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ON THE ERROR IN COMPUTING LYAPUNOV EXPONENTS BY QR
METHODS *

LUCA DIECIT AND ERIK S. VAN VLECK

Abstract. We consider the error introduced using QR methods to approximate Lyapunov exponents. We
give a backward error statement for linear non-autonomous systems, and further discuss nonlinear autonomous
problems. In particular, for linear systems we show that one approximates a “nearby” discontinuous problem where
how nearby is measured in terms of local errors and a measure of non-normality. For nonlinear problems we use a
type of shadowing result.
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1. The problem. Consider the non-autonomous linear system
(1.1) t=Alt)x, t>0,

where we will assume that the function A : IRT — IR™*" is bounded. To characterize the asymp-
totic growth behavior of (1.1), a commonly employed tool is that of Lyapunov spectrum, henceforth
labeled X1, which is based on upper and lower Lyapunov exponents.

Lyapunov exponents are also routinely used to study nonlinear dynamical systems via lin-
earized analysis. Indeed, Lyapunov exponents are probably the most widely used quantities for
detecting chaos, estimating dimensions of attractors, entropy, and so forth; e.g., see [5, 19, 2, 3].

There are some aspects about the popularity of Lyapunov exponents which are somewhat in-
triguing: (i) There are only a handful of non concocted problems for which the Lyapunov exponents
are known analytically, and, as a consequence, (ii) Many studies using Lyapunov exponents are
of numerical nature, but (iii) There is little error analysis of the techniques used to approximate
Lyapunov exponents; see [7, 13, 15]. Our goal in this work is to rectify in part this situation, by
providing a backward error result for QR techniques.

A plan of this paper is as follows. In the remainder of this Introduction, we recall the definition
of X1,. In Section 2 we review the QR methods for approximating Lyapunov exponents. In Section 3
we give our main results on the error introduced by the QR methods when approximating Lyapunov
exponents. These are largely results for linear problems, but we also discuss the nonlinear case with
the help of a shadowing result. In Section 4 we illustrate our theoretical results on an example.

Lyapunov Spectrum: Yp,. Let X be a fundamental matrix solution of (1.1) and consider

1
(1.2) Ai =limsup-In||X(t)esl] , i=1,...,n,
t—o0 t
where the e;’s are the standard unit vectors. In (1.2) and everywhere in this paper the norm is

the 2-norm for vectors. For a matrix, say C' € IR"*", we will consider either the induced 2-norm,
1/2

ICll2 = maxyemn: |juljs=1 ||Cul|2, or the Frobenius norm, ||C||r = (szzl Cf])

n
When > A; is minimized with respect to all possible fundamental matrix solutions, then the
i=1
Ai’s are called (upper) Lyapunov exponents, and the corresponding fundamental matrix solution
is called normal.
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2 L. DIECI AND E. S. VAN VLECK

Consider also the adjoint equation
(1.3) y(t) = —AT(ty(t) , 20,

and let {—p;}™ , be its Lyapunov exponents. We can assume that A\; > Ay > -+ > A, and
W1 > pe > -+ > ly. We define the Lyapunov spectrum Xy, as

(1.4) Yy = U (15, Ad] -

In general, for any j =1,...,n, u; < A;. If u; = A;, for all j =1,...,n, then the system is called
regular.

Remark 1.1. Although in practice one may not need to find the entire spectrum of a system,
but only a few of the most dominant spectral intervals, in this paper we consider the case in which
we want to approximate the entire spectrum, and this is why we consider the entire fundamental
matrix solution and not just a few of its columns.

The Lyapunov exponents (and hence X1,) are not necessarily stable; see [1]. In this context, the
exponents are said to be stable if they are continuous with respect to perturbation in the coefficient
matrix. More precisely, if “for any € > 0, there exists § > 0 such that sup,c i+ ||E(t)|| < ¢ implies

(1.5) Ni—N|<ei=1,....n,

where the \;’s are the (ordered) Lyapunov exponents of the perturbed system @ = [A(t) + E(t)]2”.

If the Lyapunov exponents are distinct, then (again, see [1]) the exponents (and X1,) are
stable if and only if X is an integrally separated fundamental matrix solution. Writing X
[X1(t),...,Xn(t)], X is integrally separated if for i = 1,...,n — 1, there exist ¢ > 0 and 1 >
such that

(t) =
d>0

XN [ X (s)]]

(1.6) > de?t=9)
Xl [ Xipa ()]
for all t,s : t > s > 0. Palmer [17, p. 21] considered the Banach space B of continuous
bounded matrix valued functions A, with norm ||A|| = sup||A(¢)||, and employing results from
>0

[14] showed that the systems with integral separation form an open and dense subset of B. Thus,
integral separation is a generic property in B and it is thus reasonable to think (at least in first
approximation) that one is trying to approximate stable and distinct Lyapunov exponents.

2. QR methods. In recent years, we have undertaken a systematic and focused effort in
trying to numerically approximate X, and also the Exponential Dichotomy spectrum, by so—
called QR methods; e.g., see [8, 9]. Ever since the work [4], these methods have been popular
techniques to approximate Lyapunov exponents. QR methods come in two flavors: continuous or
discrete. Although these are conceptually equivalent, their practical implementation and observed
performance in finite precision often differ.

The bottom line of these techniques consist in extracting the required spectral information
from the diagonal of the triangular factor in the QR factorization of the (normal) fundamental
matrix solution X of (1.1). The function @ is orthogonal, while R is upper triangular with positive
diagonal entries. Henceforth, whenever we refer to the QR factorization we always mean the unique
one for which the diagonal of R is positive. It is well known that this factorization exists, is unique,
and is as smooth as X.

Once R is available (but see below), the Lyapunov exponents are recovered from

1
(2.1) A o= limsupglog(Rii(t)) ,i=1,...,n.

t—o0
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A similar formula can be used to obtain the p;’s. We remark (see [1]) that (2.1) gives the Lyapunov
exponents for regular systems (and, then, the lim sup is really a limit). Moreover, in [10], we showed
that (2.1) does indeed give the Lyapunov exponents as long as they are stable (not necessarily
distinct). We hasten to stress that, from the numerical point of view, it is reasonable to approximate
stable quantities.

2.1. Discrete QR method. Suppose we want the QR factorization at X(ty), for some

sequence of points tg, k =0,1,2,..., with {5 = 0. At any such point ¢y, we can write
(2.2) X(tg) = P(t,tp—1) ... P(ta,t1)P(t1,0) X0,
where

(2.3)  D(t,tj 1) = AW)D(t,tj 1), O(tj 1,t; 1) =1, tj 1 <t<t;,j=1,2... k.

Now, let Xo = Q(to)R(to), where Q(to) € IR™ " is orthogonal and R(tg) € IR™ "™ is upper
triangular with positive diagonal entries. Then, for j = 1,2,...,k, recursively consider

(2.4) Ut tj-1) = ABW(ttj-1) , U(tj-1,t-1) = Q(tj-1)
' and factor \I/(tj, tj_l) = Q(tj)R(tj, tj_l) 5

where Q(t;) are orthogonal and R(t;,t;_1) are upper triangular with positive diagonal. Then, we
have the QR factorization of X (tx)

(2.5) X(tk) = Q(tk)R(tk, tk—l) .. R(te, tl)R(tl, to)R(to) .

In other words, we have
1
(2.6) H t],t] 1)) R(to) -

In order to access the diagonal of R(t;), we need to monitor only the diagonal entries of the factors
R(tj,t;—1), so that (see (2.1))

1
(2.7) " 1og( ii tk Zlog Rii(tj,tj—1) + log Rii(to)) .

Remark 2.1. Naturally, integral separation of X, see (1.6), can be phrased in terms of integral
separation of R.

2.2. Continuous QR method. The key difference between discrete and continuous QR
methods is that in the continuous case one forms the triangular system satisfied by R, and in so
doing bypasses forming explicitly the function R. From the QR factorization of X, we seek the
function @ which performs the change of variables.

Now, it is well known (e.g., see [9]) that such @ is unique and satisfies

(2.8) Q=QMH(Q,4), Q0)=Qo,

where we have set H := Q7 (t)Q(t), with entries

QTOADQW)y, i >,
(2.9) Hy(t)=1{ 0, i3,

—(@QT(MAMQM))ji, i <.
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So, if @ is known, then R satisfies the transformed system

(2.10) R=B({#)R, R(0)=Ry,
where we have set

(2.11) B(t) == QT(HAMQE) - QT (A1),

and B is upper triangular by the way that H has been defined. The logarithm of the diagonal of
R(ty) is now

log<diag(R(tk))> = / ) diag(B(t))dt + log(diag(Ryp)) -

to

and so (see (2.1))

(2.12) %log(Rii(tk)) _ i( O " Bui(t)dt + log Rii(to)) -

Remark 2.2. Integral separation of the fundamental matrix solution X, see (1.6), can be
equivalently phrased in terms of integral separation of the diagonal of B (see [10]):

(213) / (B”(T) - Bi+1,i+1(7))d7- Z d + a(t - S) 5

forallt,s : t>s, where d <0 and a > 0.

In practice, any sensible implementation of the continuous QR method will form the (diagonal
of the) function B in (2.11) and approximate the integral in (2.12) at the same time as the
approximation of @) in (2.8) is done. We can think of this as follows.

From (2.11), we have that the diagonal entries of B are given by By;(t) = [QT () A(t)Q(t)]
i=1,...,n. Define the functions p,(t), ¢ >0,i=1,...,n, as

i’

(2.14) wi(t) = /0 [QT(S)A(S)Q(S)]iidS7 i=1,...,n.

Then, we can think of the continuous QR method as a technique where we approximate this
differential system

Q =QH, Q0)=Qo,
(2.15) {m _ [QT(t)A(t)Q(t)Lw wi(0)=0, i=1,...,n.

The following simple observation will come in handy. Suppose we have values tg,t1,..., and
let tp—1 <t < tg. Clearly, the Q-factor in the QR factorization of X (¢) is the same as the unique
Q-factor in the QR factorization of the function (recall (2.3))

(2.16) q)(tﬂfk_l) .. .‘I)(tg,tl)fl)(tl,O)Qo.

Therefore, the differential system (2.15) on which the continuous QR method is based can be
formulated in a local way. That is, for t; <t <t;11, 7 =0,1,...,k — 1, we seek functions Q(t, t;)
and p;(t,t;) satisfying

Qt.t;) =Qtt)H(Q(tt;), A1), Qtj,t;) =Q(t;)
(2'17) {'*tt‘ . t.t:)] .. (. ) N
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and H is defined as in (2.9) but with Q(¢,t;) replacing Q(¢) there. So doing, in (2.12) we will use

1t 1<
2.18 — Byi(t)dt = — i(tj, ti—1)-
(218) oy B = 5 Yttt
We conclude this section with two useful results. The following justifies the notation R(t;, ;1)
used in (2.4).
LEMMA 2.3. For j =1,2,..., the matrices R(tj,t;_1) in (2.4) are the solution at t; of

R(t,tj—1) = BO)R(t, tj—1) , R(tj-1,tj-1) =1,

where B(t) is given in (2.11).

Proof. This is a consequence of uniqueness of the QR factorization. The formal argument is
by induction on j. For j = 1, from (2.5) we have that R(t1) = R(t1,t0)R(to), and from (2.10) we
have this same formula as well, with R(t1,%o) solution at t; of R(t,to) = B(t)R(t,to), R(to,to) = I.
Uniqueness of the QR factorization of X (¢1) gives the case of j = 1. Now, if the result is true for
J, then it follows for j + 1, by the same argument we just used replacing R(t¢) by R(t;), etc.. O

We will also use the following result.

LEMMA 2.4. Suppose that the sequence of points {t;}, 7 =0,1,..., with0 =to <t1 <ty <---,
is given, that lim;_,o t; = oo, and that all the matrices R(tjy1,t;) € R™ ™ in (2.6) are upper
triangular with positive diagonal. Then, at any ty, R(ty), solution of (2.10), is the same matriz
as the exact solution at ty, of the piecewise constant system

(2.19) R=B;R,t; <t<tj1, RO)=R(t), j=0,....k—1,
where the matrices B; € IR™™™ are upper triangular and satisfy

(220) R(tj+17tj) = ethj 5 hj = tj+1_tj7 j:(),k—l

Proof. The assumption on the matrices R(t;+1,t;) implies that they are invertible with no
negative eigenvalues. So, they have real logarithms, call them h;B;, which are upper triangular,
and (2.20) is satisfied. Now the proof follows at once using Lemma 2.3, and the obvious equality
R(tj,t;_1) = R(tj,t;_1), where we must interpret R(t;,t; 1) as the left limit: ¢t — t;. 0

Remark 2.5. For us, the points t;, j = 0,1,..., in the Lemma will be the sequence of points
found during numerical integration.

3. Error Analysis.

As far as we know, the first concrete effort to provide error analysis for QR methods was
made in [7] where the authors, under the assumption of point spectrum?, attempted an analysis of
the errors introduced by both continuous and discrete QR methods and further specialized their
results to the case of constant coefficient and periodic problems. The work [13] is a more recent
effort for constant coeflicients problems. For the case of algorithms based on the discrete Singular-
Value-Decomposition (SVD) method, we refer to the work [15] (see also [20]). There, the authors
consider the errors introduced by the finite precision computation of the SVDs of exact transition
matrices. Interestingly, in [15], Oliveira and Stewart reach a perturbation result which rests on an
assumption very close to one needed for stability of the continuous SVD method (cfr. [15, Formula
(2.1)] with [9, Formulas (7.6), (7.7)]).

The question we want to address here is: when we approximate Lyapunov exponents by the
QR methods, what kind of error result can we get?

1That is, the Exponential Dichotomy spectrum reduces to n points, the Lyapunov exponents
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There are always (at least) three sources of error: the one introduced by discretization of the
relevant differential equations, the one introduced by the replacement of limits on the continuous
time variable ¢ by limits taken over a sequence of points {¢;}, and of course the one introduced
by the need to truncate the limiting process itself. There are also the errors introduced by linear
algebra computations in finite precision, but we may think that these are incorporated in the
discretization errors.

In this work, we analyze only the first source of error. To be justified in replacing the lim sup
and lim inf by computations on a sequence of points rather than on a continuum, we may want to
think that the system is regular, hence the Lyapunov exponents exist as limits. In this case, we
can replace the limit along the positive real axis with the limit along any sequence of points {t;}
converging to co. To be conceptually justified in neglecting the truncation of time, we will think
of the situation in which we use the QR methods taking them to the limit of ¢ — oo.

With these simplifications, we will certainly expect to obtain good error statements for the
Lyapunov exponents computed by QR methods if we could infer that the integration errors to
approximate @) (and R) do not accumulate. But, in general, these errors do accumulate! However,
in spite of this fact, one often obtains very accurate approximations to the Lyapunov exponents.
Why? We believe that the reason lies in the following statement, which we will better qualify in this
paper. In fact, our main results, Theorems 3.12 and 3.16, may be summarized as follows. “With
the QR methods we are finding, at points ¢, the QR factorization of a matrix solution associated
to a linear system close to the original one. The measure of closeness depends on several factors,
the most relevant being: The magnitude of the local errors occurring during integration of the
relevant differential equations, and how non diagonal is the function R (i.e., the departure from
normality of R), the exact triangular factor in the QR factorization of the matrix solution X”.

Backward error results have proven very important in the context of numerical linear algebra
and geometric integration, see for example [21] and [12]. Our result is more in the flavor of
the linear algebra type of results, and our is the first result of which we are aware that gives a
backward error statement on the stability of the QR methods. It really says that, in theory, the
QR methods can be used to approximate (in the infinite limit) the Lyapunov exponents of a system
which we can make close to the original one, by controlling the integration stepsize, or the error
tolerance. Once this is understood, then one may want to ask whether this type of backward error
result implies that the computed Lyapunov exponents are close to the Lyapunov exponents of the
original problem. We do not address this concern directly here. We simply remark that, for this
to be true, a stability /continuity result for Lyapunov exponents is needed, which in the case of
distinct Lyapunov exponents is equivalent to the existence of an integrally separated fundamental
matrix solution.

3.1. Discrete QR error. In practice, we cannot solve for the transition matrices ® in (2.2)
exactly, and we will actually compute

(3.1) Xk = X(tg,te—1) ... X(t2,t1) X (t1, t0) X0,

where the matrices X (¢;,t;_1) are approximations to ®(¢;,t;-1), = 1,..., k. Letting Q(to) = Qo,
and progressively setting

X(tj,tj-1)Qj—1 =QR; , j=1,....k,
the numerical discrete QR method will read
(3.2) Xi = QrRrRr—1... RoR1R(to) .

The issue is: how does (3.2) relate to (2.5)7 The next result is the key.
THEOREM 3.1. Fork =1,2,..., and j = 1,...,k, let Q(t;) and R(tj,tj—1) be the exact Q
and R terms in (2.5), and let X}, be given in (3.1). We have

(3.3) X, = Q(tk)[R(tk, te—1) + Ek] e [R(tg, t1) + Ez][R(tl, to) + El]R(to) ,
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where
and N; are the local errors obtained when approzimating ®(t;,t;—1) by X (t;,t;-1): Nj = X (tj,tj-1)—
‘I)(tj, tjfl), ] = 1, Cey k.

As a consequence of the above, the numerical realization of the discrete QR method as expressed
by (3.2) finds the exact QR factorization of the sequence on the right-hand-side of (3.3).

Proof. Consider the first integration step. We have X (t1,t9) = ®(t1,t0) + N1, and we form
X(tl,to)Qo = QlRl- But, since we have (I)(tl,to)Qo = Q(tl)R(tl,to), then we obtain QlRl =
Q(t1)R(t1,t0) + N1Qo, and so

X(t1,t0)Qo = Q(t1)[R(t1,t0) + Q" (t1)N1Qo] -

Now consider the second integration step. We are looking at Xy = X (t2,¢1)X (t1,%0)Qo. Arguing
as we just did, we get

X(t2,t1)Q(t1) = Q(t2)[R(ta, t1) + Q" (t2) N2Q(t1)]
where Ny is obtained from X (to,¢1) = ®(to,t1) + No. Using this in the expression for Xs gives
X9 = Q(tQ)[R(tQ, tl) + EQ][R(tl, to) + El]R(to) .

Continuing this way, we obtain the sought result. Finally, the interpretation of what the numerical
discrete QR method does is obvious. O

Remark 3.2. To clarify, suppose that we are using a p-th order method for the numeri-
cal integration of the differential equations, enforcing a local error control, so that ||[N;| =
|®(tj,¢j-1) — X(t;,tj—1)|| < TOL, in the 2-norm or in the Frobenius norm. Then, we can as-
sume that

| E5]l = [|N;]| < TOL .

Of course, we could also say ||E;|| < cjh;)ﬂ, where we have set h;_1 =t; —t;_1,j=1,2,..., and
the ¢;’s are constants (which depend on the function of coefficients A, and on the formula used).
In all cases, we can control (either through the input tolerance, or through the choice of stepsize)
the norm of F/;, in principle making it as small as we want, though in practice we can at best hope
to make it as small as order eps (the machine precision)?.

Let us now set
R(tji1,t5) == R(tj+1,t5) + Ejyr,

and more generally
~ 1 ~
R(ty) =([[ R(tj.t;-1))Rito) -
j=k

We must stress that these matrices ﬁ(thrl, t;) are not upper triangular, in general. Assume now

that Ej41 is sufficiently small, so that R(tj+1,t;) is nonsingular and has no eigenvalue on the
negative real axis; see also Assumption 3.5 below. Then, in a similar way to what we did in
Lemma 2.4, R(ty) is the exact solution at tj of the piecewise constant problem

(3.5) R=B;R, t; <t<tj4;, RO)=Ro, j=0,....k—1,

2In double precision arithmetic, eps ~ 2 x 1016
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where the matrices Ej € IR™*" satisfy

~

(36) j%(tjq_l,tj) = ethf, hj Z:tj+1—tj, jZO,...Jf—l.

By comparing the above result with Lemma 2.4, we now proceed to find bounds on the dif-
ferences B; — B;. If we can make these differences small, then we would have found the sought
backward error statement. Intuitively, since E(thrl,tj) = R(tj41,t;) + Ej41, and ||[Ej41] is of
the same order of magnitude as the local error, one may expect that ||B; — EJH is also of the
same order. This is correct if logarithms of nearby matrices are near to one another. Precisely in
which way this is the case is what we will investigate next. The following identity is useful for our
analysis.

THEOREM 3.3. [6, Theorem 2.6] Let R € IR™*™ be an invertible matriz with no eigenvalues
on the negative real axis, and let E € IR™ ™ be such that R+ F also has no eigenvalues on the
negative real axis. Then, R+ E admits a principal logarithm log(R+ E) and the following formula
holds:

1
(3.7) log(R+ E) = log(R) + / [(R—D)s+ 1] 'E[(R+E—I)s+1] 'ds.
0
Now, (3.7) indicates that log E(tj.’.l, t;) is close to log R(t;+1,t;) if the integral term

1
(38) /O [(R(thrl; tj) - I)S + I] 71Ej+1 [(R(thrl; tj) + EjJrl - I)S + I} 71d5

will remain of the same order of magnitude as ;1. Naturally, we must have that this is true
for all terms in the infinite sequence {¢;}. Our goal in the remainder of this section is to find an
insightful expansion, and bounds, for the expression in (3.8), since as it stands (3.8) is not too
revealing. We look for an expansion in E;41, and then first order bounds (that is, within terms of
order |[Eji1]%).

Let us introduce some notation. Define D(t;41,t;) (see Lemma 2.3), for j = 0,1,... as the
solution at ¢;4; of

(3.9) D(t,t;) = diag(B(t))D(t, ;) , D(tj.t;) =1,
where B(t) is given in (2.11).
Notation 3.4. For all j =0,...,k—1, and k > 1, we will set:
- For the diagonal and strictly upper triangular part of R(¢;41,t;):
(3.10) R(tjt1,t;) = D(tjpa,t5) + Ujsr

- Also, for s € [0,1], we set

(3.11) Rj(s) = (R(tj1,t5) = I)s+ 1,
and
(3.12) Dj(s):= (D(tj41,t;) —I)s+1.

We will also need Assumption 3.5 below.
ASSUMPTION 3.5. Assume that

(3.13) pj = [[Ejtall- [lgign(1,Dii(tm,tj))]—l <p<l, Vj=k,...,0, k=1,2,....



QR ERROR 9

Remark 3.6. Assumption 3.5 quantifies the interplay between the local errors (that is, ||Ej41]])
and the solutions of the diagonal problems. In principle, since we can make || E;41| as small as we
like, then it is clear that we can enforce Assumption 3.5, for any given value of k. Alternatively, for
given value of ¢;, and desired bounds on ||E;11||, we may choose the point ¢;11 to enforce (3.13).

LEMMA 3.7. Let (3.13) hold. For any given j =k,...,0, and k = 1,2,..., we have

l

[Ry(s) + sEy] ™ = Ry (9) Y (-1 (sE BT (9)' s € [0,1].

=0

Proof. Rewriting [(R(tj+1,t;) + Ejr1 — I)s + 1|71 = [Rj(s) + sEj41]7! = R;l(s)[l +
sEj1 R;l(s)]_l, the result would follow upon expanding the latter inverse. Now, the given expan-

sion is valid as long as the spectral radius of sF;;, R;l(s) is less than 1. But, since the eigenvalues
of R;(s) are (Dy;(tj+1,t5) —1)s+1,i=1,...,n, and (3.13) holds, the claim follows. O
Using the expansion of Lemma 3.7, and (3.7), we can thus write

1
(3.14) log(R(t;j4+1,t;) + Ejp1) = 10g(R(tj+17tj))+/ R (s)Ej1 Ry (s)ds + O(| B |*)
0

where the constant hidden in the high order terms depends on bounds on maxp<s<i HRj_l(s)H

Our next tasks are to find a manageable expression (and bound) for fol Rj_l(s)Ej_H Rj_l(s)ds
and to obtain uniform (in j and s) bounds on ||RJ_1(S)|| so that the quantity O(||E;+1]|?) is under
control.

LEMMA 3.8. We can rewrite R;l(s) as follows:

n—1
(3.15) R;l(s) = D;l(s) (—1)’“1/;-’“(5)7 where Vi(s) = sUjJrlD;l(s)7
k=0
and also as
n—1
(3.16) R;l(s) = [Z(—l)ka(s)} D;l(s), where W;(s) = sD{l(s)UjH ,
k=0

where Ujy1 is defined in (3.10). As a consequence, we can write

1 1 n—1 n—1
(3.17)/ R;l(s)EjHR;l(s)ds:/ (Z(—D’fwf(s))Dgl(s)Eﬁngl(s)(Z(—n’fvf(s))ds.
0 (U — k=0

Proof. The final rewriting (3.17) is obvious. We will only prove (3.15), the proof of (3.16)
being similar. We have

R;'(s) = (Dy(s) + sUjH)‘1 =D; ' (s)(I+ sUj+1D;1(s))‘1 =D; ' (s)(I + Vj(s))‘1 .

Now, since Ujy1 is strictly upper triangular, then Vj(s) is strictly upper triangular and therefore

we have V'(s) = 0 and

n—1

(IT+Vi(s) = S (~)FVE(s).

k=0
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The expression in (3.17) elucidates the first order error expansion in (3.14). Now, we proceed
to find bounds. To simplify notation, let us set

1
Lj Z:/ Rj_l(S)EjJrle_l(S)dS,
0
so that (3.14) reads
og(R(tj11,t5) + Ejp1) = log(R(tjy1,t5)) + Lj + O(|Ej31?)

and using (3.17) we will bound L, in norm.
To begin with, we derive bounds for the matrix of absolute values. The triangular inequality
gives

n—1 1 n—1
k -1 -1 k
1) 1< g SV [ D76 D5 )t g S IV

where the notation |L;|, etc., refers to the matrix of absolute values (recall that Dj_1 (s), see (3.12),
are diagonal with positive diagonal entries). Next, we give bounds on the quantities in (3.18).

THEOREM 3.9. Consider the matriz fol Dj_l(s)|Ej+1 |Dj_1(s)ds of (8.18), call it Fjy1. Further,
let D(tj41,t5) = diag(dl, cee dn). Then, for p,q=1,...,n, Fj11 has entries

log(dp)—log(dq)
—— p;éqanddp#dq
(3.19) (Fj+1)pg = [(Ej1)pgl X = da
J+1)pq J+1)pq é7 p:q O'r'p?éq, but dp :dq
Moreover, for p,q=1,...,n, we have
|(Ej+1)pal < (Fio1)e < |(Ej+1)pql
7 7 S Witl)pg = Lt 7 :
exp(max(ftj " Byy(t)dt, ftj "' Byq (t)dt)) exp(mln(ftj " Byy(t)dt, ftj " By (t)dt))
(3.20)

Proof. Given the definition of Fji1, we have (Fj11)pq = [(Ej+1)pq] fol m. Since

(D;)pp(s) = (dp — 1)s + 1, simple integrations give the stated form (3.19).

To get the bounds in (3.20), we proceed as follows. For p = ¢, or p # ¢ but d, = dg, then
(3.20) is obviously sharp, since dj, = exp(fttjj+1 By (t)dt).

For p # ¢ and d, # dg, suppose dp, > dq. Then, we have

(3.21) log(dp) — log(dy) _ 1 fttjjﬂ (Bpp(t) — Byq(t))dt
' dp — dq exp([;7"" Bqq(t)dt) exp([,”"" (Byp(t) — Bog())dt) — 1

Now, consider the function x/(e* — 1) for > 0. By expanding e?, it is easy to see that

1 T
— <
er et —1

<1, 2>0.

Using this in (3.21) gives the claim in case d,, > dg. Much the same argument for the case d; > d,
completes the proof. O

Remark 3.10. As a consequence of Lemma 3.9, we see that the entries of F;;; may differ
significantly from those of |Ej41], only in case for some indices ¢ = 1,...,n, fttjj“ By, (t)dt < 0.
In general, this will betray that some Lyapunov exponents will be large, negative numbers.

Let us continue to bound the terms in (3.18).



QR ERROR 11

THEOREM 3.11. Recall the notation of (3.10) and (3.11). For all j =0,1,..., let

1

(3.22) 0j := min — tit1 ’
1<p<n rmn(l, eXP(ftj Bpp(t)dt))

and let v; = ||Ujz1|| be the defect from normality® of R(tj11,t;). Then, the following bounds hold

n—1
1—(0v)"
. k <« \Y375)
(3.23) a3 [WHG)| < o
k=0
and also
n—1
1—(0v)™
. k < 3737
(3.24) Orgggllg) IVE@l < =%

Finally, the following bound on ||RJ_1(S)H holds as well

1= Gm)"

—1
(3.25) max, [R7(5) < 6 52

0<s<1

Proof. With R;l(s) given by (3.15) or (3.16), (3.25) follows immediately from (3.24) or (3.23).
To witness, using (3.15), we have ||R;1(s)|| < ||D;1(s)|| ZZ;& ‘V]k(S)H Now, since

1
D l(s :diag< _ , i:L...,n),
i) 1+ s(e:)(p(fttj]+1 Bjdr) —1)
given the definition of §; and (3.24), then (3.25) follows.
The argument to show (3.23) and (3.24) is the same, so we only show the latter. Recall that
Vi(s) = sU. j+1D;1(s). So, norm bounds and the triangular inequality, given the definitions of v;

and 9;, give

n—1 n—1
Do IVEGI< (6"
k=0 k=0

and (3.24) follows. O

By putting together the bounds in Theorems 3.9 and 3.11, we can finally summarize our
backward error statement.

THEOREM 3.12. Consider the system (1.1). Let {t;}, j=0,1,...,t0=0<t1 <ty <..., be
the sequence of points (converging to o) generated by the numerical realization of the discrete QR
method.

At each tj, j = 1,2,..., the exact discrete QR method delivers the factorization (2.5), where
R(tj+1,t5) = ehiBi hj =tjy1 —t;, 7 =0,1,..., is the solution of the upper triangular system
(2.19). The numerical discrete QR method, instead, gives the QR factorization of the matriz in
(5.1), that is in (3.8). Assume that ||[Eji1]| = [|®(tj41,t5) — X (tj41,t5)]| < TOL, forallj =0,1,....
Finally, let (3.13) hold, and recall the notation in (3.10-8.11-3.12) and the notation from Theorems
3.9 and 3.11.

Then, the numerical discrete QR method finds the (exact) QR factorization of the system (3.5),
where

(3.26) hjBj = h;Bj + Lj + O(||Ej41 ) .

3The meaning of normal here is the one in common usage in the linear algebra community, it has little to do
with that of a normal fundamental matrix solution
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and we have the bounds

(3.27)

L ()"

2
L < F:
| J|_[ — ] |Fya

where the general (p,q)-entry of |Fji1]| is given in (8.19) and further bounded as in (3.20):

ti+1
(1F5411) g < 0L/ i (expl [ Bas(t)an) |

tj

d; is given in (3.22) and v; is the departure from normality of the exact triangular transition matriz
R(tjy1,t5)- O
Remarks 3.13.

e In a way, the above result is good news: We have obtained the exact realization of the

method we wanted on a problem which we can make close to the original one by decreasing
the error tolerance (or the stepsize), and this is true regardless of how long we compute.
So, if we have stable exponents, we will get answers close to the true values. However, this
is correct only in part. The result we found has two factors in the estimates. The first was

predictable: 1/exp( [, ttjj 1 B;i(t)dt) tells us that it will be harder to approximate large and

negative exponents. The second factor hints at an inherent difficulty in approximating
Lyapunov exponents by the QR methods when the (exact) factor R is far from diagonal;
this is reflected in the quantity v; in (3.27). This is bothersome, since it has little to do
with having stable exponents.

Increasing the accuracy (equivalently, decreasing the stepsize) can alleviate these difficul-
ties, specifically the one due to lack of normality. In principle, in fact, we can make the
factors v; small, by decreasing the stepsize. This is because, see Lemma 2.4, we can write

[Ujs1ll < [|R(tj41,t5)]| = [[€"P]]

and thus [|Ujy1]| < [[T]| + hyl|B;|| + O(h?). Thus, for h; sufficiently small, within terms of
O(h3), in (3.27) we can claim that |L;| < (||I|| + 20;h;]|Bj|| + O(h3)))|Fj41|. However, it
may be impossible in practice to push the stepsize to be very small while at the same time
try to compute on long intervals of time. This impasse is real, and tells us that it may be
hard to accurately compute (by QR methods) Lyapunov exponents for highly non-normal
problems, those for which severe lack of normality is not localized.

If there exists an integrally separated fundamental matrix solution for (1.1), then by The-
orem 5.1 of [9] there exists R(ty) (see (2.5)) such that R(t;) in (2.6) approaches a diagonal
matrix as k — oo. In addition, if the diagonal of B is integrally separated, see (2.13), then
by Lemma 7.4 of [9] R(t) approaches diag(R)Z where Z is unit upper triangular, and
hence Z determines the asymptotic lack of normality.

What is obtained in Theorem 3.12 for the non-autonomous linear system is that the com-
puted solution is the exact solution to a nearby piecewise continuous system. This is in
contrast (e.g., see [12]) to the case in backward error analysis for nonlinear autonomous
problems, in which the computed solution is close to the solution of a smooth modified
equation. We remark that, since the nearby problem we obtain is piecewise continuous, as
opposed to continuous, the stability /continuity results for Lyapunov exponents summa-
rized in [1, pp. 172-173] cannot be applied directly.

3.2. Continuous QR error. The situation for the continuous QR method is similar to the
discrete QR case, though in some way the situation is better, since one does not have to compute
the triangular factor directly. The following observations help to understand the error behavior of
the continuous QR method.

Observations 3.14.
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(a) Recall that the Q-factor of X (¢) is the same as that of (2.16). But, the Q-factor of the
expression in (2.16) is the same as the Q-factor in the QR factorization of

(3.28) O(t,th1)Qr1Qf—1 P(th—1,th—2) .- Q7 B(t1,0)Qo

where Q;, 7 = 1,...,k — 1, are (any) orthogonal matrices. Consider (3.28). For j =
0,1,..., define U(¢,t;) :== ®(t,t;)Q;, and let @(t, t;) be the Q-factor in the QR factoriza-
tion of U(t,t;). Then, by direct differentiation, it is easy to see that @(tﬂfj) satisfies the
differential equation (2.8) with H defined as in (2.9), but with Q(t, t;) replacing Q(t) there.
In other words, 9;Q(t, tj) = @(LQ)H(@(LQ), A(t)), and @(tj,tj) = @Q;. Notice that this
fact is true for any choice of matrices @,’s, not only if Q; = Q(¢;), 7 = 1,...,k — 1,
n (3.28), in which case we already knew it: The first equation of (2.17). In particular,
this means that at any value ¢ : tx_1 <t < tx, k = 1,2,..., the Q-factor in the QR
factorization of X (¢) or —which is the same— of (3.28) can be written as

(3.29) Qt) = Q(t, tr—1)[QF_1 Qti-1,tr—2)] -+ [QF Qlt2, 11)][QT Q(t1, t0)]

(b) Now, when using the continuous QR method numerically, we find approximate values @ ;
to the exact values Q(¢;), 7 = 1,2,... . We can assume that these @);’s are orthogonal
matrices, since this is the case when we use any of a host of schemes which maintain
orthogonality at the discrete level, see [11] and references there. It is these approximations
that we must think we are using in (3.28). So, by virtue of the above point (a), on a step
t; <t <tj41,j=0,1,2..., instead of (2.17) we will be approximating the solution of

(3.30) {8t@(t’tj) = Q1) H @(£> A®) . Qltty) = Q5
' ot ty) = [QT(tt)ADQL)],,. Ailtyt) =0, i=1,...,n,

where H is defined as in (2.9) using Q\(tﬂfj). Using (3.29) at t = ¢, and comparing with
@, we get that

Q(tk) = Qk[Qgé(tkatk—l)] e [Qg@(t27t1)] [Q{@(tlatO)]

where all terms in brackets are defects from the identity of the size of the local errors
incurred in approximating ): That is, if we let N; = Q; — Q(t;,t;_1) for the local errors,
then Q7 (t;,t;-1)Q; = I + QT(t;,t;_1)N;. Notice that the above expression for Q(t)
shows that we cannot generally expect small global errors Q(tx) — Q.
Now, from (3.30), we will obtain approximations ;11 and u§(t;+1,t;) instead of the exact
values Q(t i+1,t5) and [1;(tj+1,t5). Then, at ¢, we will form

L
EZME(% ti—
j=1

instead of the analogous formula (2.18). The question is: How does this formula compare to (2.18)?
We give an answer to this question in the same flavor of what we did for the discrete QR method,
that is we argue that essentially Theorem 3.1 holds.

We need to get around the fact that with the continuous QR method we do not find the
triangular factor, only the orthogonal one, and the diagonal of the triangular factor. So, there is
some extra freedom in choosing a triangular factor amongst all those with given diagonal. The
next Lemma gives two possibilities. N R

LEMMA 3.15. Letn > 0 be given, n < 1. Forj=1,2,..., let Q(tj,t;—1)R(t;,t;—1) be the exact

QR factorization of ®(t;,t;—1)Qj—1, and let Q; be the numemcal appmmmatwn to Q(tj,t] 1); see
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~

(8.30). Assume that Q; —Q(t;,tj—1) = O(n). Let R;’s be upper triangular matrices whose strictly
upper triangular part is not determined, but whose diagonal is assigned and satisfies diag (Rj —
R(tj,tj-1)) = O(n).

By choosing either one of (a) or (b) below for the strictly upper part of the R;’s, we obtain
that

Q;R; — Q(tj,t;—1)R(tj,tj—1) = O(n).

(a) “Frobenius-optimal”. Choose R; to minimize the Frobenius norm ||@(tj, tj,l)}?(tj, tj—1)—
QjRllr- R
(b) “Upper-exact”. Forp=1,...,n—1,q=p+1,...,n, take (R;)pg = (R(t;,tj—1))pq-
Proof. The fact that choosing (b) we obtain Q;R; — @(tj,tj,l)f%(tj,tj,l) = O(n) is clear,
since we would have R; = diag(R; — R(t;, tji—1)) + R(tj, tj_1).
Since the choice (a) would be optimal, the O(n) estimate will also hold for (a), as long as (a)
is solvable. We show this next. We have

1Q(ts, tj—1)R(tj,t;1) — QiR;|1% = | R(t;, tj—1) — (E + DR;||%
where we have set F = @T(tj,tj_l)Qj — I, and hence F = O(n). Now,
IR(t;,tj—1) — (B + I)R;||% = trace[(R(t;, t;—1) — (B + I)R;)" (R(t;, tj—1) — (E + I)R;)]

which is the same as
> el [RIR; + R"(tj,t;-1)R(t;.tj—1) — 2R (t;, t;1)(E + I)R]ep,

p=1

where e, are the standard unit vectors.
Differentiating each term in the sum and setting the derivatives to zero lead to the optimal
solution

(Rj)l:p—l,p = [(I+ ET)(}/E(tjutj—l)):,p] 1ip—1°

O

There may be other useful possibilities for “completing” the matrices R;’s of Lemma 3.15.
However, the basic fact remains: When we use the continuous QR method we do not find a
triangular factor of an associated transition matrix, but only its diagonal.

THEOREM 3.16. For j = 1,2,..., let Q; be the numerical approzimations generated by the
continuous QR method to the exact Q-factors in the QR factorizations of X (t;), let pué(tj,tj-1), 1 =
1,...,n, be the approzimations to the values [1;(t;,t;—1) in (3.30), and let @(tj,tj,l)ﬁ(tj,tj,l) be
the exact QR factorization of ®(t;,t;—1)Qj—1. Let ]Vj be the local error in Q: Nj = Qj—@(tj, ti—1).
Finally, let R;’s be upper triangular matrices with diagonal given by the exponential of

(3.31) log(diag(R;)) = (u5(tj tj1), .- 15 (tj,t5-1))

and otherwise the R;’s are chosen so that the entries of R; differ from those of ﬁ(tj,tj_l) by the
same order of magnitude as the differences on the diagonal (e.g., this is the case for (a) and (b)
of Lemma 3.15). Let Aj := R; — }Aﬁ(tj, tj—1).

Then, the continuous QR method is giving the QR factorization of X (tj,t;—1)Q;—1, where
X(tj,tj—1) approzimates ®(t;,t;_1) with error of the same norm as that of the local errors in Q;
and R;:

X(tjtj—1) — ®(tj,tj—1) = N;
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where we have set

Nj = N;R(tj,t;-1)QT ) + Q(tj,t;-1)0,Q1_1 + N;A; .

Proof. We define X (¢;,t;_1) indirectly from the relation
X(tj,t-1)Qj—1 = Q; R; .
Then, since
QiR; = (Q(tj tj—1) + N;) (B(t;,t;-1) + 4;)

the result follows. O

Using Theorem 3.16, we can now invoke the same results as we had for the discrete QR method.
In particular, Theorem 3.1 all the way to Theorem 3.12 hold, and the continuous QR method is
therefore delivering the QR factorization (or, better, the Q-factor and the logarithm of the diagonal
of R) of the fundamental matrix solution of a problem close to the original one, in the sense of the
backward error statement of Theorem 3.12.

Remark 3.17. We do not want to give the impression that discrete and continuous QR methods
are one and the same. In practice, they are not, but at the theoretical level they allow for a unified
treatment insofar as error analysis. The chief reason for their practical difference is that the
differential equations one ends up solving have different stability types, and when using these
methods with variable stepsizes one controls different local errors! With the discrete QR method
one controls directly the error on the transition matrices, and indirectly obtains a control on the
R-factor (and Q-factor, though it is not used). In the continuous QR method, instead, one controls
directly the local error in the Q-factor of the transition matrices, and essentially the local error in
the R-factor, and only indirectly the error on the transition matrices. Often, it is easier to control
the error of the Q factor, and of diag(log(R)), than it is to control the error on the local transition
matrices. As a consequence, when choosing the stepsize by enforcing a local error control, one may
end up taking fewer steps with the continuous QR method than with the discrete QR method.

3.3. Other Errors. As we said already, there are other obvious sources of errors if one tries
to approximate Lyapunov exponents.

To begin with, it is impossible in general to give sharp results on the error one commits when
truncating time, unless some extra assumptions are placed on the function A, such as some form of
recurrence. This is simply because A may change completely its character past the time where one

0, t<T
stops computing. For example, just take a scalar problem with A(t) = { t—T, T<t<T+1.
1, T+1<t

Any computation which stops at, before, or shortly after T, is bound to give wrong results insofar
as the Lyapunov exponents.

Furthermore, it is important to appreciate that the asymptotic behavior can be approached
in many different ways, also within the same system. For example, it may take a short time to
approximate some exponents, and a long time to approximate some other ones, regardless of the
integral separation in the system. To witness, we can consider the following example. Take a
diagonal system, where (for ¢ large) A is of the form A;(t) =i — 1+ tl/%i, pi>0,i=1,2,...,n.
Clearly, the exponents are {0,1,2,...,n — 1}, and the system is regular and integrally separated.
However, if 0 < p; < 1 the exponent is reached very quickly, whereas if p; > 1 it is approached
very slowly.

Also, we have not considered the errors induced by the finite precision computation. This
is (at least in part) justified by the fact that linear algebra errors can be incorporated with the
integration errors. For example, in (3.4), the terms N; can be made to comprise both the local
errors obtained when approximating ®(¢;,¢;_1) by X (¢;,t;—1) and the finite precision errors arising
from the QR factorization of X (¢;,t;_1).
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3.4. Nonlinear case. The setup now is the following. We have the nonlinear problem
(3.32) z = f(z), =z(0)=uz,

with flow (solution) ¢'(zo). So, we would like to obtain the Lyapunov exponents for the linear
variational problem

(3.33) X = Df(¢'(z0))X, or X = A@B)X,

subject to some initial conditions Xy. By the exact QR techniques on this problem (recall (2.5)),
we would thus find a sequence of ¢-values {t,} such that

(3.34) X (t1) = Q(te)R(tr,ti1) -+ R(t1,to)Ro.

In practice, we will have a numerical approximation to the flow ¢*(z¢), call it ¢ (zo). [We can
think of 9] (x¢) as being defined at grid points by the numerical scheme, and everywhere else by
some interpolation process]. Here we highlight the fact that the exact flow and the approximate
flow may not be comparable on the same time scale as in the case of approximation of a hyperbolic
periodic orbit or more general hyperbolic attractor.

Thus, we will end up attempting to approximate the spectra of

(3.35) Y' = Df(¢](x9))Y, or Y = C(r)Y, """ = dir

and by the exact QR techniques on this problem, we would find a sequence of values {7;} such
that

(3.36) Y (1) = Z(m6)U (7i, Te—1) -+ U(11,70)Ro -
Now, assume that there exist smooth monotone functions wj; () such that
wj(t;) = 75, wi(tj41) = Tin

and define w(t) = w;(t) for t € [t;,t;41). Assume in addition that for all ¢ > 0, there exists €(t) > 0
and 6 > 0 such that

(a) [(w(tjy1) —w(ty)) — (Liy1 —t5)] <6,
®) 16" @) — vr (@) < e(t)

where Zo is some initial condition (IC), which is the same for all ¢ > 0. We remark that the
assumptions in (3.37) hold in the context of continuous shadowing with rescaling of time (e.g., see
[18]) in which case 0 and €(t) are proportional to the absolute local error in approximating the
nonlinear differential equation.

Now, relative to the ICs &g, we will also have the linearized problem

(3.37)

(3.38) X = Df(¢'(#))X, or X = A@)X,

and by the exact QR techniques on this problem at the t-values {¢;} we have

(3.39) X (tr) = Q(tx)R(tx,tr_1) -~ R(t1,t0)Ro.

So, quite clearly, there are two aspects to consider.
(1) Firstly, there is the error caused by the difference between the two linear problems (3.35)
and (3.38). This is in essence an issue of comparing the functions A and C.
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(2) Then, there is the issue of the difference between A and A. In general, A and A will not be
close (at least, not in a pointwise sense). However, under some important circumstances,
A and A will lead to spectra which are close to one another. For this to happen, one needs
some measure of ergodicity.

We have the following result, which addresses (1) above.

THEOREM 3.18. Suppose (3.37) hold, and let f be C*, k > 2. Then we have

(3.40) IA(t) = Clw®)]| < M «(t).

where M is a bound on the second derivative f., evaluated along the path ¢'(Zo) — s(¢'(Zo) —
1/1;11)(75)(1:0)) for0<s<1andt>0.

Proof. We only need to notice that (3.37-b) implies a similar inequality for the Jacobians. In
fact, from the mean value theorem in integral form we have that

1 1 (' (F0) = £ (03" (0)
= /0 Foa (04 (F0) — s(6"(F0) — 1P (wo)))ds (6" (F0) — ¥y’ (x0)) -

so that (3.40) follows.
O

Remarks 3.19.

(1) The bound (3.40) together with a stability/continuity result for Lyapunov exponents (see
e.g. [1]) implies that for Me(t) small enough, uniformly in ¢, the Lyapunov exponents of
(3.35) and (3.38) are close.

(2) With an assumption of ergodicity [16] we have that with probability one the Lyapunov
exponents of (3.33) and (3.38) are the same (if ¢ and Zo both lie on the compact invariant
set with an ergodic probability measure) and thus a stability result for Lyapunov exponents
allows (with probability one) a comparison of the Lyapunov exponents of (3.33) and (3.35)
using the previous remark (1).

4. An Example: Numerical Results.
We build an example where we vary the departure from normality of the exact triangular
factor. Take the following upper triangular function B(t) = D(t) 4+ U(t), with

(41) D(t) = diag(D11 (t)7 D22 (f), D33 (f), D44 (t)) 5
where we take D11(t) = 1, Daa(t) = cos(t), Ds3(t) = _\/t;-i-il’ Dy4(t) = —10, and

cos(t) sin(t) cos(t)

0
w vo-alh 5 0 ),
0

0 0 0

and we will be interested in the two cases of a = 0 and o = 10%.
Then, we rotate B, and consider the linear system (1.1) with

A(t) = Q)BH)Q (1) + Q(1)Q™ (1),
and
Q(t) = diag(1,Qp(t), 1) - diag(Qy(t), @y(t)) -
We set

Q.(t) = < cos(7t) sin(*yt)) =1, B=V3.

—sin(yt) cos(yt)
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a=0in (4.2), T =103

|| TOL | Method | Steps || el €o es ey ||
1.E-3 Disc 12750 2.66E-7 2.53E-7 2.42E-8 2.20E-3
1.E-6 Disc 47248 3.28E-10 | 3.17E-10 | 3.10E-11 | 1.42E-6
1.E-9 Disc 185519 || 1.48E-12 | 3.35E-13 | 3.28E-14 | 1.19E-9
1.E-3 Cont 5962 4.00E-4 5.72E-4 1.31E-4 1.10E-3
1.E-6 Cont 21328 1.26E-7 1.77E-7 4.36E-8 3.46E-7
1.E-9 Cont 82592 3.16E-11 | 4.62E-11 | 1.19E-11 | 8.98E-11
TABLE 4.1
Error in QR methods when the triangular factor is diagonal.
a=10%in (4.2), T = 10°.
|| TOL | Method | Steps || el | €9 es | ey ||
1.E-3 Disc 537164 1.06E40 | 6.34E-1 | 3.11E+0 | 2.93E40
1.E-6 Disc 1606256 2.45E-3 2.95E-2 | 4.42E-3 2.30E-2
1.E-9 Disc 5703057 2.83E-4 6.10E-4 | 8.89E-4 | 4.50E-6
h=1.E-3 Disc 1000000 1.50E-1 3.71E-1 9.10E-1 | 1.14E+0
h=1.E-4 Disc 10000000 || 2.58E-01 | 2.30E-1 4.90E-1 2.01E-3
1.E-3 Cont 334986 8.26E+0 | 9.78E+0 | 2.50E+40 | 1.55E+1
1.E-6 Cont 1032455 4.25E-2 4.58E-2 1.69E-3 1.58E-3
1.E-9 Cont 4087009 5.95E-4 3.52E-4 | 2.46E-4 | 4.00E-6
h =1.E-3 Cont 1000000 7.28E+0 | 1.01E+1 | 8.64E40 | 8.70E+0
h =1.E-4 Cont 10000000 || 2.62E-1 | 1.03E+40 | 8.05E-1 | 4.85E-1
TABLE 4.2

Error in QR methods when the triangular factor is highly non-diagonal.

Regardless of the value of « in (4.2), this is a regular system with stable Lyapunov exponents given
by the limits of A;(t) := L [ Dyi(s)ds, i = 1,2,3,4, that is: {1,0,0,-10}.

All results on this problem have been obtained using the code leslis, which we wrote and is
public domain: http://www.math.gatech.edu/~dieci

In particular, we use the continuous QR method using the projected 5th order scheme (IPAR(8)=0
in LESLIS), with error control on the Q-factor and the p;’s in (2.15), and the 5th order discrete QR
method (IPAR(8)=4) with error control on the u;’s. In all cases, we call TOL the required tolerance
values.

In Tables 4.1 and 4.2 we report on selected experiments in the case of o = 0, respectively
a = 10%, in (4.2). The computations of Tables 4.1 and 4.2 have been carried out up to 7" = 103,
and we show the error between the finite-time computed and finite-time exact Lyapunov exponents,
ei(T) := [N(T) — X5(T)| where A§(T) are the computed values at T of \;(T), i = 1,2,3,4. The
heading Method refers to either the Discrete or Continuous QR method. Scientific notation is used
throughout. In Table 4.2, we also report on some experiments made with constant stepsize, under
the heading of TOL.

From Table 4.1, it is apparent that both discrete and continuous QR methods deliver approxi-
mations with the same error as the error tolerances. This is in agreement with the theory, of course,
since the triangular factor is actually diagonal. Incidentally, we also observe that the continuous
QR method takes fewer steps and is actually less expensive (and at least as accurate) than the
discrete QR method.

The results in Table 4.2 show unarguably the impact of lack of normality for the upper tri-
angular matrix solution. There is a deterioration in accuracy with respect to the required error
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a =10% in (4.2), TOL=1.E-6.
|| T | Method | Steps || el | es | es | eq ||
10% Disc 16059751 1.07E-2 | 6.3E-3 | 1.83E-2 | 2.31E-2
10° Disc 160823338 || 7.63E-2 | 1.51E-1 | 2.50E-1 | 2.31E-2
109 Disc 1618405426 || 6.27E-1 | 2.66E-1 | 9.34E-1 | 4.18E-2
10% Cont 10346418 5.26E-2 | 4.91E-2 | 4.98E-3 | 1.46E-3
10° Cont 104059732 || 9.30E-3 | 2.21E-1 | 2.33E-1 | 2.31E-3

TABLE 4.3
Error when the triangular factor is non-diagonal, in function of T'.

tolerances which is proportional to the departure from normality of the triangular factor. This is in
agreement with our backward error results, in particular with (3.27) and Remark 3.13. We notice
that —with respect to Table 4.1— we are taking far more steps for the same error tolerance. This
is an indication that the methods try to compensate for the departure of normality by restricting
the stepsize, see Remark 3.13. For the record, the continuous QR method again takes fewer steps
than the discrete QR method, but in the end (for this case) it takes a longer time since each step
is more expensive. We also notice that the methods with constant stepsize perform much worse
for comparable cost; e.g., compare the results obtained with h =1.E-4 with those obtained with
TOL =1.E-9.

Finally, in Table 4.3 we show that there is really no appreciable difference resulting from
increasing the length of the interval, i.e., T. In fact, the errors remain of the same order as the
departure from normality times TOL. These results in Table 4.3 were all obtained with TOL=1.E-6.
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