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Abstract. Different definitions of spectra have been proposed during the years to characterize the asymptotic
behavior of nonautonomous linear systems. Here, we consider the spectrum based on exponential dichotomy of
Sacker and Sell and the spectrum defined in terms of upper and lower Lyapunov exponents. A main goal of ours is
to understand to what extent these spectra are computable. By using an orthogonal change of variables transforming
the system to upper triangular form, and the assumption of integral separation for the diagonal of the new triangular
system, we justify how popular numerical methods, the so-called continuous QR and SVD approaches, can be used
to approximate these spectra. We further discuss how to verify the property of integral separation, and hence to
a posteriori infer stability of the attained spectral information. Finally, we discuss the algorithms we have used to
approximate the Lyapunov and Sacker-Sell spectra, and present some numerical results.
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1. Introduction.

Lyapunov exponents, or Lyapunov characteristic numbers, characterize growth rates of time
dependent linear differential equations, and –by linearizing about trajectories– measure rates of
convergence or divergence of nearby trajectories for nonlinear differential equations. For an n-
dimensional problem there are n Lyapunov exponents: these are the natural generalization to time
dependent linear differential equations of the eigenvalues for autonomous linear systems. Although
Lyapunov exponents are a set of n points, it is perhaps more natural to think of the spectrum
of a linear nonautonomous system as possibly being a continuum. For example, consider the
linear scalar differential equation ẋ = (sin(ln(t)) + cos(ln(t)))x for t ≥ t0 > 0: the solution is
x(t) = exp(t sin(ln(t)))κ0, κ0 = x(t0) exp(−t0 sin(ln(t0))), so that all growth rates in the interval
[−1, +1] are attained.

This work is an attempt to blend the numerical techniques which have been developed to ap-
proximate Lyapunov exponents, with stability theory for Lyapunov exponents that was developed
over 30 years ago. Characteristic exponents were developed by Lyapunov in his thesis [22] that was
first published in 1892. Many of the ideas from Lyapunov’s thesis and further developments on
Lyapunov exponents are contained in the monograph of Adrianova [1] that serves as an excellent
accessible introduction to the use of Lyapunov exponents in stability theory. Important results
on stability of Lyapunov exponents that we use are due to Bylov [6], Bylov, Vinograd, Grobman
and Nemyckii [5], Bylov and Izobov [7], and Millionshchikov [24] and [25]. An alternative to the
spectrum of Lyapunov is based upon defining a spectrum in terms of exponential dichotomy. Im-
portant works are the book of Coppel [9] on exponential dichotomy in stability theory, the work of
Sacker and Sell [30] which defines a spectrum in terms of exponential dichotomy, and the work of
Palmer [28] who showed that the structurally stable linear systems on the half line are those with
exponential dichotomy.

A contribution of this paper is to show, under certain natural conditions, the relationship
between three definitions of spectrum. The first spectrum is commonly referred to as the Sacker-Sell
spectrum and its origin may be traced back to [30]. The second spectrum generalizes the original
definition of Lyapunov [22] so that it may be viewed as continuous spectrum. The third spectrum
is motivated by computational considerations since its definition is based upon the information one
may be able to retrieve when using the so-called QR method to approximate Lyapunov exponents.
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The assumption under which we are able to show the relationship between these three spectra
is integral separation. It has been well known in the theoretical community, see the results summa-
rized in [1], that –for systems with distinct Lyapunov exponents– integral separation is a necessary
and sufficient condition for stability of the exponents, i.e., for continuity of the exponents with
respect to changes in the coefficient matrix. Thus, it is natural to assume such condition if we are
interested in numerical approximation of the Lyapunov exponents.

We will emphasize how integral separation can be characterized for the numerical techniques
that have been proposed to approximate Lyapunov exponents.

1. The continuous QR method is based upon finding an orthogonal change of variables trans-
forming the system to upper triangular form. Then, the Lyapunov exponents are de-
termined from the diagonal elements of the new system. The approach can be made
legitimate under the assumption of regularity of the system. However, in spite of being a
strong assumption, regularity does not ensure stability of the exponents. This motivated
us to consider integral separation of the diagonal of the upper triangular coefficient matrix:
we prove that this is sufficient for stability of the Lyapunov exponents.

2. We also consider a method for finding Lyapunov exponents based upon decomposing a fun-
damental matrix solution via a smooth singular value decomposition, the SVD approach.
If such decomposition is feasible1, then the system is transformed to diagonal form, and
the Lyapunov exponents are extracted from time averages of the diagonal system. Again,
this can be justified under the assumption of regularity. But, rather, we show that if the
new diagonal system has integrally separated diagonal, then the Lyapunov exponents can
be found from the diagonal system and are stable.

In spite of their importance in the physical sciences, Lyapunov exponents have received little
attention from the numerical community. This is certainly due to the inherent difficulties (and
uncertainties) present in the task, but we believe that it is also due to the fact that stability theory
for Lyapunov exponents is not as well known as it should. For this reason, and also to make the
present work self contained, the first two sections of this paper are background. Sections 2 and 3
summarize results from [1] on Lyapunov exponents and on equivalence between stability of distinct
Lyapunov exponents and integral separation. Section 4 summarizes the three spectra we consider.
Sections 5, 6, and 7 contain our main results: under assumptions of integral separation, we show
some relationships beween the three spectra. Further, we validate the QR and SVD techniques to
find the Lyapunov spectra. In section 8, we detail numerical techniques based on the continuous
QR method to approximate the spectra, and we also discuss how we can attempt to verify integral
separation of a system. Finally, we give some new results on the relation between integral separation
and Sacker-Sell spectrum, and outline a computational procedure to approximate such spectrum.
In Section 9 we present numerical experiments. Section 10 contains conclusions.

2. Lyapunov Exponents Theory.

The characteristic exponent of a (nonvanishing) function f(t) is defined as

χ(f) = lim sup
t→∞

1

t
ln |f(t)|.(2.1)

The following equalities relate the upper and lower characteristic exponents of f and 1/f , and will
be useful when relating the exponents of a linear system and of its adjoint:

lim supt→∞
1
t ln |f(t)| = − lim inft→∞

1
t ln |1/f(t)|,

lim inf t→∞
1
t ln |f(t)| = − lim supt→∞

1
t ln |1/f(t)|.(2.2)

We now summarize some results on properties of characteristic exponents.

1e.g., it is feasible if the singular values stay distinct for all times t
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Theorem 2.1. [1, Theorems 2.1.2 and 2.1.4] The characteristic exponent of a product does
not exceed the sum of the characteristic exponents, i.e., χ(fg) ≤ χ(f) + χ(g). Moreover, if χ(f) +
χ(1/f) = 0, then χ(fg) = χ(f) + χ(g).

Definition 2.1. The Lyapunov exponent of a vector valued function x : t ∈ IR→ IRn is defined
as the Lyapunov exponent of the norm: χ(x) = χ(||x||).

In this work, we restrict consideration to the 2-norm, ‖x(t)‖2, and similarly for matrix valued
functions. The advantage is that these are invariant under orthogonal transformations, but similar
results would hold for different norms.

Consider now an n-dimensional linear system

ẋ = A(t)x ,(2.3)

where A is continuous and bounded: supt ‖A(t)‖ <∞. Given a fundamental matrix solution X of
(2.3), consider the quantities

λi = lim sup
t→∞

1

t
ln ||X(t)ei|| , i = 1, . . . , n,(2.4)

where ei denotes the i-th standard unit vector. When
n
∑

i=1

λi is minimized with respect to all

possible fundamental matrix solutions, then the λi are called the Lyapunov exponents or Lyapunov
characteristic numbers, and the corresponding fundamental matrix solution is called a normal basis.
In general, the Lyapunov exponents satisfy

n
∑

i=1

λi ≥ lim sup
t→∞

1

t

∫ t

0

Tr(A(s))ds(2.5)

where Tr(A(s)) is the trace of the matrix A(s).
Remark 2.1. The Lyapunov exponents are unaffected by what happens to X on a finite interval.

For this reason, in (2.5) and elsewhere in this paper, one may replace 0 with any other (finite)
value of t. With this in mind, we will continue using 0 as the lower limit of integration.

Along with (2.3), we will also need to consider the associated adjoint equation

ẏ(t) = −AT (t)y(t).(2.6)

Similarly to (2.4), one can define the Lyapunov exponents for (2.6), call them {−µi}ni=1. We will
henceforth restrict consideration to the system (2.3) and the exponents λi’s only, but of course
everything can be formulated also in terms of the adjoint system (2.6) and the µi’s.

Given any fundamental matrix solution, Lyapunov showed how to construct a normal funda-
mental matrix solution.

Theorem 2.2. [Lyapunov’s construction of a normal basis, [22]] Consider a matrix solution
Z(·) = [Z1, . . . , Zn], such that the Lyapunov exponents of the columns of Z are ordered as χ(Z1) ≥
· · · ≥ χ(Zn). Then, there exists a unit upper triangular matrix C such that X(·) = Z(·)C is normal.
Similarly, if the Lyapunov exponents of the columns of Z are ordered as χ(Z1) ≤ · · · ≤ χ(Zn), then
there exists a unit lower triangular matrix C such that X(·) = Z(·)C is normal.

Remark 2.2. The assumption of ordered characteristic exponents for the columns of Z is not
stringent, since it can be trivially achieved via column permutation of any matrix solution. In
the original work of Lyapunov (see also [1]), the matrix C was taken as unit lower triangular
with the corresponding assumption that the growth rates of the columns of Z are ordered as
χ(Z1) ≤ · · · ≤ χ(Zn). However, the ordering in which C is taken to be unit upper triangular is
more natural for us, since often we end up working with upper triangular systems, and we should
expect that the growth rates will be ordered from largest down to smallest. On the other hand,
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when working with the adjoint, it is the reverse ordering which is more natural, hence the use of a
unit lower triangular C is more appropriate in this case. Indeed, see [1, Corollary 3.6.2], if the basis
X is normal for (2.3), then the basis X−T is normal for the adjoint system; here, and elsewhere in
this work, X−T is a shorthand notation for (X−1)T . Conceptually, then, we can always work with
a normal basis, and assume to have ordered Lyapunov exponents for a system and its adjoint:

λ1 ≥ λ2 ≥ . . . ≥ λn and − µn ≥ . . . ≥ −µ2 ≥ −µ1 .

A fundamental property of Lyapunov exponents is that they (and their stability properties)
are preserved under Lyapunov transformations.

Definition 2.2. A smooth invertible change of variables y ← T −1x is called a Lyapunov trans-
formation if T , T−1, and Ṫ , are bounded.

Clearly, under a Lyapunov transformation, (2.3) is transformed to

ẏ = B(t)y , B = T−1AT − ṪT−1 .(2.7)

For example, it has been known since Perron [29] and Diliberto [17] that there exists a Lyapunov,
and orthogonal, change of variables for which B is upper triangular. To see this, write a funda-
mental matrix solution X(t) as Q(t)R(t) where Q is an orthogonal matrix valued function and R
is an upper triangular matrix valued function with positive diagonal entries. Upon differentiating
we have

AQR = QṘ + Q̇R or Q̇ = AQ−QB .(2.8)

Since Ṙ = BR, then B is upper triangular. Since Q is orthogonal, if we let S(Q) := QT Q̇ =
QT AQ−B, then the strict lower triangular piece of the skew symmetric function S can be defined
as the corresponding piece of QT AQ and the rest of S is given by skew-symmetry.

Remark 2.3. In what follows, when considering upper triangular systems Ṙ = BR, we will
always assume that the diagonal entries of R are positive.

Linear systems for which the Lyapunov exponents exist as limits were called regular by Lya-
punov.

Definition 2.3. A system is regular (Lyapunov) if the time average of the trace has a finite
limit and equality holds in (2.5).

Example 2.4. A simple example of a linear system where a strict inequality holds in (2.5) is
ẋ = (sin(ln t) + cos(ln t))y
ẏ = (sin(ln t) + cos(ln t))x

which has Lyapunov exponents λ1 = λ2 = 1, but lim sup
t→∞

1
t

t
∫

0

trace(A(s))ds = 0.

It was shown by Lyapunov that regularity is maintained under Lyapunov transformations,
and –in particular– for a regular triangular system Ṙ = B(t)R the Lyapunov exponents may be
obtained as time averages of the diagonal elements of B:

λj = lim
t→∞

1

t

∫ t

0

Bjj(s)ds, j = 1, . . . , n.(2.9)

Further, in this regular case, the exponents of the adjoint system, the µi’s, equal the exponents
λi’s.

3. Stability of Lyapunov Exponents and Integral Separation.

In this section we summarize results on the relation between stability of the exponents and
the property of integral separation.
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Definition 3.1. The characteristic exponents λ1 ≥ . . . ≥ λn of system (2.3) are said to be stable
if for any ε > 0 there exists δ > 0 such that supt∈IR+ ||E(t)|| < δ implies

|λi − γi| < ε, i = 1, . . . , n,(3.1)

where the γi’s are the (ordered) Lyapunov exponents of the perturbed system ẋ = [A(t) + E(t)]x.
Naturally, since Lyapunov transformations preserve the exponents and the smallness of per-

turbations, stability of the characteristic exponents is invariant under Lyapunov transformations.
Theorem 3.1. [1, Theorem 5.2.1] If the exponents λi’s of (2.3) are stable, and E → 0 as

t→∞, then the exponents of the perturbed system are also given by the λi’s.
Definition 3.2. [1, cfr. Definition 5.3.2], [6] Write a fundamental matrix solution columnwise

X(t) = [X1(t), . . . , Xn(t)]. Then, X is integrally separated if for i = 1, . . . , n− 1, there exist a > 0
and d > 0 such that

||Xi(t)||
||Xi(s)||

· ||Xi+1(s)||
||Xi+1(t)||

≥ dea(t−s) ,(3.2)

for all t, s : t ≥ s.
Again, if a matrix solution X is integrally separated, and T is a Lyapunov transformation,

then the matrix solution Y ← T−1X associated to (2.7) is also integrally separated; i.e., integral
separation is kept under Lyapunov transformations.

Theorem 3.2. [1, Property 5.3.1 and 5.3.3] Integrally separated systems have distinct Lya-
punov exponents.

Definition 3.3. The functions gi, i = 1, . . . , n, are said to be integrally separated if for i =
1, . . . , n− 1,

∫ t

s

(gi(τ)− gi+1(τ))dτ ≥ a(t− s)− d, t ≥ s, a > 0, d ∈ IR.(3.3)

Theorem 3.3. [1, Theorem 5.4.7], [7] If the system (2.3) has distinct characteristic exponents
λ1 > . . . > λn, then they are stable if and only if there exists a Lyapunov transformation z ← T −1x
transforming (2.3) to the diagonal form

ż = diag[p1(t), . . . , pn(t)]z,(3.4)

where the diagonal elements, the pi, are integrally separated functions.
Theorem 3.4. [1, Theorem 5.4.8], [7] If the system (2.3) has distinct characteristic exponents

λ1 > . . . > λn, then they are stable if and only if there exists a fundamental matrix solution with
integrally separated columns as in Definition 3.2.

Given the implications of integral separation, it is a comforting fact that it is a natural condition
to have. This is because of a result of Palmer, see [28, p. 21]. Palmer considered the Banach space
B of continuous bounded matrix valued functions A, with norm ||A|| = sup

t≥0
||A(t)||, and -using

results from [24] and [5]- he showed that the systems with integral separation form an open and
dense subset of B. Therefore, integral separation is a generic property in B.

Regularity (see Definition 2.3), however, is not enough to ensure stability and hence integral
separation as the following example from [1, p. 171] shows. Consider the regular system

ẋ1 = (1 + π
2 sin(π

√
t))x1

ẋ2 = 0 ,
(3.5)

which has distinct Lyapunov exponents λ1 = 1 and λ2 = 0. Since for any n ∈ IN

∫ (2n)2

(2n−1)2
(1 +

π

2
sin(π

√
t))dτ = 0 ,(3.6)
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then the system (3.5) is not integrally separated and hence the Lyapunov exponents are not stable.
Remark 3.1. In all numerical works on approximation of Lyapunov exponents of which we are

aware, it is assumed that system is regular; e.g., see [2, 3, 12, 13, 18, 19, 20, 21]. This is justified on
the ground that regularity is a prevalent condition in a measure theoretic sense, see [27]. However,
from the numerical point of view, we need to insist that the Lyapunov exponents be stable, and
for this to be true we need integral separation, not regularity.

We now show that the adjoint system (2.6) has an integrally separated fundamental matrix
solution if the original system (2.3) does.

Lemma 3.5. If (2.3) has a fundamental matrix solution with integrally separated columns,
then the adjoint (2.6) has a fundamental matrix solution with integrally separated columns.

Proof. Because of (2.7) and (2.8), we may consider without loss of generality an upper trian-
gular system Ṙ = BR with integrally separated fundamental matrix solution R. Then S = R−T

satisfies Ṡ = −BT S. Since R has integrally separated columns, by Theorems 3.3 and 3.4,
there exists a Lyapunov transformation L such that D = diag(pi) = L−1BL − L−1L̇ and the
pi are integrally separated, i.e., they satisfy (3.3). Let Y = L−1R, then Y is integrally sepa-

rated and Y = diag(exp(
∫ t

0 pi(s)ds)). Let Z = (L−T )−1S, so that Z = Y −T and Z satisfies

Ż = −DT Z = −DZ. Then Zii(t) = exp(−
∫ t

0 pi(s)ds) for i = 1, . . . , n, and so

Zi,i(t)

Zi,i(s)
· Zi+1,i+1(s)

Zi+1,i+1(t)
=

Yi+1,i+1(t)

Yi+1,i+1(s)
· Yi,i(s)

Yi,i(t)
≥ d exp(a(t− s)), a > 0, t ≥ s, i = 1, . . . , n− 1.

Thus, by Theorems 3.3 and 3.4 the adjoint equation has an integrally separated fundamental matrix
solution.

4. Three definitions of spectrum.

Consider (2.3). It is well known that if A(·) is constant then the asymptotic stability properties
of the zero solution of (2.3) are determined by the real parts of the eigenvalues of A and the
corresponding eigenvectors. In case in which A is periodic in t, then Floquet theory effectively
reduces the question of stability to the constant coefficient case. For the general case, we recall
next two classical concepts of stability, and we introduce a third related one.

4.1. Sacker-Sell Spectrum.

In [30], Sacker and Sell introduced a spectrum for (2.3) based upon exponential dichotomy: the
Sacker-Sell spectrum is given by those values λ ∈ IR such that the shifted system ẋ = [A(t)−λI ]x
does not have exponential dichotomy. We will indicate the Sacker-Sell spectrum with ΣED. Recall
that the system (2.3) has exponential dichotomy if for a fundamental matrix solution X there
exists a projection P and constants α, β > 0, and K, L ≥ 1, such that

‖X(t)PX−1(s)‖ ≤ Ke−α(t−s), t ≥ s,
‖X(t)(I − P )X−1(s)‖ ≤ Leβ(t−s), t ≤ s.

(4.1)

It is shown in [30] that ΣED is given by the union of at most n closed intervals. Thus, it can be
written, for some k: 1 ≤ k ≤ n, as

ΣED := [a1, b1] ∪ · · · ∪ [ak, bk].(4.2)

4.2. Lyapunov Spectrum.

Another characterization of spectrum is based on the characteristic exponents of (2.3) and
(2.6), the λi’s and −µi’s which we can consider being ordered: λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥
· · · ≥ µn. We define the Lyapunov spectrum, written ΣL, as

ΣL :=

n
⋃

j=1

[λi
j , λ

s
j ](4.3)
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where λi
j = µj and λs

j = λj and, in fact, λj ≥ µj for j = 1, . . . , n. The last statement is a

consequence of the fact that the normal bases for (2.3) and (2.6) are X and X−T , so, if λj = χ(Xej),
then −µj = χ(X−T ej). But obviously (X−T ej)

T (Xej) = 1 for all t, so that Theorem 2.1 gives
λj ≥ µj .

Remark 4.1. Our definition of Lyapunov spectrum is strictly related to the coefficient of

irregularity of Perron, who proved that a system is regular if and only if λj = µj .
Remark 4.2. It must be appreciated that ΣL and ΣED provide information on related, but

different, questions. In particular, λ /∈ ΣL implies the existence of a bounded solution to the
homogeneous problem ẋ = (A(t) − λI)x, for some initial condition x(0). Instead, λ /∈ ΣED

implies both the existence of a bounded solution to the homogeneous problem ẋ = (A(t) − λI)x
for some x(0), and the existence of a bounded solution to the nonhomogeneous problem ẋ =
(A(t) − λI)x + f(t) for any (continuous and bounded) function f(t), a condition which is not
guaranteed by λ /∈ ΣL. Obviously, both properties are quite important, and it depends on the
particular application in which we are interested whether we need to know ΣED, or if knowledge
of ΣL is sufficient.

4.3. Computed Lyapunov Spectrum.

The third spectrum we consider is what we will call the computed Lyapunov spectrum, since it
is close to what traditionally has been approximated. Its definition rests on the transformation of
(2.3) to upper triangular form via an orthogonal change of variables; see (2.7) and (2.8). Consider
the upper triangular system Ṙ = BR. We define the computed Lyapunov spectrum, written ΣCL,
as

ΣCL :=
n
⋃

j=1

[λi
jj , λ

s
jj ] , λi

jj = lim inf
t→∞

1

t

∫ t

0

Bjj(s)ds , λs
jj = lim sup

t→∞

1

t

∫ t

0

Bjj(s)ds .(4.4)

5. The Lyapunov and Computed Lyapunov Spectrum.

In this section we prove that for upper triangular systems, integral separation of the diagonal
elements implies that the Lyapunov spectrum, ΣL, and the computed Lyapunov spectrum, ΣCL,
coincide. We prove this by constructing a bounded Lyapunov transformation that transforms the
upper triangular system to a diagonal system given by the diagonal of the upper triangular system.

Theorem 5.1. For an upper triangular system Ṙ = BR with B smooth and bounded, integral
separation of the diagonal of B implies ΣL = ΣCL.

Proof. The proof is by induction. Write B in block form and define a transformation T1 using
the same blocking:

B =





b11 b12 B13

0 b22 B23

0 0 B33



 and T1 =





1 x 0
0 1 0
0 0 I



 .(5.1)

We want to take x such that

T−1
1 BT1 − T−1

1 Ṫ1 =





b11 0 B13 − xB23

0 b22 B23

0 0 B33



 .(5.2)

To obtain this, we take x satisfying
{

ẋ = b11x− xb22 + b12

lim
T→∞

x(T ) = 0 ,(5.3)

that is

x(t) = − lim
T→∞

∫ T

t

exp(−
∫ s

t

(b11(τ) − b22(τ))dτ)b12(s)ds.(5.4)
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Since the diagonal elements of B are integrally separated, see (3.3), we have

−
∫ s

t

(b11(τ) − b22(τ))dτ ≤ −a(s− t) + d, a > 0, s ≥ t,(5.5)

which implies that x is bounded and the transformed coefficient matrix is bounded.
Now we assume that the matrix function B has been progressively diagonalized in its first p

columns, so that the transformed coefficient matrix has the form

B =





B11 B12 B13

0 bp+1,p+1 B23

0 0 B33



(5.6)

where B11 : t → IRp×p is diagonal, and B12 : t → IRp×1, B13 : t → IRp×(n−p−1), B23 : t →
IR1×(n−p−1), are all continuous and bounded. Consider the transformation Tp and transformed
coefficient matrix of the form

Tp =





Ip x 0
0 1 0
0 0 In−p−1



 , T−1
p BTp − T−1

p Ṫp =





B11 0 B13 − xB23

0 bp+1,p+1 B23

0 0 B33



 ,(5.7)

where we require that x satisfies

ẋ = B11x− xbp+1,p+1 + B12 = (B11 − bp+1,p+1I)x + B12(5.8)

and lim
T→∞

x(T ) = 0. Then, since B11 is diagonal,

x(t) = − lim
T→∞

∫ T

t

exp(−
∫ s

t

(B11(τ)− I · bp+1,p+1(τ))dτ)B12(s)ds .

Since B12 is bounded and the diagonal of B is integrally separated, we have that x is bounded
and Tp is Lyapunov. Since Lyapunov transformations preserve the Lyapunov spectrum, the result
follows.

The following corollary is an immediate consequence of the proof above and Theorems 3.3 and
3.4.

Corollary 5.1. Given an upper triangular system Ṙ = BR with B smooth, bounded, and
with integrally separated diagonal, then there exists an integrally separated fundamental matrix
solution.

As a partial converse to Theorem 5.1 we have the following.
Theorem 5.2. Suppose the system Ṙ = BR, with B bounded, continuous and upper triangular,

has an integrally separated fundamental matrix solution R. Then for all ε > 0 there exists a
permutation π such that |λs

π(i) − lim supt→∞
1
t

∫ t

0
Bii(s)ds| < ε.

Proof. Consider the system Ḋ = diag(B)D and let λi(D) = lim supt→∞
1
t

∫ t

0
Bii(s)ds. Let L

be the Lyapunov transformation defined by L = diag(ηi−1, i = 1, . . . , n) for η ≥ η0 > 0. Then
L−1BL− L−1L̇ = diag(B) + η upp(B) where upp(B) denotes the strict upper triangular portion
of the matrix function B. Set E(t) = η upp(B(t)). Since L is Lyapunov, and stability of the
exponents is preserved under Lyapunov transformations, then, for ε > 0 as given in the statement
of the Theorem, there exists δ = δ(ε) such that supt |E(t)| < δ implies |λs

i − λ′
i| < ε where {λ′

i}ni=1

denote the Lyapunov exponents of Ḋ = diag(B)D.
We claim that there exists a permutation π such that λ′

i = λπ(i)(D). Let Π denote a per-

mutation matrix such that D̂ = ΠDΠT defines an ordering such that χ(D̂11) ≥ χ(D̂22) ≥ · · · ≥
χ(D̂nn). Notice that D̂ satisfies

˙̂
D = B̂DD̂ where B̂D = Π diag(B)ΠT and χ(D̂ii) = χ(D̂ei) =
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χ(Π diag(B)ΠT ei) = χ(diag(B)eπ(i)). To complete the claim, we need to show that the diagonal

fundamental matrix solution D̂ is normal. By the Lyapunov construction of a normal basis, there
exists a unit upper triangular matrix C such that D̂ ·C is normal, but since setting C = I minimizes
the sum of the characteristic exponents of the columns, we have that D̂ is normal.

Remark 5.1. The Lyapunov exponents of Ḋ = diag(B)D are not necessarily stable. The
ordering of the Lyapunov exponents is not necessarily preserved, hence the need for the permutation
π.

6. Sacker-Sell Spectrum and Lyapunov Spectral Intervals.

In this section we state and prove results relating the Sacker-Sell spectrum, ΣED, the Lyapunov
spectrum, ΣL, and the computed Lyapunov spectrum, ΣCL. The following lemma shows that if a
system has exponential dichotomy, then the principle matrix solution and an orthogonal projection
may be assumed.

Lemma 6.1. Suppose the linear system (2.3) admits an exponential dichotomy for some fun-
damental matrix solution, then it also admits an exponential dichotomy for the principle matrix
solution. Moreover, the projection P may be taken to be an orthogonal matrix.

Proof. Assume that (2.3) admits an exponential dichotomy for a fundamental matrix solution
X(t) ≡ X(t; X0) with X(0) = X0. Then X(t; X0) = X(t, I)X0 and

X(t; X0)PX−1(s; X0) = X(t; I)(X0PX−1
0 )X−1(s; I)

X(t; X0)(I − P )X−1(s; X0) = X(t; I)(X0(X0(I − P )X−1
0 )X−1

0 )X−1(s; I)
(6.1)

Let P̃ = X0PX−1
0 and observe that P̃ 2 = P̃ , so P̃ is a projection and hence we have that the

principle matrix solution admits an exponential dichotomy.
Let S = range(P̃ ) and let V denote an orthonormal basis for S, so that P1 = V V T is the

unique orthogonal projection onto S. From [9, pp. 16–17], it follows that the principle matrix
solution admits an exponential dichotomy with orthogonal projection P1.

The following is essentially in [30], but we give a different proof.
Theorem 6.2. The computed Lyapunov spectrum is contained within the Sacker-Sell spec-

trum.
Proof. Consider Ẋ = A(t)X with principle matrix solution X and the shifted system Ẋλ =

[A(t)−λI ]Xλ with fundamental matrix solution Xλ. Fix λ such that Xλ has exponential dichotomy.
Then there exists a projection P , constants α, β > 0 and K, L ≥ 1 such that

‖Xλ(t)PX−1
λ (s)‖ ≤ Ke−α(t−s), t ≥ s,

‖Xλ(t)(I − P )X−1
λ (s)‖ ≤ Leβ(t−s), t ≤ s .

(6.2)

By Lemma 6.1, the projection P can be chosen orthogonal and there exists an orthogonal matrix
U such that UT PU = P1, where P1 is a diagonal matrix with entries either 0 or 1. Thus,

‖Xλ(t)UP1U
T X−1

λ (s)‖ ≤ Ke−α(t−s), t ≥ s,
‖Xλ(t)U(I − P1)U

T X−1
λ (s)‖ ≤ Leβ(t−s), t ≤ s,

(6.3)

or equivalently

e−λ(t−s)‖W (t)P1W
−1(s)‖ ≤ Ke−α(t−s), t ≥ s,

e−λ(t−s)‖W (t)(I − P1)W
−1(s)‖ ≤ Leβ(t−s), t ≤ s,

(6.4)

where W (t) = X(t)U satisfies Ẇ = A(t)W . Let Π denote a column permutation such that
Z = WΠ implies χ(Z1) ≥ · · · ≥ χ(Zn) where Zi denotes the ith column of Z. Decompose Z as
Z(t) = Q(t)R(t) where Q(0) = Z(0) = UΠ and R(0) = I and notice that χ(R1) ≥ · · · ≥ χ(Rn).
For this ordering of growth rates of the columns of R the Lyapunov construction of a normal
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basis (see Theorem 2.2) takes the form R(t) C where C is a unit upper triangular matrix so the
Lyapunov construction does not change the diagonal elements of R.

In terms of R, the exponential dichotomy relationship for the shifted system is

‖Rλ(t)P2R
−1
λ (s)‖ ≤ Ke−α(t−s), t ≥ s,

‖Rλ(t)(I − P2)R
−1
λ (s)‖ ≤ Leβ(t−s), t ≤ s,

(6.5)

where P2 = ΠT P1Π. Recall that the computed Lyapunov spectrum is defined as
⋃

j

[λi
jj , λ

s
jj ] where

λs
jj = lim sup

t→∞

1

t
ln(Rjj(t)) and λi

jj = lim inf
t→∞

1

t
ln(Rjj (t)).(6.6)

Assume that rank of P , hence of P1 and P2, is m. In (6.5) set s = 0 so we have |Rλ(t)P2| ≤
Ke−αt. Since P2 is a permutation matrix (plus rows and columns of 0s), Rλ(t)P2 is a matrix
containing m columns of Rλ(t) and n − m zero columns. Thus, there must be m columns of R
for which λs

jj − λ = χ(Rjj) − λ ≤ χ(R•,j) − λ ≤ −α, while for n − m rows of R−1 we have

−λi
kk +λ = χ(R−1

kk )+λ ≤ χ(R−1
k,•)+λ ≤ −β. Thus, for m indices j we have λi

jj ≤ λs
jj ≤ λ−α < λ

and for n−m indices k we have λ < λ + β ≤ λi
kk ≤ λs

kk . Hence, λ /∈
⋃

j

[λi
jj , λ

s
jj ].

Theorem 6.3. Assume that for a linear homogeneous n-dimensional system the Sacker-Sell
spectrum is given by n disjoint intervals. Then there exists a fundamental matrix solution with
integrally separated columns.

Proof. Write the Sacker-Sell spectrum as
n
⋃

i=1

[ai, bi] and for i = 1, . . . , n − 1, choose λi =

(ai+1 + bi)/2. Obviously λi /∈ ΣED, and there exists a fundamental matrix solution Xλi that has
exponential dichotomy. Using the argument from Theorem 6.2, there exists a projection Pi of the

form Pi =

(

0 0
0 I

)

and Ki, Li, αi, βi > 0 such that

Kie
−αi(t−s) ≥ ||Xλi(t)PX−1

λi
(s)|| ≥

|Xλi(t)PX−1
λi

(s)Xλi(s)Pc|
|Xλi(s)Pc|

=
‖Xλi(t)Pc‖
‖Xλi(s)Pc‖ =

‖Xj(t)‖
‖Xj(s)‖

· e−λi(t−s)
(6.7)

for t ≥ s, and c = ej , j = i + 1, . . . , n, and

Lie
βi(t−s) ≥ ||Xλi(t)(I − P )X−1

λi
(s)|| ≥

‖Xλi(t)(I − P )X−1
λi

(s)Xλi (s)(I − P )c‖
‖Xλi(s)(I − P )c‖

=
‖Xλi(t)(I − P )c‖
‖Xλi(s)(I − P )c‖ =

‖Xj(t)‖
‖Xj(s)‖

· e−λi(t−s)
(6.8)

for t ≤ s, and c = ej , j = 1, . . . , i. Then

‖Xi(t)‖
‖Xi(s)‖

· ‖Xi+1(s)‖
‖Xi+1(t)‖

≥ 1

Li
eβi(t−s) · 1

Ki
eαi(t−s) =

1

LiKi
e(αi+βi)(t−s) .(6.9)

Repeating for all i = 1, . . . , n − 1, and taking a = mini{αi + βi} and d = mini{ 1
LiKi
} completes

the proof.
Example 6.1. As a counterexample to a converse of Theorem 6.3, consider the diagonal system

with ẋ1 = (cos(ln t) + sin(ln t))x1 and ẋ2 = (−1 + cos(ln t) + sin(ln t))x2, so that ΣCL = ΣL =
[−1, 1] ∪ [0, 2]. Then, because of Theorem 6.2, the Sacker-Sell intervals overlap, but

|x1(t)|
|x1(s)|

· |x2(s)|
|x2(t)|

= et−s, t ≥ s(6.10)
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so that x1 and x2 are integrally separated.
Even in case of stable Lyapunov exponents, in general, the Lyapunov and computed Lyapunov

spectra are contained in the Sacker-Sell spectrum (see [30]). The following example modeled after
one of Perron (see [1, Example 4.4.1]) clarifies this fact and it will be important in order to
understand how we may approximate ΣED.

Example 6.2. Consider the linear differential equation ẋ = c(t)x, c(t) = sin(ln(t)) + cos(ln(t)),
for t ≥ t0 > 0. The exact solution is x(t) = exp(t sin(ln(t)))κ0, κ0 = x(t0) exp(−t0 sin(ln(t0))), and
it is easily seen that the Lyapunov and computed Lyapunov spectra coincide and are given by the
interval [−1, +1]. Since the problem is scalar, this Lyapunov spectrum is necessarily stable.

We will show that [−1, 1] ⊂ ΣED, that is that there are values of λ > 1, and λ < −1, for
which the shifted system does not have exponential dichotomy. Consider λ > 1, the case λ < −1
is similar. Then, to have exponential dichotomy in the shifted system means that there exist
constants α > 0 and K ≥ 1 such that

e−λ(t−s)e

∫

t

s
c(r)dr

= xλ(t)x−1
λ (s) ≤ Ke−α(t−s), t ≥ s ≥ t0, λ > 1 .(6.11)

We rewrite this in the equivalent form

eλt

eλs

e

∫

s

t0
cdτ

e

∫

t

t0
cdτ
≥ 1

K
eα(t−s) ,(6.12)

and consider the diagonal system

Ẋ =

(

λ 0
0 c(t)

)

X .(6.13)

Thus, to have exponential dichotomy is the same as asking that the principal matrix solution of
this system is integrally separated with constants 1

K < 1 and α > 0. This is equivalent to the
requirement that

∫ t

s

(λ− c(τ))dτ ≥ a(t− s)− d, t ≥ s , a > 0 , d ≥ 0 ,(6.14)

which, in general, is not true. Let λM = eπ/2+e−π/2

eπ/2−e−π/2 = coth(π/2). If the functions λ and c were
integrally separated, then we should have

∫ t

s

(λ− sin(ln(τ)) − cos(ln(τ)))dτ ≥ a(t− s)− d ,

or

λ(t− s)− (t sin(ln(t))− s sin(ln(s))) ≥ a(t− s)− d .

Now, consider the following sequences for t and s

tk = exp(2kπ + π/2) , sk = exp(2kπ − π/2).(6.15)

Then, along these sequences we would need to have

λe2kπ(eπ/2 − e−π/2)− e2kπ(eπ/2 + e−π/2) ≥ ae2kπ(eπ/2 − e−π/2)− d ,

or

a(eπ/2 − e−π/2) ≤ λ(eπ/2 − e−π/2)− (eπ/2 + e−π/2) + de−2kπ .
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Thus, for 1 < λ < λM and k sufficiently large, λ(eπ/2 − e−π/2)− (eπ/2 + e−π/2) + de−2kπ < 0, and
so no positive a exists and the system cannot have exponential dichotomy for 1 < λ < λM where
λM ≥ 1.09. A similar argument for λ < −1 leads us to consider the diagonal system

Ẋ =

(

c(t) 0
0 λ

)

X ,(6.16)

so that having exponential dichotomy is equivalent to integral separation of the principal matrix
solution of (6.16). Or, which is the same, to

∫ t

s

(c(τ) − λ)dτ ≥ a(t− s)− d, t ≥ s , a > 0 , d ≥ 0 .(6.17)

Similarly to the above, we now obtain that we cannot have exponential dichotomy for −1.09 ≤
λ < −1. Therefore, [−1.09, 1.09] ⊆ ΣED. This argument can be easily improved by replacing π/2
in the definition of tk and sk in (6.15) with ω ≈ 1.25 (find ω to maximize coth(ω) · sin(ω), so that
ω is the positive root of cos(ω) · sinh(ω)− 2 sin(ω) = 0). This shows that [−1.1187, 1.1187]⊆ ΣED.

For the sake of completeness, we point out that in [16] we actually prove that –for this example–
ΣED = [−

√
2,
√

2]. We will use this fact in Example 9.1.

7. The Singular Value Decomposition.

To approximate Lyapunov exponents, an alternative to QR–based techniques is based on the
singular value decomposition (SVD) of a fundamental matrix solution. This approach has been
used in [19, 20, 23]. Here we explore the feasibility of this approach, in particular the role of integral
separation in this case. So, we will assume that we have an integrally separated fundamental matrix
solution X with ordered growth rates: χ(X1) > . . . > χ(Xn).

Techniques based on the SVD need to assume that X admits a smooth SVD for all t ≥ t0:
X(t) = U(t)Σ(t)V T (t) where UT U = I, V T V = I, Σ = diag(σi, i = 1, . . . , n) and U, V, Σ are all
Cp functions, p ≥ 1. Unlike the QR factorization of X , the existence of such smooth SVD is not
obvious except in case the singular values stay distinct. Still, some results are known: (i) if X is
analytic, then the factors U, V, Σ, exist and are analytic (see [4]); (ii) if X ∈ Cp, p ≥ 1, then there
exist smooth U, V, Σ, as long as the singular values do not coalesce with too high degree of contact
(in general, U and V lose some degree of differentiability, while Σ stays Cp; see [11] for a precise
statement); (iii) generically (i.e., for a generic one-parameter family of nonsingular Cp functions
X), then U, V, Σ, are Cp, and in fact the singular values σi’s are distinct for all t (see [11]).

To make some progress, let us henceforth assume that a smooth (at least C1) SVD of X exists.
Let G = UT AU for all t. We notice that since X = UΣV T for all t, and all factors are smooth,
then we must also have

Ẋ = AUΣV T = U̇ΣV T + U Σ̇V T + UΣV̇ T ,

so that by letting H = UT U̇ and K = V T V̇ , and noticing that H and K must be skew-symmetric,
one must have

Σ̇ = GΣ−HΣ + ΣK ,

and so we must have

σ̇i = Giiσi → σi(t) = σi(s)e

∫ t

s
Gii(τ)dτ

, i = 1, . . . , n .(7.1)

In [19, 20] under the assumption of distinct singular values, the authors derived differential
equations for U and Σ, integrated these numerically, and then set2

λi = lim sup
t→∞

1

t
ln(|σi(t)|) , i = 1, . . . , n .(7.2)

2in fact, in [19, 20], it was assumed that the λi’s existed as limits
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Under the assumption of distinct singular values, the differential equations describing the evolution
of U, V, Σ, have been derived many times before (e.g., see [32]), and are

U̇ = UH, V̇ T = −KV T , Σ̇ = DΣ,(7.3)

where D = diag(G), HT = −H , KT = −K, and for i 6= j,

Hij =
Gijσ

2
j + Gjiσ

2
i

σ2
j − σ2

i

, Kij =
(Gij + Gji)σiσj

σ2
j − σ2

i

.(7.4)

On the other hand, from the SVD of X the Lyapunov exponents may be obtained as

χ(Xi) = lim sup
t→∞

1

t
ln ||Σ(t)V T (t)ei|| .(7.5)

Here, we explore the “equivalence” between (7.2) and (7.5) and at the same time validate the
methods based upon differential equations for the U, V , and Σ factors. We will do this under the
assumption that D, the diagonal of G, is integrally separated:

∫ t

s

(Gkk(τ)−Gk+1,k+1(τ))dτ ≥ a(t− s)− d, a > 0, d ∈ IR, t ≥ s, k = 1, 2, . . . , n− 1.(7.6)

For some of the results here below, we can assume also the following condition (simply (7.6) with
s = 0), that is weaker and easier to verify than (7.6):

∫ t

0

(Gk,k(τ) −Gk+1,k+1(τ))dτ ≥ at− d, a > 0, d ∈ IR, t ≥ 0, k = 1, . . . , n− 1 .(7.7)

Lemma 7.1. For all t, let X = UΣV T be a Cp SVD of X, p ≥ 1. Let G = UT AU satisfy
(7.7). Then, for t sufficiently large, we eventually have

σk(t) > σk+1(t) , k = 1, . . . , n− 1 .(7.8)

Proof. Take k = 1, . . . , n− 1. From (7.1) and (7.7), we have

σk(t) = σk(0)
σk+1(0) σk+1(0)e

∫

t

0
Gkk(τ)dτ

≥ σk(0)
σk+1(0) σk+1(0)e

∫

t

0
Gk+1,k+1(τ)dτ

eate−d .

That is:

σk(t) ≥
[ σk(0)

σk+1(0)
eate−d

]

σk+1(t) , t ≥ 0 .

Now, let tk be sufficiently large so that the term in brackets is greater than 1. Repeating the
argument for all k = 1, . . . , n− 1, gives the result.

Based upon Lemma 7.1, as long as (7.7) holds, we may as well assume that all singular values
are distinct, and ordered, for all times t ≥ 0. In particular, the differential equations (7.3) with H
and K defined by (7.4) hold. Having done this, we now show the equivalence between (7.2) and
(7.5).

Theorem 7.2. Under the assumption (7.6), we have χ(Xi) = lim sup
t→∞

1
t ln(|σi(t)|).

Proof. Let X = UΣV T be rewritten as X = UP , P = ΣV T , so that

Ṗ = (UT AU − UT U̇)P,(7.9)
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and since U is a Lyapunov transformation χ(Pi) = χ(Xi). Consider also the system for Σ given in
(7.3). We want to show that χ(Σii) = χ(Pi). If we rewrite the differential equations for P using
the differential equations for Σ and V , then Ṗ = (D − ΣKΣ−1)P.

Let E = ΣKΣ−1, so for i > j, Eij = Kij
σi

σj
and thus

Eij = (Gij + Gji)
1

σ2
j

σ2
i

− 1
.(7.10)

We have

σ2
j

σ2
i

=
σ2

j (0)

σ2
i (0)

exp(2

∫ t

0

(Gjj(τ) −Gii(τ))dτ ,(7.11)

and since (7.6) holds, then
σ2

j

σ2
i
→ ∞ and thus Eij → 0 as t → ∞ for i > j. Obviously, we also

have Eii = 0 for all i. Finally, for j < i, Eji = Kji
σj

σi
= −Kij

σj

σi
. But Kij

σj

σi
=

(Gij+Gji)

1−
σ2

i
σ2

j

, and now

1− σ2
i

σ2
j

does not go to ∞, and hence in general Eji does not approach 0 as t approaches infinity.

So, we write

E = low(E) + upp(E) ,

where upp(E) is the strictly upper triangular part of E and low(E) is the strictly lower triangular
part of E, and consider the system

Ṗ = (D − upp(E))P .(7.12)

Since low(E) → 0 as t → ∞, and the exponents of the P system, (7.9), are stable, then the
Lyapunov exponents of the P system and of the P system, (7.12), are the same by Theorem 3.1.
In other words, χ(Pi) = χ(P i) for i = 1, . . . , n. Finally, with assumption (7.6) we can apply
Theorem 5.1 to obtain

χ(P i) = χ(P ii) = χ(Σii), i = 1, . . . , n .(7.13)

Remark 7.1. From the proof of Theorem 7.2, it is apparent that for the Lyapunov exponents of
the systems (7.9) and (7.12) to coincide it suffices to assume (7.7). However, the stronger condition
(7.6) was needed to prove χ(P i) = χ(P ii).

When (7.7) holds, and a fortiori when (7.6) holds, we have the following result.
Lemma 7.3. Let (7.7) hold. Then, the orthogonal matrix function V (t) → V , as t → ∞,

where V is a constant orthogonal matrix.
Proof. Recall that V satisfies V̇ T = −KV T where K is defined in (7.4), Kij = (Gij +Gji)

σiσj

σ2
j
−σ2

i

for i 6= j, and Kii = 0 for all i. We claim that under assumption (7.7), Kij → 0 exponentially fast
as t→∞. For i > j, we have

Kij = (Gij + Gji)
σi(0)

σj(0)

exp(
∫ t

0
(Gjj(τ) −Gii(τ))dτ)

exp(2
∫ t

0 (Gjj(τ) −Gii(τ))dτ) − σ2
i
(0)

σ2
j
(0)

= (Gij + Gji)
σi(0)

σj(0)
[

1

exp(
∫ t

0 (Gjj (τ)−Gii(τ))dτ) + σi(0)
σj (0)

+
σi(0)

σj(0)

1

exp(2
∫ t

0 (Gjj (τ)−Gii(τ))dτ) − σ2
i
(0)

σ2
j (0)

] ,

(7.14)
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and so by (7.7) we have that for i > j, Kij → 0 exponentially fast, as t→∞. By skew-symmetry,
the same holds true also for i < j. The result now follows from [10, Theorem 2, p.90]3.

Remark 7.2. Lemma 7.3 may be used indirectly to determine if (7.7) holds, a fact which was
apparently used in [19].

The condition (7.6) is very similar to the condition (3.3) on the diagonal of the upper triangular
coefficient matrix B obtained when finding the QR factorization of a fundamental matrix solution.
In fact, these two conditions lead to similar outcomes. The following is the QR analog of Lemma
7.3.

Lemma 7.4. Consider the upper triangular system Ṙ = BR where B is bounded and continu-
ous, and assume that the diagonal of B is integrally separated, as in (3.3). Then, R → diag(R)Z
as t→∞, where Z is a constant upper triangular matrix with 1’s on the diagonal.

Proof. Write R = DZ, where Z = D−1R, and D = diag(R). Then D satisfies Ḋ = diag(B)D

and Z satisfies Ż = EZ where E = D−1(B − diag(B))D. Then, Eij = Bij · Rjj

Rii
for i < j and

Eij = 0 for i ≥ j. Now,

Rjj

Rii
=

Rjj

Rii
(0) e

∫

t

0
(Bjj−Bii)dτ

.

Let j = i + k, for some k = 1, . . .. The diagonal of B is integrally separated (see (3.3)), and so

∫ t

0

(Bjj −Bii)dτ ≤ −k(at− d) ,

from which Eij → 0 exponentially fast as t→∞ and the result follows.

Remark 7.3. We notice that the assumption of integral separation (7.7) (or (7.6)) does not
preclude singular values from coinciding at some (early) time t, in which case the computation
of the factors U, V, Σ, remains by and large unexplored territory. Indeed, if one chooses to use
the SVD technique for approximating the Lyapunov exponents, even if (7.7) (or (7.6)) is satisfied,
it is probably advisable to integrate for X for a while prior to writing down and integrating the
differential equations for the factors U , Σ, and V .

8. Numerical Techniques.

We only outline the continuous QR technique (see [8, 12, 13, 14, 21]), which is the one we used
for the experiments in the next section.

Consider the linear homogeneous problem

ẋ(t) = A(t)x(t).(8.1)

The key task is to find Q which transforms the upper left p × p (p ≤ n) corner of A, B =
QT AQ−QT Q̇, to upper triangular form. From B, one can then approximate p Lyapunov exponents
using (2.9) if the system is regular or the spectral intervals in case the system is not regular.

To find Q, one writes p columns of a fundamental matrix solution of (8.1) as X = QR, where
Q is an n × p orthonormal function (i.e., for all t ≥ 0: QT (t)Q(t) = Ip), and R is a p × p upper
triangular function with positive entries on the diagonal. Upon differentiating X = QR, we have

AQR = Ẋ = Q̇R + QṘ or AQ = Q̇ + QṘR−1.(8.2)

3Theorem 2, p.90, of [10] is concerned with the system Ẋ = (A + B(t))X when A is constant with simple

eigenvalues λi and associated eigenvectors ξi, i = 1, . . . , n, and B is continuous such that
∫ ∞

t0
‖B(t)‖dt < ∞. In

such case, the cited theorem states that X converges to diag(eλ1t, . . . , eλnt)[ξ1, . . . , ξn]C, where C is a constant
invertible matrix. However, the result and the proof in [10] hold true by just requiring that A is diagonalizable (not
necessarily with distinct eigenvalues). We have used this fact with A = 0.
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Let B denote the upper triangular function ṘR−1 and set S(Q) = QT Q̇, which is skew symmetric.
Then

QT AQ = S(Q) + B ,(8.3)

and since S(Q) is skew symmetric and B is upper triangular we have

S(Q)ij =







(QT AQ)ij , i > j,
0, i = j,

−(QT AQ)ji, i < j.
(8.4)

Then, from (8.2), the equation for Q is

Q̇ = AQ−QB = AQ−Q(QT AQ− S(Q)) = (I −QQT )AQ + QS(Q).(8.5)

Initial conditions for Q are obtained from a QR factorization of the initial conditions for X (and

the most typical choice is to take X(0) =

(

Ip

0

)

).

To repeat this reasoning relative to a trajectory of a nonlinear problem, one must integrate

ẋ = f(x) , x(0) = x0 ,(8.6)

and then use A(t) = Df(x(t)) in (8.2).
Once we have the triangular function B, we can compute the p Lyapunov exponents from

(2.9) if the system is regular. Alternatively, one may (in principle) compute λs
jj (and λi

jj ) in ΣCL,
j = 1, . . . , p, from

lim sup
t→∞

1

t

∫ t

0

Bjj(s)ds , and lim inf
t→∞

1

t

∫ t

0

Bjj(s)ds , j = 1, . . . , p .(8.7)

Regardless of whether the B-system is regular or not, we found it convenient to work with the
variables νj(t) =

∫ t

0
Bjj(s)ds, so that we end up with the differential equations:

ν̇j = Bjj , νj(0) = 0, j = 1, . . . , p ,(8.8)

from which the exponents may be approximated as limits (or limsups and liminfs) of

1

t
νj(t) , j = 1, . . . , p .

At this point, the skeleton of the method is clear: for nonlinear problems, integrate (8.6), (8.5)
and (8.8); for linear problems, just (8.5) and (8.8).

8.1. Numerical Implementation.

When approximating (8.5) numerically it is important to maintain Q orthonormal. Several
choices are possible to achieve this; e.g., in [13, 3] techniques are discussed to directly integrate (8.5),
whereas in [8, 21] a continuous Gram-Schmidt procedure is proposed. We have used the technique
described in [14, 15]. The idea of this technique is to locally decompose Q in a way analogous to
the numerical linear algebra context using elementary Givens rotations or Householder reflectors.
Integration for these elementary factors can be done adaptively, and we refer to [15] for details.

So, in the end, the differential equations (8.6), (8.5), and (8.8), are all integrated with adaptive
time stepping, controlled by the tolerance values TOLX, TOLQ, TOLL, respectively. The basic inte-
grator in all cases is our implementation of the Dormand-Prince 4/5 embedded RK pair modeled
after the pattern adopted in [15], to which we again refer for details.
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8.2. Testing Integral Separation.

It is clearly desirable to infer if the system has integral separation. This is needed to gain some
confidence in the answers one obtains (since it implies stable exponents), and also –see below– to
obtain a computational procedure to approximate ΣED. We have used the following construction
which is motivated by Steklov function considerations. Recall that, given a continuous bounded
function f , the Steklov function or Steklov average of f with step H > 0 is defined as (see [1,
Definition 5.4.1] and [5])

fH(t) =
1

H

∫ t+H

t

f(τ)dτ.(8.9)

Now, consider two bounded functions f1 and f2 (presently, think of them as diagonal elements
of the upper triangular coefficient matrix B), and suppose we want to know if they are integrally
separated:

∫ t

s

(f1(τ) − f2(τ))dτ ≥ a(t− s)− d, a > 0, d ∈ IR, t ≥ s .(8.10)

The importance of Steklov functions resides in the fact that (8.10) can be inferred from the Steklov
average of the difference f1 − f2. This is the content of Lemma 5.4.1 in [1].

Lemma 8.1. Let f1 and f2 be two bounded functions. Then, f1 and f2 are integrally separated,
i.e., (8.10) holds, if and only if for sufficiently large H their Steklov functions are separated, i.e.,

fH
1 (t)− fH

2 (t) =
1

H

∫ t+H

t

(f1(τ) − f2(τ))dτ ≥ a > 0, t ≥ 0 .(8.11)

In practice, to check (8.11) will require careful choice of H . We refer to Examples 9.1 and 9.2
for practical considerations.

8.3. Numerical Computation of Spectral Intervals.

In case in which the system is not regular, it would be clearly desirable to approximate ΣCL

and/or ΣL. Furthermore, it is clearly of interest being able to approximate ΣED in case in which
the system does not have point spectrum (i.e., the Sacker-Sell intervals reduce to single points, the
Lyapunov exponents of the system). As far as we know, the computational task of approximating
spectral intervals has not been previously undertaken. This is most likely because in many problems
the Lyapunov exponents appear to exist as limits (see Remark 3.1), and also because the numerical
approximation of spectral intervals is an even more delicate task that approximation of Lyapunov
exponents of regular systems. Naturally, this is due to the asymptotic nature of the quantities
being computed. Further, for ΣCL, there is the added difficulty that lim sups and lim infs must
be approximated, which is more complicated than approximating limits. And, for ΣED, it is the
uniformity (i.e., for all t ≥ s) in the definition of exponential dichotomy which causes additional
difficulties. These difficulties notwithstanding, below we present the strategies we have adopted to
approximate spectral intervals. In what follows, we will restrict to triangular systems: Ṙ = B(t)R,
where B is an upper triangular continuous and bounded function. As previously remarked, this
restriction is no loss of generality. In order to further validate the results of the procedures here
below to approximate the spectral intervals, we need to restrict to triangular functions B whose
diagonal is integrally separated.

8.3.1. Approximating ΣCL. To approximate the lim inf and lim sup in the definition of ΣCL,
we reason as follows. Let b(t) be a given diagonal element of the upper triangular transformed

coefficient matrix B. Let λ(t) = 1
t

∫ t

0
b(s)ds. Recall that

λ+ = lim
τ→∞

sup
t≥τ

λ(t) , and λ− = lim
τ→∞

inf
t≥τ

λ(t) .
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So, if we let

g(τ) = sup
t≥τ

1

t

∫ t

0

b(s)ds and h(τ) = inf
t≥τ

1

t

∫ t

0

b(s)ds ,

then for every ε > 0 there exists τ(ε) such that τ ≥ τ(ε) implies |g(τ)−λ+| < ε and |h(τ)−λ−| < ε.
In our experiments, we mimic this definition on a finite interval. For given T > 0, we specify a
value τ0, T > τ0 > 0, and compute

gf (T, τ0) = sup
T≥t≥τ0

1

t

∫ t

0

b(s)ds and hf (T, τ0) = inf
T≥t≥τ0

1

t

∫ t

0

b(s)ds ,(8.12)

which will provide approximations to λ+ and λ−.

8.3.2. Approximating ΣED. Our approach to approximation of ΣED is motivated by the
relationship between exponential dichotomy and integral separation as was seen in Example 6.2.
We develop a procedure for approximating ΣED for diagonal systems, or for any system that is
reducible to a diagonal system through a Lyapunov transformation. For example, see the proof of
Theorem 5.1, our procedure applies to triangular systems whose diagonal is integrally separated.

So, consider ẋ = D(t)x where D = diag(Bjj , j = 1, . . . , n), and where we may think of the
Bjj ’s as the diagonal entries of the upper triangular function B. For each j = 1, . . . , n, we consider
the diagonal planar systems (cfr. (6.13) and (6.16))

ẏj =

(

λ 0
0 Bjj(t)

)

yj and ẏj =

(

Bjj(t) 0
0 λ

)

yj .(8.13)

Following the argument relating exponential dichotomy and integral separation in Example 6.2,
see (6.14) and (6.17), we obtain the following result.

Lemma 8.2. Consider the diagonal system ẋ = D(t)x, D = diag(Bjj , j = 1, . . . , n). Then, for
each j = 1, . . . , n, the Sacker-Sell spectrum corresponding to the j-th diagonal element is given by
the interval

Λj = {λ ∈ IR : (8.13) are not integrally separated} .(8.14)

As a consequence of Lemma 8.2, we have (cf. [16])
Theorem 8.3. The Sacker-Sell spectrum of the diagonal system ẋ = D(t)x, D = diag(Bjj , j =

1, . . . , n), is given by

ΣED =
n
⋃

j=1

Λj ,(8.15)

where Λj is defined in (8.14), j = 1, . . . , n.
To obtain a computational procedure for ΣED out of Theorem 8.3, we rely on Steklov functions.

Indeed, recall Lemma 8.1, the systems in (8.13) are integrally separated if and only if for H > 0
sufficiently large the Steklov differences of λ and Bjj , respectively Bjj and λ, are positive for all t.

Now, given any H > 0, for j = 1, . . . , n, consider

αH
j = inf

t

1

H

∫ t+H

t

Bjj(s)ds and βH
j = sup

t

1

H

∫ t+H

t

Bjj(s)ds .(8.16)

We will use [αH
j , βH

j ], to approximate the j-the spectral interval of ΣED, j = 1, . . . , n. The following
result justifies our approach on an infinite time interval.
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Theorem 8.4. Consider ẋ = D(t)x where D = diag(Bjj , j = 1, . . . , n). For j = 1, . . . , n, let
αH

j and βH
j be given as in (8.16). Let H > 0 be given. Then, for each j = 1, . . . , n, Λj ⊆ [αH

j , βH
j ].

Moreover, for H > 0 sufficiently large, [αH
j , βH

j ] ⊆ Λj and hence [αH
j , βH

j ] = Λj , j = 1, . . . , n.

Proof. First, assume that H > 0 is arbitrary and that λ > βH
j , for some j = 1, . . . , n. Then,

there exists aj > 0 such that

∫ t+H

t

(λ−Bjj(τ))dτ ≥ ajH , ∀t .(8.17)

We want to show that λ and Bjj are integrally separated functions. That is, we need to show that
for all t, s, t ≥ s, there exists a > 0 and d ∈ IR such that

∫ t

s

(λ−Bjj(τ))dτ ≥ a(t− s)− d .(8.18)

We will verify (8.18) with a = aj and d = dj := 2H(|λ|+ maxt |Bjj(t)|). Because of (8.17), (8.18)
holds for all t and s with t = s + H . Consider the case of t, s, with t < s + H . Then, rewrite

∫ t

s

(λ−Bjj(τ))dτ =

∫ s+H

s

(λ−Bjj(τ))dτ −
∫ s+H

t

(λ−Bjj(τ))dτ ,

and thus
∫ s+H

t (λ−Bjj(τ))dτ ≤ (|λ|+ maxt |Bjj(t)|)(s + H − t) ≤ dj , so that

∫ t

s

(λ −Bjj(τ))dτ ≥ ajH − dj ≥ aj(t− s)− dj .

Next, let t, s, with t > s+H . Then, for some k > 1, integer, t = s+kH +σ, σ ∈ [0, H). Therefore,

∫ t

s

(λ−Bjj(τ))dτ =

k
∑

j=0

∫ s+(j+1)H

s+jH

(λ−Bjj(τ))dτ −
∫ s+(k+1)H

s+kH+σ

(λ −Bjj(τ))dτ ,

and thus (using (8.17) and the previous argument used when t < s + H) we get

∫ t

s

(λ−Bjj(τ))dτ ≥ aj(k + 1)H − dj ≥ aj(t− s)− dj ,

and (8.18) follows. Therefore, λ and Bjj(t) are integrally separated, and so λ /∈ Λj . A similar
proof for λ < αH

j establishes that Λj ⊆ [αH
j , βH

j ] for any given H > 0.
Assume now that λ /∈ Λj . Then λ and Bjj(t) and/or Bjj(t) and λ are integrally separated.

Suppose that λ and Bjj(t) are integrally separated, the argument for Bjj(t) and λ integrally
separated is similar. Then there exists a > 0 and d ∈ IR such that for all t, s, with t ≥ s, we have

∫ t

s

(λ−Bjj(τ))dτ ≥ a(t− s)− d .(8.19)

Choose H > 0 large enough so that a− d/H > a/2. Thus, for all t,

1

H

∫ t+H

t

(λ −Bjj(s))ds ≥ a− d/H > a/2 ,(8.20)

and so λ > βH
j . A similar proof for Bjj(t) and λ integrally separated implies that λ < αH

j , and

thus λ /∈ [αH
j , βH

j ]. Therefore, for H > 0 sufficiently large, [αH
j , βH

j ] = Λj .
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On a finite time interval, our computational procedure to approximate ΣED mimics Theorem
8.4. Given H > 0, and T > t0 > 0, we let b(t) be a diagonal element Bjj(t), for some j = 1, . . . , n,
of the triangular coefficient matrix B, defined on the time interval [0, T ]. We compute the Steklov

averages of b with respect to the given H : bH(t) := 1
H

∫ t+H

t
b(τ)dτ , for T −H ≥ t ≥ t0. Next, we

compute

bH = sup
T−H≥t≥t0

bH(t) and bH = inf
T−H≥t≥t0

bH(t) ,(8.21)

and use these as approximations to [αH
j , βH

j ] in (8.16).

9. Examples and Numerical Results.

We first consider a linear example for which the Lyapunov exponents do not exist as limits; in
this case, we approximate the spectral intervals. Then, we approximate the Lyapunov exponents for
two nonlinear systems, i.e., the exponents associated to linearization about computed trajectories;
in both cases considered, the Lyapunov exponents appear to exist as limits. Thus, we attempt
verifying integral separation of the diagonal of the transformed triangular problem in order to infer
stability of the Lyapunov exponents: in one case we are successful, in another we are not.

In all examples below, integration for Q is carried out with QRINT (see [15]) using Jacobi
rotations (the so-called θ-method in QRINT).

Example 9.1. Consider a planar linear problem ẋ = A(t)x with continuous spectrum where
A(t) is defined by

A11(t) = (2 sin(τ(t)) + α) cos2(θ(t)) + cos(τ(t)) − sin(τ(t)) − α− β cos(θ(t)) sin(θ(t))

A12(t) = (2 sin(τ(t)) + α) cos(θ(t)) sin(θ(t)) − θ̇(t) + β cos2(θ(t))

A21(t) = (2 sin(τ(t)) + α) cos(θ(t)) sin(θ(t)) + θ̇(t)− β sin2(θ(t))
A22(t) = −(2 sin(τ(t)) + α) cos2(θ(t)) + cos(τ(t)) + sin(τ(t)) + β cos(θ(t)) sin(θ(t))

and τ(t) = ln(t + 1). This problem is designed so that the orthogonal change of variables Q and
the upper triangular coefficient matrix function B are

Q(t) =

(

cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

)

and B(t) =

(

B11(t) β
0 B22(t)

)

where B11(t) = cos(τ(t)) + sin(τ(t)) and B22(t) = cos(τ(t)) − sin(τ(t)) − α. It is not hard to
explicitly obtain the spectral intervals (recall the result for Example 6.2): we have ΣL = [−1, 1] ∪
[−α − 1,−α + 1] and ΣED = [−

√
2,
√

2] ∪ [−α −
√

2,−α +
√

2]. For our experiments we choose
β = 1, θ(t) = ωt, and α = 4. Integration for Q was done with local error tolerance 10−5.

In Table 1, we report on results of experiments to approximate ΣL. We approximate all
integrals in (8.12) with the composite trapezoidal rule on data sampled at integer times. In the
Table we specify the values T , τ0, and report on the approximations (at 5 digits) for the two
spectral intervals making up ΣL. In spite of the crudeness of the quadrature rule, quite clearly ΣL

is approximated very well.

Table 1. Example 1. Approximation of ΣL.

T τ0 [λ−
1 , λ+

1 ] [λ−
2 , λ+

2 ]

1.E4 1.E2 [-1.0191, 1.0004] [-4.9774, -2.9998]
1.E6 1.E2 [-1.0191,1.0004] [-5.0002,-2.9998]
1.E6 1.E4 [-1,0.94871] [-5.0002,-3]
1.E7 1.E4 [-1,1] [-5.0002,-3]

In Table 2 we report on calculations to approximate ΣED. In the table, we vary quantities
in the procedure outlined in section 8.3, see (8.21). In particular, we vary the final time, T ,
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and the length of the Steklov averages, H . The initial time for which the Steklov averages are
maximized/minimized is fixed at t0 = 0, and the approximations we obtain to [αH

j , βH
j ] for j = 1, 2

are recorded to five digits. Our calculations are based upon data from the diagonal of B that we
have sampled using a large step size of h = 10. The Steklov averages are approximated with the
composite trapezoidal rule. The results point out the difficulty in finding an appropriate value for
H : simultaneously, one would need H large enough so that the endpoints of the intervals in ΣED

are approximated accurately, yet not so large with respect to the final time T that little data are
sampled.

Table 2. Example 1. Approximation of ΣED (t0 = 0).

T H [αH
1 , βH

1 ] [αH
2 , βH

2 ]

1.E7 1.E4 [−1.4063, 1.4142] [−5.4142,−2.5861]
1.E7 1.E5 [−1.2576, 1.4127] [−5.4141,−2.6191]
1.E8 1.E4 [−1.4142, 1.4142] [−5.4142,−2.5858]
1.E8 1.E5 [−1.4142, 1.4127] [−5.4141,−2.5858]

Example 9.2. (Lorenz Equation) Our next example is the Lorenz equation





ẋ
ẏ
ż



 =





σ(y − x)
ρx− xz − y

xy − βz



 .

We consider the parameter values σ = 16, β = 4.0 and ρ = 45.92 and the initial condition
(x(0), y(0), z(0)) = (0, 1, 0). In Table 3, we summarize some results which are typical. Error control
is done on the trajectory x, on Q, and on ν (see (8.8)). Apparently, the Lyapunov exponents exist
as limits: the linearized problem appears to be regular.

Table 3. Example 2. TOLX=TOLQ=TOLL=1.E-6.

tend Steps λ1 λ2 λ3

1.E2 8.6E3 1.415 3.E-2 -22.466
1.E3 8.6E4 1.4892 4.64E-3 -22.494
1.E4 8.6E5 1.499 4.64E-4 -22.499
1.E5 8.6E6 1.5027 4.07.E-5 -22.5027
1.E6 8.6E7 1.5024 7.6E-6 -22.5024

Based upon the results in Table 3, we observe that: (1) There is an obvious relation between
number of steps taken and length of integration (recall that we are integrating with variable step-
size). This suggests that we are tracing “alike trajectories” on the Lorenz attractor. (2) With
all the imperfections of finite precision arithmetic, the Lyapunov exponents are clearly converging
towards λ1 ≈ 1.5, λ2 = 0, and λ3 ≈ −22.5.

In order to infer stability of the exponents, we have verified if the linearized system enjoys
integral separation. As far as we know, this is the first attempt of this type, on the Lorenz’ system
or otherwise. We use the construction outlined in Section 8.2 on the transformed, triangular,
problem. So, we have to check if the three functions b11, b22, b33, are integrally separated. As it
turns out, the first two functions are the hard ones (the third is more clearly integrally separated):
Figure 1 shows (b11 − b22) on [0, 100], and clearly b11 and b22 are not separated. So, we check if
(8.11) holds for H sufficiently large. In practice, to form bH

11 and bH
22, we approximate the integral

by the composite trapezoidal rule. We look for H in the range [1, 20] and –for t ∈ [0, 10000]– the
value H = 20 gave sufficient separation; see Figure 2. We conclude that, on the given interval,
and subject to the limitations of finite precision computation, the diagonal of the transformed
triangular system is integrally separated, and thus so is the linearized system, and the Lyapunov
exponents are stable.
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The next example highlights the difficulties in inferring integral separation of the diagonal of
B for problems with close exponents, even when the Lyapunov exponents appear to exist as limits
and to be stable.

Example 9.3. This example is adapted from one in [18] (used also in [13] and then [3]). We
have a ring of oscillators with an external force proportional to the position component of the limit
cycle of the van der Pol oscillator:

ÿ + α(y2 − 1)ẏ + ω2y = 0
ẍi + diẋi + γ[Φ′(xi − xi−1)− Φ′(xi+1 − xi)] = σyδi1 , i = 1, . . . , n .

(9.1)

Above, Φ(x) = (x2/2)+(x4/4) is the single well Duffing potential, α, ω, γ, σ are scalar parameters,
xi is the displacement of the i-th particle, di is the damping coefficient, and we have periodic
boundary conditions to be used in the expressions for Φ′ (x0 = xn and xn+1 = x1). For our
experiments, we set n = 5 and set α = 1, ω = 1.82, γ = 1 and σ = 4. We set di = 0.25 for i odd
and di = 0.15 for i even. Initial conditions are taken y(0) = 0, ẏ(0) = −2, xi(0) = ẋi(0) = 1, i =
1, . . . , n. Error control is performed on x, Q, and ν.

Table 4. Example 3. TOLX=TOLQ=TOLL=TOL.

tend TOL Steps λ1 λ2 λ3 λ4

1000 1.E-4 15214 1.8E-3 8.3E-4 -9.72E-2 -9.99E-2
5000 1.E-4 78599 4.9E-4 1.5E-4 -9.80E-2 -9.86E-2
10000 1.E-4 157372 2.1E-4 4.5E-5 -9.82E-2 -9.83E-2
1000 1.E-6 34911 1.7E-3 8.7E-4 -9.74E-2 -9.99E-2
5000 1.E-6 115135 4.2E-4 1.7E-4 -9.81E-2 -9.86E-2
10000 1.E-6 364206 1.4E-4 8.4E-5 -9.82E-2 -9.84E-2
1000 1.E-8 84584 1.7E-3 8.7E-4 -9.74E-2 -9.99E-2
5000 1.E-8 222556 4.2E-4 1.7E-4 -9.81E-2 -9.86E-2
10000 1.E-8 883292 1.4E-4 8.4E-5 -9.82E-2 -9.84E-2

From the results summarized in Table 4, we observe good convergence for the four exponents on
which we report. However, inferring integral separation, although perhaps possible, is quite difficult
because of the clustering of the exponents. To illustrate, with tend = 1000 and TOL = 1.E − 6, at
two digits the 12 approximate exponents are

1.7E− 3, 8.7E− 4, −9.7E− 2, −1.0E− 1, −1.0E− 1, −1.0E− 1,
−1.1E− 1, −1.1E− 1, −1.1E− 1, −1.2E− 1, −2.1E− 1, −1.0E0.

(9.2)

We attempted to verify if the linearized problem was integrally separated, but failed. To be
precise, on the interval [0, 1000], the value of H = 100 was sufficient to establish positivity of the



COMPUTING SPECTRAL INTERVALS 23

Steklov differences bH
22− bH

33, bH
10,10− bH

11,11, and bH
11,11− bH

12,12, and hence integral separation of the
respective diagonal entries of B, but all other Steklov differences were oscillating about 0 (even
for larger values of H), therefore precluding us from inferring integral separation of the linearized
problem. This highlights that, for problem with close (or identical) exponents, it will be necessary
to develop block analogs of QR techniques and associated criteria to infer integral separation (in
a block sense).

10. Conclusions.

In this paper we have blended theoretical studies on stability of Lyapunov exponents with
computational techniques which target the Lyapunov exponents. Stability of the exponents is
equivalent (in the case of distinct exponents) to having an integrally separated fundamental matrix
solution. We have assumed that the system was integrally separated, and further explored what
conditions are needed to validate popular numerical methods, in particular those based on the QR
and SVD of fundamental matrix solutions. We also explored the implications of integral separation
on approximation of three different spectra of linear systems: one, ΣED, of Sacker and Sell based
upon exponential dichotomy, another, ΣL, that naturally generalizes Lyapunov’s upper and lower
exponents to a spectrum, and a third, ΣCL, based on the diagonal elements of the upper triangular
coefficient matrix B that is obtained through an orthogonal change of variables. In general, the
Sacker-Sell spectrum is larger than the other two spectra, while under the assumption of integral
separation of the diagonal of B we have that ΣL = ΣCL. We also showed how to approximate ΣED

when the diagonal of B is integrally separated.

Future work will need to address several issues which we did not resolve in the present paper.
In no particular order, we believe the following will be worthwhile investments.

1. Careful implementation and analysis of continuous SVD techniques.
2. Block analogs of QR and SVD techniques for the case of non-distinct exponents.
3. Refined implementation and study of techniques to approximate ΣED along the lines of

the approach we laid down in Section 8.3 and used in Example 9.1.
4. More thorough study of techniques to approximate Steklov averages, and further exploita-

tion of the power of this tool.
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