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AU1

History and Scope6

In 1892, in his doctoral thesis The general prob-7

lem of the stability of motion (reprinted in its8

original form in [33]), Lyapunov introduced several9

groundbreaking concepts to investigate stability in dif-10

ferential equations. These are collectively known as11

Lyapunov Stability Theory. Lyapunov was concerned12

with the asymptotic stability of solutions with respect13

to perturbations of initial data. Among other tech-14

niques (e.g., what are now known as first and second15

Lyapunov methods), he introduced a new tool to ana-16

lyze the stability of solutions of linear time-varying17

systems of differential equations, the so-called char-18

acteristic numbers, now commonly and appropriately19

called Lyapunov exponents.20

Simply put, these characteristic numbers play the21

role that the (real parts of the) eigenvalues play for22

time-invariant linear systems. Lyapunov considered23

the n-dimensional linear system24

Px D A.t/x ; (1)25

where A is continuous and bounded: supt kA.t/k26

< 1. He showed that “if all characteristic numbers27

(see below for their definition) of (1) are negative, 28

then the zero solution of (1) is asymptotically (in fact, 29

exponentially) stable.” He further proved an important 30

characterization of stability relative to the perturbed 31

linear system 32

Px D A.t/x C f .t; x/ ; (2) 33

where f .t; 0/ D 0, so that x D 0 is a solution 34

of (2), and further f .t; x/ is assumed to be “small” 35

near x D 0 (this situation is what one expects from 36

a linearized analysis about a bounded solution tra- 37

jectory). Relative to (2), Lyapunov proved that “if 38

the linear system (1) is regular, and all its charac- 39

teristic numbers are negative, then the zero solution 40

of (2) is asymptotically stable.” About 30 years later, 41

it was shown by Perron in [38] that the assumption of 42

regularity cannot generally be removed. 43

Definition 44

We refer to the monograph [1] for a comprehensive 45

definition of Lyapunov exponents, regularity, and so 46

forth. Here, we simply recall some of the key concepts. 47

Consider (1) and let us stress that the matrix func- 48

tion A.t/ may be either given or obtained as the 49

linearization about the solution of a nonlinear differ- 50

ential equation; e.g., Py D f .y/ and A.t/ D Df .y.t// 51

(note that in this case, in general, A will depend on 52

the initial condition used for the nonlinear problem). 53

Now, let X be a fundamental matrix solution of (1), 54

and consider the quantities 55

�i D lim sup
t!1

1

t
ln jjX.t/ei jj ; i D 1; : : : ; n; (3) 56
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L 2 Lyapunov Exponents: Computation

where ei denotes the i th standard unit vector, i D57

1; : : : ; n. When
nP

iD1

�i is minimized with respect to all58

possible fundamental matrix solutions, then the �i are59

called the characteristic numbers, or Lyapunov expo-60

nents, of the system. It is customary to consider them61

ordered as �1 � �2 � � � � � �n. Similar definitions62

can be given for t ! �1 and/or with lim inf replacing63

the lim sup, but the description above is the prevailing64

one. An important consequence of regularity of a given65

system is that in (3) one has limits instead of lim sups.66

More Recent Theory67

Given that the condition of regularity is not easy to ver-68

ify for a given system, it was unclear what practical use69

one was going to make of the Lyapunov exponents in70

order to study stability of a trajectory. Moreover, even71

assuming that the system is regular, it is effectively72

impossible to get a handle on the Lyapunov exponents73

except through their numerical approximation. It then74

becomes imperative to have some comfort that what75

one is trying to approximate is robust; in other words,76

it is the Lyapunov exponents themselves that will need77

to be stable with respect to perturbations of the func-78

tion A in (1). Unfortunately, regularity is not sufficient79

for this purpose.80

Major theoretical advances to resolve the two81

concerns above took place in the late 1960s, thanks to82

the work of Oseledec and Millionshchikov (e.g., see83

[36] and [34]). Oseledec was concerned with stabil-84

ity of trajectories on a (bounded) attractor, on which85

one has an invariant measure. In this case, Oseledec’s86

Multiplicative Ergodic Theorem validates regularity87

for a broad class of linearized systems; the precise88

statement of this theorem is rather technical, but its89

practical impact is that (with respect to the invari-90

ant measure) almost all trajectories of the nonlinear91

system will give rise to a regular linearized problem.92

Millionshchikov introduced the concept of integral93

separation, which is the condition needed for stability94

of the Lyapunov exponents with respect to perturba-95

tions in the coefficient matrix, and further gave impor-96

tant results on the prevalence of this property within97

the class of linear systems.98

Further Uses of Lyapunov Exponents99

Lyapunov exponents found an incredible range of100

applicability in several contexts, and both theory and101

computational methods have been further extended to102

discrete dynamical systems, maps, time series, etc. In 103

particular: 104

(i) The largest Lyapunov exponent of (2), �1, charac- 105

terizes the rate of separation of trajectories (with 106

infinitesimally close initial conditions). For this 107

reason, a positive value of �1 (coupled with com- 108

pactness of the phase space) is routinely taken as 109

an indication that the system is chaotic (see [37]). 110

(ii) Lyapunov exponents are used to estimate dimen- 111

sion of attractors through the Kaplan-Yorke 112

formula (Lyapunov dimension): 113

DimL D k C .�1 C �2 C � � � C �k/=j�kC1j 114

where k is the largest index i such that �1 C �2 C 115

� � � C �i > 0. See [31] for the original derivation 116

of the formula and [9] for its application to the 2-d 117

Navier-Stokes equation. 118

(iii) The sum of all the positive Lyapunov exponents 119

is used to estimate the entropy of a dynamical 120

system (see [3]). 121

(iv) Lyapunov exponents have also been used to char- 122

acterize persistence and degree of smoothness of 123

invariant manifolds (see [26] and see [12] for a 124

numerical study). 125

(v) Lyapunov exponents have even been used in stud- 126

ies of piecewise-smooth differential equations, 127

where a formal linearized problem as in (1) does 128

not even exist (see [27, 35]). 129

(vi) Finally, there has been growing interest also in 130

approximating bases for the growth directions 131

associated to the Lyapunov exponents. In partic- 132

ular, there is interest in obtaining representations 133

for the stable (and unstable) subspaces of (1) 134

and in their use to ascertain stability of traveling 135

waves. For example, see [23, 39]. 136

Factorization Techniques 137

Many of the applications listed above are related to 138

nonlinear problems, which in itself is witness to the 139

power of linearized analysis based on the Lyapunov 140

exponents. Still, the computational task of approxi- 141

mating some or all of the Lyapunov exponents for 142

dynamical systems defined by the flow of a differential 143

equation is ultimately related to the linear problem (1), 144

and we will thus focus on this linear problem. 145
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Lyapunov Exponents: Computation 3 L
Techniques for numerical approximation of146

Lyapunov exponents are based upon smooth matrix147

factorizations of fundamental matrix solutions X , to148

bring it into a form from which it is easier to extract the149

Lyapunov exponents. In practice, two techniques have150

been studied: based on the QR factorization of X and151

based on the SVD (singular value decomposition) of152

X . Although these techniques have been adapted to the153

case of incomplete decompositions (useful when only154

a few Lyapunov exponents are needed) or to problems155

with Hamiltonian structure, we only describe them in156

the general case when the entire set of Lyapunov expo-157

nents is sought, the problem at hand has no particular158

structure, and the system is regular. For extensions,159

see the references.160

QR Methods161

The idea of QR methods is to seek the factorization of162

a fundamental matrix solution as X.t/ D Q.t/R.t/,163

for all t , where Q is an orthogonal matrix valued164

function and R is an upper triangular matrix valued165

function with positive diagonal entries. The validity of166

this factorization has been known since Perron [38] and167

Diliberto [25], and numerical techniques based upon168

the QR factorization date back at least to [4].169

QR techniques come in two flavors, continuous170

and discrete, and methods for quantifying the error171

in approximation of Lyapunov exponents have been172

developed in both cases (see [15–17, 21, 40]).173

Continuous QR174

Upon differentiating the relation X D QR and175

using (1), we have176

AQR D Q PR C PQR or PQ D AQ � QB ; (4)177

where PR D BR; hence, B must be upper triangular.178

Now, let us formally set S D QT PQ and note that since179

Q is orthogonal then S must be skew symmetric. Now,180

from B D QT AQ � QT PQ it is easy to determine at181

once the strictly lower triangular part of S (and from182

this, all of it) and the entries of B . To sum up, we183

have two differential equations, for Q and for R. Given184

X.0/ D Q0R0, we have185

PQ D QS.Q; A/ ; Q.0/ D Q0 ; (5)186

PR D B.t/R ; R.0/ D R0 ;187

B WD QT AQ � S.Q; A/ (6)188

The diagonal entries of R are used to retrieve the 189

exponents: 190

�i D lim
t!1

1

t

Z t

0

.QT .s/A.s/Q.s//i i ds ; i D 1; : : : ; n:

(7) 191

A unit upper triangular representation for the 192

growth directions may be further determined by 193

limt!1 diag.R�1.t//R.t/ (see [13, 22, 23]). 194

Discrete QR 195

Here one seeks the QR factorization of the fundamen- 196

tal matrix X at discrete points 0 D t0 < t1 < � � � < 197

tk < � � � , where tk D tk�1 C hk , hk � Oh > 0. Let 198

X0 D Q0R0, and suppose we seek the QR factoriza- 199

tion of X.tkC1/. For j D 0; : : : ; k, progressively define 200

Zj C1.t/ D X.t; tj /Qj , where X.t; tj / solves (1) for 201

t � tj , X.tj ; tj / D I , and Zj C1 is the solution of 202

� PZj C1 D A.t/Zj C1 ; tj � t � tj C1

Zj C1.tj / D Qj :
(8) 203

Update the QR factorization as 204

Zj C1.tj C1/ D Qj C1Rj C1 ; (9) 205

and finally observe that 206

X.tkC1/ D QkC1 ŒRkC1Rk � � � R1R0� (10) 207

is the QR factorization of X.tkC1/. The Lyapunov 208

exponents are obtained from the relation 209

lim
k!1

1

tk

kX

j D0

log.Rj /i i ; i D 1; : : : ; n : (11) 210

SVD Methods 211

Here one seeks to compute the SVD of X : X.t/ D 212

U.t/†.t/V T .t/, for all t , where U and V are orthog- 213

onal and † D diag.�i ; i D 1 : : : ; n/, with �1.t/ � 214

�2.t/ � � � � � �n.t/. If the singular values are distinct, 215

the following differential equations U; V; and † hold. 216

Letting G D U T AU , they are 217

PU D UH; PV T D �KV T ; P† D D†; (12) 218
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where D D diag.G/, H T D �H , and KT D �K ,219

and for i ¤ j ,220

Hij D Gij �2
j C Gj i �

2
i

�2
j � �2

i

; Kij D .Gij C Gj i/�i �j

�2
j � �2

i

:

(13)221

From the SVD of X , the Lyapunov exponents may222

be obtained as223

lim
t!1

1

t
ln �i .t/ : (14)224

Finally, an orthogonal representation for the growth225

directions may be determined by limt!1 V.t/226

(see [10, 13, 22, 23]).227

Numerical Implementation228

Although algorithms based upon the above techniques229

appear deceivingly simple to implement, much care230

must be exercised in making sure that they perform as231

one would expect them to. (For example, in the contin-232

uous QR and SVD techniques, it is mandatory to main-233

tain the factors Q; U , and V orthogonal.) Fortran234

software codes for approximating Lyapunov exponents235

of linear and nonlinear problems have been developed236

and tested extensively and provide a combined state of237

the knowledge insofar as numerical methods suited for238

this specific task. See [14, 20, 24].239
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