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ABSTRACT.

In this work, the issue of computing a real logarithm of a real matrix is addressed. After a brief review

of some known methods, more attention is paid to three methods: (i) Padé approximation techniques,

(ii) Newton’s method, and (iii) a series expansion method. Newton’s method has not been previously

treated in the literature; we address commutativity issues, and simplify the algorithmic formulation. We

also address general structure preserving issues for two applications in which we are interested: finding the

real Hamiltonian logarithm of a symplectic matrix, and the skew-symmetric logarithm of an orthogonal

matrix. The diagonal Padé approximants and the proposed series expansion technique are proven to be

structure preserving. Some algorithmic issues are discussed.

Notation and a few known Facts. A matrix M ∈ IR2n×2n is called Hamiltonian if MT J + JM = 0,

where J =

(
0 I
−I 0

)
; equivalently, M has the block structure M =

(
A B
C −AT

)
, where all blocks are

(n × n) and B and C are symmetric. A matrix T is called symplectic if T T JT = J ; equivalently, T−1 =

−JT T J , so that if T =

(
A B
C D

)
, then T−1 =

(
DT −BT

−CT AT

)
. A matrix S ∈ IRn×n is skew-symmetric if

ST = −S, and Q ∈ IRn×n is orthogonal if QT Q = I. A symplectic similarity transformation of a symplectic

(Hamiltonian) matrix is symplectic (Hamiltonian). Hamiltonian and skew-symmetric matrices are closed

under sum, multiplication by a scalar, transposition, and commutator operator. Symplectic and orthogonal

matrices are closed under inversion, transposition, and multiplication.

1. INTRODUCTION

In this work, we consider some of the issues associated with computing the logarithm of a matrix. In general,

the problem consists of the following: “Given a (n × n) matrix T , to find a (n × n) matrix X such that
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eX = T , where eX is the matrix exponential of X . Any matrix X satisfying this relation is called a logarithm

of T , and we write X = log(T ).”

The issue of computing logarithms of matrices has been treated by system engineers for quite some time,

in connection with the continuization process, how to convert a discrete process into a continuous one (see

[LS1], [LS2], [V]). It also has applications in stability of differential equations (see [Si], [YS]). Mathematically,

it is well known (e.g., see [HJ]) that any invertible matrix has at least one logarithm. We will henceforth

assume that T is invertible.

The logarithm of a matrix is just one instance of a map between the (n × n) matrices into themselves.

Just as with other functions, in principle there are two possible types of solutions X to eX = T . Those which

are functions of T ([GvL], [H1]), called primary matrix functions in [HJ], and which are in fact polynomials

in T , and those which are not. For computational purposes, it is more convenient to restrict to the case

of logarithms which are primary matrix functions of T , and -unless otherwise stated- we restrict attention

to these logarithms. The usual definition of the logarithm (or any other matrix function) goes through the

Jordan canonical form of T , or, equivalently, the Cauchy integral formula (see [G], [GvL], [HJ]).

DEFINITION 1.1. Let T be an (n × n) matrix with Jordan decomposition T = V JV −1, where

J =




J1(λ1) 0

. . .

0 Js(λs)



 ,

and each Jk(λ) is a Jordan block with eigenvalue λ. Then, one has

log(T ) = V log(J)V −1 = V




log(J1(λ1)) 0

. . .

0 log(Js(λs))



V −1 , (1.1)

where each block log(Jk(λ)) is given by (f(λ) := log(λ) here)

log(Jk(λ)) =





f(λ) f ′(λ) 1
2f ′′(λ) . . . 1

(k−1)!f
(k−1)(λ)

0 f(λ) f ′(λ) . . . 1
(k−2)!f

(k−2)(λ)

...
. . .

. . .
. . .

...
0 . . . 0 . . . f(λ)




. (1.2)

Alternatively, the logarithms of T can be characterized by the following contour integral:

log(T ) =
1

2πi

∮

Γ

log(z)(zI − T )−1dz , (1.3)

where the contour Γ is any simple curve enclosing all the eigenvalues of T .

Our own interest is for the case in which T ∈ IRn×n, and X = log(T ) is a real matrix as well. A complete

existence result in this case is the following.

THEOREM 1.2. ([HJ], but see also [V]). Let T ∈ IRn×n, nonsingular. Then, there exist X ∈ IRn×n,

X = log(T ), if and only if T has an even number of Jordan blocks of each size for every negative eigenvalue.

If T has any eigenvalue on the negative real axis, then no real logarithm of T can be a primary matrix

function of T .
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From the point of view of applications, there are a number of more specific cases which are of interest.

For instance, it is known ([HJ]) that if T is positive definite, then there exists a unique symmetric logarithm

of T . Our own motivation in logarithms of matrices stems from the desire to “invert” the discretization

process which occurs when solving systems of differential equations. Ideally, that way one would be able

to precisely determine what is being solved. More precisely, the following linear problems motivated our

interest

(a) Ẏ (t) = A(t)Y (t), t ≥ 0,

Y (0) = Y0, Y (t), A(t) ∈ IRn×n,

(b) Ẏ (t) = M(t)Y (t), t ≥ 0,

Y (0) = Y0, Y (t), M(t) ∈ IR2n×2n, Y0 symplectic, M(t) Hamiltonian,

(c) Q̇(t) = S(t)Q(t), t ≥ 0,

Q(0) = Q0, Q(t), S(t) ∈ IRn×n, Q0 orthogonal, S(t) skew − symmetric.

(1.4)

Case (1.4a) has no particular structure we are interested to maintain, but of course we will assume that

the computed approximations to Y (t) are all invertible matrices. For (1.4b) and (1.4c), instead, it is well

known that their solutions are symplectic and orthogonal, respectively, for all times t. It is also known that

if Runge-Kutta schemes at Gaussian points (GRK, for short) are used for the integration of (1.4b) ((1.4c)),

then the solutions at the grid-points will also be symplectic (orthogonal) matrices (see [K], [SS], [DRV]).

GRK schemes correspond to the diagonal Padé approximants to the exponential for constant coefficients

problems. In the present context, we will think that approximations to (1.4b-c) have been computed which

are symplectic and orthogonal, respectively (e.g., we have used GRK schemes).

It is easy to see that the exponential of any Hamiltonian (skew-symmetric) matrix is symplectic (orthog-

onal). But, in general, it is not true that the logarithm of a symplectic (orthogonal) matrix is Hamiltonian

(skew-symmetric). The result below, given in [Si] and [YS], tells when this is true. The method of proof in

[YS] (Lemma I, p.211, vol. 1) uses formula (1.3), and the result is proven only for the skew-symmetric case,

but in fact the proof for the Hamiltonian case is the same. Also, the results in [Si] and [YS] do not explicitly

contain part (b) below, but this follows easily from their proofs.

THEOREM 1.3. ([Si], [YS]). Suppose that the matrix T is real and symplectic (orthogonal) and does not

have any eigenvalue on the negative real axis (−1 is not an eigenvalue). Then:

(a) there exists a real Hamiltonian (skew-symmetric) matrix X , such that X = log(T ).

(b) X = log(T ) can be uniquely specified if, corresponding to the eigenvalues of T , we specify which branch

of the log we take. For example, there is a unique X such that all of its eigenvalues z satisfy −π < Im(z) < π.

Under the assumptions of Theorem 1.3, we would like approximation techniques for the log which surely

deliver the Hamiltonian, skew-symmetric, logarithms in question. This fact is of key importance if we want
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the assurance that our results be qualitatively correct. As we will see, this is possible with the diagonal Padé

approximants, and by truncating an appropriate series expansion.

In Section 2 we first review some of the existing methods. We then give a new result, concerning

structure preserving properties of the diagonal Padé approximants. We also discuss how (and when) to

incorporate an initial guess in the approximation of the log. In Section 3 we discuss the use of Newton’s

method for computing log(T ). In Section 4 we consider a simple series expansion technique, which was used

in [LS2], and which is the matrix analog of the recommended strategy in Calculus books (e.g., see [St]) for

computing logarithms of real numbers. This technique enjoys some nice features. Some conclusions are in

Section 5.

2. SOME METHODS

At present, there has been less interest in computation of the logarithm of a matrix than there has been in

the “inverse” problem, the one of computing the exponential of a matrix. What makes computation of the

logarithm more difficult than that of the exponential is the lack of uniqueness. This basic difficulty reflects

in the methods. In any case, the three basic approaches which have been used to find the log of a matrix are

close relatives of those used for the matrix exponential: (i) series expansion techniques ([GvL], [LS1-2]), (ii)

eigendecomposition approaches ([GvL], [Matlab]), and (iii) Padé approximation methods ([KL1-2]). These

three approaches are not mutually exclusive, and it is conceivable, for example, to use (ii) and (iii) together

when the eigenvalues of T are close to each other.

Series Expansion. The simplest series expressing log(T ) is the Taylor series

A := I − T , log(I − A) = −
∞∑

k=1

Ak

k
. (2.1)

Of course, for (2.1) to make sense, the restriction ρ(A) < 1 is needed. Typically, this series converges rather

slowly, and an algorithm based on the partial sums of (2.1) is not practical; a better algorithm can be based

on the expansion in Section 4. It is easily seen that any partial sum of (2.1) is symmetric when T is positive

definite, but generally not Hamiltonian (skew-symmetric) when T is symplectic (orthogonal).

Eigendecomposition Approaches. These are based on the fact that if the matrix T has the decomposition

T = URU−1, then also log(T ) = U log(R)U−1. A diagonalization approach is too prone to being unstable,

except when T is positive definite. The Schur approach, as implemented in Matlab, is a much safer choice:

T is reduced to Schur form (so, U is unitary and R is triangular), and then a fast recursion on the triangular

portion is applied, in the way explained in [GvL] (Algorithm 11.1.1 of [GvL]). This approach suffers when

there are repeated (or close together) eigenvalues of T . Moreover, complex arithmetic needs to be performed,

and there is no guarantee to eventually obtain a real logarithm. Of course, the method is very reliable in

recovering the symmetric logarithm of a positive definite matrix. But a drawback of the method is that it
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treats any matrix the same way, and generally one has no guarantee to obtain a desired matrix structure for

the logarithm (say, Hamiltonian). Finally, some decisions must be made as to which branch of the log one

should ultimately select. On the other hand, the strength of the method is its generality. Aside from the

coalescing eigenvalues’ case, the approach can in principle be used on any invertible matrix. Appropriate

measures to make this approach more reliable, and structure preserving for skew-symmetric logarithms, have

been recently considered in [DMP], to which we refer for details.

Padé Approximants. An interesting approach is the Padé approximation technique used by Kenney and

Laub in [KL1-2]. The starting point is the identity log(T ) = log((T 1/2k

)2
k

) = 2k log(T 1/2k

). So, given T ,

first one progressively takes square roots of T , say up to T2k := T 1/2k

, so that T2k is as close to the identity

as desired. At this point, a Padé approximant is used for computing log(T2k) = log(I − A), A = I − T2k.

Finally, one recovers log(T ) = 2k log(T2k). The “inverse squaring and scaling” procedure is needed, since Padé

approximants are more accurate close to the origin (above, A is close to the origin), and for practical reasons

one does not want to consider high order Padé approximants. In principle, any Padé approximant could be

used for log(I−A). In their work, Kenney and Laub propose to choose k so that ‖A‖ = ‖I−T2k‖ ≤ 1/4, and

then take the eighth order diagonal Padé approximant R(A) to log(I − A); they show that R(A) is within

10−18 to log(I − A). For future reference, this Padé approximant is

R(A) = P (A)(Q(A))−1 , A := I − T2k ,

P (A) = −A +
7

2
A2 − 73

15
A3 +

41

12
A4 − 743

585
A5 +

31

130
A6 − 37

1925
A7 +

761

1801800
A8 ,

Q(A) = I − 4A +
98

15
A2 − 28

5
A3 +

35

13
A4 − 28

39
A5 +

14

143
A6 − 4

715
A7 +

1

12870
A8 .

(2.2)

This algorithm is the analog of the well known “scaling and squaring” with Padé approximants algorithm

used for computing exponentials of a matrix: given T ∈ IRn×n, to compute eT , one uses the identity

eT = (e
T

2k )2k, and a Padé approximant for e
T

2k . This is one of the most successful ways to compute eT , and

it is the recommended approach implemented in Matlab. What makes it so successful is that scaling and

squaring are (relatively speaking) straightforward and inexpensive; moreover, there are no uniqueness issues

to resolve. In the case of the log, there is a key difference: the computation of square roots of a matrix. To

this end, one might once more use a Schur decomposition approach, with the usual strengths and drawbacks

of these methods ([H1]), or Newton’s method ([H2]). The Schur approach has the nontrivial advantage of

requiring only one decomposition (see [KL2]). In any case, the overall procedure for computing log(T ) is

more expensive than the analogous one for computing eT , and choices must be made which affect which

branch of the log one eventually computes.

REMARK 2.1. As we know, when approximating log(T ) one has to select a proper branch for the log.

The choice adopted in [KL1-2], and apparently also in [Matlab], is to approximate the principal log, that

is to require that the eigenvalues z of X = log(T ) satisfy −π < Im(z) < π. This is the most sensible

strategy. Naturally, also (2.1) approximates this principal log. If one wants different branches of the log, this

can in principle be done with the eigendecomposition approaches, taking the appropriate log values for the
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eigenvalues of T . It is not clear how to do it for the Padé approximation methods, and for series expansion

methods.

It is easy to see, in case A = I − T and T is a positive definite matrix, that any Padé approximant

used for log(I − A) would give us a symmetric matrix. It is also clear that, in general, non-diagonal Padé

approximants do not recover Hamiltonian (or skew-symmetric) structure (e.g., truncating (2.1) gives the

first column in the Padé table for log(I −A)). The question becomes: “Do the diagonal Padé approximants

recover such structure?” The answer is positive, as we show next.

Let us begin with two simple examples. Let A = I − T here below. Borrowing from Table 1 p.715 of

[KL1], we have that the (1, 1) Padé approximant is

R1,1(A) = −2A(2 − A)−1 = −2(I − T )(I + T )−1 ,

and this has the desired structure as a consequence of Lemma 2.5 below. The (2, 2) Padé approximant is

R2,2(A) = (−6A + 3A2)(6I − 6A + A2)−1 ,

and after a bit of manipulation, expressed in terms of T this becomes

R2,2 = −3(I − T )(I + T )(T + aI)−1(T + bI)−1 , a := 2 +
√

3, b := 2 −
√

3 .

This also recovers the desired structure. For example, when T is orthogonal, R2,2 is a skew-symmetric

matrix, since

RT
2,2 = 3(I − T )(I + T )(I + aT )−1(I + bT )−1 ,

and (bI + T )(aI + T ) = (bT + I)(aT + I), because ab = 1. Similarly, we can show by direct verification that

if T is symplectic, then R2,2 is Hamiltonian. Of course, this is not a sensible general strategy. In general,

we have:

THEOREM 2.2. Let X = log(T ), A = I − T , and let ρ(A) < 1. Let Rm,m(A) be the diagonal Padé

approximants to log(I − A), m = 0, 1, . . .. Then, we have

(i) If T is orthogonal, Rm,m(A) is skew-symmetric.

(ii) If T is symplectic, Rm,m(A) is Hamiltonian.

Proof. The key result which makes things work is a theorem in Padé approximants, known as the “ho-

mographic invariance under argument transformations” (this is Theorem 1.5.2 in [BG-M], vol I). Let x be a

scalar, and consider f(x) = log(1−x); from the equality log(1−x) = − log(1− x
x−1), this theorem in [BG-M]

implies that also Rm,m(x) = −Rm,m( x
x−1 ), a fact already noted in Lemma 1 of [KL1]. In our matrix case,

this relation reads

Rm,m(A) = −Rm,m(A(A − I)−1) , (2.3)

6



and with this we can now show (i) and (ii) of our Theorem. Let

Rm,m(A) := P (A)(Q(A))−1 , P (A) =

m∑

k=0

akAk , Q(A) =

m∑

k=0

bkAk .

(i) Let T : T T T = I. From (2.3), we have

Rm,m(I − T ) = −Rm,m(I − T T ) , or Rm,m(A) = −Rm,m(AT ) .

On the other hand, Rm,m(AT ) = (Rm,m(A))T , since

m∑

k=0

akBk (

m∑

k=0

bkBk)−1 = (

m∑

k=0

bkBk)−1
m∑

k=0

akBk ,

for any matrix B (in our case it would be B = AT ). Therefore, Rm,m is skew-symmetric and (i) follows.

(ii) Let T : T−1 = −JT T J . From (2.3), we have

Rm,m(I − T ) = −Rm,m(I − T−1) = −Rm,m(J(T T − I)J) = −Rm,m(JT (I − T T )J) ,

or Rm,m(A) = −Rm,m(JT AT J) .

On the other hand, Rm,m(JT AT J) = JT Rm,m(AT )J , because

JT [

m∑

k=0

akBk (

m∑

k=0

bkBk)−1]J =

m∑

k=0

ak(JT BJ)k (

m∑

k=0

bk(JT BJ)k)−1 ,

for any matrix B (in our case it would be B = AT ). Moreover, from the proof of part (i), we have

Rm,m(AT ) = (Rm,m(A))T . Therefore, we have Rm,m(A) = −JT (Rm,m(A))T J and Rm,m(A) is Hamiltonian.

REMARKS 2.3.

(i) Theorem 2.2 extends to log(I − X) known results about eX . It has been known for a while (e.g., see

[K] and [DRV]) that if X is Hamiltonian or skew-symmetric, then the diagonal Padé approximants to

eX are symplectic and orthogonal, respectively. Theorem 2.2 extends this result to the inverse function,

the log.

(ii) Theorem 2.2 relies on the result on homographic invariance of Padé approximants under change of

coordinates. This fact only holds for diagonal Padé approximants. Still, we think that our Theorem

2.2 is optimal, that is we think that non-diagonal Padé approximants to log(A), A = I − T , will not

recover, say, Hamiltonian structure for an arbitrary symplectic matrix T .

(iii) For the issue of approximation error with Padé approximants, we refer to [KL1].

Finally, we would like to discuss the issue of how and when to incorporate information on an approximate

logarithm into any algorithm to find log(T ). This basic issue has not been adequately treated in the literature

before, but in fact information on an approximate log is often available, e.g. when one integrates (1.4).

Suppose we need to find X = log(T ), and have X0, which is expected to be a good approximation to X ,

in the sense that T0 := eX0 is close to T . One might want to use this information by considering the new

matrix TT−1
0 , computing its log, and recovering log(T ). But, in general, this is not possible unless T and

X0 (equivalently, T and T0) commute. We summarize this simple fact.
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LEMMA 2.4. Let X : eX = T . Let X0 be such that X0T = TX0, and let T0 = eX0 . Then, also

TT−1
0 = T−1

0 T and log(T ) = log(TT−1
0 ) + X0.

So, one needs to have X0 commuting with T in order to make use of it. We next discuss some possibilities.

Our motivation is to consider simple and inexpensive strategies. A more expensive alternative to those below

is given by taking high-order diagonal Padé approximants to give an initial guess (this is so, because it can

be easily shown that if a matrix commutes with T , then it also commutes with any Padé approximant to

log(T )).

(A) X0 = dI , d ∈ IR, a constant diagonal matrix. This simple choice can be useful for a matrix T having

real positive eigenvalues (for example a positive definite matrix) in order to rescale it into a new matrix

T̂ = e−dT for which I − T̂ has all eigenvalues less than 1.

(B) Here, the idea is to “invert the implicit midpoint rule”; equivalently, taking the (1, 1) diagonal Padé

approximant, the Cayley transform of T . The following simple result holds.

LEMMA 2.5. Let −1 not be an eigenvalue of T . Consider the matrix

H = c(I − T )(I + T )−1, c ∈ IR, c 6= 0 . (2.4)

Then:

(i) HT = TH and also e−HT = Te−H ;

(ii) If X = log(T ), then XH = HX and so also X = log(e−HT ) + H ;

(iii) If T T = T then also HT = H .

(iv) If T is symplectic then H is Hamiltonian, and also the converse is true when the inverse transformation

T = (cI + H)(cI − H)−1 is well defined. Finally, T is orthogonal if and only if H is skew-symmetric.

Proof. For completeness, we supply these simple proofs by direct verification. Since they are identical for

all c, we just set c = 1.

(i) We have H(I+T ) = I−T ; since (I−T )(I+T )−1 = (I+T )−1(I−T ), then we also have (I+T )H = I−T ,

so that HT = TH . The second implication follows from e−H =

∞∑

k=0

(−H)k

k!
.

(ii) Let T (t) = eXt, t ≥ 0, so that H = (I − T (1))(I + T (1))−1. We have T (t)T (1) = T (1)T (t), from which

it follows that (I + T (1))−1T (t) = T (t)(I + T (1))−1 and so T (t)H = HT (t) and XH = HX .

(iii) This is obvious.

(iv) The first part is in [LM]. We show the second part. Let T be orthogonal. Then,

HT = (T T (T + I))−1(I − T T ) = (T + I)−1(T − I) = −(I − T )(I + T )−1 = −H .

Conversely, if HT = −H , we immediately get T T T = I.

The motivation for considering (2.4) comes from the discretization process for (1.4). Suppose that

some linear one step method is used to integrate (1.4); that is, with Yk being the available approximation

8



at the point tk, one computes Yk+1 = S(h, A)Yk, h = tk+1 − tk. What we want to find is the matrix

Â such that S(h, A) = ehÂ. If we had used the implicit midpoint rule to discretize (1.4), we would have

hA(tk + h/2) = −2(I − S)(I + S)−1, and this is expected to be a very good approximation to hÂ, and it is

of the type (2.4).

(C) The inverse scaling and squaring procedure of [KL2] can also be seen as a strategy to get a good initial

guess for a modified problem (the guess being the zero matrix), and can be generally used for any of the

algorithms considered in this work. Of course, for the symplectic and orthogonal cases, one would then need

to be sure that also all square roots are such. In practice, this might be not easy. For example, if we use

the eigendecomposition approach for square roots, and use Schur reductions, then we might loose symplectic

structure. Relying on symplectic similarity transformation would be essential in this case. Anyhow, this is

also an interesting issue to consider in the future.

REMARK 2.6. In principle, all methods discussed above, and those to be discussed next, can be modified

to incorporate information on an initial guess X0. In practice, however, the eigendecomposition approach

does not benefit from this. The series (2.1) does, as do all other Padé approximants and the methods

discussed in the next two Sections.

3. NEWTON’S METHOD

Here, we consider using Newton’s method for the nonlinear matrix equation

F (X) = 0 , F (X) := eX − T . (3.1)

Just for a moment, neglect the issue of the initial guess, and consider the formal Newton iteration

[F ′(X)]X=Xk
Y = −F (Xk), Xk+1 = Y + Xk , (3.2)

where the Fréchet derivative F ′(X) can be given as

F ′(X) : Y → Y +
XY + Y X

2
+

X2Y + XY X + Y X2

3!
+ · · · =

∞∑

n=1

1

n!

n−1∑

k=0

XkY Xn−1−k . (3.3)

If X and Y commute, a major simplification occurs in (3.3), and one obtains

F ′(X) : Y → Y eX = eXY . (3.4)

Since Xk commutes with itself, we propose to consider the following iteration (Newton’s method)

Y = −I + e−XkT , Xk+1 = Y + Xk . (3.5)

To justify (3.5), we need to restrict to initial guesses X0 such that XX0 = X0X ; therefore, such that

X0T = TX0. We have
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LEMMA 3.1. Let X : eX = T . Suppose that X0X = XX0. Then, also Xk+1X = XXk+1, where Xk+1

are the iterates from (3.5). Moreover, also XkXk+1 = Xk+1Xk in this case.

Proof. By induction. For k = 0, since XX0 = X0X , then we have X1 = (X0 − I) + e−X0T . Therefore,

XX1 = X1X if Xe−X0T = e−X0TX which is true since XT = TX . Next, if XXk = XkX , then Xk+1 =

Xk−I +e−XkT , and so Xk+1X = XXk+1 again is true as above. Finally, Xk+1Xk = X2
k −Xk +e−XkTXk =

X2
k − Xk + Xke−XkT = XkXk+1.

We now have a concise formulation for Newton’s method

Xk+1 = Xk − I + e−XkT , k = 0, 1, . . .

X0 s.t. X0X = XX0 .
(3.6)

Next, we show quadratic, and norm-monotóne, convergence of (3.6), provided the initial guess is close

enough to the solution. From (3.6) we have

Xk+1 − X = Xk − I + e−XkT − X ,

and since X0X = XX0, then e−XkT = eX−Xk . Using the expansion of the exponential function with error

term as in [HJ], we have

eX−Xk = I + (X − Xk) + (X − Xk)2
∫ 1

0

ue(X−Xk)(1−u)du .

Now, ∫ 1

0

ueA(1−u)du =

∞∑

n=0

An

n!

∫ 1

0

u(1 − u)ndu =

∞∑

n=0

An

n!

1

(n + 1)(n + 2)
,

so that we obtain

‖Xk+1 − X‖ <
1

2
‖Xk − X‖2 ‖e(X−Xk)‖ . (3.7)

So, quadratic convergence is apparent if X0 is close enough to X . Moreover, if ‖X0 − X‖ < z1, where z1

is the root of the equation zez = 2 (z1 ≈ .85), then we also have ‖X − X1‖ < ‖X − X0‖ and monotóne

convergence (in norm) follows.

REMARKS 3.2.

(i) Commutativity is essential in deriving convergence.

(ii) In the above, we have assumed to have the matrix exponentials exactly, but in practice they must be

computed as well. This is the key expense with (3.6).

(iii) Unlike the general case with Newton’s method, using a frozen Jacobian (quasi-Newton) approach does

not lead to computational savings in this context. In fact, this quasi-Newton method would read

[F ′(X)]X=X0
(Xk+1 − Xk) = −eXk + T ,

and one still needs to compute eXk , which is the bulk of the expense.
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(iv) It is easy to see that (3.6) does not usually lead to a sequence of Hamiltonian (skew-symmetric) matrices

when finding the log of symplectic (orthogonal) matrices, even if X0 has the desired structure. Of course,

if we can block-diagonalize the symplectic matrix T by a symplectic transformation, that is bring it to

the form STS−1 := T̂ =

(
T1 0
0 T−T

1

)
, and then we use Newton’s method to find X1 = log(T1), at the

end we can recover the Hamiltonian log(T ) = S

(
X1 0
0 −XT

1

)
S−1. This is sometimes possible.

(v) It is immediate, instead, to realize that (when convergent) (3.6) can be used to find the symmetric log

of a positive definite matrix, if X0 = XT
0 . In fact, when Xk = XT

k , one immediately has

XT
k+1 = Xk − I + Te−Xk = Xk − I + e−XkT = Xk+1 .

One interesting aspect of Newton’s method (3.6) is that one can also approximate logs which are not

primary matrix functions of T . Consider the following example.

EXAMPLE 3.3. Consider the matrix X =

(
0 2π

−2π 0

)
. It is easy to see that X solves eX = I, the

identity matrix. Since the two eigenvalues of X are not identical, X cannot be a primary matrix function

of I. Consider the initial guess X0 =

(
c 2π − b

−2π + b c

)
, b, c ∈ IR, so that XX0 = X0X . Some results,

obtained with a simple Matlab program for the Newton iteration, are: (i) for b = c = 0.5, convergence to

X to full machine precision occurred in 6 iteration, (ii) for b = c = 1, 7 iterations were needed, and (iii) for

c = π, b = 0 we needed 9 iterations.

4. ANOTHER SERIES EXPANSION

Series expansions for the log of a matrix are based upon series expansions for the log of real numbers. The

series (2.1) is based on the well known Taylor’s expansion

log(1 − x) = −
∞∑

k=1

xk

k
, : x :< 1 ,

(where we note once more that partial sums of this correspond to the first column in a Padé table of

log(1 − x)). A simple algebraic manipulation of this formula gives

log(
1 + x

1 − x
) = 2(x +

x3

3
+

x5

5
+ · · ·) ,

and the change of variables x = s−1
s+1 then gives

log(s) = 2

∞∑

k=0

1

2k + 1
(
s − 1

s + 1
)2k+1 ,

which is convergent ∀s > 0. These basic manipulations are given in elementary Calculus books (e.g, see

[St]). Based upon this last formula, we can take this series expansion for log(T ) (already in [LS2])

log(T ) = 2

∞∑

k=0

1

2k + 1
[(T − I)(T + I)−1]2k+1 . (4.1)

11



Clearly, (4.1) converges for all matrices T whose eigenvalues have positive real parts. Moreover, in our (so

far, limited) experience, convergence is generally much faster than that of (2.1), and the expense to obtain

the final result is often less than with the eigendecomposition or direct Padé approximants approaches. This

is actually not surprising, since the above manipulations are an instance of the Eüler transformation, whose

effect is at once to enlarge region of convergence and to enhance convergence rate of the series (e.g., see

[BR], and references there). In fairness, this same viewpoint can be applied to the other approaches, say

to Padé approximants, and it is possible that it would lead to enhanced convergence properties for the

Padé approximants as well. For example, rather than considering Padé approximants based on the series

expansion of log(1 − x) we might want to consider approximants based on the expansion of log(1+x
1−x) above.

This remains to be done.

In any case, our interest in (4.1) originates from a property of its partial sums. We have

THEOREM 4.1. The following facts hold:

(i) If T is positive definite, then all partial sums of (4.1) are symmetric, and so is the limit (4.1).

(ii) If T is symplectic, then all partial sums of (4.1) are Hamiltonian.

(iii) If T is orthogonal, then all partial sums of (4.1) are skew-symmetric.

Proof. Fact (i) is clear, and convergence is assured since T is positive definite. Let us show (ii) and

(iii). Since Hamiltonian and skew-symmetric matrices are closed under sum, it suffices to show that Tk :=

[(T − I)(T + I)−1]2k+1 , k = 0, 1, . . . , has the desired structure, and then the result will follow by induction.

From Lemma 2.5, we know that T0 has the desired structure. Consider case (ii). We need to show that

T T
k J + JTk = 0, and since Tk = T 2k+1

0 , this is equivalent to showing (T 2k+1
0 )T J + JT 2k+1

0 = 0. That is, we

have to show that

(T 2
0 )T · · · (T 2

0 )T T T
0 J + JT0(T

2
0 ) · · ·T 2

0 = 0 . (4.2)

Now, T0 has the block structure T0 =

(
A B
C −AT

)
, for some A, B, C, with B, C symmetric. Therefore, we

get

JT 2
0 =

(
CA − AT C CB + (AT )2

−A2 − BC BAT − AB

)
= (T 2

0 )T J ;

using this fact over and over, and since T T
0 J = −JT0, we eventually get that (4.2) is satisfied. To show (iii)

we proceed similarly. We have

(T 2k+1
0 )T = ((T 2

0 · · ·T 2
0 )T0)

T = T T
0 ((T 2

0 )T · · · (T 2
0 )T ) = −T0(T

2
0 · · ·T 2

0 ) = −T 2k+1
0 ,

where we have used the elementary fact that T 2
0 is symmetric.

REMARKS 4.2.

(i) Of course, the issue of enhancing convergence by a suitable approximation applies here as well.

(ii) It is worthwhile to point out that an algorithm based on taking partial sums of (4.1) can be made quite

efficient from the computational point of view. The major expense is of course given by taking powers of the
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matrix A := (T − I)(T + I)−1. Binary powering (see [GvL]) can be nicely exploited in this context, possibly

rewriting the k-th partial sum as 2A(I + A2

3 + . . . + A2k

2k+1 ).

5. CONCLUSIONS AND FUTURE WORK

In this paper we have considered some old and some new methods for approximating real logarithms of

matrices. One of our goals has been to lay ground work for a forthcoming comparison of the methods. Such

a comparison has been recently carried out in [DMP].

A main motivation for this paper was to devise techniques which preserved known structural properties of

the analytic logarithm. In particular, to devise approximation methods which recovered the skew-symmetric

and Hamiltonian logarithms associated to orthogonal and symplectic matrices, respectively. We have proven

that the diagonal Padé approximants enjoy this property, as do the partial sums of a certain series.

We have also considered Newton’s method. With a suitable choice of initial guess, the formulation

of Newton’s method becomes manageable. As usual, quadratic convergence is recovered. A considerable

expense with this method is given by the need to compute a matrix exponential at each iteration. Nonetheless,

the method can be useful for approximating logarithms of a matrix T , which are not primary matrix functions

of T .

Amongst several things which still have to be done, it seems to us of both theoretical and practical

interest to investigate the usefulness of such “log” approach in the context of backward error analysis of

ODEs, a fact which provided our initial motivation.
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