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History and Scope

In 1892, in his doctoral thesis The general prob-
lem of the stability of motion (reprinted in its
original form in [33]), Lyapunov introduced several
groundbreaking concepts to investigate stability in dif-
ferential equations. These are collectively known as
Lyapunov Stability Theory. Lyapunov was concerned
with the asymptotic stability of solutions with respect
to perturbations of initial data. Among other tech-
niques (e.g., what are now known as first and second
Lyapunov methods), he introduced a new tool to ana-
lyze the stability of solutions of linear time-varying
systems of differential equations, the so-called char-
acteristic numbers, now commonly and appropriately
called Lyapunov exponents.

Simply put, these characteristic numbers play the
role that the (real parts of the) eigenvalues play for
time-invariant linear systems. Lyapunov considered
the n-dimensional linear system

X = A(t)x, (D

where A is continuous and bounded: sup, ||A(?)]|
< 00. He showed that “if all characteristic numbers

(see below for their definition) of (1) are negative,
then the zero solution of (1) is asymptotically (in fact,
exponentially) stable.” He further proved an important
characterization of stability relative to the perturbed
linear system

x = A(t)x + f(t,x), (2)

where f(£,0) = 0, so that x = 0 is a solution
of (2), and further f(¢,x) is assumed to be “small”
near x = O (this situation is what one expects from
a linearized analysis about a bounded solution tra-
jectory). Relative to (2), Lyapunov proved that “if
the linear system (1) is regular, and all its charac-
teristic numbers are negative, then the zero solution
of (2) is asymptotically stable.” About 30 years later,
it was shown by Perron in [38] that the assumption of
regularity cannot generally be removed.

Definition
We refer to the monograph [1] for a comprehensive
definition of Lyapunov exponents, regularity, and so
forth. Here, we simply recall some of the key concepts.
Consider (1) and let us stress that the matrix func-
tion A(¢z) may be either given or obtained as the
linearization about the solution of a nonlinear differ-
ential equation; e.g., y = f(y) and A(¢) = Df(y(¢))
(note that in this case, in general, A will depend on
the initial condition used for the nonlinear problem).
Now, let X be a fundamental matrix solution of (1),
and consider the quantities

1
A =limsup—In||X(@)e;l|, i =1,....n, (3)
t—>oo0 1
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where e; denotes the ith standard unit vector, i =

n
1,...,n. When ) A; is minimized with respect to all
possible fundamlenltal matrix solutions, then the A; are
called the characteristic numbers, or Lyapunov expo-
nents, of the system. It is customary to consider them
ordered as A; > A, > --- > A,. Similar definitions
can be given for t — —oo and/or with lim inf replacing
the lim sup, but the description above is the prevailing
one. An important consequence of regularity of a given
system is that in (3) one has limits instead of lim sups.

More Recent Theory

Given that the condition of regularity is not easy to ver-
ify for a given system, it was unclear what practical use
one was going to make of the Lyapunov exponents in
order to study stability of a trajectory. Moreover, even
assuming that the system is regular, it is effectively
impossible to get a handle on the Lyapunov exponents
except through their numerical approximation. It then
becomes imperative to have some comfort that what
one is trying to approximate is robust; in other words,
it is the Lyapunov exponents themselves that will need
to be stable with respect to perturbations of the func-
tion A in (1). Unfortunately, regularity is not sufficient
for this purpose.

Major theoretical advances to resolve the two
concerns above took place in the late 1960s, thanks to
the work of Oseledec and Millionshchikov (e.g., see
[36] and [34]). Oseledec was concerned with stabil-
ity of trajectories on a (bounded) attractor, on which
one has an invariant measure. In this case, Oseledec’s
Multiplicative Ergodic Theorem validates regularity
for a broad class of linearized systems; the precise
statement of this theorem is rather technical, but its
practical impact is that (with respect to the invari-
ant measure) almost all trajectories of the nonlinear
system will give rise to a regular linearized problem.
Millionshchikov introduced the concept of integral
separation, which is the condition needed for stability
of the Lyapunov exponents with respect to perturba-
tions in the coefficient matrix, and further gave impor-
tant results on the prevalence of this property within
the class of linear systems.

Further Uses of Lyapunov Exponents

Lyapunov exponents found an incredible range of
applicability in several contexts, and both theory and
computational methods have been further extended to
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discrete dynamical systems, maps, time series, etc. In
particular:

(i) The largest Lyapunov exponent of (2), A1, charac-
terizes the rate of separation of trajectories (with
infinitesimally close initial conditions). For this
reason, a positive value of A; (coupled with com-
pactness of the phase space) is routinely taken as
an indication that the system is chaotic (see [37]).

(i) Lyapunov exponents are used to estimate dimen-
sion of attractors through the Kaplan-Yorke
formula (Lyapunov dimension):

Dimy =k + (A1 + A2 + -+ Ap) /| A+

where k is the largest index i such that A; + A, +
-+« + A; > 0. See [31] for the original derivation
of the formula and [9] for its application to the 2-d
Navier-Stokes equation.

(iii) The sum of all the positive Lyapunov exponents
is used to estimate the entropy of a dynamical
system (see [3]).

(iv) Lyapunov exponents have also been used to char-
acterize persistence and degree of smoothness of
invariant manifolds (see [26] and see [12] for a
numerical study).

(v) Lyapunov exponents have even been used in stud-
ies of piecewise-smooth differential equations,
where a formal linearized problem as in (1) does
not even exist (see [27, 35]).

(vi) Finally, there has been growing interest also in
approximating bases for the growth directions
associated to the Lyapunov exponents. In partic-
ular, there is interest in obtaining representations
for the stable (and unstable) subspaces of (1)
and in their use to ascertain stability of traveling
waves. For example, see [23, 39].

Factorization Techniques

Many of the applications listed above are related to
nonlinear problems, which in itself is witness to the
power of linearized analysis based on the Lyapunov
exponents. Still, the computational task of approxi-
mating some or all of the Lyapunov exponents for
dynamical systems defined by the flow of a differential
equation is ultimately related to the linear problem (1),
and we will thus focus on this linear problem.
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Techniques for numerical approximation of
Lyapunov exponents are based upon smooth matrix
factorizations of fundamental matrix solutions X, to
bring it into a form from which it is easier to extract the
Lyapunov exponents. In practice, two techniques have
been studied: based on the QR factorization of X and
based on the SVD (singular value decomposition) of
X . Although these techniques have been adapted to the
case of incomplete decompositions (useful when only
a few Lyapunov exponents are needed) or to problems
with Hamiltonian structure, we only describe them in
the general case when the entire set of Lyapunov expo-
nents is sought, the problem at hand has no particular
structure, and the system is regular. For extensions,
see the references.

QR Methods

The idea of QR methods is to seek the factorization of
a fundamental matrix solution as X(¢) = Q(t)R(?),
for all ¢, where Q is an orthogonal matrix valued
function and R is an upper triangular matrix valued
function with positive diagonal entries. The validity of
this factorization has been known since Perron [38] and
Diliberto [25], and numerical techniques based upon
the QR factorization date back at least to [4].

QR techniques come in two flavors, continuous
and discrete, and methods for quantifying the error
in approximation of Lyapunov exponents have been
developed in both cases (see [15-17, 21, 40]).

Continuous QR
Upon differentiating the relation X =
using (1), we have

OR and

AQR=QR+ QR or O =A40—-0B. (4
where R = BR; hence, B must be upper triangular.
Now, let us formally set S = Q7 O and note that since
Q is orthogonal then S must be skew symmetric. Now,
from B = QTAQ — QT Q it is easy to determine at
once the strictly lower triangular part of S (and from
this, all of it) and the entries of B. To sum up, we

have two differential equations, for Q and for R. Given
X(0) = Q¢pRy, we have
0 = 05(0.4), Q(0) = Q. (5)
R = B(t)R, R(0)=R,,
B:=0"A40-5(0,4) (6)

3

The diagonal entries of R are used to retrieve the
exponents:

Ai = lim
t—00

;/I(QT(S)A(S)Q(S))iidS, i=1,...,n.
' N

A unit upper triangular representation for the
growth directions may be further determined by
lim; _, oo diag(R™'(¢)) R(2) (see [13, 22, 23]).

Discrete QR

Here one seeks the QR factorization of the fundamen-
tal matrix X at discrete points 0 = ) < 1 < -+ <
te < ---,where ty = ti—1 +hg, hy > }; > 0. Let
Xo = QoRyo, and suppose we seek the QR factoriza-
tion of X(fx+1). For j =0, ..., k, progressively define
Zipi(t) = X(t,t;)Q;, where X(¢,t;) solves (1) for
t>t;, X(t;,tj) = 1I,and Z; , is the solution of

Zit1=A0)Zjy1, 1; <1 =<1

Ziw1(tj)=0Q;. ©
Update the QR factorization as
Zit1(tj+1) = Qj+1Rj+1, 9
and finally observe that
X(tr+1) = OQk+1 [Rek+1Rk - RiRo]  (10)

is the QR factorization of X(#x+;). The Lyapunov
exponents are obtained from the relation

k
1 .
kgn;ongZOIOg(Rj)ii’l =1,...,n. (1D

SVD Methods

Here one seeks to compute the SVD of X: X(¢) =
U(t)Z(t)VT(¢), for all ¢, where U and V are orthog-
onal and ¥ = diag(o;, i = 1...,n), with o1(¢) >
0(t) > -+- > 0,(t). If the singular values are distinct,
the following differential equations U, V, and X hold.
Letting G = UT AU, they are

U=UH, VvI=—-KvT, =D%, (12
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where D = diag(G), HT = —H, and KT = —K,
and fori # j,

o2 o2
_ Gijo; +Gjio;

Hy = _ Gy + sz‘)Uin'

2 2 ij 2 2
07 —0; 0; —0;
(13)
From the SVD of X, the Lyapunov exponents may

be obtained as

1
lim —Ino;(¢). (14)
t—>oo

Finally, an orthogonal representation for the growth
directions may be determined by lim;—oo V(¢)
(see [10, 13, 22, 23]).

Numerical Implementation

Although algorithms based upon the above techniques
appear deceivingly simple to implement, much care
must be exercised in making sure that they perform as
one would expect them to. (For example, in the contin-
uous QR and SVD techniques, it is mandatory to main-
tain the factors Q, U, and V' orthogonal.) Fortran
software codes for approximating Lyapunov exponents
of linear and nonlinear problems have been developed
and tested extensively and provide a combined state of
the knowledge insofar as numerical methods suited for
this specific task. See [14, 20, 24].
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