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Abstract. In this work, we show that for linear upper triangular systems of differential equations, we can use
the diagonal entries to obtain the Sacker and Sell, or Exponential Dichotomy, and also –under some restrictions–
the Lyapunov spectral intervals. Since any bounded and continuous coeficient matrix function can be smoothly
transformed to an upper triangular matrix function, our results imply that these spectral intervals may be found
from scalar homogeneous problems. In line with our previous work [8], we emphasize the role of integral separation.
Relationships between different spectra are shown, and examples are used to illustrate the results and define types
of coefficient matrix functions that lead to continuous Sacker-Sell spectrum and/or continuous Lyapunov spectrum.
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1. Introduction.

Since the thesis of Lyapunov more than one hundred years ago, see [16], different characteri-
zations of spectra for linear nonautonomous systems of differential equations have been proposed.
These spectra also characterize stability properties of a solution trajectory of a nonlinear system,
via linearization about the solution trajectory itself.

In this paper, we consider several different definitions of spectrum for linear systems on the
half line with bounded and continuous coefficients, and show relationships between the different
spectra. Our main effort is directed towards two spectra: The Exponential Dichotomy, or Sacker-

Sell spectrum [29], and the Lyapunov spectrum, which is defined in terms of the (upper) Lyapunov
exponents of the given system and of its adjoint. Henceforth, we will label these spectra ΣED and
ΣL, respectively.

In recent years, we have been increasingly interested in viable ways to numerically approximate
these spectra; see [7, 8]. And, to avoid working directly with the fundamental matrix solution of
the system, we have been looking into techniques which dynamically find the QR factorization
of the matrix solution, and hence end up working with triangular systems. The basic numerical
approach was pioneered by Benettin et alia in [2] to approximate Lyapunov exponents, and it
has traditionally been justified on the grounds of the Multiplicative Ergodic Theorem (see [22]),
and as such restricted to so–called regular systems. Instead, we have favored the role played by
the presence (or lack thereof) of integral separation of the fundamental matrix solution, which is
much more closely related to the stability of the Lyapunov exponents (regularity does not ensure
the stability/continuity of Lyapunov exponents). In particular, in [8], we showed that if the
transformed triangular system has an integrally separated diagonal, then this diagonal can be used
to approximate both ΣL and ΣED.

Although integral separation of the system (i.e., of a fundamental matrix solution of the system)
is both necessary and sufficient in order to have stability of distinct Lyapunov exponents, it is a
condition which cannot be satisfied for many problems, e.g., when there are identical Lyapunov
exponents. For this reason, in this work we investigate the situation in which there is not necessarily
integral separation in the fundamental matrix solution. In the present work we will show that,
regardless of integral separation, ΣED can always be obtained from the diagonal of bounded,
continuous, upper triangular coefficient matrix functions, and that ΣL can be obtained from the
diagonal of the upper triangular coefficient matrix functions if the Lyapunov exponents are stable.
Some of our results are similar in spirit to those of Palmer in [24, 25] where it is shown that an
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upper triangular system is integrally (exponentially) separated if and only if the corresponding
diagonal system is integrally (exponentially) separated. Exponential separation was introduced in
[5] and corresponds essentially to integral separation between two sets of columns each possibly
containing more than a single column. An important aspect of our results is that we construct
rather explicit forms of the diagonalizing transformations. These prove useful in the error analysis
for Lyapunov exponents developed in [9, 10].

An outline of the paper is as follows. In section 2 we give the basic definitions and properties
of ΣL and ΣED, and present other definitions of spectra, some of which are equivalent to ΣL and
ΣED in some cases, and can also be useful in their approximation. Section 3 summarizes the
classical results due to Bylov, Izobov, and Millionshchikov, on stability of Lyapunov exponents for
the case in which there is full integral separation and for the case in which there is not. Section
4 contains preparatory material for our main results of section 5, which justify the use of the
diagonal to compute ΣED and ΣL. In section 6 we establish relationships between the different
spectra. Section 7 contains examples to illustrate our theoretical results. We develop examples
illustrating the type of behavior in diagonal coefficients that lead to continuous Sacker-Sell and
Lyapunov spectra including an example where these spectra coincide in a certain limit. Conclusions
are in section 8.

2. Sacker-Sell, Lyapunov, and other Spectra.

Consider the system

ẋ = A(t)x, t ≥ 0,(2.1)

where A : IR+ → IRn×n is continuous and bounded, uniformly in t, and the corresponding inho-
mogeneous equation

ẋ = A(t)x + f(t), t ≥ 0,(2.2)

with f : IR+ → IRn bounded and continuous.

It is natural to ask for a definition of spectrum Σ ⊂ IR associated to (2.1) such that one or
more of the following properties hold:

Property 1: For Σ ∩ (−∞, 0) 6= ∅ and 0 /∈ Σ, there exists a non-zero bounded solution to (2.1).
Property 2: For 0 /∈ Σ, there exists a bounded solution to (2.2) for any bounded, continuous,
non-zero f .

Property 3: For Σ ∩ (−∞, 0) 6= ∅ and 0 /∈ Σ, there exists a bounded solution to (2.2) for any
bounded, continuous f .

These three properties are important in different contexts. Property 1 is related to stability
or the saddle property of the zero solution. Properties 2 and 3 are both concerned with the
inhomogeneous problem and are central to topics such as shadowing (see e.g. [26, 28]). As it turns
out, the Sacker-Sell spectrum gives all three properties, while the Lyapunov spectrum only gives
Property 1.

Clearly, in the autonomous case (A(t) ≡ A ∈ IRn×n for all t), ΣEIG := {λ ∈ IR : λ is the
real part of an eigenvalue of A} defines a spectrum for which the above properties hold. In the
nonautonomous case, different definitions of spectra have been used. We recall some of them.

In [29], Sacker and Sell introduced a spectrum for (2.1) based upon exponential dichotomy:
The Sacker-Sell, or Exponential Dichotomy, spectrum (ΣED) is given by those values λ ∈ IR such
that the shifted system ẋ = [A(t) − λI ]x does not have exponential dichotomy. Recall that the
system (2.1) has exponential dichotomy if for a fundamental matrix solution X there exists a
projection P and constants α, β > 0, and K, L ≥ 1, such that

‖X(t)PX−1(s)‖ ≤ Ke−α(t−s), t ≥ s,

‖X(t)(I − P )X−1(s)‖ ≤ Leβ(t−s), t ≤ s.
(2.3)
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It is shown in [29] that ΣED is given by the union of at most n closed, disjoint, intervals. Thus, it
can be written, for some 1 ≤ k ≤ n, as

ΣED := [a1, b1] ∪ · · · ∪ [ak, bk],(2.4)

where the intervals are disjoint. The complement of ΣED is called the resolvent: It is given by
all values λ ∈ IR for which the shifted system has exponential dichotomy.

To define a spectrum in terms of Lyapunov exponents, let X be a fundamental matrix solution
of (2.1) and consider the quantities

λi = lim sup
t→∞

1

t
ln ||X(t)ei|| , i = 1, . . . , n,(2.5)

where ei denotes the i-th standard unit vector. When
n
∑

i=1

λi is minimized with respect to all

possible fundamental matrix solutions, then the λi’s are called the upper Lyapunov exponents,
or simply Lyapunov exponents or characteristic numbers, of the system and the corresponding
fundamental matrix solution is called normal.

The Lyapunov exponents satisfy

n
∑

i=1

λi ≥ lim sup
t→∞

1

t

∫ t

0

Tr(A(s))ds(2.6)

where Tr(A(·)) is the trace of A(·). Linear systems for which the Lyapunov exponents exist as
limits were called regular by Lyapunov.

Definition 2.1. A system is regular (Lyapunov) if the time average of the trace has a finite
limit and equality holds in (2.6).

To define a spectrum based upon Lyapunov exponents, along with (2.1), we will also need to
consider the associated adjoint equation

ẏ(t) = −AT (t)y(t)(2.7)

with Lyapunov exponents {−µi}ni=1; these are also called lower Lyapunov exponents of (2.1).
Now, take the λi’s and −µi’s which we can assume to be ordered: λ1 ≥ λ2 ≥ · · · ≥ λn and
µ1 ≥ µ2 ≥ · · · ≥ µn where, in fact, λj ≥ µj (see e.g. [8]). We define the Lyapunov spectrum, ΣL,
as

ΣL :=

n
⋃

j=1

[λi
j , λ

s
j ](2.8)

where λi
j = µj and λs

j = λj for j = 1, . . . , n.
There are examples of systems for which ΣL is a collection of points, while ΣED is a contin-

uum. E.g., Millionshchikov, [21], and Johnson, [12], construct regular systems where the Lyapunov
exponents are the endpoints of the interval making up ΣED. In general ΣL ⊆ ΣED (see Section 6),
and both spectra may be a continuum (intervals), not just points.

Example 2.2. [16, 7]. For ẋ = a(t)x with a(t) = sin(ln(t)), or also a(t) = cos(ln(t)), ΣED is
[−1, 1] and ΣL is [−1/

√
2, 1/
√

2].

Example 2.3. This simple example highlights that Lyapunov spectrum on the negative real
axis does not imply bounded solutions for inhomogeneous problems. In fact, we consider an
inhomogeneous scalar problem having an unbounded solution: The system is regular, with ΣL =
−α < 0, but does not have exponential dichotomy.
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Consider the inhomogeneous differential equation ẋ = a(t)x + f(t) where a(t) = sin(ωj(t −
aj))− α for aj ≤ t < bj with 0 < α < 1 and a1 = 0, bj = aj + 2π/ωj , aj = bj−1 for j = 1, · · ·. For
simplicity we will set ωj = 1/j so that ΣL = −α and ΣED = [−1− α, 1− α] as will be illustrated
in Example 7.1. We will also set f(t) = 1 for all t, but the same discussion will hold for any
bounded (in the sup norm) f that is bounded away from zero. We show that any solution of the
inhomogeneous equation is unbounded.

Denote by Φ(t) = exp(
∫ t

0 a(τ))dτ = exp(j(1−cos((t−aj)/j))−αt) the principal matrix solution
to the homogeneous problem ẋ = a(t)x. It is sufficient to consider x(0) = 0 so that the solution

to the inhomogeneous equation is x(t) = Φ(t)[
∫ t

0 Φ−1(s)ds]. Thus, for t such that ak ≤ t < bk we
have

∫ t

0

Φ−1(s)ds =
k−1
∑

j=1

∫ bj

aj

Φ−1(s)ds +

∫ t

ak

Φ−1(s)ds

=
k−1
∑

j=1

∫ bj

aj

e(−(j(1−cos((s−aj)/j))))ds +

∫ t

ak

e(−(k(1−cos((s−ak)/k))))ds

≥ 2π
k−1
∑

j=1

je−jeαaj ejg(u∗) + u∗ke−keαakekg(u∗)

(2.9)

where g(u) = cos(u) + αu, u∗ is the minimum of g on the interval 0 < u < 2π, and t is chosen to

be t = ku∗ + ak. For this t we have Φ(t) = eke−αk

e−kg(u∗) so that

|x(t)| = Φ(t)

∫ t

0

Φ−1(s)ds ≥ 2πΦ(t)

k−1
∑

j=1

je−jeαaj ejg(u∗) + u∗k →∞(2.10)

as k →∞.

Lyapunov exponents and their stability properties (and hence ΣL) are preserved under Lya-

punov transformations.
Definition 2.4. A smooth invertible change of variables y ← T −1x is called a Lyapunov trans-

formation if T , T−1, and Ṫ , are bounded.
Under a Lyapunov transformation, (2.1) is transformed to

ẏ = B(t)y , B(t) := T−1(t)A(t)T (t)− T−1(t)Ṫ (t) , ∀t ≥ 0 .(2.11)

It is obvious that ΣED is invariant under a Lyapunov transformation. Indeed, any sensible char-
acterization of spectrum for (2.1) ought to be invariant under Lyapunov transformations, which
can then be used to simplify the form of the system at hand. In our mind, the most important
transformation is based on the QR factorization of a fundamental matrix solution X . In fact, it has
been known for a long time (see [27] and [11]) that there exists an orthogonal, Lyapunov, change
of variables for which the transformed system (B in (2.11)) is upper triangular. To see this, for all
t we write a fundamental matrix solution X(t) as Q(t)R(t) where Q is orthogonal and R is upper
triangular with positive diagonal entries. Upon differentiating the relation X = QR, we have

AQR = QṘ + Q̇R or Q̇ = AQ−QB with B = QT AQ−QT Q̇.(2.12)

Since Ṙ = BR, B is upper triangular. Since Q is orthogonal, if we let S(Q) := QT Q̇ = QT AQ−B,
then the strictly lower triangular piece of the skew symmetric function S can be defined as the
corresponding piece of QT AQ and the rest of S is given by skew-symmetry.

A third spectrum we consider is what we call the computed Lyapunov spectrum, since it is close
to what traditionally has been approximated. It is defined for an upper triangular system: Ṙ =
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BR, with B and the fundamental matrix R both triangular. We define the computed Lyapunov
spectrum, written ΣCL, as

ΣCL :=

n
⋃

j=1

[λi
jj , λ

s
jj ] , λi

jj = lim inf
t→∞

1

t

∫ t

0

Bjj(s)ds , λs
jj = lim sup

t→∞

1

t

∫ t

0

Bjj(s)ds .(2.13)

Other types of spectrum may be defined for linear upper triangular systems, and we next
review some which are defined from the diagonal system extracted from the triangular one. In
particular, the next spectrum we give highlights the parallel between exponential dichotomy and
integral separation. To introduce it, we need the following.

Definition 2.5. Two bounded, continuous function f(t) and g(t) defined for t ≥ 0 are said to
be integrally separated if there exists constants a > 0 and d ≥ 0 such that

∫ t

s

(f(τ) − g(τ))dτ ≥ a(t− s)− d, t ≥ s ≥ 0.(2.14)

Now, consider a linear diagonal differential system,

ẋ = D(t)x, where D = diag(Bjj , j = 1, . . . , n) .(2.15)

We will say that the diagonal system (2.15) is integrally separated if, for j = 1, . . . , n − 1, the
functions Bjj , Bj+1,j+1, are integrally separated in the sense of (2.14).

Next, for all j = 1, . . . , n, and for λ ∈ IR, consider the planar systems

ẏj =

(

λ 0
0 Bjj(t)

)

yj(2.16)

and

ẏj =

(

Bjj(t) 0
0 λ

)

yj .(2.17)

We are ready to define the integral separation spectrum.
Definition 2.6. For (2.15), the integral separation spectrum is given by ΣIS =

⋃n
j=1 Λj where

Λj = Λ+
j ∩ Λ−

j with

Λ+
j = {λ ∈ IR : (2.16) is not integrally separated}

and

Λ−
j = {λ ∈ IR : (2.17) is not integrally separated},

for all j = 1, . . . , n.
Remark 2.1. A simple rewriting gives

Λj = {λ ∈ IR : (2.16) and (2.17) are not integrally separated}, j = 1, . . . , n.

We then have
Theorem 2.7. For (2.15), ΣIS = ΣED.
Proof. See [7].
We next introduce three spectra which are useful for approximating ΣED, bypassing the need

for uniformity intrinsic in its definition (e.g., “for all t, s such that t ≥ s”).
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Let H > 0 be given, and, for j = 1, . . . , n, consider

αH
j = inf

t

1

H

∫ t+H

t

Bjj(s)ds and βH
j = sup

t

1

H

∫ t+H

t

Bjj(s)ds .(2.18)

For diagonal systems (2.15), in [8] we have used [αH
j , βH

j ], to approximate the j-th spectral interval
of ΣED, j = 1, . . . , n, associated to (2.15). The following result, see [8], justifies this approach.

Theorem 2.8. Consider (2.15): ẋ = D(t)x where D = diag(Bjj , j = 1, . . . , n), and let Λj be
the j-th interval in ΣED for this system. For j = 1, . . . , n, let αH

j and βH
j be given as in (2.18).

For any given H > 0: Λj ⊆ [αH
j , βH

j ], for each j = 1, . . . , n. Moreover, for H > 0 sufficiently

large, [αH
j , βH

j ] ⊆ Λj and hence [αH
j , βH

j ] = Λj, j = 1, . . . , n.

Based upon the construction just outlined, we now define the integral separation spectrum
with H > 0, ΣH>0

IS , as

ΣH>0
IS :=

n
⋃

j=1

[αH
j , βH

j ], αH
j = inf

t

1

H

∫ t+H

t

Bjj(s)ds, βH
j = sup

t

1

H

∫ t+H

t

Bjj(s)ds,(2.19)

the integral separation spectrum with H = 0, ΣH=0
IS , as

ΣH=0
IS :=

n
⋃

j=1

[α0
j , β

0
j ], α0

j = inf
t

Bjj(t), β0
j = sup

t
Bjj(t),(2.20)

and the kinematic eigenvalue spectrum, ΣKE, as

ΣKE :=
n
⋃

j=1

[aj , bj ], aj = lim inf
t→∞

Bjj(t), bj = lim sup
t→∞

Bjj(t).(2.21)

To define the last spectrum associated to a triangular system, we recall the work of Lillo. In
[15], Lillo considered a quantity similar to the largest Lyapunov exponent of (2.1). Letting x(t) be
a solution trajectory of (2.1), then Lillo defined the number

λ(A) := lim sup
t→∞

[sup
x,t0

{1
t

ln(‖x(t0 + t)‖/‖x(t0)‖)}] .

By a Gronwall argument, Lillo showed that this quantity λ(A) is upper semicontinuous. For upper
triangular systems, similar quantities may be defined for the diagonal elements:

γi := lim sup
t→∞

[sup
t0

1

t

∫ t0+t

t0

Bii(s)ds] .(2.22)

The Gronwall argument in [15] does not generalize to these quantities. However, we will show
in this paper that the γi’s in (2.22) are precisely the endpoints of the spectral intervals in ΣED,
and hence they are upper semicontinuous since ΣED is upper semicontinuous by the Roughness
Theorem for exponential dichotomies (e.g., see [6, 29]). We now introduce the Lillo–spectrum,
ΣLillo. We let

ΣLillo =

n
⋃

i=1

[µi, γi] ,(2.23)

where γi is defined by (2.22) and −µi is defined using (2.22) for the adjoint equation.
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3. Continuity of Lyapunov Spectra. Here we summarize the relevant results on stability of
Lyapunov exponents and its connection to integral separation and present a new result, Theorem
3.4, that shows that an upper triangular integrally separated system has integrally separated
diagonal elements.

Definition 3.1. The characteristic exponents λ1 ≥ . . . ≥ λn of system (2.1) are said to be stable
if for any ε > 0 there exists δ > 0 such that supt∈IR+ ||E(t)|| < δ implies

|λi − λ̂i| < ε, i = 1, . . . , n,(3.1)

where the λ̂i’s are the (ordered) Lyapunov exponents of the perturbed system ẋ = [A(t) + E(t)]x.
Definition 3.2. [1, cfr. Definition 5.3.2], [3]. Write a fundamental matrix solution columnwise

X(t) = [X1(t), . . . , Xn(t)]. Then, X is integrally separated if for i = 1, . . . , n− 1, there exist a > 0
and d > 0 such that

||Xi(t)||
||Xi(s)||

· ||Xi+1(s)||
||Xi+1(t)||

≥ dea(t−s) ,(3.2)

for all t, s : t ≥ s.
Theorem 3.1. [1, Property 5.3.1 and 5.3.3]. Integrally separated systems have distinct Lya-

punov exponents.
Theorem 3.2. [1, Theorem 5.4.7], [4]. If the system (2.1) has distinct characteristic exponents

λ1 > . . . > λn, then they are stable if and only if there exists a Lyapunov transformation z ← T −1x
transforming (2.1) to the diagonal form

ż = diag[p1(t), . . . , pn(t)]z,(3.3)

where the diagonal elements, the pi, are integrally separated functions.
Theorem 3.3. [1, Theorem 5.4.8], [4]. If the system (2.1) has distinct characteristic exponents

λ1 > . . . > λn, then they are stable if and only if there exists a fundamental matrix solution with
integrally separated columns as in Definition 3.2.

Example 3.3. This is an example (see [1, p. 95]) of a system with unstable Lyapunov exponents.
Consider the (perturbed) system ẋ = A(t)x where

A(t) =

(

sin(log(t)) + cos(log(t))− 2a −e−at

0 −a

)

(3.4)

where 1 < 2a < (2 + e−π)/2. Observe that this is a perturbation of a diagonal system with the
perturbation decaying to zero as t → ∞. It is shown in [1] that the Lyapunov exponents are
unstable (the Lyapunov exponents of the unperturbed, diagonal, system are 1− 2a and −a). The
Sacker-Sell spectrum is easily seen to be ΣED = [−

√
2− 2a,

√
2− 2a] ∪ {−a}.

Now, if X is an integrally separated fundamental matrix solution for (2.1), then by [1, Property
5.3.2] the fundamental matrix solution R(t), obtained from the orthogonal change of variables
X(t) = Q(t)R(t), is integrally separated. Recall that R is triangular, and satisfies the triangular
differential system Ṙ = B(t)R.

In [8], we proved that a sufficient condition for integral separation of the matrix solution R is
given by integral separation of the diagonal system (2.15). Next, we give a converse of this result.

Theorem 3.4. For t ≥ 0, consider B(t) bounded, continuous, and upper triangular. Assume
that R(t) is an integrally separated, triangular fundamental matrix solution for Ṙ = B(t)R. Then
the diagonal of B is integrally separated.

Proof. As in [1, Corollary 5.3.2] and its proof, take the upper triangular Lyapunov transfor-
mation L given by L = [R1/||R1||2, R2/||R2||2, · · · , Rn/||Rn||2] where R(t) = [R1(t), · · · , Rn(t)] is
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the upper triangular fundamental matrix solution written columnwise. Then L−1BL − L−1L̇ =
diag(P11, · · · , Pnn) where Pjj = d

dt ln ||Rj ||2 for j = 1, · · · , n. Thus, P11(t) = B11(t) and Pjj(t) =

Bjj(t)−L̇jj(t)/Ljj(t) for j = 2, · · · , n. Since L is a Lyapunov transformation, there exist M, m > 0
such that M ≥ Ljj(t) ≥ m, for all t ≥ 0 and j = 1, . . . , n. Moreover, again by [1, Corollary 5.3.2],
the Pjj are integrally separated, i.e., there exist a > 0 and d ≥ 0 such that

∫ t

s

(

Pjj (τ)− Pj+1,j+1(τ)
)

dτ ≥ a(t− s)− d, t ≥ s, j = 1, ., , n− 1.(3.5)

Thus, for t ≥ s and j = 1, . . . , n− 1,
∫ t

s

(

Bjj(τ)−Bj+1,j+1(τ)
)

dτ =
∫ t

s

(

Pjj(τ) − Pj+1,j+1(τ)
)

dτ − ln(
Lj+1,j+1(t)

Lj+1,j+1(s)

Ljj(s)

Ljj(t)
) ≥ a(t− s)− d̃,

(3.6)

where d̃ = d + 2 ln(M/m) since ln(
Lj+1,j+1(t)
Lj+1,j+1(s)

Ljj (s)
Ljj (t) ) ≤ 2 ln(M/m).

Remark 3.1. Theorem 3.4 and the fact that integral separation is maintained under Lyapunov
transformations show that integral separation implies integral separation of the diagonal elements
of the transformed upper triangular coefficient matrix. Coupled with [8, Theorem 5.1], Theorem
3.4 shows that integral separation of the diagonal of B is equivalent to having integral separation.
This has been previously shown in [24] using a somewhat different approach and a similar result
on the diagonalizability for systems corresponding to the case of non-distinct Lyapunov exponents
is proven in [25].

For the case of non-distinct Lyapunov exponents we need some definitions before stating the
theorem due to Bylov and Izobov [4] and Millionshchikov [18] on stability of Lyapunov exponents.

Definition 3.4. [1]. Bounded, measurable functions, l(t) and u(t), defined on IR+, are said
to be lower and upper functions for (2.1) if for any solution x of (2.1) and any ε > 0 there exist
positive constants dl,ε and Du,ε such that

dl,ε exp(

∫ t

s

(l(τ)− ε)dτ) ≤ ||x(t)||
||x(s)|| ≤ Du,ε exp(

∫ t

s

(u(τ) + ε)dτ)(3.7)

for t ≥ s ≥ 0 and the quantities dl,ε, Du,ε are independent of t and s.
Finally, for (2.1), we define the following two quantities:

Ω = inf
u
{lim sup

t→∞

1

t

∫ t

0

u(s)ds},(3.8)

where the infimum is taken over all upper functions, called upper central exponent in [1], and

ω̄ = sup
l
{lim sup

t→∞

1

t

∫ t

0

l(s)ds},(3.9)

where the supremum is taken over all lower functions.
We are ready to state the stability theorem for Lyapunov exponents in the case of non-distinct

Lyapunov exponents.
Theorem 3.5. [4], [18], [1, Theorem 5.4.9]. The Lyapunov exponents of ẋ = A(t)x are stable

if and only if there exists a Lyapunov transformation T that transforms ẋ = A(t)x to the block
diagonal form

ż = diag[P1(t), · · · , Pq(t)]z(3.10)

where each Pk(t) is upper triangular of dimension nk. Moreover, for the block systems żk = Pk(t)zk,
we have:
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(i) all solutions of the block have the same Lyapunov exponents, Λk, and ω̄k = Ωk = Λk;
(ii) for any pi an arbitrary diagonal element of Pk and pj an arbitrary diagonal element of

Pk+1, pi and pj are integrally separated.

Example 3.5. In [1, Example 5.1.4], an example is given of a regular system with equal but
unstable Lyapunov exponents. The coefficient matrix is A(t) = diag(0, π sin(π

√
t)). For this

example ΣED = [−π, +π].

Example 3.6. An example of a non-regular system with equal and stable Lyapunov exponents
is given by A(t) = diag(b(t), b(t) + cos(t)) where b(t) = sin(ln(t)). Stability of the exponents here
follows from condition (5.2) of Theorem 5.1 given below.

4. Lack of Integral Separation. We will assume that an orthogonal change of variables
has been performed so that we may consider ẋ = B(t)x, with B upper triangular. We now focus
on the case in which the diagonal elements are not necessarily integrally separated. Instead of
reducing to a diagonal coefficient matrix function we are only able to reduce to a block diagonal
coefficient matrix function with upper triangular blocks. The integral separation of the diagonal
elements of the coefficient matrix function determines the size of the blocks. The extremes are:
n blocks when each pair of consecutive diagonals is integrally separated, and a single block when
none of the diagonal elements are integrally separated.

The next lemma allows reduction to a block diagonal structure with upper triangular blocks
based upon integral separation of the diagonal elements of B.

Lemma 4.1. Consider ẋ = B(t)x with B bounded, continuous, and upper triangular. For i < j
if Bii and Bjj are integrally separated, then there exists a Lyapunov transformation T = I + eie

T
j x

such that the transformed coefficient matrix function C = T−1BT −T−1Ṫ is still upper triangular,
continuous and bounded, and moreover

Cij = 0, Ckl = Bkl, for k 6= i, l 6= j ,

Ckl = Bkl − xBjl , k = i, l 6= j ,

and

Ckl = Bkl + xBki , k 6= i, l = j .

In particular, Ckl = Bkl for j > l or k > i.
Proof. Write T = I + eie

T
j x where ei and ej are the standard unit vectors in IRn, so that

T−1 = I − eie
T
j x and Ṫ = eie

T
j ẋ. Then to have 0 = Cij(t) = eT

i [T−1B(t)T − T−1Ṫ ]ej for all t, x
must satisfy

{

ẋ = Biix− xBjj + Bij ,
limT→∞ x(T ) = 0.

(4.1)

Thus, as in the proof of [8, Theorem 5.1], T , T−1 and Ṫ are bounded if Bii and Bjj are integrally

separated. Since Ckl = eT
k [T−1B(t)T − T−1Ṫ ]el, and B is upper triangular, the result follows.

Theorem 4.2. Consider ẋ = B(t)x with B bounded, continuous, and upper triangular. If S
denotes the set of tuples (i, j) with i < j such that Bii and Bjj are integrally separated, then there

exists a Lyapunov transformation T such that C = T−1BT − T−1Ṫ and (i, j) ∈ S implies Cij = 0
and (i, j) /∈ S implies Cij = Bij .

Proof. Apply Lemma 4.1 starting with the second column, then proceeding to the third column,
etc., and finally ending with the last column. Within each column start from the element on the
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superdiagonal and work up, i.e. for the ith column apply if possible the Lyapunov change of
variables first with (i, j) = (i − 1, i), then (i − 2, i), · · · , (1, i). Observe by Lemma 4.1 that for
T = I + eie

T
j x, the only elements of the coefficient matrix function that are possibly changed are

the elements of the coefficient matrix function in row i or column j. However, when annihilating
element (i, j) the elements Ckl = Bkl for l < j or k > i, so in fact the only elements of the coefficient
matrix function that are possibly modified are Cij ≡ 0, Ci−1,j , · · · , C1,j , and Ci,j+1, · · · , Ci,n.

5. Obtaining Spectra from the Diagonal. We next state and prove two results. The first
gives sufficient conditions under which, for a continuous, bounded, upper triangular coefficient
matrix function, B(·), the Lyapunov spectrum may be obtained from the diagonal of B. The
second result shows that the Sacker-Sell spectrum may be obtained from the diagonal of B.

The following formulas will be useful. The solution of

Ṙ(t) = B(t)R(t), R(0) nonsingular upper triangular,

is

Rij(t) =
Rii(t)

Rii(0)
[Rij(0) + Rii(0)

∫ t

0

R−1
ii (τ)

j
∑

k=i+1

Bik(τ)Rkj (τ)dτ ] , i < j ,

where Rii(t) = exp(
∫ t

0
Bii(τ)dτ)Rii(0). For the associated Cauchy problem

Ṙ(t, s) = B(t)R(t, s), R(s, s) = I,

the solution is

Rij(t, s) = Rii(t, s)

∫ t

s

R−1
ii (τ, s)

j
∑

k=i+1

Bik(τ)Rkj(τ, s)dτ.(5.1)

Theorem 5.1. For t ≥ 0, consider ẋ = B(t)x with B(·) bounded, continuous, and upper
triangular. If either of the following conditions hold

(i) the diagonal elements of B are integrally separated, or
(ii) the diagonal elements of B are not all integrally separated and for nonintegrally separated

diagonal elements, Bii(t) and Bjj(t), within an upper triangular block (see Theorem 4.2),
for every ε > 0 there exists Mij(ε) > 0 such that

|
∫ t

s

(Bii(τ) −Bjj(τ))dτ | ≤Mij(ε) + ε(t− s), t ≥ s,(5.2)

then the Lyapunov spectrum ΣL is obtained as

ΣL :=

n
⋃

j=1

[λi
jj , λ

s
jj ] , λi

jj = lim inf
t→∞

1

t

∫ t

0

Bjj(s)ds , λs
jj = lim sup

t→∞

1

t

∫ t

0

Bjj(s)ds ,(5.3)

and ΣL is stable.
Remark 5.1. If we consider the diagonal elements of an upper triangular block of B without

integral separation between the diagonal elements and set D(t) = diag(Bii(t), · · · , Bjj(t)), the
diagonal of one of these blocks, then condition (5.2) implies that the Sacker-Sell spectrum of
D(t) − Bkk(t) · I is {0} for any k ∈ {i, · · · , j}. In particular, this implies that all Lyapunov

exponents of the diagonal system are the same, and are given by lim supt→∞
1
t

∫ t

0
Bkk(r)dr for any

k ∈ {i, · · · , j}.
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Remark 5.2. The condition (5.2) is stronger than just lack of integral separation: (5.2) is a
uniform bound on the integral of the difference of the diagonal elements, whereas the condition for
lack of integral separation of consecutive diagonal elements requires that (see [1]): For any δ > 0
there exists an infinite sequence of intervals {[τk, θk]} such that dk = θk − τk → ∞ and τk → ∞
both monotonically as k →∞, and

∫ θk

τk

(Bll(τ)− Bl+1,l+1(τ))dτ < δdk.(5.4)

The following theorem is used to prove Theorem 5.1. It shows that given condition (5.2) we
can bound the off diagonal elements of the fundamental matrix solution in a uniform way by the
diagonal of the fundamental matrix solution.

Theorem 5.2. Consider ẋ = B(t)x where B(·) is bounded, continuous, and upper triangular.
Assume that for any ε > 0 and i < j there exists Mij(ε) > 0 such that (5.2) is satisfied. Then for
any ε > 0 and i < j, there exists K̄ij > 0 such that for t ≥ s,

|Rij(t, s)| ≤ K̄ij exp(

∫ t

s

Bii(τ)dτ)

j−i
∑

k=1

1

k!

[E(ε(t− s))

ε

]k
, E(x) = ex − 1 .(5.5)

Remark 5.3. A similar result holds for the off diagonal elements of the adjoint. That is, for
i < j, and given k, there exists K̂ij > 0 such that for t ≥ s,

|R−1
ij (t, s)| ≤ K̂ij exp(−

∫ t

s

Bii(τ)dτ)

j−i
∑

k=1

1

k!

[E(ε(t− s))

ε

]k
, E(x) = ex − 1 .(5.6)

Proof. The proof is by induction on j − i. Hereafter, define M so that |Bij(t)| ≤ M , for all t
and all i, j.

For j − i = 1, using (5.1) and the bound (5.2), we have

|Rij(t, s)| ≤
∫ t

s

Rii(t, τ) · |Bij(τ)| · Rjj(s, τ)dτ

≤
∫ t

s

e

∫

t

τ
Bii(r)dr ·M · e

∫

τ

s
Bjj (r)dr

dτ ≤MeMij(ε)e

∫

t

s
Bii(r)dr

∫ t

s

eε(τ−s)dτ

= K̄ije

∫

t

s
Bii(r)dr 1

ε
(eε(t−s) − 1) = K̄ije

∫

t

s
Bii(r)dr 1

ε
E(ε(t− s))

(5.7)

where K̄ij = MeMij(ε). Next, assume that (5.5) holds for j − i < m and we prove that it holds for
j − i = m. We have

|Rij(t, s)| ≤ e

∫

t

s
Bii(r)dr

∫ t

s

e
−

∫

τ

s
Bii(r)dr

j
∑

k=i+1

|Bik(τ)Rkj (τ, s)|dτ

≤Me

∫

t

s
Bii(r)dr

∫ t

s

e
−

∫

τ

s
Bii(r)dr

j
∑

k=i+1

|Rkj(τ, s)|dτ

≤Me

∫

t

s
Bii(r)dr

∫ t

s

e
−

∫

τ

s
Bii(r)dr(

j−1
∑

k=i+1

K̄kje

∫

τ

s
Bkk(r)dr{

j−k
∑

l=1

(E(ε(τ − s)))l

l!εl
}+ e

∫

τ

s
Bjj (r)dr)

dτ

≤Me

∫

t

s
Bii(r)dr

∫ t

s

(

j−1
∑

k=i+1

K̄kje
Mkj(ε)eε(τ−s){

j−k
∑

l=1

(E(ε(τ − s)))l

l!εl
}
)

+ eMij(ε)eε(τ−s)dτ

≤ K̄ije

∫

t

s
Bii(r)dr

∫ t

s

eε(τ−s)

j−i−1
∑

k=0

(E(ε(τ − s)))k

k!εk
dτ .

(5.8)
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Using the fact that
∫ x

0

eu(eu − 1)pdu =
(ex − 1)p+1

p + 1
,

we obtain the result.

Proof. (of Theorem 5.1) If the diagonal elements of B are integrally separated, then the proof
follows from [8, Theorem 5.1 and Corollary 5.1].

If the diagonal elements of B are not integrally separated, then the proof will follow from
Theorem 4.2 (reduction to block diagonal with triangular blocks) and Theorem 5.2 (control on the
off diagonal elements).

First, apply Theorem 4.2 to reduce B(t) to block diagonal form with upper triangular blocks
based upon the integral separation in the diagonal elements of B. Next consider an arbitrary
upper triangular block of B, call it B for simplicity, of dimension n. We are now assuming that the
diagonals of the block B are not integrally separated, but that (5.2) holds. The idea of the proof
is to verify hypothesis (i) of Theorem 3.5 since we assume integral separation across blocks. This
means that we must show that within a block all solutions of the block have the same characteristic
exponent Λ and ω̄ = Λ = Ω.

We show that when (5.2) is satisfied ω̄ may be obtained using the lower function l = Bkk

and Ω may also be obtained using the upper function u = Bkk so that ω̄ = Ω where k may be
arbitrarily chosen from {1, · · · , n}.

Consider the Cauchy matrix R(t, s) = R(t)R−1(s), and let x(t) be any solution of the system:
ẋ = B(t)x. By [1, Lemma 5.1.1], we have

||R(t, s)|| = max
x

||x(t)||
||x(s)|| and 1/||R−1(t, s)|| = min

x

||x(t)||
||x(s)|| .(5.9)

To show (3.7) with l(t) = Bkk(t) and u(t) = Bkk(t) it then suffices to show that for every ε > 0
and i ≤ j, there exist positive constants dBkk ,ε and DBkk,ε such that

dBkk,ε exp(

∫ t

s

(Bkk(τ) − ε)dτ) ≤ 1/|R−1
ij (t, s)| ,(5.10)

and

DBkk,ε exp(

∫ t

s

(Bkk(τ) + ε)dτ) ≥ |Rij(t, s)| .(5.11)

Clearly (5.10) and (5.11) hold when i = j using (5.2). To prove (5.10) and (5.11) for i < j we
employ Theorem 5.2 which shows that for any δ > 0 and i < j, there exists K̄ij > 0 such that

|Rij(t, s)| ≤ K̄ij exp(

∫ t

s

Bii(τ)dτ)

j−i
∑

l=1

1

l!

[E(δ(t− s))

δ

]l
.

Then, because of (5.2), for any ε > 0 there exists δ > 0, such that

|Rij(t, s)| ≤ exp(Mik(ε/2) +

∫ t

s

(Bkk(τ) + ε/2)dτ)K̄ij

j−i
∑

l=1

1

l!

[E(δ(t− s))

δ

]l
,(5.12)

and there exists DBkk,ε ≥ 1 such that

max
i<j
{eMik(ε/2)K̄ij

j−i
∑

l=1

1

l!

[E(δ(t− s))

δ

]l} ≤ DBkk,ε exp(ε(t− s)/2)
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and (5.11) follows.
Similarly, since R−1

ij (t, s) = Rij(s, t), for any δ > 0 and i < j, there exists K̂ij > 0 such that

|R−1
ij (t, s)| ≤ K̂ij exp(−

∫ t

s

Bii(τ)dτ)

j−i
∑

l=1

1

l!

[E(δ(t− s))

δ

]l
.

Again, using (5.2), for any ε > 0 there exists δ > 0 such that

|R−1
ij (t, s)| ≤ exp(Mik(ε/2)−

∫ t

s

(Bkk(τ) − ε/2)dτ)K̂ij

j−i
∑

l=1

1

l!

[E(δ(t − s))

δ

]l
,(5.13)

and dBkk ,ε ≤ 1 such that

max
i<j
{eMik(ε/2)K̂ij

j−i
∑

l=1

1

l!

[E(δ(t − s))

δ

]l} ≤ 1

dBkk ,ε
exp(ε(t− s)/2)

and (5.10) follows.
To complete the proof, observe that (see Remark 5.1) all Lyapunov exponents of the diagonal

system are identical, and Theorem 5.2 guarantees that the Lyapunov exponents must come from
the diagonal. Therefore, we must have

Λ = lim sup
t→∞

1

t

∫ t

0

Bkk(r)dr

and the proof is complete.

Remark 5.4. A similar result, working with adjoint, gives the stability of the lower exponent
of the block and hence the stability of the spectral interval.

The condition (5.2) was motivated by a condition used by Lillo in [14] to ensure that the
Lyapunov exponents of regular systems are stable.

Theorem 5.3. [14] Consider ẋ = B(t)x with B bounded, continuous, upper triangular, and
assume that this system is regular. Let {λi}ni=1 be the Lyapunov exponents of the system. If for all
ε > 0 and i = 1, · · · , n, there exists Mi(ε) such that

|
∫ t

s

(Bii(τ) − λi)dτ | ≤Mi(ε) + ε(t− s), t ≥ s,(5.14)

then the Lyapunov exponents are stable.

Proof. A proof is given in [14], but an alternative proof may be given using Theorem 3.5. The
idea of the proof is similar to the proof of Theorem 5.1. First reduce to block diagonal based on the
integral separation of the diagonal. Then consider an arbitrary block and recall that necessarily
to have stable Lyapunov exponents all solutions of the block have identical Lyapunov exponents,
call it λ. Since the system is regular the time averages of the diagonal entries (which have limits)
are the Lyapunov exponents.

For an n-dimensional block the assumption (5.14) gives us the bound (5.5) with Bii replaced
by λ on Rij(t, s) for i < j and t ≥ s. The proof now proceeds like the proof of Theorem 5.1 taking
lower and upper functions l(t) = λ and u(t) = λ.

We now elucidate the relation between condition (5.14) and integral separation, since both
imply stability.
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Theorem 5.4. Consider ẋ = B(t)x with B bounded, continuous, upper triangular, and with
distinct upper/lower Lyapunov exponents. Then, (5.14) implies integral separation, and hence
stability of the exponents.

Proof. Let λ1 > λ2 > · · · > λn be the ordered upper Lyapunov exponents of the system.
[Similarly we can consider lower exponents by working with the adjoint].

For i = 1, . . . , n− 1, assumption (5.14) gives

∫ t

s

(Bii(τ) − λi)dτ ≥ −Mi(ε)− ε(t− s), t ≥ s,

and

−
∫ t

s

(Bi+1,i+1(τ) − λi+1)dτ ≥ −Mi+1(ε)− ε(t− s), t ≥ s .

Adding these two inequalities, we obtain

∫ t

s

(Bii(τ) −Bi+1,i+1(τ))dτ ≥ (λi − λi+1 − 2ε)(t− s)− (Mi(ε) + Mi+1(ε)), t ≥ s .

Since ε is arbitrary, the diagonal of B is integrally separated, hence the system is integrally sepa-
rated and the Lyapunov exponents are stable.

The following theorem states that regardless of whether or not the diagonal of B is integrally
separated, the Sacker-Sell spectrum may be obtained from the diagonal of B.

Theorem 5.5. For t ≥ 0, consider ẋ = B(t)x with B(·) bounded, continuous, and upper
triangular. Then the Sacker-Sell spectrum ΣED of this system is the same as the Sacker-Sell
spectrum of the diagonal system ẋ = diag(B(t))x.

To prove Theorem 5.5, we first provide bounds on the off diagonal elements of the fundamental
matrix solution in terms of the maximum growth rate in the diagonal elements. We employ the
notation Rλ to indicate the fundamental matrix solution of the shifted system: Ṙλ = [B − λI ]Rλ,
that is Rλ(t) = e−λtR(t).

Theorem 5.6. Consider ẋ = B(t)x where B : IR → IRn×n is bounded, continuous, and
upper triangular. Assume that D(t) = diag(B11(t), · · · , Bnn(t)) has ΣED(D) =

⋃n
k=1[α

D
k , βD

k ]. For
λ > maxk{βD

k } there exist K ≥ 1 and α > 0 such that Rλ
kk(t, s) := e−λ(t−s)Rkk(t, s) ≤ Ke−α(t−s)

for t ≥ s. Then for i < j there exists K̄ij > 0 such that for t ≥ s,

|Rλ
ij(t, s)| ≤ K̄ije

−α(t−s)

j−i
∑

k=1

(t− s)k.(5.15)

Remark 5.5. A similar result holds for the off diagonal elements of the fundamental matrix
solution of the adjoint equation so that for λ > maxk{−αD

k } there exists K ≥ 1 and β > 0 such

that (Rλ
kk(t, s))−1 := eλ(t−s)R−1

kk (t, s) ≤ Ke−β(t−s) for t ≥ s. Then for i < j there exists K̂ij > 0
such that for t ≥ s,

|(R−1)λ
ij(t, s)| ≤ K̂ije

−β(t−s)

j−i
∑

k=1

(t− s)k.(5.16)

Proof. The proof is by induction on j − i. Recall that

Rλ
ij(t, s) =

∫ t

s

Rλ
ii(t, τ)

j
∑

k=i+1

Bik(τ)Rλ
kj (τ, s)dτ.(5.17)
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So, for j − i = 1 we have

|Rλ
ij(t, s)| ≤MK2

∫ t

s

e−α(t−τ) · e−α(τ−s)dτ

= K2M(t− s)e−α(t−s) =: K̄ij(t− s)e−α(t−s) .

(5.18)

Next, we assume that (5.15) holds for j − i < m and prove that it holds for j − i = m. We have

|Rλ
ij(t, s)| ≤ MK

∫ t

s

e−α(t−τ)

j
∑

k=i+1

|Rλ
kj(τ, s)|dτ

≤ MKe−α(t−s)

∫ t

s

j
∑

k=i+1

K̄kj

j−k
∑

l=1

(τ − s)ldτ

≤ K̄ije
−α(t−s)

j−i
∑

k=1

(t− s)k.

(5.19)

Theorem 5.7. Given a bounded, continuous, upper triangular coefficient matrix function B(·)
in which the diagonal elements are not integrally separated, the system ẋ = B(t)x has only one
Sacker-Sell spectral interval.

Proof. Suppose [α, β] is the smallest closed interval that contains the Sacker-Sell spectrum
of the system. Assume that there exists λ ∈ (α, β) such that ẋ = [B(t) − λI ]x has exponential
dichotomy. To complete the proof we derive a contradiction. The argument follows the proof of [8,
Theorem 6.3] where it is shown that the existence of λ for which the shifted system has exponential
dichotomy implies that there is integral separation between columns of the fundamental matrix
solution. By Theorem 3.4 and [8, Theorem 5.1] which together show the equivalence of diagonal
integral separation and integral separation we would have that there is integral separation between
some of the diagonal elements of B, a contradiction.

Proof. (of Theorem 5.5) If the diagonal elements of B are integrally separated, then the
proof follows from [8, Theorem 5.1] since in this case there exists a Lyapunov transformation that
transforms the coefficient matrix B to the diagonal of B.

If the diagonal elements of B are not integrally separated, then the proof follows from Theorem
4.2 (block diagonal with triangular blocks), Theorem 5.6 (uniform control of off diagonal terms),
openness of the resolvent, and Theorem 5.7.

First, use Theorem 4.2 to transform B(·) to a block diagonal form with upper triangular blocks
of the form described in Theorem 3.5 where the diagonal elements within a block are not integrally
separated but diagonal elements from consecutive blocks are integrally separated. Next, focus on
an arbitrary block (call it B and assume it has dimension n), choose λ, K, α as in the statement
of Theorem 5.6, and let ε = α/2. Then for 1 ≤ i < j ≤ n, there exists Lij > 0 such that

K̄ij

j−i
∑

k=1

(t− s)k ≤ Lije
ε(t−s), t ≥ s.(5.20)

So by (5.15) of Theorem 5.6,

|Rλ
ij(t, s)| ≤ Lije

−α
2
(t−s).(5.21)

Since this holds for any i < j and for any λ > βD := maxk{βD
k }, the maximum over all right

endpoints of the Sacker-Sell spectral intervals of the diagonal of B, and the resolvent is open, the
right endpoint of the Sacker-Sell interval for the upper triangular system is no greater than βD . A
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similar argument with the adjoint equation shows that the left endpoint of the Sacker-Sell interval
of the upper triangular system is not less than αD := mink{αD

k }, the minimum of the left endpoints
of the Sacker-Sell spectral intervals of the diagonal of B. Thus, using Theorem 5.7, the Sacker-Sell
spectrum for the block is [αD , βD ].

Corollary 5.1. Consider a bounded, continuous, block diagonal coefficient matrix function
B(t) = diag(B1(t), · · · , Bp(t)) where each block Bk(t) is upper triangular. Assume that for any bi

an arbitrary diagonal element of Bk and bj an arbitrary diagonal element of Bk+1, bi and bj are
integrally separated, but that within each block the diagonal elements are not integrally separated.
Then the Sacker-Sell spectrum consists of at most p intervals.

6. Relationships Between Stability Spectra. In this section we establish relationships
between the spectra introduced in Section 2. As usual, we can restrict consideration to triangular
systems: ẋ = B(t)x, t ≥ 0, with B(t) upper triangular, bounded, and continuous, for t ≥ 0. We
begin by showing the equivalence between ΣED and ΣLillo.

Theorem 6.1. For triangular systems, Lillo type exponents (2.22) are the endpoints of the
Sacker-Sell intervals. That is, for i = 1, · · · , n, we have

[αi, βi] = [µi, γi] ,

where [αi, βi] are the Sacker–Sell intervals associated to the triangular system (see Theorem 5.5),
and [µi, γi] are defined in (2.23).

Proof. We show that βi = γi, the proof that αi = µi is similar. Recall that the endpoints are

defined as βi = supt
1
H

∫ t+H

t
Bii(s)ds for H sufficiently large and γi = infτ gi(τ) = limτ→∞ gi(τ)

where gi(τ) = supt≥τ supt0
1
t

∫ t0+t

t0
Bii(s)ds.

Then for all ε > 0 there exists H̃(ε) such that

βi + ε ≥ sup
H≥H̃(ε)

sup
t0

1

H

∫ t0+H

t0

Bii(s)ds ≥ lim
τ→∞

{ sup
H≥τ

sup
t0

1

H

∫ t0+H

t0

Bii(s)ds} = γi.(6.1)

Conversely, for all ε > 0 there exists T (ε) such that τ ≥ T (ε) implies

γi + ε ≥ sup
H≥τ

sup
t0

1

H

∫ t0+H

t0

Bii(s)ds ≥ βi.(6.2)

The following theorem states that if the Lyapunov exponents are stable, then they may be
computed from the diagonals of the upper triangular coefficient matrix function B. The proof
follows almost directly from Theorems 3.3 and 3.5. First consider the reduction to block diagonal
given by Theorem 4.2 with m upper triangular blocks, {B(1), ..., B(m)} of dimensions {n1, ..., nm}
and define for i = 1, ..., m,

a(i) = lim inf
t→∞

1

t

∫ t

0

B(i)
ni,ni

(s)ds, b(i) = lim sup
t→∞

1

t

∫ t

0

B
(i)
11 (s)ds.(6.3)

With the above notation, we have:
Theorem 6.2. If the Lyapunov exponents are stable, then ΣL =

⋃m
i=1[a

(i), b(i)].
Proof. Suppose now that the Lyapunov exponents are stable. Then either the system is

integrally separated and Theorem 3.3 holds or the system is not integrally separated, but Theorem
3.5 holds. If the system is integrally separated, then by Theorem 3.4 and [8, Theorem 5.1],
we can transform the upper triangular system to the diagonal system, diag(B), by a Lyapunov
transformation and ni = 1 for i = 1, .., n ≡ m in (6.3). If the system is not integrally separated,
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then by Theorem 4.2 we may transform B(·) to block diagonal with upper triangular blocks leaving
the diagonals unchanged. Then since Theorem 3.5 holds every solution in a block must have the
same Lyapunov exponent. Consider the Cauchy problem for the block and the associated adjoint
system

ẋ(i) = B(i)(t)x(i), x(i)(0) = x
(i)
0 ,

ẏ(i) = −(B(i))T (t)y(i), y(i)(0) = y
(i)
0 ,

(6.4)

and choose x
(i)
0 = e1 for the original equation and y

(i)
0 = eni

for the adjoint to obtain the result
from (6.3).

The following theorem provides further relationships between spectra defined in section 2.
Theorem 6.3. For a time varying linear system, with bounded and continuous coefficient

matrix on the half line, we have the following relationships between spectra:

ΣCL ⊆ ΣL ⊆ ΣLillo ≡ ΣED,(6.5)

ΣED ⊆ ΣKE ⊆ ΣH=0
IS ,(6.6)

ΣED ⊆ ΣH>0
IS ⊆ ΣH=0

IS .(6.7)

Proof. We begin by making an orthogonal change of variables to an upper triangular coefficient
matrix function, B(·).

We first focus on the inclusions and equivalence in (6.5). Clearly ΣCL ⊆ ΣL since ΣL is a
function of the entire upper triangular fundamental matrix while ΣCL is defined in terms of the
diagonal of the upper triangular fundamental matrix solution. That ΣL ⊆ ΣED is proven in [29],
see also [8, Theorem 6.2]. To prove that ΣLillo ≡ ΣED, by Theorem 5.5 we may restrict attention
to the diagonal of B(·), so the result follows from Theorem 6.1.

That ΣKE ⊆ ΣH=0
IS follows directly from the definitions (2.21) and (2.20). The inclusion

ΣED ⊆ ΣKE in (6.6) follows from [8, Theorem 8.4] since by Theorem 5.5 the Sacker-Sell spectrum
may be computed by restricting to the diagonal of B(·) and we may then employ the Lillo type
definition to characterize ΣED. In particular,

lim sup
t→∞

{sup
t0

1

t

∫ t0+t

t0

Bii(s)ds} ≤ lim sup
t→∞

Bii(t).(6.8)

That ΣED ⊆ ΣH>0
IS follows similarly from Theorem 5.5 and [8, Theorem 8.4]. The final inclusion

in (6.7) follows since supt a(t) ≥ supt
1
H

∫ t+H

t a(τ)dτ .

7. Examples. An important implication of our results is that ΣL and ΣED can be approxi-
mated by working with scalar differential equations. In this section, we give two examples of scalar
problems for which we have interesting spectra ΣL and ΣED including a scalar problem where in
a limit ΣL and ΣED are equal and continuous. By appropriately coupling together such scalar
differential equations, linear systems with challenging spectra to approximate may be obtained.

Example 7.1. This is a scalar problem with continuous ΣED. For ẋ = a(t)x define

a(t) =

∞
∑

j=1

χ[aj ,bj)(t) · sin(ωj(t− aj))(7.1)
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where a1 = 0, b1 = 2π/ω1, and aj = bj−1, bj = aj + 2π/ωj for j = 2, 3, · · ·, and χ[aj ,bj)(t) is
the characteristic function on [aj , bj), and ωj are nonnegative numbers satisfying ωj ≥ ωj+1 for
j = 1, 2, · · ·. Observe that the function a(·) is continuous.

Claim . If ωj → 0 as j →∞, then ΣED is [−1, +1].
Proof. We will show that for any H > 0 and any ε > 0 there exists N such that j ≥ N implies

|1− 1

H

∫ mj+H

mj

a(s)ds| = |1− 1

ωjH
[−cos(π/2 + ωjH)]| ≤ ε(7.2)

where mj = aj +π/(2ωj). Now, given H > 0 and ε such that π2/2 ≥ ε > 0 choose N such that for
j ≥ N , ωjH ≤

√
2ε. Then mj + H ≤ bj since ωjH ≤ π. To prove the inequality in (7.2) consider

for h = ωjH , 1
h (− cos(π/2 + h)) = 1

h (h + cos(ξ)h2/2) for ξ ∈ [π/2, π/2 + h]. Using a trig identity
we have | cos(ξ)| ≤ | cos(π/2+h)| = sin(h) ≤ h since 0 ≤ h ≤ π. Thus, (7.2) follows since h2/2 ≤ ε.

It is interesting to study how the value of N in the above proof depends on the rate at which
ωj → 0. To exemplify, consider ωj = (1/j)α for α > 0. Then a direct calculation following the
above proof shows that N ≡ N(H, ε) = d(H/

√
2ε)1/αe and the corresponding value of T beyond

which (7.2) holds is T = mN so that T = π(2
∑N−1

j=1
1
ωj

+ 1
2

1
ωN

). We have T ≡ Tα ≈ 2π
1+αN1+α =

2π
1+αd(H/

√
2ε)1/αe1+α.

Next, we examine ΣL. Since
∫ bj

aj
a(s)ds = 0 for all j we have

λ+ = lim sup
t→∞

1

t

∫ t

0

a(s)ds = lim sup
j→∞,t∈(aj ,bj)

1

ωjt
(1− cos(ωj(t− aj)).(7.3)

Next write t = aj + τ for 0 < τ < (bj − aj) so that the right hand side of (7.3) becomes

1

ωjt
(1− cos(ωj(t− aj)) =

1

ωjaj + x
(1− cos(x))(7.4)

where x = ωjτ and 0 < x < 2π.
At this point, we will see that ΣL depends on the rate at which ωj → 0. Two situations are of

interest: (a) ωj = (1/j)α for α > 0, and (b) ωj = e−βj for β > 0.
(a) We have aj = 2π(1/ω1 + · · ·+ 1/ωj−1) so that for ωj = (1/j)α,

ωjaj = 2π((1/j)α + · · · ((j − 1)/j)α) > 2π

∫ j−1

1

(z/j)αdz

=
2πj

1 + α
(((j − 1)/j)α+1 − (1/j)α+1)→∞

(7.5)

as j → ∞. Since (1− cos(x)) is bounded we have λ+ = λ− = 0 for all α > 0 so that the
differential equation is regular.

(b) For ωj = e−βj we have

ωjaj = 2π(e−β + · · ·+ e−β(j−1)) = 2πe−β

(

1− e−β(j−1)

1− e−β

)

=: γj .(7.6)

Let γ = limj→∞ γj . Thus, to determine the Lyapunov spectrum we seek maxima and
minima of the function f(x) = (1 − cos(x))/(γ + x) for 0 ≤ x ≤ 2π. We have f ′(x) =
g(x)/(γ + x)2 where g(x) = sin(x)(γ + x) + cos(x) − 1. Since g(0) = g(2π) = 0 and g
is increasing for x ∈ (0, π/2) and x ∈ (3π/2, 2π) and decreasing for x ∈ (π/2, 3π/2), g
will have a single root for x ∈ (0, 2π) that lies in (π/2, 3π/2). This root x∗ corresponds
to a maximum and since f(x) ≥ 0 for x ≥ 0 and f(0) = 0, we have λ− = 0. A good
approximation to x∗ especially for γ � 1 is 3π/4 which gives a lower bound for λ+ of
(1 +

√
2)/(γ + 3π/4) which is greater than 1/

√
2 for γ � 1.
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Example 7.2. This example is similar to the previous one, but now we construct a scalar
problem for which ΣED = ΣL = [−1, 1] in a limit.

Similar to the definition of (7.1) define aj = ej−1, bj = aj + 2π/ω2j−1, cj = bj + π, dj =
cj + 2π/ω2j , and ej = dj + π for j = 1, 2, · · ·, with e0 = 0. Then define a(t) as

a(t) =















cos(ω2j−1(t− aj)) , aj ≤ t < bj ,
cos(t− bj) , bj ≤ t < cj ,

− cos(ω2j(t− cj)) , cj ≤ t < dj ,
− cos(t− dj) , dj ≤ t < ej .

(7.7)

Next observe that
∫ bj

aj
a(s)ds =

∫ cj

bj
a(s)ds =

∫ dj

cj
a(s)ds =

∫ ej

dj
a(s)ds = 0. So for t ∈ (aj , bj)

we have

1

t

∫ t

0

a(s)ds =
sin(x)

ω2j−1aj + x
(7.8)

where x = ω2j−1τ , τ = t− aj , and 0 < x < 2π. For t ∈ (cj , dj) we have

1

t

∫ t

0

a(s)ds = − sin(x)

ω2jcj + x
(7.9)

where x = ω2jτ , τ = t− cj , and 0 < x < 2π.
We have aj = 2π(1/ω1+· · ·+1/ω2j−2)+2(j−1)π and cj = 2π(1/ω1+· · ·+1/ω2j−1)+(2j−1)π.

Then for ωj = e−βj with β > 0 we obtain

γj := ω2j−1aj = π

(

2e−β 1− e−β(2j−2)

1− e−β
+ (2j − 2)e−β(2j−1)

)

,

κj := ω2jcj = π

(

2e−β 1− e−β(2j−1)

1− e−β
+ (2j − 1)e−β(2j)

)

.

(7.10)

Let γ = limj→∞ γj and κ = limj→∞ κj . Then λ+ = sup
x∈(0,2π)

sin(x)
γ+x → +1 as γ → 0 and

λ− = inf
x∈(0,2π)

− sin(x)
κ+x → −1 as κ→ 0.

8. Conclusions. In this paper, we studied spectra of linear nonautonomous systems, in par-
ticular ΣL (Lyapunov spectrum) and ΣED (Sacker–Sell spectrum). Our interest has been funda-
mentally motivated by ways to numerically approximate these spectra. Since one of the safest
and soundest numerical approaches rests on transformation (implicitly or explicitly) of the system
to upper triangular form, in this work we have focused on how to retrieve the spectra for upper
triangular systems. Our main results show that –for triangular systems ẋ = B(t)x with bounded
B– ΣED can always be recovered from the diagonal of B, and ΣL can also be retrieved from the
diagonal of B, as long as ΣL is stable. These results fully justify using triangularization techniques
to approximate the spectra. The form of the diagonalizing or block diagonalizing transforma-
tion obtained in Lemma 4.1 and Theorem 4.2 is useful in quantifying the perturbation theory for
Lyapunov exponents obtained in [9, 10].
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