...

} as in (1.7), we have

4

Thus, by spiral-like behavior in a neighborhood of ¥ we mean that “the y-trajectories starting in
any of the four canonical quadrants will return to this quadrant after having crossed transversally
once (and only once) the coordinate axes, y; =0 (i.e., h; =0), j =1,2.” See Figure 2.
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FIGURE 2. Transversal intersections while spiraling. Left, clockwise; right, counterclockwise.

So, we have to quantify two features: the transversal crossing, and the return to each region.
Transversal crossings can be characterized (at first order) by one of the following two possible
tables (Table 1 or 2) for the signs of the w]’s upon hitting Ef?

TABLE 1. Signs of matrix W in clockwise spiraling around .

|Comp0nent| i=1 | i=2 | 1=3 i=4 |
w] wiE)) >0 [wiE) <0 wi(X])>0]wi(3) <0
w? wi(35) <0 |w3(Z5)<0 w%(E;)>O wi(E;)>0

TABLE 2. Signs of matrix W in counterclockwise spiraling around .

|Comp0nent| i=1 | 1=2 | 1=3 1=4 |
w; wi(37) <0 [wy(3) >0 [wi(X;) <0 | wi(E]) >0
w; wi(3y) >0 [wi(Zy) >0 [wi(25) <0 ] wi(¥5) <0

Remark 2.1. To clarify, in each region R;, the system is (1.5), and this is the system we have
to solve. The conditions of Tables 1 or 2 guaranteee that the z-trajetories have transversal inter-
sections with Ef? The convenience of introducing the y-variables is that it allows us to use the
4 canonical quadrants in the y-plane in lieu of the regions of R™ where h; > = 0. That said, it
must be understood that, when we write (2.2), the vector field w; is really evaluated along the
solution of £ = f;, i = 1,...,4. With this in mind, we can talk about evolution of the y-variables

directly.

O
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The second requirement, that y-trajectories starting in any of the four canonical quadrants re-
turn to this quadrant after having crossed transversally once the coordinates axes, can be expressed
as follows.

Let ¢%(z), z € R;, be the evolution in each region R;, i = 1,2,3,4. Consider an initial condition

(0)

z9 € X5, and let y© = [Zlgog] = [yb ] with ygo) < 0. Then, spiral-like behavior can be
2(Zo

written as the requirement that there exist first, and unique, times (which of course depend on x)

t1,ts2,ts,ts, such that we have one of the following:

(a): Clockwise

i) i= o) < 0 = [ — | B g <o

st = o () @ = [N WYy 0,
slta) = o () = 9 = [0 =] B s 0
sita) = o)) o =[] < 7] 0 <o,

(b): Counter-clockwise

hl (a:(tl

0
. t1 (1) (1) .
x(tl) = ¢2 (xO) Yy - |:h2(l‘(t1 |:y 1):| y Yo >0 5

)
)
By (2(ts))] (2)7

a(ty) = ¢ (x(tr)) : y® = Z; x& B _yb | v >0;
(
(
(
(

v

. r(4)T
= yb ,y§4) < O .

(4) -hl X t4

(2(t2))
(z(t2))
ats) == o (alt2)) 5 4@ = |20 = | Gy o <0
it . _ | ha(z(t))
$(t4) Tl ((E(tg)) . y - _hg(l‘ t4))

We summarize our proposal to characterize (at first order) spiral-like dynamics around X.

Definition 2.2. We say that there is clockwise (respectively, counterclockwise) spiral-like dynamics
around X, if:

(a) Table 1 and (2.3)-(a) hold (clockwise case), or
(b) Table 2 and (2.3)-(b) hold (counterclockwise case). O

Remark 2.3. Observe that the conditions of Table 1 and (2.3)-(a) imply the following for the
mean values of the derivative of y in each region:

o Ry : /0 wy (¢ (w0))ds > 0, Rs: /0 w3 (52 (x(t1)))ds > 0,

Ry : /0 wy (657 (2(t2)))ds < 0, Ry : /0 w3 (5 (2(t3)))ds <0 .

Naturally, similar relations hold if we assume the conditions of Table 2 and (2.3)-(b), namely:

Ry : 1w%( s (x ))ds >0, Ry: 1wi( itQ(x(tl)))ds <0,
Y R

R [l <o, R [ ud(er ) >0,
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Remark 2.4. In [6, Section 20], Filippov considers the ase of spiraling toward the origin in R?, and
gives sufficient conditions for asymptotic stability of this fixed point (in [6, Section 23] an extension
of this analysis to R? is also discussed). In the context of intersection of two manifolds in R”, there
appears to have been little work on spiraling behavior around, and toward, this intersection. A
proposal was made in [5]. There, the authors gave the sufficient conditions expressed by the signs
constraints of Tables 3 and 4 below, requiring these to hold (uniformly) in a neighborhood of %,
in the two clockwise and counterclockwise cases:

TABLE 3. Signs of matrix W in clockwise spiraling around ¥ from [5].

|Comp0nent|i 1|i=2|i=3|i=4|
w; + - + -
w? - - + +

TABLE 4. Signs of matrix W in counterclockwise spiraling around ¥ from [5].

|Comp0nent|i:1|i:2|i:3|i:4|
w, - + - +
w} + + - -

Clearly, the conditions of Table 3 (respectively Table 4) imply those expressed by Table 1
(respectively Table 2), and void the need for (2.3). However, this characterization from [5] is too
restrictive, since it requires a monotone behavior of the variables y; and yo in each region R;,
i =1,2,3,4, which is not needed for spiral-like dynamics around . O

3. SPIRAL ATTRACTIVITY

The conditions of Definition 2.2 give a spiral-like behavior of orbits near 3, but are not sufficient
to characterize whether or not ¥ is attractive. Our next goal is to arrive at such characterization
in terms of the projected vector fields w!’s. Moreover, if we are on 3, can we decide when ¥ loses
attractivity while there is spiraling behavior around it? In this section and the next, we address
these questions.

Let z € X, and observe that —for x € ¥— Tables 1 and 3 give the same information, and so do
Tables 2 and 4.

What follows is the plan of our argument to characterize spiral attractivity of 3.

(i) Take a point zg at h-distance p from X. Here, the h-distance of a point x from ¥ is defined
as the 1-norm of h(z): [[h(x)|1 = |h1(z)| + |he(z)|. Without loss of generality, then, we
can take g such that hqi(xzo) = —p and hae(xzo) = 0, and therefore we will assume that
To € Xy .

(ii) We are only interested in the evolution of the y-variables (starting at zp), that is in the
h-distance from Y. We reiterate that one has all transversal crossings of the manifolds
hj =0 (e, y; =0), j=1,2.

(iii) After going around once, and returning to X5, we will monitor the h-distance of the return
point and compare it to the initial point. Attractivity of 3 would be implied by a decrease
of this distance.

We first consider a simplified situation, where the end result will be arrived at more easily, and
we obtain a necessary and sufficient condition, then we will consider the general case.
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3.1. Attractivity of ¥ under simplified spiral-like conditions off ¥. First, consider the case
when the spiraling conditions of Table 3 hold in a neighborhood of X, and the w!’s in that Table
are constant (i = 1,...,4, j = 1,2); for example, this situation occurs if (at least locally) the
original vector fields f;, ¢ =1,...,4, are constant, and the manifolds 3; 5 are planes.

We consider the evolution starting with a point at distance p from a point z € 3. We take 4
steps of a Euler discretization of the system (which is exact, on account of the assumption that
the w’’s are constant), which we will do so that on the first step we go from X5 to X7, then from
there to Z;r, then to Zf, until the last step will make us return to X5 . By comparing initial and
final point, we will see if distances have decreased (or not). This process gives the following.

(1) [From £5 to ¥7]. Let y° be the y-value of o, that is y° = {_Op} We take a Euler step

until the first component of y becomes 0:
1 0 1
1 0 Y1 Y1 + 1wy
= + T1w y = y
o= e ] = [

from which we get (since yi = 0, y? < 0, and w} > 0):

(2) [From 7 to £3]. Now we obtain

2 1
2 1 Y1 T2W3
= w s =
and therefore (since y3 = 0, w? < 0, and w3 > 0):

2
(32) T2 — —T1—2.
3

(3) [From ©F to X]]. We have
3 1 1
3_,2 Y1 ToW3 + T3Wy
= + TaW. s = y
Y Y o [93} [ 3w} ]
and therefore (since y5 = 0, w} < 0, and w? > 0):

wl

3
(33) T3 — —Tgw—i.

(4) [From ©f to X3]. We have

4 1
4 3 Y1 TaWy
= + Tqwa = s
4 4 i [3/3} [T:swz + T4w§]

and therefore (since y3 = 0, w3 < 0, and w3 > 0):

(34) T4 — —’7’3—2.

At this point, we compare yi with 39 (which was equal to —p). Using the expressions found
above for 7, ..., 74, we easily obtain that

2 01,2 1
4 _ 0 WW3W Wy
Y1 =Y 1T 35 1.3

Wy w3ww;

Therefore, we have obtained the key quantity to monitor (the multiplier):

wiwzwiwg
(3:5) = 1.2, 1 92°
Wy W3 w w3y

Notice that, because of Table 3, we always have p > 0.
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Next, we consider the case of Table 4, and we look at 4 steps of the Euler discretization so that
on each step we will go from ¥, to X, from there to ¥, and then to ¥, until we return to X5 .
Computations are similar to the previous case, and we now obtain:

2 01,2 1
4 _ 0 Waw wzwy
Y1 =Y 1T 35 1.3

Wy Wiw3 Wi

Therefore, we obtain the multiplier in the present case:

wiwiwiwi
(3.6) V=T
WIWIWIWT

Remark 3.1. Because of Table 4, again we always have v > 0. Observe that v in (3.6) is precisely
1/p with g in (3.5); this is in agreement with what we expect to have when we change the direction
of motion. O

We formally summarize the above considerations in the following.

Theorem 3.2. Let the conditions of Table 3 be valid in a neighborhood of ¥, and let the w{ ’s be
constant. Then, ¥ is clockwise spiraling attractive if and only if p < 1, with u given by (3.5).
Similarly, if the conditions of Table 4 hold, and the wf ’s are constant, then X is counterclockwise
spiraling attractive if and only if v < 1, with v in (3.6).

Proof. In the clockwise case, the proof is a consequence of the expression yi = puy?. Similarly in
the counterclockwise case. O

3.2. Attractivity of ¥ under general spiral-like conditions off ¥. Here, we consider the
case of spiral-like behavior off ¥ under the general conditions of Definition 2.2.

The idea is similar to what we did in Section 3.1; however, we cannot use the Euler discretization
since we will generally fail to have constant w]’s. For this reason, we proceed as follows, first in
the case of Table 1 and (2.3)-(a).

(0) _
Let 29 € ¥, that is y(0) = y© = [yb } = { Op}’ and let us look at the solution at times
t1,ta,t3,ts4, defined as in (2.3)-(a). We stress that these times depend smoothly on .

Recall that while the trajectory is in region R;, then ¢ = w;(¢t(+)), i = 1,2,3,4. So, on account
of (2.4), we have the following.

1) [From X5 to X7 ]. We have z(t) = ¢t (z0), 0 <t < t1, and § = wi(x), and so
2 1 1
1
() =90) + 11 [ (65 (a0)ds
0

and since y(t1) = [y ?t )], y1(0) = —p < 0, and fol w} (¢ (z0))ds > 0, we write
2(t1

y1(0)
Jy wi (81" (o)) ds
(2) [From X7 to ¥F]. Now we have z(t) = ¢4(2(t1)), 0 < t < ta, and § = wz(z), and we
obtain

(3.7) o= —

y(ts) = y(t) + s / ws (655 (2(t1))) ds
0
Since y(t2) = [yl 852)], y2(t1) < 0, and fol wi ( st (z(t1)))ds > 0, we write

ya(t1)

3.8 to = — .
) * T TR ) ds
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(3) [From X3 to ). Now we have x(t) = ¢} (2(t2)), 0 < t < t3, and § = wy(z), and we
obtain

y(ts) = ylta) +ta /0 wi (65 (2(t2))) ds

], y1(t2) > 0, and fol w} (95 (x(t2)))ds < 0, we have

3.9 ty = — p(t2) .
(39 T (o (el s

(4) [From ©F to ¥5]. Finally, here we have x(t) = ¢b(x(t3)), 0 < t < t4, and § = wa(x), and
we obtain

y(ta) = y(ts) + t4/ wa ($5" (x(t3)))ds
0
Since y(t4) = [yl (t4)], ya(ts) > 0, and fol w3 (635" (2(t3)))ds < 0, we obtain

B y2(t3) .
Jo w3 (3 (a(t3)))ds

Now we compare yi(t4) = t4 fol wg ( sta (z(t3)))ds with y1(0). Using the above for ty,... %4, and
the fact that

ya(tr) =t / W3 (50 (20))ds , yn(ts) = to / wh (6552 (x(1)))ds , walts) = ts / w3 (5% (@ (t2)) ) ds |

we obtain

(3.11)

y1(ta) = y1(0)

(3.10) ly =

1 s 1 s 1 S 1 S
Jo wi (97" (w0))ds [ wi (657 (2(t1)))ds [y wi (93 (@(t2)))ds [y w (95" (x(t3)))ds
1 st 1 s 1 s 1 s '
Jo wi (91" (20))ds [ w3 (657 (2(t1)))ds [y w63 (x(t2)))ds [y w3 (5" (x(t3)))ds
Now, as the distance p — 0, the point xy approaches a value z € X. Since all the integrands
above converge to their values at this point z € ¥ (and the integrands are bounded), all integrals

reduce to evaluations made at the point x € X, and we obtain what we call instantaneous rate of
attractivity of ¥ as characterized by the multiplier p below (cfr. with (3.5)):

5.12) sy - EudEiElE)

- wi(@)wi(@)wi()wi (@)’

Similarly, when we proceed in the counterclockwise case, under the conditions of Table 2 and
(2.3)-(b), we end up with the instantaneous rate of attractivity as characterized by the multiplier
v (cfr. with (3.6)), which is in fact 1/p(x):

(3.13) z) = w%(x)wé(x)wé(x)w (z)
4 3

We summarize in the following result.

Theorem 3.3. Assume that for x € X the signs of Table 3 hold, and we have pu < 1, with p given
by (3.12). Then X is clockwise spirally attractive for solution trajectories starting at a point xg
in a sufficiently small neighborhood of . Similarly, if for x € X the signs of Table 4 hold, and
we have v < 1, with v given by (3.13), then ¥ is counterclockwise spiraling attractive for solution
trajectories starting at a point xg in a sufficiently small neighborhood of 3.

Proof. In the clockwise case, the result follows from (3.11), using continuity —with respect to zo—
of the w!’s and of the times #1,...,ts4, and permanence of the signs in (2.4). Similarly in the
counterclockwise case. ]
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Remark 3.4. Finally, we observe that it is a simple computation to verify that the bilinear vector
field of Example 1.2 (and, for that matters, the moments sliding vector fields of [3]) is well defined
and varies smoothly when 3 is spiraling attractive according to the above characterization. This
consideration prompts the next definition. O

Definition 3.5. We say that the motion (i.e., the sliding regime) on ¥ is “clockwise spiraling
attractive” if for x € ¥ the signs of Table 3 hold, and we have p < 1, with p given by (3.12).
Similarly, we say that the sliding regime is “counterclockwise spiraling attractive” if for x € ¥ the
signs of Table 4 hold, and we have v < 1, with v given by (3.13). O

Remarks 3.6.

(a) When p = 1 (which is the same as v = 1), at first order ¥ loses attractivity, and thus
generically (see below) solution trajectories would leave X.

(b) In [5, Table 3], to have attractive clockwise spiral-like sliding on ¥, the authors required
Table 3 to hold as well as the following sufficient conditions:

(3.14) wi > —wi , wy >ws , w3 > wy , —wj > w; .

Quite clearly, (3.14), and Table 3, will give u < 1. At the same time, the conditions (3.14)
are much too stringent.

(c¢) For completeness, we emphasize that the choice of initial condition on X5 made in the
above derivation is not a restriction, and that the same value of p is arrived at regardless
of where we place our initial condition at h-distance p from X. g

4. L0OSS OF ATTRACTIVITY AND LEAVING X

In this section, we conclude with a discussion of what to expect when X loses attractivity, while
there continues to be spiral-like motion around it; namely, say the spiral-like conditions of Table 3
(or Table 4) hold for 2 € ¥, and there is clockwise (counterclockwise) spiraling motion around X.

So, suppose that, say under the conditions of Table 3, we have a smooth trajectory moving on
3, which reaches a point € X, where p(Z) = 1. We may actually assume that this trajectory itself
is the solution of a differential equation & = fr(x), where the vector field fr is a smooth Filippov
sliding vector field (i.e., a smooth selection in (1.8)). For example, this could be the bilinear vector
field of (1.9) (see Remark 3.4), but other choices are also possible; in any case, we are assuming
to have T = z(t), and u(z) = 1, while p(z(t)) < 1 for t < t.

Now, as long as the sign-conditions of Table 3 continue to hold, none of the sliding vector fields
leiz on Efg is also tangent to ¥ (hence, it is not an admissible sliding vector field on ¥), and

therefore the first order exit conditions identified in [4] do not provide an exit mechanism. Indeed,
for example, the vector field fr in (1.9) and the associated trajectory continue to be well defined
past the point Z.

So, u(x(t)) is itself well defined for ¢ > f, and t — ¢ sufficiently small. Since p (viewed as
function of x(t)) is smooth, generically we will have that the function 1 — 1 changes sign at t. As a
consequence, Y will cease to be attractive past Z, and sliding motion on ¥ —albeit existing— would
become repulsive, hence ill-posed. So, the following question naturally arises: which motion, off
Y., is well posed?

In the present case, the answer is that any of the vector fields f1, f2, f3, f1, gives a possible
choice. Indeed, there is no preferred direction along which we should leave 3. One can take a
perturbed value off ¥ so that the resulting motion —since the conditions of Table 1 hold— will be
of spiraling type and away from X; hence, purely on qualitative grounds, it does not seem to be
crucial in which region one takes the perturbed value.

The situation just described bears some similarity to the case of repulsive sliding on a co-
dimension 1 manifold, see Remark 1.1. There, one could do one of three things at any point during
repulsive sliding: (i) continue with the ill-posed repulsive sliding motion, (ii) exit with fq, or (iii)
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exit with f;. Note that these exits are not tangential, and also note that during repulsive sliding
the coefficient « in (1.4) verifies 0 < a < 1. In our present situation, we have a similar scenario,
but five different things can occur: we can (i) continue with an ill-posed repulsive sliding motion,
or (ii)-(v) exit with any of f1, fo, f3, fa- Again, none of these exits is tangential. Again, during
repulsive sliding motion one has well defined coefficients of the convex combination (e.g., @ and 8
in (1.9) are smoothly varying and in (0, 1)). But there are also important differences between these
two cases. For one, in the case of sliding on a co-dimension 1 manifold, it is not possible to arrive
at repulsive sliding through attractive sliding, except if both f; and f2 become simultaneously
tangential' to ¥; in the present case of sliding on the intersection Y of 2 manifolds while there is
spiraling motion around ¥, instead, one can arrive at repulsive sliding through a genuine loss of
attractivity of the sliding motion on Y, without any of the subsliding vector fields having placed
itself tangent to . Moreover, in the case of repulsive sliding regime on a co-dimension 1 manifold,
the dynamics resulting from leaving with one of f1 or fy are surely qualitatively different, whereas
in the present case of sliding on the intersection ¥ while there is spiraling motion away from 3,
exiting with any of the f;’s (i = 1,2, 3,4) gives qualitatively similar dynamics.
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IThis is a degenerate situation in R2, but already in R3 it is generic; see [8, 2].



