ON THE ERROR IN QR INTEGRATION *

LUCA DIECIt AND ERIK S. VAN VLECK?

Abstract. An important change of variables for a linear time varying system @ = A(t)z, ¢ > 0, is that induced by
the QR-factorization of the underlying fundamental matrix solution: X = QR, with @ orthogonal and R upper triangular
(with positive diagonal). To find this change of variable, one needs to solve a nonlinear matrix differential equation for Q.
Practically, this means to find a numerical approximation to @ by using some appropriate discretization scheme, whereby
one attempts to control the local error during the integration. Our contribution in this work is to obtain global error bounds
for the numerically computed @. These bounds depend on the local error tolerance used to integrate for @, and on structural
properties of the problem itself, but not on the length of the interval over which we integrate. This is particularly important,
since —in principle- Q may need to be found on the half-line ¢ > 0.
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Notation. An (n x n) real matrix X is indicated with X € IR™*". diag(X) is the matrix made up by
the diagonal part of X, the rest being all 0’s, upp(X) is the matrix made up by the upper triangular part
of X, the rest being all 0’s, and low(X) is the matrix made up by the strictly lower triangular part of X,
the rest being all 0’s. The default norm we consider is the 2-norm of vectors and the induced norm for
matrices.

1. Introduction. Consider the homogeneous nonautonomous linear differential equation
(1.1) z(t) = A(t)x(t), t >0,

where A is a bounded function taking values in IR™*". Equation (1.1) appears pervasively in the study
of dynamical systems. E.g., it is the equation we end up with when we study variation with respect
to the initial conditions, or parameters, of a nonlinear system. Therefore, it is the problem we have to
face when we do general stability analyses for trajectories of a dynamical system; e.g., for periodic or
for chaotic trajectories. Moreover, (1.1) is also the problem at hand during a Newton process to solve
general nonlinear differential systems, a process often advocated for solving boundary value problems.
Alas, in spite of its apparent simplicity, numerical investigation of (1.1) is extremely hard, since the
solution structure depends on the fundamental matrix solution. Unquestionably, the problem is certainly
conceptually and computationally simpler if A happened to be triangular. For this reason, techniques which
find an orthogonal change of variable to triangular structure have been studied by several researchers for a
long time; e.g., see [6, 8, 18]. Our own interest in these techniques originates with methods to approximate
Lyapunov exponents of dynamical systems, a feat which is greatly simplified when the system is brought
in upper triangular structure; e.g., see [9, 11, 12].

Of course, the factor () which performs the change of variables has to be found numerically, and
this itself is not easy since @) satisfies a nonlinear matrix differential equation. Thus, to find (), one must
approximate the solution of this nonlinear matrix equation in some appropriate way. In practice, this means
that we will control the local errors while approximating @, a fact which generally does not guarantee that
Q@ will be approximated accurately, that is that the global error in our approximation will stay small. Our
contribution in this work is to provide accurate bounds on the global error when finding @: Our bounds
will depend on the local error tolerance and on the coefficient function A, but not on the length of the
interval over which we approximate ). Our result is somewhat atypical and is important. It is atypical,
because, even though @ lies in a compact space, usually one does not obtain accurate global error bounds
(on arbitrarily long intervals) except for contractive problems, and our problem is not contractive. It is
important, because —used in conjunction with standard techniques to approximate Lyapunov exponents—
it can be used to obtain global error bounds on the computed Lyapunov exponents of linear time varying
system, as well as global errors on other spectral quantities.

*This work was supported in part under NSF Grants NSF Grants DMS-0139895, DMS-0139824, and DMS-0513438.
tSchool of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332 (dieci@math.gatech.edu).
tDepartment of Mathematics, University of Kansas, Lawrence, Kansas 66045 (evanvleck@math.ku.edu).
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The way we will obtain global error bounds for the computed @ is in itself interesting, and apparently
new. Our main idea is to combine two types of error analyses: A backward error analysis guaranteeing
that the computed @ factor gives a transformation to nearly triangular form, and a forward error analysis
guaranteeing that for this nearly triangular problem there is a near the identity orthogonal transformation
reducing it further to triangular structure. Combining these two ingredients, we will obtain the sought
result. Oversimplifying it, let us sketch the basic idea which has guided us:

e We want to express X = QR, Q orthogonal, R upper triangular with positive diagonal.
- If we had Q, then R would satisfy a triangular system R = BR.
- Suppose that instead of ) we compute (backward error result) an orthogonal @, which gives

X = Qcé, with B = (B+ F)ﬁ, with B triangular and F of small norm (F not triangular).
- Suppose also that we write R= VU, with V orthogonal and U upper triangular with positive
diagonal. Then, we have X = Q.VU, and so, by uniqueness, R =U and Q.V = Q.
o If we now show that V' ~ I (forward error result), then we will infer that Q. = Q (global error
result).

A plan of the paper is as folllows. In the remainder of this Introduction we review the basic change
of variables X = QR and the differential equations satisfied by @ and R. In Section 2 we recall the key
backward error statement which we proved in [13]. In Section 3 we give in a concise way the global error
statement result, and in Section 4 we give details of a systematic way to obtain sharp bounds on the
quantities appearing in the error bound. In Section 5 we illustrate our results on an Example. Conclusions
are in Section 6, which include a remark on the modifications needed to handle the case in which we only
have a “reduced” QR factorization, that is when X only comprises a subset of columns of the fundamental
matrix solution.

We now consider the differential equations governing the evolution of the @ and R factors in the QR
factorization of X. Presently, X is a fundamental matrix solution for (1.1): X = A(t)X, X(0) = X
invertible. Let Xg = Qo Ro be the unique QR-factorization of Xy with the diagonal of Ry being positive.

Differentiating the relation X = QR one obtains QR + QR = A(t)QR and multiplying by Q7 on the
left we obtain the equation for R:

(1.2) R=B(#)R, R(0)=Ry,
where we have set
(1.3) B(t) == Q"1 AMQ(t) — QT (H)Q(t) .

Let us formally set S := QTQ. Since R has to be upper triangular, we must have B upper triangular,
which leads to

(14) Q = QS(Q,A(t))’ t>0,
where

(QTMAMQ®)ij: >,
(1.5) S(QM), A()i; = 1 0, i =7
—(QTMAMQM))ji i <.

In particular, we notice that if @ is known, then R satisfies (1.2), and we also notice that S is linear in A.
Furthermore, in light of (1.5), for the entries of B we have B;; = (QTAQ)ij + (QTAQ)J,Z, for i < j and

By = (QTAQ)“,, that is B = upp(QT AQ) + (low(QT AQ))T.

The above derivation of the equations for the QR-factorization of X has been obtained many times
before, and specific attention has been paid in recent years to techniques which maintain orthogonality
while approximating the factor Q. A sample of relevant references include [2, 3, 7, 8, 10, 16]. We are
not going to review these works in details, because the precise way in which the approximation for @ is
obtained is not relevant to our main scope here, which is to derive global error bounds for the obtained
approximations to @. What is relevant is that the obtained approximations be orthogonal at the grid-
points found during numerical integration of (1.4), a fact which the schemes proposed in the above cited
works do achieve.
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2. Background. Suppose we are seeking the factorization X (ty) = Q(tx)R(tx), k =0,1,2,... . In
other words, we are looking for the change of variables, the factor @) in the QR-factorization of X, at the
grid-points 0 = ¢y < #; < ... . Practically, the gridpoints {t;} may have been found during numerical
integration of (1.4) by any of the schemes in the previously cited works. Alternatively, we can always
think of indirectly having found approximations to @ by directly seeking the QR factorization of X (t),
as follows. Write

(2.1) X(th) = ®(tp, tro1) ... D(ta, t1)®(t1,0) X0 ,
where
(2.2) D(ttj 1) =AD)P(t,t_1), Bty 1, tj 1) =1, tj 1 <t<t;,j=12... k.

Then, for j =1,2,...,k, recursively consider (discrete QR technique)

(2.3) V(t tj—1) = AQW( 1) 5 W(tj-1,tj-1) = Qtj-1)
' and factor \I’(tj,tj_l) = Q(tj)R(tj,tj_l) s

where Q(t;) are orthogonal and R(¢;,t;_1) are upper triangular with positive diagonal. So, we have the
QR factorization of X (tx)

(2.4) X(ty) = Q(tx)R(tg, tg—1) ... R(ta, t1)R(t1, to)R(to) -
If we adopt this point of view, the error we commit in finding @ is inherited from the error we do when
approximating the transition matrices ®(t;,t;-1), j =1,2,...,k.

Notice that taking this point of view, we have expressed R(¢x) as product of local triangular transition
matrices:

R(tr) = Rty tp_1) -~ R(ta, 1) R(t1, to)

where each of these triangular transition matrices is the same as the solution of

R(t,tj—1) = E(t)R(t,tj_l) , R(tj—1,tj—) =1, tj_1<t<t;,j=12,...,k,

where B is given in (1.3).

Now, we cannot hope to be able to obtain the exact factors Q(tx) (and R(tx)). Still, let us assume
that the obtained numerical approximations to the Q(t)’s, call then Qy’s, are orthogonal. The key fact,
which we proved in [13], is the following: “By using either direct integration of (1.4) or having indirectly
approximated @ via the discrete QR technique, with a numerical realization of the change of variables
X = @R, we are obtaining a numerical approximation to X (tx), call it X, and to the triangular transition
matrices R(tx,tx—1), call these Ry, so that we have

(2.5) Xi = QrRrRr—1... RoR1R(ty), k=1,2,... ,
and at the same time
(26) Xy = Q(tk)[R(tkﬂtk—l) + Ek] s [R(t27t1) + EQ] [R(tht()) + El]R(tO) ; k= 13 23 ey

where Q(t)) is the exact Q-factor at ¢; and the triangular transitions R(¢;,%;_1) are also the exact ones.
Moreover, the factors F;, j = 1,..., k, are bounded in norm by the local error committed during integration
of the relevant differential equations; see [13, Theorems 3.1 and 3.16].”

We will henceforth simply write

(2.7) 1Bl < m, §=1,2,...,

and stress that 7 is computable, in fact controllable, in terms of local error tolerances.

Furthermore, close inspection of the error terms Ej, j = 1,...,k, k = 1,2,..., allowed us to obtain
a backward error result, which we summarize below. For details, we refer to the original work (see [13,
Theorem 3.12]), here we are content with a useful rephrasing of this result.
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SUMMARY 2.1. With a numerical realization of the QR change of variables, either having directly
integrated (1.4) or indirectly through the numerical realization of the discrete QR technique, we do not
obtain the exact transformation to the triangular form (1.2-1.3), but rather find an orthogonal change of
variable to the perturbed triangular system

(2.8) R=(BM)+F)R, t>0,

where B is the piecewise constant (and triangular) function given by

1
J J

and F' is bounded as

(2.10) sup |F|| < en+O(n?) =:6 .
>0

For the sake of completeness, we remark that in (2.10), the bounds on the norm of F are obtained
locally, on each subinterval [t;_1,t;], j = 1,2,..., so that one really has sup,, <<, [[F|| < ¢jn+ O(n?),
and the main contribution to the magnification factor c; is given by the departure from normality of the
exact triangular transition factors R(t;,¢;_1). Indeed, at first order in TOL, we have

(2.11) sup ||FH ~ TOL(I + Iij_lhj_l) s h]’_l = tj — tj_l R
tj—1<t<t;

where TOL is the local error for the obtained approximation to the transition matrix, and s;_; is the
departure from normality of R(¢;,t;_1). In any case, we stress once more that the bounds on the norm of
F are computable.

Remark 2.1. In order to obtain (2.10), in [13], we needed to have a certain condition satisfied; see [13,
Assumption 3.5]. This amounted to the requirement that

t;
. . ’ -1
TOL [min(1, oin exp(/ltj1 Bii(s)ds))] <1.

In practice, this means that one may need to have the stepsizes h; :=t; —t;_1, j = 1,2,..., sufficiently
small.

3. Global Error Bounds for Q. Next, consider the unperturbed and perturbed triangular systems
(3.1) R=B({t)R,R0)=R, and R=[B(t)+F(t)R,R(0) =Ry,

where we can assume that sup, | F(t)]] < 4.

In [14], we proved (Lemma 3.1 below) that there is an orthogonal change of variables, close to the
identity, taking the perturbed triangular system to triangular form. The proof we gave used global (and
fairly crude) norm estimates and proceeded as follows.

First, write R = Rp + Ry, where Rp = diag(R) and Ry = upp(R), so that R = (I + RURf)l)RD =:
ZRp. Accordingly, we have the unperturbed and perturbed diagonal systems

(3.2) Rp = D(t)Rp, Rp =[D(t)+ E(t)|Rp ,

where D(t) = diag(B(t)), E = Z'FZ, and R = ZRp. Define

(33) cond(Z) = sup 2D - 127 ()]

and assume that cond(Z) is bounded. In other words, we are assuming that Z is a Lyapunov transfor-

mation; e.g., this is certainly the case if the triangular system R=BRis integrally separated. This last
assertion follows from [11, Theorem 5.1].
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Recall that R is an integrally separated fundamental matrix solution if there exist @ > 0 and d > 1
such that

) IR@edl IRGesl] | oot

[[R(s)eil|  [[R()eitl|
forallt,s : t>s>0,andi=1,2,...,n—1. We also recall that integral separation is a generic property
for linear systems ([19]) and is a necessary and sufficient condition for stability of the Lyapunov exponents,

when they are distinct, [1].
Next, let w := sup;> |[[£(t)]|, and observe that

(3.5) w < sup||F|| cond(Z) < 6 cond(Z).
>0

We make note here that the integral separation constants used in Lemma 3.1 and Lemma 4.1 below
are the integral separation constants for the piecewise constant upper triangular system that results from
(2.4); see (2.9). That is, we write

R(tj+1,tj) = e(thrl_tj)B(t) R tj <t< tj+1 s

where in fact
1
B(t) := ————log(R(tjr1,1;)) , t; <t <tjs1.
tiv1 —

This piecewise constant triangular system produces the same upper triangular fundamental matrix solution
as the exact upper triangular system when evaluated at mesh points. Therefore,

ti+1 tiv1 _
(3.6) / Bii(t)dr :/ Bj;(r)dr
tj tj

where B denotes the piecewise constant triangular coefficient matrix function and B the exact triangular
coefficient matrix function of (1.3). Thus, if B has integral separation with constants @ > 0 and d > 0 so
that for ¢ > s (take logarithms in (3.4))

(3.7) / (Bis(r) — Biyrana (1)) dr >t — ) — d

fori=1,...,n—1, then for t;_; < s <t; and ¢t} <t <tpq1,

/ (B”(T) — Bi+17i+1(7'))d7’ = / (EH(T) — Bi+17i+1(7'))d7’

(3-8) + / ’ [(Bii() = Bis(1)) = (Bit1,i41(7) — Biyr,i1(7))]dr
+ /t [(Bii(7) = Bii(7)) = (Bis1,i41(7) — Bis1,i41(7))]dr > a(t —5) —d

where a = 6, d S d+ 4Mi,i+1hmaz> Mi)i+1 = suptzo |Bii(t) — Bi+1,i+1 (t)‘7 and hmaz = Supj (tj+1 — tj). In
other words, also the problem with B has integral separation with constants a > 0 and d > 0.

Then, the following result shows the existence of a near identity orthogonal change of variables which
brings the perturbed diagonal system to upper triangular, provided that w is small enough. We proved this
result in [14], under the assumption of integral separation of both unperturbed and perturbed triangular
systems. R

LEMMA 3.1. [14] Let sup,~ || B(t)|| = M, and let a and d be defined in (3.4). Let Q) be the orthogonal

factor in the QR-factorization of Rp.
If w < wy(a, K, M), then |Q;;(t)] < p fori# j and allt > 0. Here, p =0 -w, f =aK, a > 1,
K =e/a, and

(3.9) wi(a, K, M) :=(1/a? + 4(a — 1)az — a1)/(2az)
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where ay = n?B*[MB + 2] and a1 = np2Mf + 1].

As an immediate consequence we have R

COROLLARY 3.1. Ifw < wy(a, K, M) and (n —1)p? < 1, then ||Q(t) — I|| < p= (n—1)(p+p?) and
Q) — I||Fr < pr = py/2(n? —n), where || - ||r is the Frobenius norm.

Perhaps surprisingly, we already have all the ingredients to obtain global error bounds on Qy — Q(tg).

First of all, let us look again at (2.6). In the notation of Corollary 3.1, if w < wy (o, K, M), then (2.6)
can be rewritten as

~

(3.10) Xk = Qtx) Z (tr) Q) U (tr)

where U (t),) is upper triangular with positive diagonal elements, and ||Q(tx) — I|| < p.
Next, let Z = Z(tx) and Q = Q(tx). Then

(3.11) ZQ=Z20+AQ)=Z+ZAQ=Z+AZ

where [AZ] < 2]+ A0]| < | Z1lp.
THEOREM 3.2. With the previous notation, assume that
1. w<wy(a,K,M),
2. cond(Z)p < 1/2, and
5. 1Q() — 1| < p.

Then we have

3cond(Z)p

(3.12) Qe = Q)| < 3= T3 T T k=012

Proof. By the perturbation theory for the QR factorization (e.g., see [22, Theorem 3.1]),
(3.13) Z+AZ=(I+W)(Z+G)

where I + W is orthogonal, 7+Gis upper triangular with positive diagonal elements, and

(3.14) W < 31Z7M-1AZ|| .
1=2[Z71 - [[AZ]

Thus, (3.10) may be written as
(3.15) Xy, = Q(tx)I + W)(Z + G)U(tx)
and by the uniqueness of the QR factorization, from (2.5), Qr = Q(¢tx)(I + W) and therefore

(3.16) 1Qk — Q) = 1QT (t)Qx — I| = W] < €.

d

It is possible to improve the perturbation bounds on the QR-factors of nearby matrices; e.g. [4, 5]
and the references therein. However, the real drawback of the global error bound in (3.12) is actually due
to the fact that we have used a global transformation (via Z) to diagonal form, and are thus penalized by
cond(Z). The optimal situation of course is if Z = I, which occurs for instance when the upper triangular
problem is in fact diagonal. In this case, we can take w = ¢ in (3.5).

However, aside from this case of Z = I, it is probably best to avoid altogether the diagonalizing
transformation Z and tackle directly the perturbed triangular problem in (3.1), thereby attempting to

bring directly R to triangular form via an orthogonal near-the-identity transformation and obtain sharper
estimates. This is what we do in the next Section.
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4. Handling the Triangular Term Directly. Let us consider the perturbed triangular problem
(3.1), rewritten here again as

(4.1) R=[Bt)+FWIR, t>0, R0)=R,,

with sup,s( ||F(t)|] < w. Recall that B has upper triangular structure, and w is small. We have w = §
here, see (2.10), but we chose to use w to unify the notation to Lemma 3.1.

Below, we show that there exists an orthogonal change of variables to upper triangular, that is a
change of variables R = QU with @ orthogonal and U upper triangular with positive diagonal, such that
Q remains, under reasonable conditions, a small perturbation of the identity given the initial condition
Q0) = QO = I. The proof of the Lemma below uses a similar technique to that used to prove Lemma
3.1 (see [14]), but much more careful estimates are now employed. In the simplest sense, Lemma 4.1 is
a componentwise version of Lemma 3.1 but for a perturbed triangular system as opposed to a perturbed
diagonal system. In order to obtain bounds on the entries of @), we assume bounds on the entries of B and
assume integral separation constants for both consecutive and non-consecutive diagonal diagonal elements
of B. Our bounds will be of the type \Q”( ) < pij, © # j, with p;; = a;;K;;w; see below. The key to
obtaining this result is that the a;; in this bound may be found recursively starting from |i — j| =n —1
down to |i — j| = 1 with, for instance, a1, = an1 = 2.

LEMMA 4.1. Consider the problem (4.1), and write B(t) + F(t) = D(t) + T(t) + F(t), for all t, where
D = diag(B) and T = upp(B). Also, let sup,~¢ ||[F(t)|| < w. Then, there exists an orthogonal change of

variables @, with @(O) = 1, which bring B+ I to upper triangular structure C := @T [B + F]@ — @T@
Moreover, let |D;;(t)| < ki; fori=1..,n, |T;;(t)] < ki fori < j, for allt >0, and let K;; be such
that for all t > 0,

t t
(4.2) K 2/0 ¢~ Jo Pu=DastrNdr gy i and Ky = Ki, 0>
Forli—jl=n—-1,[i—jl=n—-2,...,]i —j| =1, choose a;; such that
i—1

(4.3) a;;p > 1+ Z KK ogr + ZKjkajkmﬂ, for i <j, andlet oy; =y, > 7.

k=j+1 k=1
Set
(4.4) WA = ( (@) — 40§ al ) — o) /(2057), = minw{?

where a(()ij)7agij), aéij) are defined in (4.17).
Ifw <wy({aii}, {Kij}, {Kij}), then |Qii(t)| < pij fori # j and all t > 0, where p;; = a;; K, - w.
Proof. .
Recall, see (1.4), that Q must satisfy Q = CTQ\S(@\7 B+ F). So, for i < j we have

~

(4.5) Q;; = —Qij [Dii — Djj] + (Q\ij[?ii — Dj;] + e (QIS(Q, D) + S(Q,T) + S(Q, F)Dej>
= —Qij[Dii — Djj] + i (t,Q,w)

and a similar formula for i > j. We want to show that if the conditions of the theorem are satisfied and
Q(0) =1, then |Q;;(t)| < pi; for all ¢ # j and t > 0. The proof involves applying [15, Theorem IV.2.1].
Using the nonlinear variation of constants formula we have for Q(0) = I and i < j,

(4.6) Q” / f (Dii(r)—Djj(r))dr ~~(T7@(T),w)d7
Thus, sup, @ij(t)\ < Kjj sup, |gi;(t, Q(t),w)|. We have

(4.7) i (t, Q, )| < lgij (8, @, w) — s (t, T, w)| + lgi; (¢, I, w)| < n({pr}, w)pi; + N(w)
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where since S(I,D) = S(I,T) = 0 and S(I,F) = F;, — F{ where F, = low(F), N(w) < w. To bound
n({pr},w) write

qij(t7Q7w) = qg(t@#”) + CI;‘Z(@Q7W) + qz];(taQ7w)

(48) = (@z] [Dii — Djj;] + 6?@5(@, D)€j> + 6?@5(@7T)€j + 6?@5(@7 Fe;

and consider the case in which ¢ < j (the case ¢ > j is similar).
For qi[}(t, Q,w) we have from (A-3) using the notation 8;; = a;; K,

|q£(t’Q7w) - Qi?(talyw)‘
< kil (o} +2 Z i) + #5035 Z P+ 2 Z PikPjk]
k=j+1 k=1,kj k=j+1
Jj—1 n
+ Zﬂlz[mj(ZPikpszr Z PikPik)]
1, k=1 k=j+1
n n n
< Railpii(p3 +2 Z Pi)] + Kijslpis Z Pk +2 Z PikPijk]
(4.9) k=j+1 k=1,k#j k=j+1
+ Z%u[mg‘(ﬂzri—pu-i- Z PikPik)]
I#i,5 k=1 k70,951
b -
= pij{w? (B +2 Z Bi) + ki Z B + Z leﬂj Z Bir ik
k=j+1 k=1,k#£j 14,5 Y k=1,k#i,j,0
2n D
- ﬁ” Z BirlB + D “llg (B + O] } =2 pignl] = pig (WP ? + )
Yok= j+1 l#i,j i

Next, we obtain using (A-4) and again 5;; = a;; K;;:

|qlT](taQ7 ) - qz] t I | < Z RjimPim + Zp]lﬁlz + Z Z PilRImPim

m=j+1 I=1,l#j m=l4+1,m#i
j—1 n
+ Z pikz Z PjtkimPkm + Z pikZ Z PkLEImPjm
k= 1k;£z =1 m= l+1 k=j+1 =1 m=I+1
< Z KjmPim + Z pjikl + Z Z PilRImPim
m=j+1 l 1 JA#G m=Il+1 m;ﬁz
Jj—1
+ Z Pik] Z Rgmpkm+z,0]zfizk+ Z Z PitkimPlm)
k=1,k#1 —J+1 = 1l;£]m l+1 m#k
(4.10) n
+ Z pik| Z kapgm+20kmu+ Z Z PrLEImPjm]
k=j+1 m= k+1 I=1,l#k m=Il+1 m;é]
Bik Bik
= pif{e’] Z ﬁl Z Z BitBrm Kim + Z 51 Z Z BriBjmbiim]
k=1 ki 7 =1 1) m=I+1,m#£k kmjt1 Y =1 1k m=I41,m£j
n n ﬂ ﬁ K Jj—1 ﬂ n k—1
i1Pim K1 ik
el XX A Y Y Kimbn + Y i)
1=1,l#j m= l+1 m#i v k=1,k%i " m=j+1 1= 1

n n
B k¢ Bi B; z
+ Z 51 Z KkmBjm + Zﬂkzlﬂg +1 Z Kjm ém + Z Kl 5J
k:j+1 U m=kt1 m=j+1 ij ij
T,2
= pimly = pigmiy w0 w +nm

Then, using the fact that 0 < @jj <1,and so1l— @jj <1- Afj = 22:1,1@# @?k, we obtain from
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(A_5)7
n n n n
Iqﬂ(t,Q,w)—qf}(LLw)ISw[ Dooskt D st D pupmit ) Pkl
k;éjk 1 ki k=1 (Lm)#(G,0),l,m=1 k=1, ki,

4.11 n n 2 n ‘
( ): pij {wQ [ Z ﬂ Z 61]@ + Z ﬁljﬂﬁmz] +w Z gzk }
kg k=1 "t ktik=1 T m)£ G m=t Y k=1 ok, 71

F.2
pignt =t pij (W*ni? +wnlt)

where ﬁ” = Oé”KZJ
So, we have using (4.7), (4.8), (4.9), (4.10), and (4.11),

(4.12) mij({pri},w) <nff +nf; + 0,

and finally from (4.7) we obtain
sup |Qij (1) < K (N (@) + 155 ({pw} w)pis) -

Since N(w) < w, Theorem IV.2.1 of [15] may be applied if

(4.13) Kii (5 +ny +ni)pi; +w] < pij
or
(4.14) 1> Kij(n] +nl +ni) + 1/aij,

or equivalently

(4.15) 0> i Kij(n] +ni; +nf) + (1 — ).

Then we need to have

(4.16) 0> o K (77572 + 773;72 + 77572)(412 + o K (17571 + 77;1;’1 + ng’l)w + [ainiij;,O +1- Oéij] ,
which we rewrite as

(4.17) Ffw) =a"w? 4+ aPw+al? < 0,

where in particular

i—1
(4.18) (”) =1—oa+ Z ko K + Z Kjm Qim Kim -
=1 m=j+1

We notice that agij) > 0, agij) > 0. Since f’'(w) > 0 for w > 0, we need to have a( W) < 0 in order to be
sure that there are values of w satisfying f(w) < 0. This is guaranteed by (4.3).

Thus, if w < wy with wy given in (3.9), then |Q;;(t)| < pij = ay; Kijw for i # j and t > 0.
0

What one expects from Lemma 4.1 are p;; = a;;K;;w where p;; are smaller for |i — j| large than
for |i — j| small, e.g. |i — j|] = 1. This is due in part to the sharper bounds obtained by employing
Kj; = K;; = e%i Ja;; for i < j where for t > s,

/ (Bii(1) — Bjj(1))dr > aii(t — 5) — dij,

as opposed to

/:(Bn‘(T)— (7)) dr > []Zfakk—&-l} t—s) dek+1a

k=1
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essentially avoiding the use of a triangular inequality. It is also due to the form of the recursion to determine
the ¢; in (4.3) in which we choose a1, = @,,,1 > 1, then determine o for |i —j| = n—2, etc.. There is the
potential for the a;; to become large as |i — j| | 1 depending on the size of the off diagonal elements of B
characterized by x;; and the strength of the integral separation between diagonal elements as characterized
by K

The bound on the perturbation F that allows for application of Lemma 4.1 is given in (4.4) using
(4.17) with aém given in (4.18). The coefficients ag 9 (”) may be obtained from (4.9), (4.10), and (4.11)
which give for ﬁij = Oéinij,

= Byt 0t +0lh
= [2k,; Z BirBjr + Z kuBy (B + Ba)] + [ Z Z Bj1BimEim

(4.1 ) ‘ k=j+1 1#4,j ) I=1,l#j m=I+1,m#i -
i n — n n Jj— n
+ Y Bl Y KgmBem Y Bus) + Y Bin( Y mkmBim + Y Buri)] + > B
k=Lk#i  m=jt+l =1 k=j+1  m=k+1 =1 k=1 kAi,j
and
af? =Bt 4l +ni7”)

= [Bi{ra(B] +2 Z Bi) + Kjj Z G5} + Z ku B Z BirBir|

k=j+1 k=1,k#j l#i,j k=1,k+#1,5,l
(4 20) j—1 n n n n n
- +[ > B Y. > BiBembim + Y B D > BubBimbim]
B=Lkgi 1=10) melilmk k=j+1  I=Llkm=l+1m#j
n
ST S S SR )
ki k=1 ki1 (Lm)# (i) Lm=1

The following theorem show that C obtained from Lemma 4.1 is a small perturbation of the piecewise
constant upper triangular B and that C' may be interpretted as upper triangularizing a perturbation of A
in which the perturbation is not in general small.

THEOREM 4.2. Let B be the upper triangular matriz function obtained for the exact Q: B= QTAQ —
S(Q, A). If we write the piecewise constant upper triangular B as B = B+ F, then the upper triangular
C that results from having only approzimated Q satisfies for Q = Q@,

C =Q [A+GIQ-S(Q,A+G)
(4.21) — B+ upp[@' (A+G)Q — QTAQ] + (1ow[Q (A+ G)Q — QTAQ])T
— B+upp[-F +Q (A+G)Q - QTAQ] + (low[-F + Q' (A+@)Q — QTAQ))”

where G = Q[F + F — 5(Q, A)]QT.

Moreover, if Lemma 4.1 holds, then C is an O(p) perturbation of B and C is an O(p) + O(||F||)
perturbation of B for p = max;+; pi;.

Proof. We have

C =Q"[B+FQ-S(Q,B+F)=Q"[B+F+F|Q—S(Q,B+F+F)
~Q A+ Q- S(Q,A+G) =upp[Q (A+G)Q] + (low[Q (A +G)Q))"
— B+ upp[@' (A+G)Q — QTAQ] + (1ow[Q (A+ @)Q — QT AQ))”
= B—F+uwp[@ (A+G)Q - QTAQ] + (Iow[Q (A +G)Q — QTAQ])T
— B+ upp|-F +Q (A+G)Q - QTAQ] + (low[Q' (A+G)Q — Q"AQ))”
= B+upp[-F+Q (A+G)Q — QTAQ] + (low[-F + Q' (A+@)Q — QT AQ))”

(4.22)

where we have used that upp[F] = F and low[F] = 0. We now show that C' is a small perturbation of B.
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Since @TG@ = @T[ﬁ + F]@ — @TS(Q, A)@, we have
Q"FQ=F+@Q" -DF+FQ-D+@Q"-DF@Q-T),
and

QTS(Q,A)Q = S(Q,A) + (QT — NS(Q,A) + S(Q. A)(Q — 1) + (Q" — S(Q, A)(Q — I).
+

Since upp[S(Q, A)] + (low[S(Q, A)])T = 0, we then obtain (i) and (ii) follows from (4.22) and the definition
of G.
|

Notice that although C' results from having upper triangularized A 4+ G, in general G is not small. We

conclude this section with a few important remarks.

Remarks 4.1.

(a) While Lemma 3.1 (see Lemma 3.1 of [14]) together with Theorem 3.2 of [14] are in a sense analo-
gous to a classical Bauer-Fike Theorem by employing a diagonalizing transformation, Lemma 4.1
together with (4.21) may obtain sharper bounds by avoiding the use of a diagonalizing transforma-
tion.

(b) We note here that if the original problem with coefficient matriz function A is integrally separated,
then (see e.g. [1, 20, 21, 11, 12]) the B problem is integrally separated, and hence the B problem
is. Besides the bound on F', 0, and the measure of integral separation, the K;j, the bounds obtained
depend on the k;; = sup, |B;;(t)| for i < j.

(¢c) An important point to make here is that we can view the exact solution as a perturbation of the
computed solution as opposed to the computed solution being a perturbation of the exact solution.
The bound on the norm of the perturbation, §, is the same in either case, but by considering the
exact solution as a perturbation of the computed solution, the quantities employed to bound the
error, e.g. Ki; and k;j, may be obtained from the computed solution.

__4.1. Simplified Bounds and Approximations. Next, we derive somewhat simplified bounds on
|Q(t) — I|| by first taking the largest of the p;;, then using pp = SUpj—j;—j| Pij and K = sup; ; Kij =
sup; ; [Bij(t)|. In addition, we determine an asymptotic approximation for w. Note that we have p;; = pji
for i # j, so the bounds we obtain on ||Q(t) — I|| are identical in the 1,2, and co norms.

COROLLARY 4.1. In the notation of Lemma 4.1, let 6 = w < wy({au}, {Ki;}, {Kij}). Let p =
max;; pij, and assume that (n—1)(p+7p2) < 1. Then, |Q(t)—1I|| < p= (n—1)(5+7?) and [|Q(t)—I||r <
pr = /2(n? —n)p. for allt > 0. Moreover, for k=0,1,2,..., ||Qr — Q(tx)| < p.

We next prove a corollary that gives a more computable bound on the error in the approximate @
while taking into account the variation in p;; as a function of ¢ and j. Let py = supy—j;_; pij, Ki =
Supj—|;—;| Kij, and o = supy_|;_; i, and assume that £ = sup, ; ki;.

COROLLARY 4.2. If the assumptions of Lemma 4.1 are satisfied, K,,_1 < K,,_o2 < -+ < Kj, and

n—1 2 n—1 n i—1 n=i
Sohoy ko <1 then py < ajKjw, Q) = Il < (23232 (n = k)pp + 2002, (hty o7+ 205, p2)*)V2,
and

(n—1)/2
2 > (pr+p7), n odd,
(4-23) HQ(t) - IH < (n—2)/2 =1
2 > (pr+PR) + (puj2+p22), 1 even,
k=1
where a,_1 > 1 and
(424) Q; >1+ (7’L —j — 1)I€Kj+1 (1 + (TL —j — 2)&Kj+2(1 + - (1 + /QKn_loén_l)) s )

forj=n—2,..1
Proof. The proof involves recursively applying the condition (4.3) fori < jand k = |i—j| =n—1,..., 1.
This means we can choose «y, so that

(4.25) ap_1>1, ap_o>1+kK, 10,1 > ap_1, Qn_3>14+2kK,_s0,_o2> ap_oa,...
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or in general
(4.26) aj_1>14+n—jkKjo; >a;, j=n—1,..,1L

The result then follows by recalling that p; < ojK;w and obtaining the bounds on the matrix norms in a

straightforward fashion using [|Q(t) — I|| < \/||@(t) — 11 1Q(t) — I||se.
0

In spite of their appearances, Corollaries 4.1 and 3.1 are very different, even if in Corollary 3.1 we
happen to have w = § (as when Z = I). Moreover, the factors w;, as well as p, are different in these two
contexts; notice the use of p in Corollary 3.1 versus the use of p in Corollary 4.1.

To estimate w., we reason as follows. An asymptotic analysis of the terms in (4.20), (4.19), and (4.18)
that contribute to as, a1, and ap in (4.16) and (4.17) which determine wy in (4.4) suggest that

(4.27) as ~ (3kp + k) K}, a1 ~ (2kp + k)aiK:, and ag ~ 1 — oy + 2k Ky < 0

where xp = sup; ; | Bii(t)].

These coefficients were determined by first observing that the dominant term for as = 3;; (7]5’2 +
niTj’Q + 775-’2) in (4.20) where 3;; = ;;K;; is proportional to afK37. Then in (4.20) we obtain the term
3kp from miﬁ?j + K;;Bij (85 -1 + Bjj+1) when j =i+ 1 and the term & is obtained from ;1551 8kmKim
when k=i+1,l=j—1,m=1i+2and j =i+ 2. There are no terms in 77;";’2 proportional to a3 K3. To
determine the dominant terms in a; observe that the term 2xp is obtained from ky 8y, (8 + Bu) in (4.19)
when [ = j —1 =14i+1 and the term x is obtained from [3;;8imfim in (4.19) when i = j—1,m =i+1, and
j =1+ 1. The dominant terms in 775.’1 are not proportional to a? K?. The approximation of ag is found
by considering (4.18) when j =4 + 1.

Using the form for wy in (4.4) and the approximation /1+z ~ 1+ 3, we have w; ~ -2 =~
Cl(2kp + k)a?K?)~! where C ~ —ajq.

Notice that the p;; we have when treating the triangular term directly appears to decrease as |i — j|
grows. There is an accumulation for |¢ — j| small, but it looks friendlier than the accumulation to find
cond(Z) when using the diagonalizing transformation. Indeed, it is interesting to compare the bounds one
obtain with the two different approaches: (i) using the diagonalizing transformation Z, and (ii) working
directly with the triangular system. We do this here below on a two-dimensional system.

4.2. Comparison for Two-Dimensional Systems. Here we compare the two global error bounds
obtained by the two different approaches we examined: (i) using the diagonalizing transformation Z, see
Section 3, and (ii) dealing directly with the triangular coefficient matrix function (call this the triangular

Dy Tho )
0 Da )’

Of course, a bound on the error in ) using the diagonalizing transformation approach is given by
(3.12), while with the triangular approach it is given in Corollary 4.1. The interesting thing is to see what
bounds we need for w in the two cases.

We assume |Dy;(t)| < M fori = 1,2 and |Ty2(t)| < k12 for all t and use the bound ||Z(¢)||F, ||Z71(t)||r <
V2 + k2, K2 where K = e?/a (see Lemma 3.1).

Then, we have a bound |sin(0(t))| < p := 2Kw where: (i) |sin(6(t))| = @12 (t)| and w = dcond(Z) with
the diagonalizing transformation approach, and (ii) |sin(6(t))| = |@12 (t)| and w = § with the triangular
approach, provided that in these two cases we have

approach), for a two-dimensional system. That is, we have B =

b 1+4MK —1 1

(4.28) W) @<= S REME +1)  cond(Z)
and
(4.29) (i) w<wl= V1 AM/(Krfy) -~ 1

8MK/H12 ’

respectively.
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Since for z > 0, 1 +2/2 — 22/8 < 1+ 2 < 1+ /2, using cond(Z) < 2 + K?k?,, we have
M(1 - MK) 5 M 1

4.30
(4.30) QMK + Deond(2) ~“* = @MK 1 1)cond(Z) ~ 2Kcond(Z)
and
wsn ! LM ) 1= MJER) o MJ(KRR) 1 1
' 4K? k12 Kr3, 4K?K12 T T AMK/k1s  4K2k12 T 4K cond(Z) —2

Quite clearly, the triangular approach gives much improved bounds.

4.3. Bounding the Kj;’s. In light of Remark 4.1(c), besides the size of the perturbation of B,
the quantities needed to apply Lemma 4.1, the s;;’s that measure the non-normality and the Kj;;’s that
measure the integral separation, can be obtained from the computed solution. To this end we consider
now how to obtain bounds for the K;;’s. We consider two approaches.

The first approach follows ideas developed in [11] using Steklov averages, see also Adrianova [1] Lemma
5.4.1. In particular, for ¢ < j set

p(t) := Bii(t) — Bjj;(t)

and for some H > 0, consider finding the quantities ¢(H) (positive) and M:

1 t+H
(4.32) ¢(H) =inf — p(r)dr >0, M =infp(t).
t H J, t

We have the following result.
LEMMA 4.3. Fora:=c(H) > 0, and a positive integer N, let

N
d:={Y (c(H) = c(H/2")) - (H/2")} + (c(H) = M) - (H/2V) > 0.
k=1
Then, fort > s, we have
(4.33) / p(r)dr > a(t —s) — d.

Proof. That d > 0 follows from
c(H) > c(H/2) > c(H/4) > --- > c(H/2V) > M.

If t — s = jH for some positive integer j, then

since d > 0. Otherwise, t — s =jH + (t —s — jH) with 0 < (t —s — jH) < H and for v, € {0,1} we can
write

N
t—s—jH:{HZ'yk/Qk}er
k=1

where 0 < 2 < H/2N.

/tp(r)dr > jH - o(H)+{H> 2" c(H/2")} +x-M
s k=1

(4.34) N
=cH) - (t—s)+ (JH—(t—s))c(H) + {Hnyk/T“ ce(H/2M)Y o M
>a(t—s)—d. =
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Recalling (4.2), based on the above Lemma, we may use
Kij = ed/a .
Of course, the Kj;’s are still functions of H: K;;(H). The idea now is to use for K;; the minimum value
of K;;j(H) subject to maintaining c¢(H) > 0.
We also develop an alternative approach that is a simplification of Lemmas 4.1 and 4.2 of [17]. This

alternative approach may yield better bounds on the K;’s.
As before, for all ¢, let p(t) = By;(t) — Bj;(t), ¢ < j. Consider a discretization of the interval [0, T']:

O=to<t1i <---<tny=T.

LEMMA 4.4. Let € > 0 be given. There exists ar, > 0 and dy, > 0 such that for t;, < s < tpy1,

tht1
(4.35) / p(r)dr > ag (b — 5) — d.
where for hy = tp+1 — ti and for
1 tht1
4.36 Y= min — dr,
(4.36) b= _S/S p(r)dr

e o { M5 s ws{T ST
and
/T e fsT p(r)dr g
(4.38) " n-1 o] a-eimy e -1 ]
< k:(%zoe 2o X ( v )+( - ).k_&g}ehkle 2k hwe " Ye = K(T)
where

tht1
X = / p(r)dr.

tr

Proof. If h;Yy, < €, then for ay = €/hy, dp, = € — h Yy > 0, and s € [tg, tit1],

trt+1 € € — h,Y; €
(4.39) / p(r)dr > (o — )i = (o —5) | = — EZMBN S € o= ).
s hk; hk hk,
If hiYy > €, then for ap, = Yy, dp, = 0, and s € [tg, tp41],
tk41

(4.40) / p(r)dr > (tke1 — 9)Ye = ar(tpt1 — ).

The proof of (4.38) is then a direct consequence of the following estimate

T T N-1 ity T

/ eifs pdrgs = Z/ eifs P g
0 k=0 1k
N—1

tet1 eyt »dr N-1 ti41 Pdr
:Z/k+6|:f5 p()d+zl:k+1.ﬂl p()d:|d8

ty

k=0
N—-1 [ No1 } th N—1 N-1 d
— X +1 X — X, | ek
< e El:k+1 / e~k (b1 —s)+dr 7o § : e Zl:kJrl (1- e—akhk) )
a
k=0 tk k=0 k

O
Observe that the bounds (4.38) can be used to obtain bounds on the Kj;;’s in (4.2) by setting K;; =

supy, K (t5,)-
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5. Example. Here we illustrate our results, in particular the goodness of the bounds on the error in
the orthogonal matrix function @, on the following example, also considered in [14]. We only report on
the improved bounds obtained when handling directly the triangular term.

Let B(t) = D(t) + U(t) be the upper triangular matrix function with

(51) D(t) = diag(Dn(t), Dgg(t), D33 (t), D44(t)) y

where we take D11 (t) = 10 + sin(t), Daz2(t) = ( cos(t), Dsz(t) = A — (cos(t), Daa(t) = —10 +sin(¢), ¢ > 0,
and

0 cos(t) sin(t) cgs(t)
o2 vo=n(y 00
0

0 0 0

The parameter x changes the degree to which there is non-normality in the upper triangular part and
the parameters A and ( determine the degree of integral separation in the system. For simplicity, in our
experiments below we fix A = —5, and all computations refer to this case.

Form the matrix function

A(t) = Q(t)B1)QT(t) + Q(1)Q™ (1),

where

Q(t) = diag(1, Qp(t), 1) - diag(Qn(t), @y (1)) ,

and

a0 = (90 ) =1 5= 2

—sin(yt) cos(yt)

Results for this problem were obtained using the code LESLIS, which we developed

(see www.math.gatech.edu/~dieci and www.math.ku.edu/~evanvleck).
In particular, we employ the continuous @R method (ContQR in Table 5.1) using the projected 5th order
scheme (IPAR(8)=0 in LESLIS) with local error control on the orthogonal factor @) (IPAR(10)=1 in LESLIS),
and the discrete QR method (DiscQR in Table 5.1) with a 5th order scheme (IPAR(8)=4 in LESLIS), with
local error control on the Lyapunov exponents (IPAR(10)=0 in LESLIS). TOL is the value of the local error
tolerance, and we used TOL = 1.E — 6 throughout. Before reporting on the results, we remark that, see
(2.11), we expect to have w to be about the same as TOL. In other words, the bound on the norm of the
perturbation term F' in Lemma 4.1 is essentially TOL. In Table 5.1 we tabulate the actual error for different
methods, and k and ¢ values. We report on the error in ) in the two norm (the largest singular value of
the error) at gridpoints. Exponential notation is used throughout.

We further compare the actual error with the error bounds obtained in the previous sections. Although
the quantities needed to determine the bounds, p;; = a;;K;;w, on |Q;;(t)], in particular the «;j, are
somewhat difficult to give in closed form, the recursion (4.3) are straightforward to code. Likewise, the
formula for wy, given by (4.4) with (4.18), (4.19), and (4.20) are functions of the Kj;;, the measure of
integral separation, and the x;;, the measure of non-normality. For this problem, we have k11 = k44 = 11,
Koo = (, k33 = |A| + ¢, and kij = K for 1 < j.

We have, for A = =5 and ¢ < V24 , K5 = Koy = 1/(10 — \/1 +(2), K13 = 1/(15 — /1 +(?),
Ksy = 1/(5 — /14¢?), and K14 = 1/20. If ¢ < 5/2, then K3 = 1/(5 — 2¢). We next focus on
determining bounds on K3 using Lemma 4.3 and Lemma 4.4 when ¢ > 5/2.

We have p(t) := Daa(t) — D33(t) = 5+ 2{ cos(t). To employ Lemma 4.3 we have

(5.3) Ko3(H) =

N
, d(H) = 4g{H/2N+1 + sin(H/28+) — sin(H/Q)}
k=1
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T =10*, X\ = —5, TOL=1.E-6.

H K ‘ ¢ H Method ‘ Error H Method ‘ Error H
0 1 || Cont QR | 6E-7 Disc QR | 7E-8
0 2 || Cont QR | BE-7 Disc QR | 1E-7
0 4 || Cont QR | 3E-6 Disc QR | BE-7
1 1 || Cont QR | 6E-7 Disc QR | 7E-8
1 2 || Cont QR | BE-T7 Disc QR | 1E-7
1 4 || Cont QR | 2E-6 Disc QR | BE-7
10 | 1 || Cont QR | 6E-7 Disc QR | 1E-7
10 | 2 || Cont QR | B6E-T7 Disc QR | 2E-7
10 | 4 || Cont QR | 9E-6 Disc QR | BE-7
100 | 1 || Cont QR | 5E-6 Disc QR | 4E-7
100 | 2 || Cont QR | 7E-6 Disc QR | 4E-7
100 | 4 || Cont QR | 1E-4 Disc QR | 2E-6

TABLE 5.1
Error in the approximate Q varying the degree of non-normality and integral separation, method and tolerance.

Ky3 bounds for T = 10*, A\ = —5, and ¢ = 4.

[ N || Kos w/ Lemma 4.3 | Ky3 w/ Lemma 4.4 (h =n/2" e =10"%) ||
0 2.1E5 3.9F4
1 4.7E4 2.1E2
2 3.9F4 9.0E1
3 3.814 5.1EK1
4 3.8F4 4.1F1
5 3.8F4 3.9F1
6 3.8F4 3.8E1
TABLE 5.2

Bounds on Ka3 obtained using Lemmas 4.3 and 4.4.

for H sufficiently large so that ¢(H) = 5—4(¢sin(H/2)/H > 0. For different values of N we can determine,
at least approximately, optimal values of H. When using Lemma 4.4, and in the notation used there, we
set h = hy, = 7/2" for integer N > 0. When p(t) is decreasing, Y3 = 5 + 2( cos(t+1), and when p(t) is
increasing, Y;, = 5 + 2([sin(tx41) — sin(tg)]/h.

In Table 5.2 we tabulate bounds on K3 found using Lemmas 4.3 and 4.4 for different values of V.
In the case of Lemma 4.3 N refers to discretization of the Steklov window length as in (5.3), while in the
case of Lemma 4.4, N refers to the fineness of the discretization of [0, T] (h = 7/2"). We will use the best
of the bounds found to determine bounds on the error in Q.

By Corollary 4.2 we have ||Q(tx) — Q|| = 2p1 + p2, and we recall that p; < o;K;w, i = 1,2. For
convenience, in Table 5.3 we report on the estimates for p; and ps obtained by using these bounds and
those for a;, K;, i = 1,2, for different values of x and (.

At this point, we make an important observation: If we use w = TOL in the expressions obtained for
p1 and po in Table 5.3, and use 2p; + p2 as a measure of the true global error, then we observe that the
observed true global error is always below the theoretical estimate. This is actually an important fact,
since it is not easy to know exactly the value of w. At the same time, this is not entirely rigorous, since
we can use 2p; + p2 as a measure of the global error, only if w < wy. For this reason, we also estimated
wy using the approximations to ag, ay,ag in (4.27).

For the example we are considering, xp := sup; ,|B;;(t)| = 11. In the last column of Table 5.3 we
record this estimated value of [(2kp + x)a2 K?]~! which serves as the estimate of w, (see the discussion
after (4.27)).
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Bounds obtained for the example with A = —5.

L w [Cl p/w | pofw | @oi+p)/w | we=[26p+K)aTKT] " |
0 [1]66E—1]23E—1 1.6E0 8.5E — 2
0 |2 2.0E0 | 2.6E—1 4.3E0 2.6E—2
0 |4 74E1 | 34E—1 1.5E2 2.7E-4
1 | 1] 80E—1|24E—1 1.9E0 6.5E-2
1 |2 24E0 | 27E—1 5.1E0 1.9E-2
1 |4 9.4E1 | 36E—1 1.9E2 1.1E-4
10 |1 2.6E0 | 3.BE—1 5.6E0 8.3E-3
10 | 2 8.2E0 | 39E—1 1.7E1 1.3E-3
10 | 4 3.6E2 | 5.1E—1 7.2E2 7.6E-7
102 | 1 7.7E1 1.4E0 1.6E2 1.6E-6
102 | 2 2.5E2 1.5E0 5.0E2 1.6E-7
102 | 4 1.2E4 2.0E0 2.4E4 7.4E-11

TABLE 5.3

Bound on the error in Q is dominated by p1 = a1 Kjw.

Now, by comparison of the true errors obtained in Table 5.1, using the estimates for wy from Table
5.3, and still adopting the rationale that w = TOL, we see that the results for k =0, kK = 1, or k = 10 and
¢ # 4 in Table 5.3 validate that w < wy. To further corroborate this fact, we notice that, for these value
of k, the error bounds obtained are in good agreement with the actual errors observed and recorded in
Tables 5.1 and 5.3. For k = 102 or k = 10 and ¢ = 4 the bounds obtained do not appear to be sharp, in
the sense that it becomes increasingly difficult to satisfy the hypothesis w < w™ that is necessary to apply
Lemma 4.1 and Corollary 4.2.

6. Conclusions and Consequences. We have provided a global error analysis for the factor @ in
the change of variables X = QR of a fundamental matrix solution for a non-autonomous linear system.
Our basic technique consists of a combination of backward and forward error analyses, and this is seemingly
a new approach in the context of numerical integration.

Several comments are in order.

(1)

(2)

3)

(4)

Among the noteworthy consequences of a global error analysis for @), probably the most important
one is that it becomes simple to obtain global error statements for all quantities which derive from
the simplified triangular structure of the linear system. For example, error bounds on the Lyapunov
exponents and/or the Sacker-Sell spectrum.

We have made our analysis for the entire fundamental matrix solution, although at times one is
interested in computing the QR factorization of only a few of the columns of the fundamental
matrix solution: reduced QR factorization. But, to deal with this case is —in principle— simple,
since as a consequence of the combined backward and forward error analyses for all k£ we have

Qr = Q(tr)Q(tk), ~
(61) Rk@k*l R R2R1E(t0) = QT(tk)[R(tk, tkfl) + Ek} R [R(tg, t1) + EQ][R(tl, to) + EﬂR(to)

= R(tk, tk—l) N R(tg, tl)R(th to)R(tQ)

Thus, multiplying by <é 8 , one obtains backward error statements and subsequent forward
error estimates for the case of the reduced QR factorization, obtaining bounds which cannot be
worse than the bounds obtained on the full Q.

We remark that in this work we made use of the assumption of integral separation for the linear
system. This is reasonable, since this is the generic case. However, it would be interesting to
obtain direct bounds also removing this assumption, in a similar way to [14] Theorem 4.3.

For the general case of integration of a matrix equation of the form

g = f(t,y), y(to) = yo orthogonal
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we note that for the solution to remain orthogonal 3”5 must be skew-symmetric, hence f(t,y) =
y s(t,y) where s(t,y) is skew-symmetric. Obtaining a result similar in flavor to Lemma 4.1 would
require determining a splitting

g =yL+y[s(t,y) — L], y(to) =1,

where L is such that y[s(¢,y) — L] remains small enough for y(¢) ~ I. In the specific case con-
sidered here the splitting was motivated by integral separation, a natural property for linear
nonautonomous differential equations @ = A(t)x, and we took advantage of the fact that the
skew-symmetric matrix function S(Q, A) is linear in A.

APPENDIX. Here we derive some technical eXEressmns that are useful in proving Lemma 4.1. In
particular, we derive expressions relatively to 4 D(t,Q,w), i L(t, Q,w ), and q;; E(t, Q,w ) in (4.8) that are
useful in obtaining the bounds (4.9, 4.10, 4.11) in the proof of Lemma 4.1.

First, consider ¢ (t, Q,w). We have, writing Q(t) = [Q1(¢)] - - |Qn(1)],

j—1 n
(t.Qw) — )t Tw) = ¢}(t.Q.w)=Qy[Di—Djl+[-> QuQi + Y QuQrIDQ;
k_

— k=j+1

n j—1
= QylDii — Dyl + ZDll[@lj : {— @ kQue + > QitQui})
=1

k=i +1
Jj—1 n

= DulQi;-{1-> 0%+ D O34}
k=1

k j+1

+ Dy[-Qi + Qjj - {- ZszQﬂﬁr Z QirQir}]

k=j+1

+ ZD” Ql] { ZszQlk+ Z szQlk}

1#4,j k=j+1

By orthogonality we have

3

(A-2) 1=>"Qh and QuQ;=—> QuQ,
k=1 oy
so for i < j,
qﬁ(t, Q.w) = Di[Qi ( fj +2 Z Q%))
k=j+1
(A-3) + Dy[-Qy(1- A?j) +2Q;; Z QirQjx]

k=j+1

+ ZD”[@U( Z@zkélk“r Z @zk@lk)]

l#,5 k=1 k=j+1
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Next, consider the term qiTj(t, Q,w). We have for i < j (and similarly for i > j)

(A-4)

qg}(ta@,w) - Q¢Tj(t>I>W) - qz] t Qa ZQZk ))k

_ —Z@%k (QTTQy) + Z Qin(QLTQ;)

k=1 k=j+1
j—1 n
= Z ik Z Z Q]lTlkam + Z sz Z Z leTlmQjm
k=1 =1 m=I+1 k=j+1 =1 m=I+1
n n R R
= u Z leT’lszm
=1 m=Il+1
j—1 N n n
- Z sz: Z Z Q]lT’lkam + Z sz Z Z Qk:lT’l’mQJm
k=1,k#i =1 m=Il+1 k=j+1 l*l m= l+1
n
= Q“ Q]_[ Z TJ"LQIW + sz Z leT’lz + Z Z QJlﬂ’ﬂLle]
m=j+1 =1 l;ﬁj m= l+1 ,m#£i
j—1 N n n R R n R R R
- Z Qik Z Z leTlka'm + Z Qik Z Z leTlmQjm
k=1,k+#i 1=1 m=I+1 k=j+1 I=1 m=1+1

Finally, consider the term qf;-(t, @,w). Using (1.5), we have for ¢ < j (and similarly for ¢ > j)

(A-5)

(1]

2]
(3]

(4]
(5]
[6]

Qi@j(t,@aw)*qz;(tajaw) = [@S(Q\,F)*S(I,F)]”
Jj—1 n
= =) QuS@QF)j+ > QuSQ,F)ij+ Fj;
k=1 k=j+1
= Fi(1-Qu+ Y, Q4Qj)
ki k=1
— Qi Z @ljﬂm@mi + Z @ikS(QF)kg
(I,m)#(4,4),l,m=1 k=1,k#1t
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