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1. Introduction.

Lyapunov exponents are often employed in the numerical study of nonlinear dynamical systems and
are probably the most widely used quantities for detecting chaos, estimating dimensions of attractors,
entropy; e.g., see [7, 21, 2, 3]. However, there is little error analysis of the techniques used to approximate
Lyapunov exponents; the works [8, 11, 17, 19] are the only works of which we know dealing precisely
with error analysis for approximation of Lyapunov exponents. In this paper we provide quantifiable error
bounds for Lyapunov exponents approximated by QR techniques.

We recall that, to approximate Lyapunov exponents for a linear non-autonomous system ẋ = A(t)x,
the basic idea of QR methods consists in first triangularizing (via the QR factorization) an underlying
fundamental matrix solution X : X = QR, and then extracting the Lyapunov exponents from the diagonal
of the transformed triangular system: Ṙ = BR, with B triangular. This basic approach is common in
analytical works on the subject (see [12, 15, 20]) and it is also the most common approach for numerical
methods to approximate Lyapunov exponents (see [5, 8, 9] and references therein).

In the recent work [11], we gave a backward error analysis for QR methods used to approximate
Lyapunov exponents. Our analysis showed that, by QR methods (i.e., by a numerical realization of
QR methods), one obtains an exact triangularization of a fundamental matrix solution of a perturbed
triangular problem with coefficient function B + E, instead of B. We were also able to give quantitative
bounds on the perturbation E and showed that in principle this perturbation can be made arbitrarily
small by controlling the accuracy of the computation. Now, for systems with stable Lyapunov exponents
(a necessary condition for trying to approximate them), small perturbations reflect in small errors in the
Lyapunov exponents; e.g., see [1] for necessary and sufficient conditions for the stability of Lyapunov
exponents. In this paper, we clarify, and quantify, the error induced by a small perturbation E on the
Lyapunov exponents.

We consider both the case of stable distinct and stable but not distinct Lyapunov exponents. In the
former case, there are essentially two steps involved in our analysis: First, we restrict to consider perturbed
diagonal problems as opposed to perturbed triangular problems, then we show the existence of a uniformly
(in time) near identity orthogonal change of variables that transforms the perturbed diagonal problem
to triangular. This allows us to bound the error between the true Lyapunov exponents and those of the
perturbed problem. At leading order in the size of the perturbation, we bound this error by a multiple
of the size of the perturbation, the key factors contributing to this multiple depending on the degree of
integral separation in the system and the condition number of the diagonalizing transformation. In this
light, our result may be viewed as a time dependent analogue of the Bauer-Fike Theorem for perturbation
of eigenvalues of non-normal matrices (see [13]). In the case of stable and not distinct exponents, we
proceed along similar lines, but in a block sense.

This paper is outlined as follows. In section 2 we review the basics of Lyapunov exponents and QR
methods. We also recall the backward error result of [11] and further –under the assumption of integral
separation– specialize to diagonal and perturbed diagonal systems. Our main result for the case of stable
distinct Lyapunov exponents is in section 3. We first show that the perturbed diagonal system can be
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transformed to triangular by an orthgonal change of variables that stays uniformly close to the identity
and then quantify the perturbation in the Lyapunov exponents. In section 4 we present an analysis for
the case of stable but not distinct Lyapunov exponents. The technique is based upon a block version of
the argument for distinct Lyapunov exponents with some key differences together with a Gronwall type
bound due to Vinograd to control the Lyapunov exponents within a block which gives equal exponents.
Finally, in section 5 we illustrate our analysis with a numerical result.

2. Background.

Consider the non-autonomous linear system

ẋ = A(t)x , t ≥ 0 ,(2.1)

where we will assume that the function A : IR+ → IRn×n is bounded. Let X be a fundamental matrix
solution of (2.1) and consider

λi = lim sup
t→∞

1

t
ln ||X(t)ei|| , i = 1, . . . , n,(2.2)

where the ei’s are the standard unit vectors. Here, and everywhere else in this work, the norm is the

2-norm for vectors and the induced norm for matrices. When
n
∑

i=1

λi is minimized with respect to all

possible fundamental matrix solutions, then the λi’s are called Lyapunov exponents, and the corresponding
fundamental matrix solution is called normal (see [16]).

The Lyapunov exponents are said to be stable if they are continuous with respect to perturbations in
the coefficient matrix. That is, if “for any ε > 0, there exists δ(ε) > 0 such that supt∈IR+ ||F (t)|| < δ(ε)
implies

|λi − λ̂i| < ε, i = 1, . . . , n,(2.3)

where the λ̂i’s are the (ordered) Lyapunov exponents of the perturbed system ẋ = [A(t) + F (t)]x”.
Our aim in this paper is to determine the dependence of δ on ε.
If the Lyapunov exponents are distinct, then the exponents are stable (see [1]) if and only if X is an

integrally separated fundamental matrix solution. X is integrally separated if for i = 1, . . . , n − 1, there
exist a > 0 and 1 ≥ d > 0 such that

||X(t)ei||
||X(s)ei||

· ||X(s)ei+1||
||X(t)ei+1||

≥ dea(t−s) ,(2.4)

for all t, s : t ≥ s ≥ 0.
A commonly used technique for the approximation of Lyapunov exponents involves determining a

time dependent othogonal change of variables Q that transforms the given fundamental matrix solution
(equivalently, the associated coefficient matrix function) to upper triangular. It has been shown in [9, 10]
that stable Lyapunov exponents may be determined as appropriate time averages of the diagonal elements
of the upper triangular coefficient matrix function. It is well known (e.g., see [9]) that such Q is unique
and satisfies

Q̇ = Q(t)S(Q, A) , Q(0) = Q0 ,(2.5)

where we have set S := QT (t)Q̇(t), with entries

S(Q(t), A(t))ij =







(QT (t)A(t)Q(t))ij , i > j,
0, i = j,
−(QT (t)A(t)Q(t))ji , i < j.

(2.6)

So, if Q is known, then R satisfies the transformed system

Ṙ = B(t)R , R(0) = R0 ,(2.7)
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where we have set

B(t) := QT (t)A(t)Q(t) − QT (t)Q̇(t) ,(2.8)

and B is upper triangular by the way that S has been defined. Stable Lyapunov exponents are then
obtained (see [10]) from the diagonal D(t) of B(t) as

λi = lim sup
t→∞

1

t

∫ t

0

Bii(s)ds.(2.9)

Finally, we notice that integral separation (2.4) can be rephrased in terms of integral separation of the
diagonal D of the coefficients B:

∫ t

s

(

Dii(τ) − Di+1,i+1(τ)
)

dτ ≥ a(t − s) + ln(d), t ≥ s(2.10)

where a > 0 and 0 < d ≤ 1, for all t, s : t ≥ s ≥ 0.
QR based methods for the approximation of Lyapunov exponents (see [8]) are a numerical realization

of the transformation to the form (2.7). Unavoidably, this cannot be done exactly, since the relevant
differential equations cannot be integrated exactly. Furthermore, it is unreasonable to expect that the
differential equations can be integrated so to obtain globally accurate approximations (recall that we are
interested in the limit t → +∞). So, we can only expect to be able to control the local error on each step.
Recall that this is the error committed on one single integration step. Here below, we let η be a bound on
the local error encurred upon during numerical integration of the differential equations.

The backward error result obtained in [11] is summarized next. For precise statements we refer to the
original work, here we are content with the general flavor of the result.

Summary 2.1. With a numerical realization of the QR methods, in the limit as t → +∞, we are not
obtaining the Lyapunov exponents of the triangular system (2.7-2.8), but rather the Lyapunov exponents
of the perturbed system

˙̂
R =

(

B(t) + F (t)
)

R̂ ,(2.11)

where B is given in (2.8), and F is bounded as

‖F‖ ≤ cη + O(η2) ,(2.12)

with the main contribution to the magnification factor c being the departure from normality of the exact
triangular factor R.

Next, consider the unperturbed and perturbed triangular systems

Ṙ = B(t)R,
˙̂
R = [B(t) + F (t)]R̂ ,(2.13)

where we will assume that ‖F‖ ≤ δ. Now, write R = RD + RU , where RD is the diagonal part of R and
RU is the (strictly) upper part of R, so that R = (I + RUR−1

D )RD =: ZRD. Accordingly, we have the
unperturbed and perturbed diagonal systems

ṘD = D(t)RD ,
˙̂

RD = [D(t) + E(t)]R̂D ,(2.14)

where D(t) = diag(B(t)) and E = Z−1FZ.
Lemma 2.1. If the systems in (2.14) are integrally separated, then the Lyapunov exponents of the

systems with A(t) = B(t) and A(t) = D(t) are equal and the Lyapunov exponents of the systems with
A(t) = B(t) + F (t) and A(t) = D(t) + E(t) are also equal.

Proof. The first statement is a consequence of [9, Theorem 5.1]. The second statement follows from
the fact that Z(t) is a Lyapunov transformation.

In the next section, we quantify the error in the Lyapunov exponents by working with the diagonal
systems (2.14). We let ω := ‖E‖, and observe that

ω ≤ ‖F‖cond(Z) ≤ δ cond(Z) , where cond(Z) = sup
t≥0

‖Z(t)‖ · ‖Z−1(t)‖ .(2.15)
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Remark 2.1. A uniform bound on ‖Z(t)‖ can be obtained using results in [10]. Consider the upper
triangular system in (2.13) with coefficient matrix function B. Suppose |Bij(t)| ≤ M for i < j and suppose
for k − i = j ≥ 1,

∫ t

s

Bii(r) − Bkk(r)dr ≥ aj(t − s) − dj , t ≥ s.(2.16)

Let Kj = edj/aj. Then using Lemma 4.1 and Theorem 4.2 of [10], if j = k−i, then the change of variables
Z(t) enjoys the following uniform bound

|Zik(t)| ≤ Kj [M + M2Kj−1 + · · · + M jK1] =: ωj(2.17)

and for ω := max{1, ω1, ..., ωn−1}, ‖Z(t)‖ ≤ ω. A similar bound may be obtained for ‖Z−1(t)‖.
3. Forward Error Analysis - The Stable Distinct Case. Consider the time dependent, homo-

geneous linear ODE with piecewise continuous coefficient matrix function,

ẋ = A(t)x, A(t) = D(t) + E(t) ,(3.1)

where D(t) = diag(D11(t), ..., Dnn(t)), supt ||D(t)|| ≤ M , and supt ||E(t)|| ≤ ω. We will assume that the
diagonal matrix function D is integrally separated (see (2.10)) and for i < j we set

∫ t

s

Dii(τ) − Djj(τ) ≥ aij(t − s) − dij , t ≥ s ,(3.2)

where aij > 0 and dij ≥ 0. Define a > 0 and d ≥ 0 as aij and dij , respectively, that maximize edij/aij for
i < j.

Let {µi}n
i=1 be the Lyapunov exponents of (3.1) and {λi}n

i=1 the Lyapunov exponents of the unper-
turbed system ẋ = D(t)x. We show that there exists an orthogonal change of variables to upper triangular
satisfying (2.5) with A(t) = D(t) + E(t) that remains, under reasonable conditions, a small perturbation
of the identity given the initial condition Q(0) = Q0 = I . Of course, we notice that if ||E|| ≤ ω, then
||QT EQ|| ≤ ω.

Lemma 3.1. If ω < ω+(α, K, M), then |Qij(t)| ≤ ρ for i 6= j and all t ≥ 0, where ρ = β · ω, β = αK,
α > 1, K = ed/a, and

ω+(α, K, M) := (
√

a2
1 + 4(α − 1)a2 − a1)/(2a2)(3.3)

where a2 = n2β2[Mβ + 2] and a1 = nβ[2Mβ + 1].
Proof.
For i < j we have

Q̇ij = −Qij [Dii − Djj ] +
(

Qij [Dii − Djj ] + eT
i (Q[S(Q, D) + S(Q, E)])ej

)

=: −Qij [Dii − Djj ] + qij(t, Q, ω)
(3.4)

and a similar formula for i > j. We want to show that if the conditions of the theorem are satisfied and
Q(0) = I , then |Qij(t)| ≤ ρ for all i 6= j and t ≥ 0. The proof involves applying [14, Theorem IV.2.1].

Using the nonlinear variation of constants formula we have for Q(0) = I and i < j,

Qij(t) =

∫ t

0

e
−

∫

t

τ
(Dii(r)−Djj (r))dr

qij(τ, Q(τ), ω)dτ ≤
∫ t

0

e−a(t−τ)+d|qij(τ, Q(τ), ω)|dτ .(3.5)

Thus, supt |Qij(t)| ≤ K supt |qij(t, Q(t), ω)| where K = ed/a. We have

|qij(t, Q, ω)| ≤ |qij(t, Q, ω) − qij(t, I, ω)| + |qij(t, I, ω)| ≤ η(ρ, ω)ρ + N(ω)(3.6)

where since S(I, D) = 0 and S(I, E) = EL − ET
L where EL is the strict lower triangular portion of E,

N(ω) ≤ ω. To bound η(ρ, ω) write

qij(t, Q, ω) = qD
ij (t, Q, ω) + qE

ij(t, Q, ω)

:=
(

Qij [Dii − Djj ] + eT
i QS(Q, D)ej

)

+ eT
i QS(Q, E)ej

(3.7)
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and first consider qD
ij (t, Q, ω). We have, writing Q(t) = [q1(t)| · · · |qn(t)],

qD
ij (t, Q, ω) − qD

ij (t, I, ω) = qD
ij (t, Q, ω) = Qij [Dii − Djj ] + [−

j−1
∑

k=1

QikqT
k +

n
∑

k=j+1

QikqT
k ]Dqj

= Qij [Dii − Djj ] +

n
∑

l=1

Dll[Qlj · {−
j−1
∑

k=1

QikQlk +

n
∑

k=j+1

QikQlk}]

= Dii[Qij · {1 −
j−1
∑

k=1

Q2
ik +

n
∑

k=j+1

Q2
ik}]

+ Djj [−Qij + Qjj · {−
j−1
∑

k=1

QikQjk +

n
∑

k=j+1

QikQjk}]

+
∑

l6=i,j

Dll[Qlj · {−
j−1
∑

k=1

QikQlk +

n
∑

k=j+1

QikQlk}]

(3.8)

By orthogonality we have

1 =

n
∑

k=1

Q2
ik and QijQjj = −

∑

k 6=j

QikQjk,(3.9)

so for i < j,

qD
ij (t, Q, ω) = Dii

[

Qij

(

Q2
ij + 2

n
∑

k=j+1

Q2
ik

)]

+ Djj

[

−Qij(1 − Q2
jj) + 2Qjj

n
∑

k=j+1

QikQjk

]

+
∑

l6=i,j

Dll

[

Qlj

(

−
j−1
∑

k=1

QikQlk +

n
∑

k=j+1

QikQlk

)]

(3.10)

Thus,

|qD
ij (t, Q, ω) − qD

ij (t, I, ω)|
≤ Mρ

[

(2(n − j) + 1)ρ2 + (n − 1)ρ2 + 2(n − j)ρ + (n − 2)(n − 1)ρ2
]

ρ
≤ Mρ

[

(n2 − 2j + 2)ρ2 + 2(n − j)ρ
]

≤ Mρ
(

n2ρ2 + 2nρ
)

(3.11)

For the term qE
ij(t, Q, ω), using (2.6), we have for i < j (and similarly for i > j)

qE
ij(t, Q, ω) − qE

ij(t, I, ω) = [QS(Q, E) − S(I, E)]ij

= −
j−1
∑

k=1

QikS(Q, E)jk +

n
∑

k=j+1

QikS(Q, E)kj + Eji

= Eji(1 − Qjj +

n
∑

k 6=i,k=1

Q2
ikQjj)

− Qii

n
∑

(l,m)6=(j,i),l,m=1

QljElmQmi +

n
∑

k=j+1

QikS(Q, E)kj .

(3.12)

Thus,

|qE
ij (t, Q, ω) − qE

ij(t, I, ω)|
≤ ρω[1 + (n − 1)ρ + (n2 − 1)ρ + n − j] ≤ ρωn[1 + (n + 1)ρ] ≤ ρωn[1 + 2nρ] =: ρηE

ij .
(3.13)
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So, we have

η(ρ, ω) ≤ Mρ[n2ρ + 2n] + ωn[1 + 2nρ] ,(3.14)

and finally from (3.6) we obtain

sup
t

|Qij(t)| ≤ K
(

ω + η(ρ, ω)ρ
)

.

Theorem IV.2.1 of [14] may be applied if K[η(ρ, ω)ρ+N(ω)] < ρ. Using the bound on η(ρ, ω) in (3.14)
and the form for ρ = βω, this condition is equivalent to a2ω

2 + a1ω + (1 − α) < 0 or ω < ω+(α, K, M)
with ω+(α, K, M) given in (3.3).

Remark 3.1. If we fix α = 2 (as suggested by a small calculation), we obtain the value of ω+(α, K, M)

ω+ =
1

4nKXβ
(
√

1 + 4X/(4Mβ + 1) − 1), X =
Mβ + 2

2Mβ + 1
.(3.15)

The asymptotic regimes are of interest.
• If Mβ ≈ 0 (i.e., K ≈ 0, that is a is large) then X ≈ 2 and ω+ ≈ 1/4nK, that is ω+ can be large.

This is the case when there is strong separation in the diagonal of the coefficient matrix B. It is
the most benign case.

• If Mβ � 1, then X ≈ 1/2, and ω+ ≈ 1
(2nK)(4Mβ+1) � 1. This is the case when either the

coefficients are very large or there is weak integral separation in the diagonal of B. This is the
hardest case.

• The case of Mβ ≈ 1 gives ω+ ≈ 1/2nK, which may be either large or not depending on K (and
n).

In all cases, there is a O(1/n) dependence in ω+. This is unavoidable given the global point of view we
adopted. Perhaps, a different analysis using integral separation constants ak, dk that correspond to the
integral separation between diagonal elements i and j with k = i − j could be performed to remove this
dependence on the dimension of the problem.

Using Lemma 3.1 we obtain our main result.
Theorem 3.2. Assume that the principal matrix solutions associated to both unperturbed and perturbed

systems in (3.1) are integrally separated. Then, with same notation and assumptions of Lemma 3.1, if
ω < ω+(α, K, M) where ω+ is given (3.3), then

|µi − λi| ≤ ρ2
∑

k 6=i

γik + ω(3.16)

where ρ = β · ω, β = αK, K = ed/a, and γik = supt |Dii(t) − Dkk(t)|.
Proof.
We have for i = 1, ..., n that

(QT AQ)ii − Dii = (Q2
ii − 1) · Dii +

∑

k 6=i

Q2
kiDkk + (QT EQ)ii .(3.17)

Then

µi − λi := lim sup
t→∞

1

t

∫ t

0

(QT AQ)ii(τ)dτ − lim sup
t→∞

1

t

∫ t

0

Dii(τ)dτ

≤ lim sup
t→∞

1

t

∫ t

0

[

(Q2
ii − 1) · Dii +

∑

k 6=i

Q2
kiDkk + (QT EQ)ii

]

dτ

= lim sup
t→∞

1

t

∫ t

0

[

∑

k 6=i

Q2
ki(Dkk − Dii) + (QT EQ)ii

]

dτ

(3.18)

and the result follows since ||QT EQ|| = ‖E‖ ≤ ω.
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4. The Non-Integrally Separated Case. Here we consider the case of non-distinct Lyapunov
exponents. As a starting point we employ block analogues of the previous results. The arguments are
even more technical than before, in part because the characterization of stability for the exponents is more
complicated than in the case of stable and distinct exponents. We will review this characterization next.

We need some definitions before stating the theorem due to Bylov and Izobov [4] and Millionshchikov
[18] on stability of Lyapunov exponents.

Definition 4.1. [1]. Bounded, measurable functions, l(t) and u(t), defined on IR+, are said to be lower
and upper functions for (3.1) if for any solution x of (3.1) and any ε > 0 there exist positive constants dl,ε

and Du,ε such that

dl,ε exp(

∫ t

s

(l(τ) − ε)dτ) ≤ ||x(t)||
||x(s)|| ≤ Du,ε exp(

∫ t

s

(u(τ) + ε)dτ)(4.1)

for t ≥ s ≥ 0 and the quantities dl,ε, Du,ε are independent of t and s.
For (3.1), we define the following two quantities:

Ω = inf
u
{lim sup

t→∞

1

t

∫ t

0

u(s)ds},(4.2)

where the infimum is taken over all upper functions, called upper central exponent in [1], and

ω̄ = sup
l
{lim sup

t→∞

1

t

∫ t

0

l(s)ds},(4.3)

where the supremum is taken over all lower functions.
We are ready to state the stability theorem for Lyapunov exponents in the case of non-distinct Lya-

punov exponents.
Theorem 4.1. [4], [18], [1, Theorem 5.4.9]. The Lyapunov exponents of ẋ = A(t)x are stable if and

only if there exists a Lyapunov transformation T that transforms ẋ = A(t)x to the block diagonal form

ż = diag[B11(t), · · · , Bmm(t)]z(4.4)

where each Bkk(t) is upper triangular of dimension nk, k = 1, . . . , m. Moreover, for each block system
żk = Bkk(t)zk, k = 1, . . . , m, we have:

(i) all solutions of the block have the same Lyapunov exponents, Λk, and ω̄k = Ωk = Λk;
(ii) for any bi an arbitrary diagonal element of Bii and bi+1 an arbitrary diagonal element of Bi+1,i+1,

bi and bi+1 are integrally separated.

Now, recall that we are interested in studying the difference in the exponents of the unperturbed and
perturbed triangular systems (2.13):

Ṙ = B(t)R,
˙̂
R = [B(t) + F (t)]R̂ , ‖F‖ ≤ δ .

Let us partition R, B, and F , in a block way, with the partitioning inherited by the integral separation
in the system, and furthermore write R = RD + RU , where RD is the block diagonal part of R and RU

is the block upper part of R. That is: RD = diag[R11(t), · · · , Rmm(t)], and so forth. Again, we can write
R = (I + RUR−1

D )RD =: ZRD. Accordingly, we have the unperturbed and perturbed diagonal systems as
we did in (2.14):

ṘD = D(t)RD ,
˙̂

RD = [D(t) + E(t)]R̂D ,(4.5)

where D(t) = diag[B11(t), · · · , Bmm(t)] (see (4.4)). In the present context, we replace the condition of
integral separation (2.4) by the following block condition (which follows easily from point (ii) of Theorem
4.1)

‖R−1
ii (t)Rii(s)‖ ‖R−1

i+1,i+1(s)Ri+1,i+1(t)‖ ≤ ed̃e−ã(t−s) , t ≥ s ,(4.6)
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where ã > 0 and d̃ ≥ 0, for all t, s : t ≥ s ≥ 0, and i = 1, . . . , m − 1.
With these preparations, the block analogue of Lemma 2.1 still holds, and again we have that ω := ‖E‖

is bounded as in (2.15), the difference being that Z is now a block matrix.
Next, we want to show that there is an orthogonal change of variables that brings D + E (where D

is block diagonal with upper triangular blocks) to block upper triangular, though not necessarily anymore
with triangular diagonal blocks. The basic idea to achieve our goal is to use a block form of the construction
that we used in the integrally separated case together with a careful choice for certain entries of the skew-
symmetric matrix function S(Q, D).

Write the equations for the orthogonal change of variables in block form, where the size of the blocks
is determined by the integral separation in the system, as

Q̇(ij) =
∑

k

Q(ik)S(kj), Q(ij), S(ij) ∈ IRni×nj .(4.7)

For j < i, with obvious notation, we have

S(ij) ≡ S
(ij)
D + S

(ij)
E := [QT DQ](ij) + S

(ij)
E

=
∑

k

(QT )(ik)D(kk)Q(kj) + S
(ij)
E =

∑

k

(Q(ki))T D(kk)Q(kj) + S
(ij)
E ,(4.8)

and for i < j, S(ij) is determined by skew-symmetry; that is: S(ij) = −S(ji)T

, for i < j. We have yet to
determine the S(jj). The obvious choice would be to set S(jj) = 0, but below we will adopt a more useful
choice.

For i < j we write the equation for Q̇(ij) as

Q̇(ij) = −(D(ii)T Q(ij) − Q(ij)D(jj)T ) + [(D(ii)T Q(ij) − Q(ij)D(jj)T ) +
∑

k

Q(ik)S(kj)] ,(4.9)

and for i > j we write

Q̇(ij) = −(Q(ij)D(jj) − D(ii)Q(ij)) + [(Q(ij)D(jj) − D(ii)Q(ij)) +
∑

k

Q(ik)S(kj)] .(4.10)

Next we consider the block analogues of (3.8) and (3.10) and the orthogonality condition (3.9) with the
key difference in this block case being that the term Djj [−Qij(1 −Q2

jj)] in (3.10) is replaced by the term

−Q(ij)[D(jj)T − Q(jj)T D(jj)T Q(jj)]

= Q(ij)[D(jj)T (Q(jj) − I) + (Q(jj)T − I)D(jj)T + (Q(jj)T − I)D(jj)T (Q(jj) − I)] .
(4.11)

To ensure that this term is sufficiently small, we must have Q(jj) ≈ I uniformly in t and this motivates
finding a choice S(jj) 6= 0. To understand the choice we make in (4.13) below, observe that for all
p = 1, . . . , m, we have

d

dt
(Q(pp) − I) = −(Q(pp) − I) + [(Q(pp) − I) + Q(pp)S(pp) +

∑

k 6=p

Q(pk)S(kp)] .(4.12)

Now, we want the term in brackets in (4.12) to be of O(ρ2) if the terms Q(pk) and (Q(pp) − I) are O(ρ).
We notice that by the form of S(kj) in (4.8) the term

∑

k 6=p Q(pk)S(kp) in (4.12) is O(ρ2), while if the terms

S(jj) and Q(ij) are O(ρ), then the terms Q(ij)S(jj) in (4.9) and (4.10) are also O(ρ2). Therefore, the term
that requires attention is the first term in brackets in (4.12): (Q(pp) − I) + Q(pp)S(pp).

We are ready to select a useful choice for S(pp). For k > l, define

S
(pp)
kl = −Q

(pp)
kk Q

(pp)
kl ,(4.13)

with the remaining portion of S(pp) determined by skew-symmetry. To see why this is a judicious choice,

from (4.12) we see that in order to ensure Q(pp) ≈ I uniformly in t we need to show that if |Q(pp)
ij | ≤ ρ for



ERROR ANALYSIS FOR LYAPUNOV EXPONENTS 9

all i 6= j, then |[(Q(pp) − I) + Q(pp)S(pp)]kl| ≤ Cρ2 for all k, l and some constant C. Now, we have

[Q(pp)(I + S(pp))]kl =
∑

j

Q
(pp)
kj (I + S(pp))jl =

∑

j>l

Q
(pp)
kj (I + S(pp))jl + Q

(pp)
kl (I + S(pp))ll

+
∑

j<l

Q
(pp)
kj (I + S(pp))jl

= −
np
∑

j=l+1

Q
(pp)
kj Q

(pp)
jj Q

(pp)
jl + Q

(pp)
kl +

l−1
∑

j=1

Q
(pp)
kj Q

(pp)
ll Q

(pp)
lj .

(4.14)

There are 3 cases to consider: k > l, k = l, and k < l. If k > l, then

[Q(pp)(I + S(pp))]kl = Q
(pp)
kl (1 − (Q

(pp)
kk )2) −

np
∑

j=l+1,j 6=k

Q
(pp)
kj Q

(pp)
jj Q

(pp)
jl + Q

(pp)
ll

l−1
∑

j=1

Q
(pp)
kj Q

(pp)
lj .(4.15)

If k = l, then

[Q(pp)(I + S(pp))]kk = 1 + (Q
(pp)
kk − 1) −

np
∑

j=k+1

Q
(pp)
kj Q

(pp)
jj Q

(pp)
jk + Q

(pp)
kk

k−1
∑

j=1

(Q
(pp)
kj )2 ,(4.16)

and observe that for Q
(pp)
kk 6= −1, Q

(pp)
kk − 1 = ((Q

(pp)
kk )2 − 1)/(Q

(pp)
kk + 1). If k < l, using the orthogonality

condition (used relatively to the entire Q)

n
∑

j=1

QkjQlj = 0 ,(4.17)

we have

[Q(pp)(I + S(pp))]kl = Q
(pp)
kl (1 − (Q

(pp)
ll )2) −

np
∑

j=l+1

Q
(pp)
kj Q

(pp)
jj Q

(pp)
jl − Q

(pp)
ll

n
∑

j=1

Qkj 6=Q
(pp)

kj

Qlj 6=Q
(pp)

lj

QkjQlj .(4.18)

Formulas (4.15, 4.16, 4.18) will be needed in the proof of Theorem 4.3. Also the following Lemma will
be needed in the proof, in which case the matrices A and B of the lemma will be the triangular matrices
which are the diagonal blocks of the coefficient matrix D in (4.5).

Lemma 4.2. Consider

Ẇ (t) = −[A(t)W (t) − W (t)B(t)] + F (t),(4.19)

where W (t), F (t) ∈ IRp×q, A(t) ∈ IRp×p, and B(t) ∈ IRq×q with A and B both bounded, piecewise continu-
ous. If there exists ã > 0 and d̃ ≥ 0 such that (recall (4.6))

||X−1(t) X(s)|| · ||Y −1(s) Y (t)|| ≤ ed̃−ã(t−s) , t ≥ s ,(4.20)

for fundamental matrix solutions X, Y satisfying Ẋ = XA and Ẏ = Y B, then there exists a solution to

(4.19) such that supt≥0 ||X−1(t)[
∫ t

0 X(s)F (s)Y −1(s)ds]Y (t)|| ≤ K · supt ||F (t)|| where K = ed̃/ã.
Proof. By the variation of constants formula with W (0) = 0 we have

||W (t)|| = ||X−1(t)[

∫ t

0

X(s)F (s)Y −1(s)ds]Y (t)||

≤ ||X−1(t)||[
∫ t

0

||X(s)||||F (s)||||Y −1(s)||ds]||Y (t)||

≤
∫ t

0

ed̃−ã(t−s)ds sup
t

||F (t)||.

(4.21)
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Remark 4.1. The constants ã and d̃ can be bounded in terms of the integral separation constants between
the diagonal elements of different blocks as in part (ii) of Theorem 4.1 and the quantities ε, dl,ε, Du,ε that
bound the upper and lower functions for the blocks. Using Theorems 5.1 and 5.2 of [10] we can quantify
the quantities that characterize the upper and lower functions in terms of so-called Lillo conditions and
bounds on the off diagonal elements within the block.

We are now ready to state and prove a theorem providing the existence of an orthogonal change of
variables that stays uniformly close to the identity and brings the perturbed diagonal system in (4.5) to
block upper triangular, though the diagonal blocks are not necessarily triangular.

Theorem 4.3. For i, j = 1, . . . , m, let

κij(t) = ‖Q(ij)(t)‖, for i 6= j , and κjj(t) = ‖Q(jj)(t) − I‖ .(4.22)

Let β = αK, with α > 1, K = max{ed̃/ã, 1} with ã and d̃ as in (4.20), ρ = β · ω, where ω is a bound on
supt ‖E(t)‖, E in (4.5), and let Mjj = supt ‖D(jj)(t)‖, and M = maxj Mjj . Finally, let a1 = β[c1β + m],
and a2 = β2[2m2 + βc2], where c1 = max

(

4M(m − 1) + (nmax
j − 1) , 2M(m − 1) + 2nnmax

j )
)

, where

nmax
j = maxj nj, and c2 = M(m − 1) max

(

7 , m
)

.
Then, for Q(0) = I, if

ω < ω+ := (
√

a2
1 + 4(α − 1)a2 − a1)/(2a2) ,(4.23)

then κij(t) < ρ for all t ≥ 0 and all i, j = 1, . . . , m.

Proof. Using the equation for Q̇(ij) in (4.7) together with the definition for S(ij) in (4.8) and the
definition for S(jj) in (4.13), we have for i < j using (4.9) (and similarly for i > j using (4.10)),

Q̇(ij) = −(D(ii)T Q(ij) − Q(ij)D(jj)T ) + q(ij)(t, Q, ω)(4.24)

where

q(ij)(t, Q, ω) = (D(ii)T Q(ij) − Q(ij)D(jj)T ) +
∑

k

Q(ik)S(kj)(4.25)

For i = j, using (4.12), we have

d

dt
(Q(jj) − I) = −(Q(jj) − I) + q(jj)(t, Q, ω) ,(4.26)

where

q(jj)(t, Q, ω) = (Q(jj) − I) +
∑

k

Q(jk)S(kj) .(4.27)

By the nonlinear variation of constants formula for i < j (and similarly for i > j),

Q(ij)(t) = Y (ii)(t)
[

∫ t

0

(Y (ii)(τ))−1q(ij)(τ, Q(τ), ω)(Z(jj)(τ))−1dτ
]

Z(ii)(t)

≤ Kij sup
t

‖q(ij)(t, Q(t), ω)‖ ,
(4.28)

where Y (ii) is a fundamental matrix solution for Ẏ (ii) = Y (ii)D(ii)T , Z(jj) is a fundamental matrix solution

for Z(jj) = Z(jj)D(jj)T , and Kij ≤ ed̃/ã by Lemma 4.2.
For i = j, from (4.12) we have

Q(jj)(t) − I = e−t

∫ t

0

eτq(jj)(τ, Q(τ), ω)dτ ≤ Kjj sup
t

‖q(jj)(t, Q(t), ω)‖ ,(4.29)

with Kjj ≤ 1.
Let K = maxi,j K(ij).
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For i < j, and similarly for i > j, we can write

||q(ij)(t, Q, ω)|| ≤ ||q(ij)(t, Q, ω) − q(ij)(t, I, ω)|| + ||q(ij)(t, I, ω)|| ≤ η(ρ, ω)ρ + N(ω)(4.30)

where N(ω) ≤ ω. To bound η(ρ, ω), write

q(ij)(t, Q, ω) = q
(ij)
D (t, Q, ω) + q

(ij)
E (t, Q, ω)

:= [(D(ii)T Q(ij) − Q(ij)D(jj)T ) +
∑

k

Q(ik)S
(kj)
D ] +

∑

k

Q(ik)S
(kj)
E

(4.31)

where S
(kj)
D and S

(kj)
E are as in (4.8). Then, analogously to (3.8)-(3.10), for i < j we have

q
(ij)
D (t, Q, ω) =



[I −
j−1
∑

k=1

Q(ik)Q(ik)T ]D(ii)T + [

m
∑

k=j+1

Q(ik)Q(ik)T ]D(ii)



 Q(ij)

− Q(ij)
[

D(jj)T − Q(jj)T D(jj)T Q(jj)
]

+

m
∑

k=j+1

Q(ik)Q(ik)T (D(jj)T + D(jj))Q(jj)

−
∑

l6=i,j





j−1
∑

k=1

Q(ik)Q(lk)T D(ll)T Q(lj) −
m

∑

k=j+1

Q(ik)Q(lk)T D(ll)Q(lj)



 + Q(ij)S
(jj)
D .

(4.32)

Using (4.11),

I −
j−1
∑

k=1

Q(ik)Q(ik)T = Q(ij)Q(ij)T +

m
∑

k=j+1

Q(ik)Q(ik)T , and Q(jj) =
(

Q(jj) − I
)

+ I ,(4.33)

and so we have

||q(ij)
D (t, Q, ω)|| ≤ [(κ2

ij + 2

m
∑

k=j+1

κ2
ik)Mii + 2κjjMjj ]κij + 2

m
∑

k=j+1

κ2
ikMjj(1 + κjj)

+
∑

l6=i,j









(1 + κii)κliκlj + (1 + κll)κilκlj +

m
∑

k=1

k 6=i,l,j

κikκlkκlj









Mll + κijsj ,

(4.34)

where sj = supt ‖S
(jj)
D (t)‖.

For i = j, using (4.27) and (4.8), we have

q
(jj)
D (t, Q, ω) = [Q(jj)(I + S

(jj)
D ) − I ] +

∑

k 6=j

Q(jk)S
(kj)
D

= [Q(jj)(I + S
(jj)
D ) − I ]

−
∑

l





j−1
∑

k=1

Q(jk)Q(lk)T D(ll)T Q(lj) −
m

∑

k=j+1

Q(jk)Q(lk)T D(ll)Q(lj)



 .

(4.35)

Thus,

||q(jj)
D (t, Q, ω)|| ≤ ||[Q(jj)(I + S

(jj)
D ) − I ]||

+ Mjj(1 + κjj)
∑

k 6=j

κ2
jk +

∑

l6=j

κjl(1 + κll)Mllκlj +
∑

l6=j

∑

k 6=j,l

κjkκlkMllκlj .(4.36)

Next we find bounds for sj and, using (4.15)-(4.18), for ‖Q(jj)(I + S
(jj)
D ) − I‖. If ||Q(jj) − I || ≤ ρ,

given the way the entries of S(jj) have been defined (see (4.13)), we easily obtain sj ≤ (nj − 1)ρ. The
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bound on ‖Q(jj)(I +S
(jj)
D )− I‖ is trickier, and it is convenient to consider the various contributions within

this term separately.
For the lower entries (k > l) we can use (4.15) to obtain a bound on each entry as

|
(

Q(jj)(I + S
(jj)
D )

)

kl
| ≤ 2ρ2 + (nj − 2)ρ2 = njρ

2 ,

and thus a bound on all the lower part of Q(jj)(I + S
(jj)
D ) is

∑

k>l

(

Q(jj)(I + S
(jj)
D )

)2

kl
≤ n2

jρ
4 nj(nj − 1)

2
.

For the diagonal entries (k = l), we can use (4.16) and (4.17) to obtain that

|
(

Q(jj)(I + S
(jj)
D ) − I

)

kk
| ≤ (n − 1)ρ2 + (nj − 1)ρ2 = (n + nj − 2)ρ2 .

so that

∑

k

(

Q(jj)(I + S
(jj)
D )

)2

kk
≤ njρ

4(n + nj − 2)2 .

Finally, for the upper part (k < l) we can use (4.18) and (4.17) to obtain a bound on each entry as

|
(

Q(jj)(I + S
(jj)
D )

)

kl
| ≤ 2ρ2 + (nj − l)ρ2 + (n − nj)ρ

2 ≤ nρ2 ,

and thus a bound on all the upper part of Q(jj)(I + S
(jj)
D ) is

∑

k<l

(

Q(jj)(I + S
(jj)
D )

)2

kl
≤ n2ρ4 nj(nj − 1)

2
.

Thus, we obtain

‖Q(jj)(I + S
(jj)
D ) − I‖ ≤ ρ2[nj(n + nj − 2)2 + (n2 + n2

j )nj(nj − 1)/2]1/2,

and since

nj(n + nj − 2)2 + n2nj(nj − 1)/2 ≤ 4n2nj(nj + 1)/2

and

[n2
jnj(nj − 1)/2 + 4n2nj(nj + 1)/2]1/2 ≤ 2nnj ,

we have

‖Q(jj)(I + S
(jj)
D ) − I‖ ≤ 2ρ2nnj .(4.37)

If κij ≤ ρ and Mij ≤ M , we have for i < j from (4.34),

‖q(ij)
D (t, Q, ω)‖ ≤ ρ2M [ρ + 2(m − j)ρ + 2 + 2(m − j)(1 + ρ) + 2(m − 2)(1 + ρ) + (m − 3)ρ] + (nj − 1)ρ2

= ρ2M [ρ(7m − 4j − 6) + (4m − 2j − 2)] + (nj − 1)ρ2 ≤ ρ2M(7ρ + 4)(m − 1) + (nj − 1)ρ2

=: ηD
ij (ρ, ω)ρ,(4.38)

that is ηD
ij (ρ, ω) = ρM(7ρ + 4)(m − 1) + (nj − 1)ρ.

For i = j, instead, from (4.36) and (4.37) we have

||q(jj)
D (t, Q, ω)|| ≤ ρ2

[

2nnj + M(m − 1)
(

2(1 + ρ) + (m − 2)ρ
)]

=: ηD
jj(ρ, ω)ρ .(4.39)
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Now, let ηD(ρ, ω) := max
i,j

ηD
ij (ρ, ω) and note that

ηD(ρ, ω) ≤ ρ2c2 + ρc1

where c1 = max
(

4M(m− 1) + (nj − 1) , 2M(m − 1) + 2nnj

)

and c2 = (m − 1)M max
(

7, m
)

.

So, using the bound for ||q(ij)
E (t, Q, ω) − q

(ij)
E (t, I, ω)|| from (3.13) we set

η(ρ, ω) = ηD(ρ, ω) + ωm[1 + 2mρ](4.40)

and the result follows by applying Theorem IV.2.1 of [14] provided K[η(ρ, ω)ρ + N(ω)] < ρ. Using the
bound on η(ρ, ω) in (4.40) and the form for ρ = βω, this condition is equivalent to a2ω

2 +a1ω+(1−α) < 0
or ω < ω+(α, K, M) with ω+(α, K, M) given in (4.23).

Following [6] (see Theorems 5.1.2 and 5.1.3 in [1]) we have the following result which bounds the
perturbation in the exponents within each of the diagonal blocks.

Theorem 4.4. Suppose for an upper triangular block T , the assumptions of Theorem 4.1 hold. Let
ε > 0 be given, define Dε := max{Du,ε, 1/dl,ε} and δ := ε/(4Dε). Consider the systems u̇ = T (t)u with
n Lyapunov exponents equal to λ and u̇ = [T (t) + E(t)]u with supt ||E(t)|| ≤ δ and Lyapunov exponents
{µ(i)}n

i=1. Then

|µ(i) − λ| ≤ 4Dεδ.(4.41)

for i = 1, ..., n.

Now we state our main perturbation result in the case of non-distinct Lyapunov exponents.

Theorem 4.5. Assume that ω < ω+(α, K, M) where ω+ is given (4.23). Consider the ith block, if
ni > 1, then

|µ(j)
i − λi| ≤ 4Di,ε[Mii(ρ

2 + 2ρ) +
∑

k 6=i

Mkkρ2 + ω + si](4.42)

for j = 1, ..., ni where ρ = β · ω, β = αK, K = max{ed̃/ã, 1}. If ni = 1, then

|µ(1)
i − λi| ≤ ρ2

∑

k 6=i

[Mkk + Mii] + ω.(4.43)

Proof. By Theorem 4.2 in [10] there exists a Lyapunov transformation that transforms the block upper
triangular system to block diagonal without changing the diagonal blocks.

We have for i = 1, ..., m that

(QT AQ)(ii) − D(ii) = Q(ii)T D(ii)Q(ii) − D(ii) +
∑

k 6=i

Q(ki)T D(kk)Q(ki) + (QT EQ)(ii) − S(ii)(4.44)

If ni = 1, then (4.43) follows by the argument in the proof of Theorem 3.2 but with the term
∑

k 6=i Q2
ki(Dkk−

Dii) replaced by

∑

k 6=i

Q(ki)T [D(kk)Q(ki) − Q(ki)D(ii)].(4.45)

If ni > 1, then result follows from Theorem 4.4 using (4.44) by writing

Q(ii)T D(ii)Q(ii) − D(ii) = (Q(ii)T − I)D(ii)(Q(ii) − I) + (Q(ii)T − I)D(ii) + D(ii)(Q(ii) − I).(4.46)
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5. Numerical Example.

We build an example where we vary the strength of the integral separation, whether the exponents
there are all distinct or some are equal, and the departure from normality of the exact triangular factor.
Take the following upper triangular function B(t) = D(t) + U(t), with

D(t) = diag(D11(t), D22(t), D33(t), D44(t)) ,(5.1)

where we take D11(t) = 10 + sin(t), D22(t) = ζ cos(t), D33(t) = λ3 − ζ cos(t), D44(t) = −10 + sin(t), and

U(t) = κ







0 cos(t) sin(t) cos(t)
0 0 cos(t) sin(t)
0 0 0 cos(t)
0 0 0 0






.(5.2)

We will adjust the parameter κ to change the degree to which there is non-normality in the upper triangular
part and the parameters λ3 and ζ to change the degree to which there is integral separation as well as
allowing for the case of non-distinct exponents.

Then, we rotate B, and consider the linear system (2.1) with

A(t) = Q(t)B(t)QT (t) + Q̇(t)QT (t) ,

and

Q(t) = diag(1, Qβ(t), 1) · diag(Qη(t), Qη(t)) .

We set

Qγ(t) =

(

cos(γt) sin(γt)
− sin(γt) cos(γt)

)

, η = 1, β =
√

2.

Regardless of the value of κ in (5.2), this is a regular system with stable Lyapunov exponents given by the
limits of

λi(t) :=
1

t

∫ t

0

Dii(s)ds , i = 1, 2, 3, 4 , i.e. : {λ1, λ2, λ3, λ4} = {10, 0, λ3,−10} .

We will consider the case of distinct exponents by setting λ3 = −1 and the case of two equal exponents
by setting λ3 = 0. All results on this problem have been obtained using the code leslis, which we wrote
and is public domain and can be downloaded from our websites: http://www.math.gatech.edu/∼dieci

and http://www.math.ku.edu/∼evanvleck. In particular, we employ the continuous QR method using
the projected 5th order scheme (IPAR(8)=0 in LESLIS), with local error control on the Q-factor and the
exponents (IPAR(10)=10 in LESLIS), and TOL is the value of the local error tolerance.

In Table 5.1 we report on experiments that have been carried out up to T = 104, and we show the
errors ei := |λi − λc

i (T )| where λc
i (T ) are the computed values at T of λi(T ), i = 1, 2, 3, 4. Scientific

notation is used throughout. Given that we use TOL=1.E-4, and that we compute up to T = 104, we
cannot expect to see errors better than about 1.E-4, and this would correspond to the case in which the
errors are indeed of size TOL. [Increasing the length of the interval on which we compute does not increase
the accuracy, as we observed in [11].]

We observe that if the coefficient matrix is normal (that is, κ = 0), and there is a sufficient degree
of integral separation (that is, ζ = 5), then the exponents are accurate regardless of whether or not they
are distinct (λ3 = −1 or λ3 = 0). The exponents remain reasonably accurate even with κ = 10, as long
as there is sufficient integral separation (ζ = 5), but are much more accurate when λ3 = 0 than when
λ3 = −1. This illustrates very clearly the difference between having distinct exponents in a system with
weak integral separation versus having equal exponents with strong integral separation in a block sense.
When we further weaken integral separation (ζ = 10) also in the block sense, then the exponents are no
longer all accurate, regardless of whether or not they are distinct, although the first and last exponents
remain accurate. This betrays the fact that it may be possible to do a more refined component-wise
analysis of the error in each exponent, based upon the varying degrees of integral separation within the
upper triangular system. Finally, in the last row of Table 5.1 we weaken the integral separation to the
point that all the exponents are poorly approximated.
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TOL=1.E-4, T = 104.

κ λ3 ζ e1 e2 e3 e4

0 −1 5 2.4E-4 1.1E-4 1.3E-4 1.3E-4
0 −1 10 2.4E-4 1.5E0 1.5E0 1.4E-4
10 −1 5 2.6E-4 8.5E-1 8.5E-1 6.8E-5
10 −1 10 2.5E-4 3.8E0 3.8E0 4.5E-5
0 0 5 2.4E-4 8.5E-3 8.5E-3 1.2E-4
0 0 10 2.3E-4 2.0E0 2.0E0 1.4E-4
10 0 5 2.6E-4 2.6E-4 1.9E-4 5.9E-5
10 0 10 2.4E-4 2.4E0 2.4E0 1.7E-4

10 0 20 3.4E-1 8.2E0 7.3E0 1.2E0

Table 5.1

Error in the exponents changing the degree of non-normality, integral separation, and distinct or non-distinct.

6. Conclusion.

The backward error analysis result of [11] said that –by QR methods– one will compute the Lyapunov
exponents of a perturbed triangular system. Here, we examined the impact of this perturbation on the
accuracy of the exponents. First, we performed a reduction from perturbed triangular to perturbed
diagonal systems, then, under the assumption of stable Lyapunov exponents, we proved the existence of
near identity orthogonal change of variables to upper triangular form. This allowed us to obtain precise
bounds on the error in the Lyapunov exponents. The numerical results suggest the importance of further
improvements of this type of analysis to provide a componentwise analysis of the error in the exponents
based upon the varying degrees of integral separation within the given system (see also Remark 3.1).
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